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Abstract: This paper is about a set-membership based state- and parameter estimation
approach for nonlinear dynamic systems under the assumption that all measurement errors
are bounded. In detail, we propose an outer approximation method, where the set of states and
parameters that is consistent with the incoming measurement bounds is over-approximated by
an intersection of ellipsoids. We introduce computationally tractable methods for propagating
such ellipsoidal ensembles through dynamic systems and construct an associated recursive
estimation algorithm. We also show how to select the past measurements such that the
intersection problem remains tractable on long time horizons. The proposed approach is
illustrated by applying it to a batch membrane process.
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1. INTRODUCTION

The quality of model-based control, firstly, strongly de-
pends on the accuracy of the models that are employed.
This can normally be increased by the estimation of model
parameters. Also, as not all the state variables are usu-
ally measured, they should be estimated to initialize the
model predictions for model-based controllers. The suc-
cessful estimation is inevitably impaired by the presence
of measurement noise so that the estimates can only be
known with uncertainty. Knowledge of guaranteed bounds
of the estimation uncertainty can be exploited in robust
control such that, e.g., violation of the constraints, can be
avoided (Nagy and Braatz, 2003; Bertsimas et al., 2010).

Unlike the statistical estimation, guaranteed or set-mem-
bership estimation seeks to find the set of all possible state-
and parameter values such that the predicted outputs
match the corresponding measurements within prescribed
error bounds (Schweppe, 1968; Jaulin and Walter, 1993).
Thus, the set-membership estimation does not need to rely
on usually unreliable approximations of the measurement
error distributions and uses measurement error bounds,
which are often known quite reliably or can be inferred
likewise from the historical data.

Rigorous set-membership approaches use either set-based
calculations (Chachuat et al., 2015) or global optimization
techniques (Mukkula and Paulen, 2017; Walz et al., 2018).
As the global dynamic optimization cannot tackle large-
scale problems, set-based methods are more popular and
generally more applicable. In general, the application of
set-based methods has two ingredients: a) propagation

of the reachable set (possibly over-approximated) and b)
its intersection with the (over-approximation of) measure-
ment (error) set and over-approximation of the intersec-
tion. As these solution techniques rely heavily on over-
approximation, one can conclude that the tighter the over-
approximation, the lower the estimation conservatism.

The early contributions to set-membership estimation as-
sumed linear models and used ellipsoids for set-based
arithmetics (propagation, intersection, over-bounding of
the intersections) to compute the enclosures of the so-
lution of the set-membership estimation at each time
step (Schweppe, 1968; Maksarov and Norton, 1996; Kur-
zhanski and Valyi, 1997). In Chabane et al. (2014), an ap-
proach was proposed for guaranteed parameter estimation
for linear systems by minimizing the radius of the ellip-
soidal estimation set. The problem of approximating the
solution set by a box partition has been studied by Kieffer
et al. (1998) using interval analysis. Other reachability
methods include ellipsoidal calculus (Boyd et al., 1994;
Kurzhanski and Varaiya, 2000), polytopic and zonotopic
bounding techniques (Bitsoris, 1988) as well as general
(non-)convex set propagation techniques (Chachuat et al.,
2015; Villanueva et al., 2015).

This paper makes use of the propagation of an intersection
of ellipsoid ensembles, where the ellipsoids represent state
reachability tubes and measurement tubes. This way, a
general nonlinear dynamic state- and parameter estima-
tion problem can be treated with a moderate computa-
tional effort. We use the proposed method in the recur-
sive settings. To improve estimation quality, we take into
account several past measurements, where the considered
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measurement set is propagated in time. We limit the
number of past measurements to maintain computational
tractability. We use a heuristic criterion to select the
retained past measurements for estimation.

Notation

We use the notation L} to denote the set of n-dimensional
Lq-integrable functions. The associated Sobolev space of
weakly differentiable functions with L} derivatives is de-
noted by Wi';. Moreover, the set of n x n-dimensional
positive semidefinite matrices is denoted by S'. For any
given vector ¢ € R™ and any matrix Q € S} (with its

Cholesky factor Q%), the notation
E(q,Q) = {q+Q%v vTy < 1} ;

is used to denote the associated ellipsoid. We additionally
use the shorthand £(Q) = £(0, Q) for centered ellipsoids.

2. SET-MEMBERSHIP ESTIMATION

This section briefly reviews the concept of set-membership
based state and parameter estimation for uncertain non-
linear processes. Here, we focus in particular on methods
that are based on ellipsoidal calculus.

2.1 Uncertain Dynamic Processes

This paper is concerned with nonlinear processes

i(t) = f(x(t),p) with a(0) € X, 1)
on a finite time horizon, t € [0,T]. Here, z : [0,T] — R
denotes the state trajectory with initial value Xo C R"=
denotes a compact set of potential initial states. Moreover,
p € Pp C R™ denotes unknown parameters or unmeasured
disturbances. Throughout this paper we assume that f :
R™ x R™ — R" is at least jointly continuous in all
its variables and Lipschitz continuous in . Moreover, we
assume that Py is a given compact set.

The developments in this paper can, almost trivially, be
extended to uncertain processes whose dynamics depend
on an exogenous disturbance signal. Here, the only as-
sumption needed is that the disturbance is L;-integrable
and takes its values on a known compact set.

2.2 Set Membership based State- and Parameter Estimation

The goal of this paper is to develop methods for computing
bounds on the estimated states and parameters by taking
measurements into account. Here, we assume that the
measurements of n, outputs

are taken at the time points t1, ta, ..., ¢y, € [0,7]. The
measurement error, v € V is assumed to be bounded by
a given compact set V C R™. Then, the set of states and
parameters which are consistent with the measurements—
in a set-membership sense—is given by

Jz € Wi'i: VT (0,1,
(1) = fx(r),p)

(&,p) € R™ x Po| 2(0) € Ro , x(t) =€
Vke{l,...,m}t; €[0,4]:
h(z(tr),p) —yr €V,

Z(t) =

(3)
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Here, we additionally set to = 0 and t,;,4+1 = T'. Therefore,
the reachable set
X(t)={¢eR™ |FpeR™: (p) eZi)}, (4
as well as the associated set of consistent parameters
Pt)={peR™ [ cR™: ({,p)eZ(t)}, ()
are projections of Z(t) set onto the state and parameter
space, respectively.

3. PROPAGATION AND UPDATES OF
ELLIPSOIDAL ENSEMBLES

Since an exact characterization of Z(t) is seldom possible,
the focus of this section is on computing enclosures using
ellipsoidal techniques, as introduced by Kurzhanski and
Valyi (1997), further extended by Houska et al. (2012).

8.1 Propagation of Ellipsoidal Ensembles

One of the key ideas of this paper is to propagate an
ensemble of ellipsoids that collectively enclose Z(t) C R"=.
That is, our goal is to construct sets Z(t) satisfying

ie{l,...,N}
Here, ¢; : [0,7] — R™ and Q; : [0,7] — 5=, with

N, = Nz+nyp, denote the central path and the time-varying
shape matrix of the ellipsoid &(q; (t), Qi(t)). As we shall see
in the following, these functions can be constructed by a
systematic application of ellipsoidal calculus.

The first step towards the construction of these functions
is to start with outer approximations,

Z0)= (] &@,QY) 2% x P
i€{1,...N}

Notice that such enclosures can always be constructed, as
both Xy and Py are assumed to be compact.

(7)

The main idea of ellipsoidal methods is to construct a
system of differential equations, such that, if these are
satisfied by ¢; and Q;, we have Z(t) C E(q;(¢t),Q;(t)) for
all t € [0,T]. Before these conditions are provided, we
introduce the vector-valued auxiliary functions

o1(q) = (f(fho, 612)) with = (fh)’ (8)

4z
@3(’4’5(]7@5”,5 R) = KQRil(Tiq) . (9)
where ¢; € R"* and g2 € R™. Likewise, we introduce the
matrix-valued auxiliary functions

(A, B,Q) = <‘§ f) Q+Q <§I i) ,

).

@3, 0, Q,r, R) = 5Q [T~ RTQ = llg = rl}o1]- (12)
Notice that ¢1, @3 as well as @1, ®5, and P3 are defined
for all ¢,7 € R™#, all matrices Q,R € S}*, A € R"=*"=

and B € R"=*" as well as all scalars £ and A > 0. In this
context, we have additionally introduced a function

Q:R™ x G2 x RM=XMe x RMeXMe — GT= (13)
which is assumed to be constructed such that it satisfies

f(xap>*f(Q1,Q2)*(A B) (Zf(I) € E(Q(QanAa B))v (14)

(10)

B0 AB.,Q) = 1 Q+ A <Q<q, Q. 4.5)
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for all z = («7,p")T € (¢, Q) and ¢ = (¢, ¢3)T € R+, as
well as matrices Q € 8’7, A € R"**"+ and B € R *"».

The following theorem presents a generalization of a result
for ellipsoidal propagation, originally developed for tak-
ing a-priori enclosures into account in reachability analy-
sis Feng et al. (2020); Villanueva et al. (2019).

Theorem 1. Let the functions ¢1,...,qn : R — R™ and
Q1,...,Qn : R = S* be continuously differentiable and
satisty

¢i(t) = p1(qi(t))

+ > ealrin(t), an(t), Qi(t), a (1), Qu(t)), (15a)

i
Qi(t) = 1(Ai(t), By (t), Qi(1))
+ ®2(Ni(t), Ai(t), Bi(t), qi(t), Qi(t))
+Z(I)3 Kik t)aQi(t)a l(t)an t) k(t))’ (15b)
i
2:(0)=¢q and Q;(0) = @Y, (15¢)

for all t € [0,7] and for any given integrable functions
Ni:R = Ry kit R— RYTH A4 0 R - R%X", and
B; : R — R™*" for every index ¢ € {1,..., N}. Then,

Zt)= () &@®),Qit)221),  (16)
ie{1,...N}
for all t € [0, 7.

Proof. The statement of this theorem has been estab-
lished for the case N = 2 in Feng et al. (2020, Thm. 3). The
proof of the fact that the above statement also holds for
any number intersected ellipsoids is, however, straightfor-
ward. Note that one can apply the Thm. 3 from Feng et al.
(2020) to recursively intersect all ellipsoids pairwise until
a bound on all N ellipsoids is obtained—leading dlrectly
to the statement of this theorem.

The construction of ellipsoids, or in this case ellipsoidal
ensembles, enclosing the reachable set requires fixing the
degrees of freedom introduced through the functions A;,
B;, \; and k;, as well as constructing an appropriate
nonlinearity bounder 2. Here, we set A; and B; as

Alt) = 5 Flaia (), 0c2(0),

(%f(qz-,l(t), Gia(1)).

Here, the vectors ¢;1(t) € R™ and ¢, 2(t) € R" satisfy
¢ = (¢1(t)7,¢,2(t)T)T. Notice that, as long as f is at
least Lipschitz continuous in x, we can always construct
Q (see, e.g. Houska et al., 2012; Villanueva et al., 2017).
For example, one can consider Lipschitz constants or
Hessian bounds (if f is twice continuously differentiable).
The remaining degrees of freedom are chosen in such a
manner that a suitable performance measure is optimized.
Here, we minimize a Lagrangian functional involving the
determinants of the shape matrices of the ellipsoids in the
ensemble. That is, we solve

(17)

Bi(t) = (18)

vt €10, T,
Vie{l,...,N},
g f?lfQ / Zdet (Qi(£) d 59 g (15) hold,
LN Ai(t) >0, k(1) > 0.
»»»»» KN

(19)

Notice that other constructions are also possible. For
example, Villanueva et al. (2015) proposed an approach
for constructing the right-hand side function on-the-fly, for
the case N = 1. This approach relies on polynomial models
together with heuristics designed to minimize the trace of
the right-hand side function for choosing the remaining
degrees of freedom.

8.2 Recursive Updates of Ellipsoidal Ensembles

Having the ability to propagate ellipsoids continuously
in time, such that their intersection encloses the reach-
able sets Z(t), we can proceed to summarize the set-
membership estimation procedure. Each (uncertain) mea-
surement can be transformed into an equivalent ellipsoid in
the state space. The main idea of the proposed estimation
procedure is then to recursively amend the ellipsoidal
ensemble with the measurement ellipsoids. As this will
mean an increase in computational burden of propagation,
one can discard one of the N (past) ellipsoids before the
amendment.

We will treat the case when ny, = n,. If ny, > ng, the
outputs can be introduced as dummy states (see the case
study in Section 4). If n, < ng, the output vector can be
augmented by dummy outputs such that Z(tz) 2 Z(t).

Let us assume the availability of a (measurement ellipsoid)
set E(zk, Vi) 2 h™1(V & yx). Once a new measurement at
time t; becomes available, the ellipsoidal ensemble can
be updated. Note that a scheme that would mimic a
traditional recursive-estimation settings would use N = 2
and replace the measurement ellipsoid propagated from
time k — 1 by the (new) measurement ellipsoid at time k,
i.e. S(Zk, Vk> — S(QQ(tk>, Qg(tk)).

3.8 Mowving Horizon Variant

As we possess the freedom of propagating (any number)
N ellipsoids, we can retain arbitrary past information that
improves the quality of estimation and keep it in the
ensemble, similar to Artzovd and Paulen (2019) in the set-
membership parameter estimation context. We propose
here a heuristic based on volume of intersection, provided
by an ellipsoidal intersection formula from Ros et al.
(2002). This scheme evaluates the intersection volume of
all the possible N + 1 ensembles, i.e, combinations of N
(past) ensemble ellipsoids with the current measurement
ellipsoid. The retained N-ellipsoid ensemble takes the
smallest volume of the intersection.

4. CASE STUDY

We study the performance of the proposed methodology on
the case study of a batch membrane process. We will turn
our attention towards the problem of state estimation,
taking into account the uncertainty in the parameters that
are treated as bounded time-varying disturbance.

4.1 Plant Description
The membrane process under the study is a batch diafil-

tration (see Fig. 1). We use the same plant as in Sharma
et al. (2019). The batch is commenced with initial volume
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diluant retentate permeate
F(t)
A
membrane
module
feed tank
N

Fig. 1. Schematic representation of the membrane plant.

Vo of the filtered solution in the tank. The solution ini-
tially contains a diluant (solvent) and there-in dissolved
species: micro-solute (low molecular weight component)
and macro-solute (high molecular weight component).
During the operation, the pump forces the feed from the
tank into the membrane module, where the solution sep-
arates into two streams: a micro-solute-rich stream that
passes through the membrane—a so-called permeate—
and the retained stream—a so-called retentate. Permeate
leaves the system with the flow rate F'. The retentate
stream is circulated back into the feed tank. The plant
operates under constant transmembrane pressure and con-
stant temperature (Sharma et al., 2019). The process
control is achieved by adjusting the flow rate of solute-
free diluant (water) to the feed tank. Control variable « is
defined as a ratio between the inflow of diluant to the feed
tank and the outflow of permeate F.

4.2 Process Model

The mass balances of the concentrations of the dissolved
species are given by (Sharma et al., 2019)

. F(cy,c
¢ = C§M(1 —a), c1(0) = ¢10, (20a)
c1,0V0
F
C.2 = —Clczc(c#‘/62)ck7 02(0) = 62,03 (20b)
1,0V0

. Clim
with F'(c1(t), c2(t), k, clim,y) = kln (01 (t)cg(t)) , (20c)
where ¢; and ¢y denote the concentrations of macro-
and micro-solute with initial conditions c; o and ¢,
respectively, k is the mass-transfer coefficient, cjy, is the
limiting concentration of the macro-solute, and v is a
dimensionless non-ideality factor.

As we can measure both the concentrations and the
permeate flowrate, we reformulate the dynamic model as

| AU (1 - atn)

a)) e1(t)ea(t)

&(t) | = F(t)a(t) ;o (21
E(t) p\T Ci’o_‘g(t) ci(t)F(t)

& <P2) ( —a(t) ) c1,0Vo

c1(0) €1,0
<C2(0)> = ( €2,0 ) ) (22)
F(0) F(c1,0,¢2,0,p)

where x(t) = (c1,c2(t), F(t))T and the following repara-
metrization, using the logarithmic identities, is introduced

F(ei(t), e2(t), p) = po + prloger(t) + palogea(t),  (23)

Table 1. Model parameters, their bounds, and
problem attributes.

Parameter /Attribute Value Unit
€1,0 50 g/L
2,0 5.3 g/L
Vo 100 L
k 8.33 x 1074 L/s
Clim 3 x 103 g/L

¥ 0.1 -
[ef o] [49.5, 50.5] g/L
[ef o] [4.5, 5.5] g/L
[kE, kY] [5.17 X 1074,1.10 x 1073]  L/s
[k el [0.6589 x 103,4.1163 x 103] g/L

[»yL,»yU] [—0.11,0.17] -

a(t) 0 -

Table 2. Simulated scenarios.

N  Tube selection CPU [s]
Scenario 1 2 X 0.2
Scenario 2 2 v 0.2
Scenario 3 3 v 1.0
Scenario 4 4 v 4.1
Scenario 5 5 v 10.5

The construction of an explicit nonlinearity estimate for
the dynamic system (21) is established in Appendix A.

The studied setup is taken from our earlier experimental
work (Sharma et al., 2018). The experimental data were
used for a set-membership parameter estimation in Paulen
et al. (2018). The resulting parameter bounds are used
in this work. The summary of the problem parameters is
given in Tab. 1.

4.3 Results

We consider new measurements to be available at each
sampling period of the plant that is T := 1s. We assume
a realistic measurement noise for the measurements of
concentrations (£0.5g/L) and of the permeate flowrate
(£0.5L/h). To study the computational aspects and esti-
mation performance of the proposed approach, we consider
several scenarios summarized in Tab. 2. The scenarios
differ in the number of intersected tubes, where one tube
represents the model predictor and the rest of the tubes are
taken from the past measurements. In Scenario 1, we use
a standard recursive scheme, where the new measurement
(tube) obtained at time k replaces the past measurement
from time k—1. In Scenarios 25, the number of considered
measurements varies and a selection procedure is included
to heuristically decide about N — 1 measurements (up to
time k) that are retained for the estimation. The heuristics
for selecting the retained measurements that is used in
this paper is based on ellipsoidal intersection formula (Ros
et al., 2002).

The proposed method was implemented in CasADi (An-
dersson et al., 2019) using its Matlab interface via MAT-
LAB 2018b. We conducted 20 simulations for each scenario
with different realizations of the measurement noises. Ta-
ble 2 also shows the average computational effort in terms
of CPU time obtained at a standard desktop worksta-
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Fig. 2. Evolution of the estimation quality for each scenario
with average values.

tion. The CPU times are not optimized and are relatively
high as we exploit sequential approach to solve (19). We
can clearly notice the increasing computational burden as
the number of considered measurements increases. This
effort increase is expected and similar to moving-horizon
estimation (Rao et al., 2003). We can also conclude that
Scenarios 1-3 are real-time feasible taking into account
the sampling period. Though the sampling period can
be prolonged for the problem at hand up to one minute
if necessary as the batch operation would normally last
several hours for the considered plant.

We report the results of the proposed approach in Figs. 2—
4 via assessing the estimation performance by evaluating
the det(-) of the ellipsoidal shaping matrix @1, which is
related to the volume of the estimation set. We consider
the estimation to be successful once det(Q1) < 1076, At
such a point, we terminate the estimation procedure.

Figure 2 shows for each scenario the average evolutions
over time of the determinant of the ellipsoidal shaping
matrix Q1. The figure is split into two plots for clarity of
the presentation. We can observe that the time necessary
to reach the desired estimation performance is around
3,500 seconds for Scenario 1. For Scenario 2, in comparison
with Scenario 1, the desired estimation performance is
reached in much shorter time. This difference stems from
the selection of appropriate measurements to retain for fur-
ther estimation. In this the decision is between retaining a
past measurement and using the newly obtained one. The
right-hand plot in Fig. 2 shows that the number of tubes
(retained measurements) influences the rate of convergence
of the estimatin procedure, where, as expected, the more
tubes, faster the convergence.

Figure 3 shows the evolution of the determinant of the
ellipsoidal shaping matrix )1 for all conducted simulations
in Scenario 2. Minimum, average, and maximum are high-
lighted. We can clearly see that the variance in the conver-
gence rate is quit high, i.e., the desired estimation quality
is reached within [150, 300] seconds. This is attributed to
the actual realization of the measurement noise and was
shown previously in Artzovd and Paulen (2019).

— — —All cases
Average
102 ¢ ——— Minimum/Maximum | |
S
3
< 10
1 0—6 ,,,,,,,,,,,,,,,,,,,,,,,,,,,, t,‘ ,,,,,,,,,,,, —
0 50 100 150 200 250 300 350

Fig. 3. Evolution of the estimation quality for Scenario 2.

‘ Bounds Real state — — - State estimate‘
T T T T
= 52 7
S~
o0
5 50 b
0 50 100 150 200 250

0 50 100 150 200 250

Fig. 4. Evolution of the bounds, real states and state
estimates for Scenario 2.

Figure 4 shows the estimation performance for the state
variables ¢;, co and F for one of the simulation runs
of Scenario 2. The blue solid lines represent the set-
membership bounds (ellipsoids projected to 1D). The red
solid line represents the real state value and the blue
dashed line represents state estimate obtained via the
proposed method. Real state and state estimate gradually
convergence to each other while the bounds shrink. At the
end of the time window, the estimation almost yields a
single point and can be thus claimed as successful.

5. CONCLUSION

In this paper, a new approach has been proposed to set-
membership state- and parameter estimation for nonlinear
dynamic systems. The proposed theory bounds the set of
the states and parameters that are consistent with the out-
put measurement by intersection of ellipsoids, which origi-
nate from uncertainty propagation and from the observed
(uncertain) measurements. The potential of this approach,
in terms of estimation performance and computational
effort is illustrated on an example of a batch membrane
process. The results suggest that a proper selection of
the past measurements to enhance the standard recursive
estimation is crucial for the good estimation quality.
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Appendix A. NONLINEARITY ESTIMATES

The explicit nonlinearity estimates for the system (21) can
be constructed using the following expressions:

ni1(q,Q) == (1—a)Q1,1v/Q33+ |g3|(1 —)Q1,1, (A1)

+2(1 — a)|q1]\/Q1,1Q3,3, (A.2)

n2(q, Q) == a\/Q1,1Q2,2Q3,3 + a|q3|\/Q1,1Q2,2, (A.3)

+ alga|/Q1,1Q3,3 + afq1]|\/Q2,2Q3,3, (A.4)

n3(q, Q) == (1 — o) |p1| + alp2|) VQ1,1Q3,3, (A.5)

g, Q) = o 0 n3(¢Q) 0 .(A.6)
“L.0"0 0 0 n3(q,Q)



