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Abstract

The main aim of this master thesis is to design a model predictive control (MPC)
using a numerical method of distributed optimization – the Augmented Lagrangian
based Alternating Direction Inexact Newton method (ALADIN). For the controller
design purpose, the system of two tanks with interaction is considered as the controlled
plant. The thesis is divided into two parts. In the first part, the theoretical aspects of
the model predictive control are introduced and the way to reduce the computational
complexity using explicit MPC is also described. Subsequently, this part offers a brief
overview of the methods of distributed optimization methods with an emphasis on
the ALADIN method. The second, experimental part focuses on the implementation
aspects of the ALADIN algorithm in the MPC. This chapter discusses the controller
design using two approaches at the distributed optimization level - implicit and explicit
MPC. The analysis of the results obtained using this numerical method is compared
to the optimal MPC solution. Subsequently, the computational effort of both, implicit
and explicit MPCs, are analysed. Obtained results are then used in the closed-loop
simulation to analyse the control performance with the use of the proposed algorithm.

Keywords: distributed optimization; ALADIN; model predictive control; explicit
model predictive control; computational complexity





Abstrakt

Hlavným cieľom predkladanej diplomovej práce je navrhnúť prediktívne riadenie za-
ložené na modeli (MPC) pomocou numerickej metódy distribuovanej optimalizácie -
angl.: Augmented Lagrangian based Alternating Direction Inexact Newton (ALADIN).
Na tento účel je ako riadený proces zvolený systém dvoch nádrží s interakciou. Práca
je rozdelená na dve časti. V prvej časti sú predstavené teoretické aspekty návrhu
prediktívneho riadenia a taktiež je tu popísaný spôsob zníženia výpočtovej náročnosti
distribuovaného optimalizačného problému pomocou explicitného MPC. Následne
táto časť ponúka stručný prehľad metód distribuovanej optimalizácie s dôrazom na
metódu ALADIN. Druhá, experimentálna časť je zameraná na implementáciu algoritmu
ALADIN v rámci návrhu MPC. Táto kapitola sa zaoberá riadením pomocou dvoch
prístupov – implicitného a explicitného MPC. Analýza výsledkov získaných pomocou
tejto numerickej metódy je porovnaná s optimálnym riešením MPC. Následne je ana-
lyzovaná výpočtová náročnosť implicitného aj explicitného MPC. Získané výsledky sú
potom použité v simulácii s uzavretou slučkou, aby sa vyhodnotila kvalita riadenia
pomocou navrhovaného algoritmu.

Kľúčové slová: distribuovaná optimalizácia; ALADIN; prediktívne riadenie; explicitné
prediktívne riadenie; výpočtová náročnosť
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Chapter 1

Introduction

The model predictive control (MPC) origins can be traced back to the 1970s. Since
then, it has become one of the popular control methods for advanced process control
in many industrial applications [2]. The majority of these applications are found in
refineries, which is where MPC got its start. However, it should be noted that there are
a significant number of applications in other areas as well. Its widespread acceptance
can be explained by the ability of the MPC design to deliver high-performance control
systems that can operate for extended time periods without the need for expert
assistance [12].

Among other advantages belong a possibility to include the constraints on both manip-
ulated and controlled variables and the ability to operate closer to the constraints [11].
Moreover, the variables can be finely tuned, for example, to get the output faster to the
reference or get cheaper process control. Finally, all the advantages mentioned above
can be used to minimise the operating costs, minimise the impact on the environment,
and, on the other hand, maximise the quality of the obtained product.

Chemical companies need to be able to react immediately to changes in requirements
or possible disturbances in a plant. For this reason, it is necessary to make decisions
quickly enough to respond to a given situation with the appropriate action. The
time required for decision-making is called the sampling time. Within this sampling
time, the measurement, calculation of the optimal action, and its implementation
take place. Since the MPC calculations are performed iteratively at each time step,
depending on the complexity of the process model, it is often computationally and
also time-consuming to solve these systems as a whole within the sampling time.

Fortunately, many of these plants are made up of several symmetrical structures
periodically repeated in space or time domain. Based on these findings, the controlled
system can be broken down into many simpler sub-systems, which are interconnected.
This fact allows solving these partial problems in parallel with distributed optimisation
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methods. As a result, the research of well-established theoretical concepts in the field
of distributed optimisation is fundamental.

There are several methods that can be used to solve the problem of distributed
optimisation. One of them is the Alternating Direction Method of Multipliers which is
a variant of augmented Lagrangian and method of multipliers or Augmented Lagrangian
based Alternating Direction Inexact Newton method (ALADIN) is one of the most
perspective methods for solving the problems of the distributed optimisation. This
approach can also be used for large-scale problems in a distributed way. Compared to
other methods of distributed optimisation, its primary advantage is its high convergence
rates, which lead to the decreased number of iterations needed to obtain the local
optimum [6]. However, even when the number of iterations approaches infinity, these
methods of distributed optimisation often converge to a solution that only within a
limit comes to the optimal one. The way to guarantee the asymptotic stability and
bounds on suboptimality of the results were discussed in [9].

The main aim of this thesis is to utilise this advantage of the ALADIN algorithm
for the purposes of model predictive control. The thesis is divided into chapters.
The first chapter introduces the model predictive control, its history, the theoretical
aspects, and basic mathematical formulation. Also, there is briefly described the way
to reduce its computational complexity using the explicit approach. Then, the basics of
distributed optimisation methods are introduced and the critical methods used within
the algorithms of distributed optimisation. Finally, the end of the first chapter offers a
brief overview of the two methods of distributed optimisation mentioned above - the
Alternating Direction Method of Multipliers and the Augmented Lagrangian based
Inexact Newton method.

The second chapter discusses the practical implementation aspects of this thesis. First,
the controlled process is introduced with its specifications and the model used for
the model predictive control. Then the theoretical concepts presented in the first
chapter are used to obtain the control of the system. For this purpose, there are two
approaches implemented and analysed. The first one uses the principles of implicit
MPC, and in the second one, the explicit MPC is used with the ALADIN optimisation
algorithm. Results generated by these approaches are then analysed from the point
of view of the open-loop simulation. The conclusion of this part is focused on the
closed-loop simulation, where the results of the previous part are analysed.



Chapter 2

Theoretical part

2.1 Model predictive control
Model predictive control (MPC) is a series of advanced methods of control that use
a model of a plant to predict its behaviour in the future. The concept of optimal
control, considering constraints, and the intuitive formulation of the control law as
an optimization problem has made MPC interesting for many different branches of
industry [11]. Since its introduction, it has found application not only in the process or
chemical industry, but it is gradually spreading wide throughout all fields of engineering,
such as power electronics, manufacturing, building climate and energy control and
others.

One of the significant advantages of the MPC offer is the already mentioned abil-
ity to predict future states of the system while considering possible technological
limitations of quantities, therefore it can propose appropriate input actions unlike
proportional–integral–derivative controllers (PID) or even linear–quadratic regula-
tor (LQR), which do not have such a combination of features. It is one of few control
approaches that take constraints into account directly [11]. Another advantage is the
possibility to control not only a single-input and single-output systems (SISO), as
with PID controllers, but also allows to control of multiple-input and multiple-output
systems (MIMO).

Since the MPC algorithm requires solving the optimization problem in each sampling
period, its main disadvantage is the relatively long time required to calculate the
optimal input actions. Therefore, it is necessary to use powerful hardware to implement
MPC. That is why research is still underway to reduce the response time, which is
directly proportional to the complexity of the optimization problem and the number
of optimized variables.

Therefore, it is necessary to first consider well the specifics of the application and based
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on them the decision to choose the appropriate approach to the effective management
of the plant. For example, for a simple SISO system with fast dynamics, without
technological limitations, it may be more advantageous to use a PID controller to
control it. However, if we consider a complex multidimensional MIMO system with slow
dynamics and significant interactions between process variables, which are additionally
limited, then MPC is almost always a winner that can achieve a high level of control
quality when set correctly.

2.1.1 History
The foundations of the MPC were laid in the late 1970s independently through [10]
and [5]. Model predictive heuristic control (MPHC), proposed by [10], had already
included all the characteristic features of MPC, but achieving optimal control was not
guaranteed. Future control actions were determined iteratively until they satisfied the
constraints. This technique was invented for MIMO systems with longer processing
times [10].

Around the same time-frame, Shell Oil Company came with [5] introducing dynamic
matrix control (DMC). They predicted the future behaviour of a catalytic cracking
unit using a partially linear model of a system, so the controller was able to recognise
the dynamics of the plant. Moreover, the model uses a receding horizon to update the
coefficients of the model according to the difference between the output predicted in
the previous step and the actual value of the measured output. The main advantage
of DMC over MPHC was that DMC calculates the optimal input actions [11]. On
the other hand, DMC was limited only to linear process models due to the matrix
formulation of the control problem.

Both works provided the groundwork for the mass acceptance of MPC in the petrochem-
ical industry. As the sampling periods were many hours even with linear systems, the
focus was initially on reducing the complexity of the controller design and developing
a thorough theory so that the approach could be applied in the industry. Since most
chemical engineering plants were open-loop stable, the pioneering methods simply
ignored uncertainties of a model and plant instabilities. From the late 1980s, the focus
of researchers switched to the stability and robustness of MPC.

Using a finite horizon, the linear estimation problems could be stated as quadratic
programming problems, which have proven to be computationally efficient [11]. In
addition, with the new millennium and the increasing computing performance, the
research switched from huge problems with large calculation periods towards problems
with significantly higher requirements for reducing the computational time.
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Reference Trajectory
Predicted Output

Measured Output
Predicted Control Input

Sample Time

Past Control Input

k+1 k+2 k+Nk

PAST FUTURE

Prediction Horizon

Figure 2.1: A basic principle of Model Predictive Control.

2.1.2 Formulation of MPC
MPC in basics can be described as a solution to the optimization problem with
constraints in each sampling period, throughout the prediction horizon (2.1) to obtain
the optimal value of the control action in the current sampling period. The resulting
optimal value will be then applied to a controlled system whose mathematical model
is the basis for predicting future states [12]. Measured values of state variables are
then used as initial conditions for the following iteration of optimization.

The structure of MPC formulation can be divided into the cost function that in the
basic form penalizes the size of state and control actions. The second part of structure
are constraints that include the plant model, the initial condition and in some cases
also technological limitations of control, state and output variables.

When predicting the future values of the system states, model predictive control relies
on its mathematical model, thus it is important to choose the right form. There are
several models and representations in control theory that more or less accurately explain
the behaviour of the real plant and hence influence the accuracy of the prediction. It is
obvious that by using a precise model a higher quality of control is achieved, but at the
same time, the consequence can be an enormous increase in computational complexity.
The standard formulation of MPC considers discrete-time linear state-space model
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that quite well approximates many real plants and after its discretization, it can be
used to solve the optimization problem, where it enters as constraints in the form:

xk+1 = Axk + Buk (2.1a)
yk = Cxk + Duk, (2.1b)

where matrix A ∈ Rn×m is the system matrix, B is the input matrix, C is the output
matrix and D is the feed forward matrix. Since only state control will be considered,
the output model equation (2.1b) defining the outputs of the system can be neglected.

The basic formulation of MPC can be written as follows:

min
u0,...,uN−1

N−1∑
k=0

(
∥xk∥2

Q + ∥uk∥2
R

)
(2.2a)

s.t. xk+1 = Axk + Buk, (2.2b)
x(0) = x0, (2.2c)
xmin ≤ xk ≤ xmax, (2.2d)
umin ≤ uk ≤ umax, (2.2e)

where k = 0, . . . , N − 1, matrix Q is an weighting matrix reflecting the relative
importance xk and R weighting matrix penalizing relative significant changes in uk.
Due to the flexibility of MPC formulation, it is relatively simple to modify the standard
formulation and consider the specifics of the controlled plant and thus achieve increased
control quality.

2.1.3 Complexity Reduction
The MPC strategy described in the previous section require performing on-line opti-
mization to solve the optimization problem (2.1b) based on the current state. As a
result, MPC has long been regarded as a technique for processes with slow dynamic.
Even while advances in microcontroller and computer technology are redefining the
definition of “slow processes“, the inability to solve on-line prevents MPC from being
used in many situations, even in the most basic cases. This leads to the formation of
explicit MPC.

Explicit MPC approaches combine an off-line solved optimization problem with online
control implementation. Optimization problem is solved off-line for every state variable
within a set defined by the constraints using the technique of multiparametric pro-
gramming and stored in a form of the look-up table [2]. The solution to this problem
is the state space divided into a specific number of polyhedral regions, called polytopic
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partition [14]. Over these regions, the control law is defined in the form of piecewise
affine function. The subsequent real-time implementation consists of finding the region
in which the current state of the system is located and quantifying the appropriate
affine function in the form

u(x) =


F1x(t) + g1 if x(t) ∈ R1,

...
Fmx(t) + gm else if x(t) ∈ Rm,

(2.3)

where Fi and gi represent slope and the affine part of the control law, Ri is the critical
region and m indicates the number regions. The result is an optimal input applied to
the controlled system.

Obviously, the implementation of an explicit MPC is significantly easier than a
computationally demanding solution to the implicit MPC problem. However, a simple
state search within the partition can be time consuming in the case of higher order
systems and partition with thousands of polyhedral region and can also have large
memory requirements for storing the solution in the form of look-up table [14]. The
solution to this issue can be approximation of the polytopic partition by a neural
network.

2.2 Distributed Optimization
Optimization is a mathematical field that finds the best feasible solution at which the
optimal performance of the problem is achieved. Automatic control systems, estimation
and signal processing, communications and networks, data analysis, statistics, and
finance are just a few of the fields where optimization theory is necessary. Despite their
differences, all these areas face the same problems – optimized datasets are frequently
enormous and due to the large scale, the data are often stored distributively [15].
Finding analytic solutions of these optimization problems using centralized solution
methods may be therefore difficult or even impossible. As a result, it is necessary
to use distributed optimization approaches, in which number of smaller sub-systems
cooperate to identify a solution of the original problem.

Distributed optimization is an optimization method that is often used in large-scale
networked systems. Even if the central controller is not part of the system, this
technique allows the system to solve a global problem cooperatively [1]. When compared
to centralized methods, distributed optimization offers several significant befits. In
distributed algorithms, network nodes or users only share information with those parts
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of the system that need it. This improves cyber security and decreases communication
costs [1]. Furthermore, distributed approaches may tackle also issues of any scale,
including the large ones. There is also the potential that these methods can speed
up the solution process. Large-scale and data-intensive problems are solved using
distributed optimization algorithms in many applications such as communications,
energy grids, smart grids, and statistical learning [1].

In many distributed optimization algorithms, there is decomposition approach used.
Decomposition is a method for breaking down a large global problem into smaller
sub-problems that are solved independently [3].

On the other hand, standard optimization techniques are not designed for parallel
computing. For that reason, it is necessary to use methods applying decentralization
of the optimization [15]. Such methods include the Alternating Direction Method of
Multipliers (ADMM) and the Augmented Lagrangian Alternating Direction Inexact
Newton (ALADIN) method, which will be discussed in detail later in this work.

2.2.1 The Dual Problem
Consider the following convex optimization problem with equality constraints:

min
z

f(u)

s.t. Eu = b.
(2.4)

This is a primal problem for a primal function f : Rn → R with a primal variable
u ∈ Rn, where E ∈ Rm×n [4]. The dual problem for (2.4) is maxv g(v), where g(v)
is the dual function with v called dual variable or Lagrange multiplier

g(v) = inf
u

L(u, v),

and L(u, v) is the Lagrangian defined as

L(u, v) = f(u) + v⊤(Eu− b). (2.5)

The optimal values of the primal and dual problems are the same if strong duality
holds. From the dual optimum v⋆, the primal optimal point u⋆ can be recovered as
follows

u⋆ = arg min
u

L(u, v⋆).

One of the approach solving this problem is called Dual Ascent method and it is based
on gradient ascent. The algorithm of the Dual Ascent method strictly converges and
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seeks out for the gradient ∇g(v), if g is a differentiable function [4]. The gradient
can be then calculated as ∇g(v) = Eu⋆ + b, where u⋆ is defined using the relation
above. The algorithm of the dual ascent method can be used in some cases even if
g is not differentiable, the convergence is not monotone and the algorithm seeks out
the negative of a sub-gradient of −g[4]. The dual ascent method is then performed by
iterating the updates:

uk+1 := arg min
u

(L(u, vk)), (2.6)

vk+1 := vk + αk(Euk+1 − b), (2.7)

where αk symbolizes the step size for iteration k, equation (2.6) represents the mini-
mization of the function f(u) with respect to u, and in equation (2.7), the dual variable
v is updated for the next step of iterations.

2.2.2 Dual Decomposition
In the case of larger systems, it may be appropriate to parallelize the Dual Ascent
method to achieve better performance. This section describes how to accomplish
this using the dual decomposition. Assume that the objective is separable, and that
f(u) = f1(u1) + · · ·+ fn(uN ), where u = (u1, . . . , uN )⊤ and the variables ui ∈ Rn

i are
sub-vectors of u. Then the same may be applied to the Lagrangian described in (2.5)
as follows

L(u, v) = L1(u1, v) + · · ·+ LN (uN , v), (2.8)

where Li = f(ui) + v⊤Eiui [4]. As a result, the dual u-minimization step in dual
ascent method is separated into N independent minimization problems that can be
solved in parallel:

ui,k+1 := arg min
ui

(Li (ui, vk)) .

This gives a suitable parallelization strategy – distribute v(k) and update ui in parallel
for each i = 1, . . . , N . This is known as Dual Decomposition and it first appeared
in optimization in works from 1960s [1]. Thus, the method computes the above
u-minimization step in parallel, and the coordinates to update the dual variable:

vk+1 := vk + αk

(
N∑

i=1
Eiui;k+1 − b

)
. (2.9)

Although this method is very convenient at first glance, but it involves some major
assumptions (a sufficiently smooth and separable f(u)), also it may be slower in some
cases [3].
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2.2.3 Method of Multipliers
In order to make the dual ascent method more robust and speed the convergence, it is
convenient to replace the Lagrangian with an Augmented Lagrangian:

Lρ(u, v) = f(u) + v⊤(Eu− b) + ρ

2 ∥Eu− b∥2
2 , (2.10)

where ρ > 0, and ρ
2 ∥Eu− b∥2

2 is another penalty term added to penalize straying
from the constraints [13]. The algorithm now proceeds in the following steps until
convergence is achieved:

uk+1 := arg min
u

(Lρ(u, vk)), (2.11)

vk+1 := vk + ρ(Euk+1 − b), (2.12)

where in (2.11) the Lagrangian is minimized with respect to u and in (2.12) the dual
variable v is updated for next iteration. The dual update step length ρ is set to the
same value as the penalty coefficient in (2.10).

The Augmented Lagrangian is differentiable under mild conditions for the primal
problem [13]. For the problem defined in (2.4), the optimality conditions for a
differentiable f are:

Primal Feasibility: Eu⋆ − b = 0
Dual Feasibility: ∇f(u⋆) + E⊤v⋆ = 0.

Since uk+1 minimizes Lρ in each iteration, leading to

∇uLρ (uk+1, vk) = ∇uf (uk+1) + E⊤ (vk + ρ (Euk+1 − b))
= ∇uf (uk+1) + E⊤vk+1 = 0.

From the above it is obvious that the iterate (uk+1, vk+1) is dual feasible when ρ is
used as the step size in the dual update. The primal residual (Euk+1 − b) converges
to zero as the method of multipliers continues, achieving optimality. [13]

On the one hand, the method of multipliers has far better convergence features that
the dual ascent. On the other hand, the augmented Lagrangian is not separable when
f is separable so the step (2.11) cannot performed in parallel for each ui. As a result,
the basic method of multiplier cannot be used in combination with the decomposition.

2.2.4 Alternating Direction Method of Multipliers
For convex optimization problems, Alternating Direction Method of Multipliers (ADMM)
has shown to be an efficient distributed approach combining the advantages of the
dual ascent method and the method of multipliers.
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Consider the optimization problem written in form:

min
u

N∑
i=1

fi(ui)

s.t.
N∑

i=1
Eiui = b

hi(ui) ≤ 0,

(2.13)

where i = 1, . . . , N . The structure optimization problem can be written in the
equivalent form

min
u,z

N∑
i=1

gi(zi) + I0

(
N∑

i=1
Eiui − b

)
s.t. Ei(zi − ui) = 0.

(2.14)

The term gi(zi) represents the extended objective functions given by

∀i ∈ {1, . . . , N}, gi(zi) =
{

fi(zi) if hi(zi) ≤ 0,

∞ otherwise,

I0 : Rm → R ∪ {∞} denotes the indicator function

I0(r) =
{

0 if r = 0
∞ otherwise,

and the matrices Ei : Rm×n and the vectors b ∈ Rm contain the coefficients of the
given constraints. The equivalence of forms (2.13) and (2.14) can be explained by the
fact that the variables xi enter the coupled constraints only through the terms Eiui.
That is why it is sufficient to apply the constraints Ei(zi − ui) = 0 instead of requiring
ui = zi [6]. The main idea of ADMM is to construct an augmented Lagrangian function
of the form

Lρ(u, z, λ) = I0

(
N∑

i=1
Eiui − b

)

+
N∑

i=1

(
gi(zi) + λ⊤

i Ei(zi − ei) + ρ

2 ||Ei(zi − zi)||2
)

,

(2.15)

where ρ is the penalty parameter. Starting with an initial guess u for the primal
optimization variable and an initial guess λ for the dual vector that is associated with
the equality constraints [6].
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Optimization problem (2.16) for variable z in the first step of Algorithm 1 is decoupled
and can be solved in parallel. The second optimization problem (2.17) for the variable
u+ in the fourth step can be solved explicitly since this corresponds to solving a
quadratic program with linear equality constraints.

Algorithm 1 Alternating Direction Method of Multipliers [6].
Input: Initial guesses ui ∈ Rn and λi ∈ Rm, a penalty parameter ρ > 0, and a

tolerance ϵ > 0.

Repeat:
1: Solve for all i ∈ {1, . . . , N} the decoupled nonlinear optimization problems (NLPs)

min
zi

fi(zi) + λ⊤
i Eizi + ρ

2 ||Ei(zi − ui)||22

s.t. hi(zi) ≤ 0.
(2.16)

2: If
∣∣∣∣∣∣∑N

i=1 Eizi − b
∣∣∣∣∣∣

1
≤ ϵ, terminate and return u⋆ = z as a numerical solution.

3: Implement the dual gradient steps λ+
i = λi + ρEi(zi − ui).

4: Solve the coupled equality constrained quadratic programming problem

min
u+

N∑
i=1

(ρ

2
∣∣∣∣Ei(zi − u+

i )
∣∣∣∣2

2 −
(
λ+

i

)⊤
Eiu

+
i

)
s.t.

N∑
i=1

Eiu
+
i = b.

(2.17)

5: Update the iterates u← u+ and λ← λ+ and continue with Step 1.

The convergence of Algorithm 1 may be shown with minimal assumptions if the
functions fi and hi are convex. This conclusion holds regardless of how far the starting
(u, λ) is from the optimal solution or how the penalty value ρ > 0 is selected [6].
Another benefit of Algorithm 1 is that it is possible to solve it in parallel.

2.2.5 Sequential Quadratic Programming
One of the advanced and widely used approaches for handling nonlinear constrained
optimization problem is sequential quadratic programming (SQP). The basic idea
behind the SQP is to use a quasi-Newton updating method to approximate the
computationally extensive full Hessian matrix. As a result, at each iteration, this
creates a quadratic programming sub-problem and its solution may be used to define the
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search direction and the next trial solution. Consider a general nonlinear optimization
problem

min
u

f(u)

s.t. e(u) = 0,

h(u) ≤ 0.

(2.18)

Let uk denote the current iteration and uk+1 = uk + pk denote the next iteration, with
pk denoting the search direction. The search direction in unconstrained optimization
algorithms can be found either by going the steepest descent of the cost function
(uk+1 − uk = pk = −∇uf(uk)), the Newton direction of a quasi Newton direction if
inexact Hessians are present. SQP algorithms, on the other hand, determine the search
direction by solving a local quadratic program.

First, define the Lagrangian L(u, λ, µ) = f(u) − ∇⊤e(u) − µ⊤h(u). Let tL(pk) be
a quadratic model of L(uk+1) = L(uk + pk) derived from the second order Taylor
expansion

tL(pk) = L(uk) +∇uL(uk)⊤pk + 1
2p⊤

k∇2
uuL(uk)pk,

and the first order Taylor expansion will provide the linearized constraints

ei(uk) +∇uei(uk)⊤pk = 0,

hj(uk) +∇uhj(uk)⊤pk ≤ 0.
(2.19)

SQP approaches iteratively solve the quadratic problem

min
pk

tL(pk)

s.t. ei(uk) +∇uei(uk)⊤pk = 0,

hj(uk) +∇uhj(uk)⊤pk ≤ 0,

(2.20)

until convergence is reached. In fact, this QP may be understood as Newton’s method
applied to the Karrush-Kuhn-Tucker (KKT) optimality conditions.

2.3 Augmented Langrangian based Alternating Di-
rection Inexact Newton Method

Augmented Langrangian based Alternating Direction Inexact Newton Method (ALADIN)
is a new approach of distributed optimization introduced in 2016 through an [7]. One
of its advantages is that ALADIN is locally equivalent to a Newton-type approach,
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which means that using correct setups, superlinear or quadratic convergence rates may
be obtained [7]. If no non-linear constraints are present and the augmented Lagrangian
parameters go to infinity, it can be also proved that ALADIN leads to the sequential
quadratic programming SQP techniques 2.2.5.

Another advantage is that ALADIN can be used also to find local optimum solutions to
non-convex optimization problems. Although ADMM approaches have similar findings
under specific assumptions on the augmented Lagrangian parameter, ALADIN has
the benefit that its local convergence qualities are unaffected by the choice of this
parameter [7]. Furthermore, for large-scale optimization problems, it was proved that
ALADIN needs significantly less iterations to reach the same accuracy as ADMM.

For the purposes of describing the algorithm, let us consider the optimization (2.13)
where function fi : Rn → R and hi : Rn → Rnh are assumed to be twice continuously
differentiable for all i = 1, . . . , N . Problem (2.13) is also considered to be feasible, with
all local minimizers being regular Karush-Kuhn-Tucker points [6].

The main idea of the Algorithm 2 is based on the assumption that tools for solving
the coupled and potentially distributed equality constrained quadratic programming
problems in (2.22) as well as a centralized non-linear programming solver for solving
problems in (2.21) are already available [6]. In the algorithm 2 κi ∈ Rnh

+ represent the
dual variable of the inequality constraints hi(ui) and the multipliers of the coupling
layer equality constraints are denoted as λ. When the original problem (2.13) is
feasible, also the decoupling optimization problems (2.21) are feasible. The quadratic
programming sub-problems (2.22) is always feasible, since the point

(∆, s) =
(

0,

N∑
i=1

Aivi − b

)

is an universal solution of the problem (2.22).

The size of the parameters λ and ρ used in (2.21) directly influence the convergence
rate of decoupled optimization problem, as if they are large enough they push the
solution to its optimum in the case when the optimized variables ui and the help
variables vi are not equal. In addition, the scaling matrices Ωi can help the convergence
too and there is also a possibility to choose different weight on various optimized
variables. From the second step it is obvious that the optimization iterations of the
algorithm are terminated in the case when the difference between the optimized and
the help variables is sufficiently small - smaller that the set tolerance and equality
constraints are fulfilled.
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Algorithm 2 Augmented Lagrangian based Alternating Direction Inexact Newton
Method [6].
Input: Initial guesses ui ∈ Rn and λ ∈ Rm and a tolerance ϵ > 0.

Repeat:
1: Choose a sufficiently large penalty parameter ρ ≥ 0 and positive semi-definite

scaling matrices Ωi and solve for all i ∈ {1, . . . , N} the decoupled problems

min
zi

fi(zi) + λ⊤Eizi + ρ

2 ||zi − ui||2Σi

s.t. hi(zi) ≤ 0 | κi

(2.21)

to either local or global optimality.
2: If

∣∣∣∣∣∣∑N
i=1 Eizi − b

∣∣∣∣∣∣
1
≤ ϵ and ρ ∥Σi(zi − ui)∥1 ≤ ϵ, terminate with u⋆ = z as a

numerical solution.
3: Choose constraint Jacobian approximations Ji ≈ J⋆

i of the matrices J⋆
i defined by

J⋆
i,j =

{
∂

∂u (hi(u))j

∣∣
u=zi

if (hi(zi))j = 0
0 otherwise

for i ∈ {1, . . . , N},∀j ∈ {1, . . . , nh}.

Compute the modified gradient gi = ∇fi(zi) + (C⋆
i −Ci)⊤κi and choose symmetric

Hessian approximations Hi ≈ ∇2{fi(zi) + κ⊤
i hi(zi)}.

4: Choose a sufficiently large penalty parameter µ > 0 and solve the coupled QP

min
∆z,s

N∑
i=1

(
1
2∆z⊤

i Hi∆zi + g⊤
i ∆zi

)
+ λ⊤s + µ

2 ∥s∥
2
2

s.t.

N∑
i=1

Ai(zi + ∆zi) = b + s

∣∣∣∣∣λQP

Ci∆zi = 0, i ∈ {1, . . . , N}.

(2.22)

5: Set α1 = α2 = α3 = 1 and define

u+ = u + α1(z − u) + α2∆v,

λ+ = λ + α3(λQP − λ).

6: Update the iterates u← u+ and λ← λ+ and continue with Step 1.
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In the fourth step of the algorithm quadratic optimization problem with linear con-
straints (2.22) can be transformed to the analytical solution and that is why the
convergence of this problem can be superlinear. Within this step the sizes of the
changes of the optimized variables, that have to be made so that the every single
sub-problem of the decoupled layer will follow each other, are minimized. Similarly to
other gradient based method, in this algorithm too, the Jacobian approximation in
the third step helps to decide which direction will helps to convergence of the coupled
quadratic problem. In the last two steps of the algorithm, the changes of optimized
variables are made and these modified values are used in the next iteration of the
algorithm in the decoupled layer.



Chapter 3

Experimental Part

3.1 Model of Controlled System
The experimental part of the thesis involved the application of a control algorithm to
a controlled system consisting of two liquid tanks with straight vertical walls that each
hold a liquid and are connected in series. Figure 3.1 depicts a schematic representation
of the controlled system. The liquid enters a tank on its top. There is no considered
constraint on the flow rate of the stream q0(t). With the flow rate caused by gravity,
an out-flowing stream exits the ith tank at its bottom and flows away. The flow rates
are determined by Torricelli’s law, which is qi(t) = kiihi(t), where kii is the valve
constant and hi(t) is the height of liquid in the tank. Two streams, q0(t) and q1(t),
flow into the second tank. The area of the ith tank’s cross-section is indicated by Fi.
The density ρ is assumed to be constant everywhere in order to create the model, and
the only level that can be measured is the level in the second tank.

As we mentioned in Section 2.1.2, an appropriate mathematical model is necessary to
predict behaviour of the controlled system. For this reason, the state-space model of
the two-tanks system was derived in the form of (2.1):

Ac =
[
−0.63 0.00
0.25 −0.21

]
,

Bc =
[
1.25
0.50

]
,

Cc =
[
0.00 1.00

]
,

Dc =
[
0.00

]
.

After discretization considering the sampling time Ts = 1.50 seconds, we get the
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q1(t)

k11

q0(t)

q2(t)
k22

h1(t)

h2(t)

Figure 3.1: Schematic diagram of the two-tank system.



3.1 Model of Controlled System 19

discrete-time state-space model

A =
[
0.39 0.00
0.20 0.73

]
,

B =
[
1.22
0.88

]
,

C =
[
0.00 1.00

]
,

D =
[
0.00

]
,

which will be used as the (equality) constraints in the optimization problem of MPC
design. One of the most significant advantages of MPC is that it incorporates physical
limitations into the optimization process. We use two forms of this type of restriction
to compute the input actions. The first is a limitation on the amount of flow that can
enter the tops of both liquid tanks. This flow-rate is represented by input deviation
variable u. The second is a constraint on the level of liquid that can be stored in the
tanks, which are represented by the state deviation variables x1 and x2:

umin = −0.1 m3/s,
umax = 0.1 m3/s,

xmin =
[
−0.5
−0.5

]
m,

xmax =
[
0.5
2.5

]
m.

The aim of the process control is to get liquid levels in both tanks to their steady-state
values from the non-zero initial state

x0 =
[
−0.3

2

]
m.

The deviation variables u, x1, and x2 were determined as the differences between the
current value of the input flow-rate and its steady-state value, respectively the current
values of the liquid levels in both tanks and their steady-state values.The steady-state
values that correspond to these are qs

0 = 1 m3/s, hs
1 = 1 m, and hs

2 = 2.37 m.
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Figure 3.2: Schematic algorithm of the implicit MPC.

3.2 Implementation of ALADIN Algorithm for MPC
To obtain a control inputs that will bring both state variables to their steady state
values, as described in the previous Section, it is necessary to solve the optimization
problem (2.2). Solution of this problem might be computational extensive in case of
larger controlled systems with high number of optimization variables and constraints
that are taken into consideration. The application of traditional optimization tech-
niques, both analytical and numerical, is frequently insufficient, particularly when it
comes to the control of systems with fast dynamics for which the sampling time is
limited. For this reason we decided to use one of the method of distributed optimization
- ALADIN 2.3. In the following Sections, there are discussed ways of its implementation
for the design of model predictive control of the two-tanks system.

3.2.1 Implementation of Implicit MPC
Analyzing the controlled system, we may observe that it is composed of a number of
symmetrical structures that are periodically repeated in either space or time. Based
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on these findings, we can break down the investigated system into a number of simpler
sub-systems that are interconnected with one another. This operation is what allows
us to apply the ALADIN algorithm to the system control optimization problem.

In the Figure 3.2 is the schematic structure of the algorithm used for the open-loop
process control.In the first step, there is solved the decoupled layer. Powerful benefit
of this part of ALADIN algorithm is in the possibility to solve these sub-problems in
parallel, so that the computational time might be significantly reduced. It consists of
several sub-problems representing individual steps of the prediction horizon N . From
this it is clear that in our case complexity of the decoupled layer depends on the length
of prediction horizon, so it is necessary to choose it wisely. In this thesis, the prediction
horizon N was set to 20 steps. Based on the equation (2.21), the objective function of
these sub-problems is implemented in three forms depending on the current step of the
prediction horizon – the first step, the last step, and the inner step of the prediction
horizon.

As these sub-problems are designed to minimize the cost function (2.2), it is necessary
to choose also the weight matrix for state variables Q and for the weighting matrix for
control input R. Within this work these weighting matrices were set as follows:

Q =
[
15.00 0.00
0.00 2.68

]
,

R =
[
10.00

]
.

Besides these matrices, there are also few extra tuning parameters that are needed
to be set to solve the optimization problem of the decoupled layer. In this project
Lagrange multipliers λ are initialized with zero matrices, the penalty parameter ρ = 5
and the scaling matrix Ω is set to the solution of the discrete-time Riccati equation for
the studied system. These parameters were introduced in the equation (2.21).

These optimization problems are formulated using the YALMIP toolbox in MATLAB
and then they are evaluated using the GUROBI solver, considering the technological
constraints introduced in the previous Section. Result of the decoupled layer is
prediction of the control input and state variables for every step of the prediction
horizon.

Since the sub-systems are solved independently on each other, it is necessary to
introduce the coordination layer that pushes the individual solutions into a continuous
trajectory. At the coordination layer, there is only a simple quadratic optimization



3.2 Implementation of ALADIN Algorithm for MPC 22

problem solved:

min
∆u,∆z

N−1∑
k=0

(
∥∆zk∥2

Q + ∥∆uk∥2
R

)
s.t. xk+1 + ∆zk+1 = A(xk + ∆zk) + B(uk + ∆uk),

∆z0 = 0,

where k = 0, . . . , N − 1, ∆u represents the changes of inputs in successive steps of the
prediction horizon, respectively ∆z represents the size of the gaps between the state
solutions of the distributed problems. As a result, we get the information about the
changes that are needed to take and the optimal values of Lagrange multipliers, that
are used during the following iteration to solve the decoupled layer.

These iterations continue until the stopping criterion is reached. In this project we
use two types of terminal criteria – the first one determines the maximum number of
iterations that we are willing to take within optimization process, and the second one
is stopping criterion for the minimal size of the change that should be applied in the
following iteration:

ρ ∥∆z∥1 > ϵ,

where ϵ is the set tolerance. Within this project, the maximum number of iterations is
15 and the tolerance is set to 0.01 m. Using appropriately chosen tuning parameters,
we should get a result approaching the global optimum after several iterations.

(a) Trajectory after the 1st iteration (b) Trajectory after the 15th iteration

Figure 3.3: Trajectory of the liquid level in the first tank over the prediction horizon
- results of the ALADIN algorithm (blue solid), non-distributed MPC
(grey dashed), and the steady-state value (black dashed).
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Figures 3.3–3.5 show trajectories of the state variables and control input, obtained
by the algorithm described above. In the Figure 3.3 there are displayed resulting
trajectories of the level in the first tank. For the comparison there is also visible the
optimal solution of MPC obtained using same weight matrices as in the ALADIN
algorithm. This solution was calculated using YALMIP toolbox and GUROBI solver.

Grey dashed trajectory of MPC solution is also included in the Figures 3.3–3.5 to
verify the correctness of the obtained results from numerical ALADIN method. As
we can see, both trajectories that we got after the first and also the 15th iteration of
ALADIN algorithm differ quite distinctly from the reference optimal solution. This
may be the consequence of the fact, that when deriving the model of the controlled
system, we considered that only the level in the second tank can be measured, and
thus the first-state behaviour may not be correctly captured in the numerical method.

(a) Trajectory after the 1st iteration (b) Trajectory after the 15th iteration

Figure 3.4: Trajectory of the liquid level in the second tank over the prediction
horizon - results of the ALADIN algorithm (blue solid), non-distributed
MPC (grey dashed), and the steady-state value (black dashed).

In the Figure 3.4, there are trajectories for the liquid level in the second tank. Similarly
to the previous graphs, the reference optimal solution is also shown here to check the
correctness of the obtained solution. As we can see both trajectories of the ALADIN
solution after one iteration and after fifteen iterations are approaching the reference
MPC solution. There is also displayed the reference line of the steady-state value,
that we want to reach applying the obtained control input to the system. Since
the trajectory obtained after the first iteration does not significantly differ from the
reference trajectory, there is potential to shorten the time needed for the calculation
of the ALADIN method by considering the first solution as enough satisfactory.
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Trajectory of the control input – the flow-rate q0 is shown in the Figure 3.5. Comparing
these trajectories, we can see that the first input action in the trajectory obtained
after the 15th iteration of ALADIN algorithm is almost identical with the result of
the reference MPC solution in the first step of the prediction horizon. Given that this
solution of the first step of the prediction horizon will be used in the control loop, we
can assume that the control quality will be higher in the case of solution obtained after
the the 15th iteration.

(a) Trajectory after the 1st iteration (b) Trajectory after the 15th iteration

Figure 3.5: Trajectory of the control input over the prediction horizon - flow-rate
obtained using the ALADIN algorithm (blue solid), non-distributed MPC
(grey dashed).

On the other hand, in the Figure 3.5a containing the result of the first iteration
of ALADIN algorithm, we can see that the obtained trajectory is also sufficiently
approaching the optimal trajectory of the MPC. This can confirm us in our assumption
that in the future research on this method could be developed in the way of accepting
the result from the first iteration, even though the control quality would be lower.

Considering all the shown figures, we can assume that our algorithm for numerical
solution of MPC is correct. However, the computational time of the implicit solution
is too long to be used for control of the systems with fast dynamics, see Table 3.1.

3.2.2 Implementation of Explicit MPC
One of the major advantages of the explicit model predictive control design is a
possibility to pre-optimize the control problem within the offline phase. This leads
to significant shortening of time needed for the calculations as the online phase is
reduced to the solution of a point location problem (see Section 2.1.3). This is one of
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Figure 3.6: Schematic algorithm of the explicit MPC.
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the options how to decrease the evaluation time of the ALADIN algorithm introduced
in the Section 3.2.1. However, in case of more complex optimization problem, the
memory requirements for storing of all the solutions in the look-up table are increasing.
In order to implement this method to microcontrollers used in practice, it might be
more suitable to apply this approach rather to smaller problems.

Since the decoupled layer of the ALADIN method optimizes multiple smaller sub-
problems of the process control repeatedly, there is a space to utilize the advantage
of explicit MPC. We are also confirmed about the correctness of this decision by the
fact that the decoupled layer solution currently makes up more than 95% of the time
required for the complete calculation of the ALADIN algorithm.

The schematic algorithm of implementation of the explicit MPC into the ALADIN
method described in the Section 3.2.1 is shown in the Figure 3.6. As part of this
approach we included the offline phase of explicit MPC before solving the decoupled
layer. Within this step there are three controllers constructed for the decoupled
quadratic programming. As we mentioned before, the optimization problem of these
sub-problems is implemented in three forms depending on the current step of the
prediction horizon – the first step, the last step or any other the inner step of the
prediction horizon. This means that independently on the length of the prediction
horizon, there are always only three explicit MPC problems stored.

In order to obtain these three explicit controllers, we solve the problem of multipara-
metric optimization with additional parameters that are the Lagrange multipliers in
the current and following step of the prediction horizon, and the auxiliary variables
z in the current and following step of the prediction horizon, that are used to move
the state variables towards their optimal values. These parameters are used in the
formulations of decoupled layer’s sub-problems. To design these controllers we used the
Multi-Parametric Toolbox 3 in MATLAB. As a result, we get the polytopic partitions
with 4 regions for the first step, 6 regions for the final step and a polytopic partition
with 29 regions for the inner steps of the prediction horizon.

Generated explicit controllers are then used to solve the decoupled layer online. In
this step, the point location problem is solved for the current values of the parameters
listed above. This means that we look for the region which contains these parameters.
The found region is then used to evaluate the explicit control law in the form (2.3).
This procedure is repeated over the whole prediction horizon. Results of this procedure
are then the predictions of the control action and state variables that are further used
in the following steps of the algorithm. These evaluations – coordination layer solution
and evaluation of the stopping criteria remain the same as in the implicit form of the
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Figure 3.7: Trajectory of the liquid level in the first tank over the prediction horizon
- results of implicit ALADIN algorithm (blue solid), ALADIN algorithm
with implementation of explicit MPC (yellow dotted), non-distributed
MPC (grey dashed), and the corresponding steady-state value (black
dashed).

MPC formulation.

In the Figures 3.7 - 3.9 we can see the comparison of the results obtained using the
implicit MPC algorithm and the explicit MPC described in this Section. Since in the
Section 3.2.1 we have found out that the solution obtained after the the 1st iteration
is sufficiently approaching the reference trajectory (grey dashed line), we decided to
show these results, as this may also lead to a reduction in computing time. These
figures proved that explicit MPC was implemented correctly because all the trajectories
obtained from implicit MPC (blue solid line) and the explicit MPC (yellow dotted
line) are identical.

3.2.3 Analysis of Obtained Results
Results shown in the Figures 3.7 - 3.9 demonstrate that both algorithms, described in
the Section 3.2.1 and Section 3.2.2, give identical trajectories. That is why it makes no
sense to compare these two approaches from the point of view of the control quality.
However, calculation of process control using ALADIN algorithm with the implicit
form of MPC, we noticed, that the time needed to obtain the results might not be
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Figure 3.8: Trajectory of the liquid level in the second tank over the prediction
horizon - results of implicit ALADIN algorithm (blue solid), ALADIN
algorithm with implementation of explicit MPC (yellow dotted) non-
distributed MPC (grey dashed), and the corresponding steady-state value
(black dashed).

Figure 3.9: Trajectory of the control input over the prediction horizon - flow-rate after
one iteration of implicit ALADIN algorithm (blue solid), non-distributed
MPC (grey dashed), and ALADIN algorithm with implementation of
explicit MPC (yellow dotted) after one iteration.
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Table 3.1: Computational time for 15 iterations of algorithm.

Offline
Phase [s]

Decoupled
Layer [ms]

Coordination
Layer [ms]

Total Online
Time [ms]

Implicit MPC - 619 30 650
Explicit MPC 3.49 38 30 69

short enough to use this method for the systems with fast dynamics. Based on this we
decided to take the benefits of explicit MPC and use them to shorten the optimization
time in the decoupled layer.

In Table 3.1, there are mean values of times needed to calculate fifteen iterations of
ALADIN algorithm for implicit and explicit MPC. As we can see the decoupled layer
contributes the most to the overall computational time of the implicit form - 95.3 %,
whilst solving the optimization problem of the coordination layer is only 4.7 %. Despite
this, the total time of this algorithm is still short enough for the input action to be
applied to the controlled system within its sampling time.

The computational time of the explicit MPC is split into the offline phase and the
online phase. Within the offline phase, there are three controllers constructed for
the given MPC settings. In the online phase, the solution of the decoupled layer is
reduced to looking for the region, in which the current values of states are located and
evaluating the control law.

Since the construction of the controllers is performed only once, at the beginning of
computation, we do not really mind the fact that this phase takes nearly 3.5 s, as
this step helps us to spare more time in the solution of the decoupled layer. Using
the principles of explicit MPC, the online phase makes up little more than half of the
overall time spent online. The solution of the decoupled layer is more than 16-times
faster than it is using implicit MPC. Since, in this thesis, we do not try to modify also
the coordination layer, so the time needed for its evaluation remains the same and the
overall only time is almost 10-times shorter.

Since the results of the previous sections point to the possibility of implementing the
optimisation result after the first iteration, it is also worth mentioning the comparison
of computation times needed in this case. As we can see in the Table 3.2, if we consider
the sub-optimal solution obtained from the first iteration sufficient enough, the time
needed to solve the optimization problem is approaching the time of non-distributed
MPC. It is important to note that these times are obtained for a small-scaled system
of two fluid reservoirs, which we can easily control even using a non-distributed



3.2 Implementation of ALADIN Algorithm for MPC 30

MPC. However, in the case of larger systems, a numerical algorithm of distributed
optimisation using explicit MPC will be a more effective approach. Moreover, the
code of the current implementation of ALADIN algorithm was not optimized to high
performance, yet.

Table 3.2: Computational time for 1 iteration of algorithm.

Offline
Phase [s]

Decoupled
Layer [ms]

Coordination
Layer [ms]

Total Online
Time [ms]

Implicit MPC - 41 2 43
Explicit MPC 3.49 3 2 5

Non-distributed MPC - - - 3

Even though shortening the evaluation time is undeniably a great benefit of explicit
MPC, in the practical implementations, it is necessary to take into consideration also
the memory footprint. Table 3.3 shows the memory footprint of the optimization
problems of the decoupled layer and also of the coordination layer. Since the default
data type for numeric values in MATLAB is double, all the numeric variables are
stored as 64-bit (8-byte) double-precision floating-point values. MATLAB constructs
the double data type according to IEEE Standard 754 for double precision [8]. As we
mentioned above, the coordination layer is the same for the implicit and explicit MPC,
so we will first discuss this part.

In the coordination layer, we optimize the quadratic optimization problem with linear
constraints. The controlled plant has two state variables and one input variable. As
the prediction horizon is set to 20, this means we have to solve the objective function
for 60 optimized variables. In addition, we need to take into consideration one extra
step of the prediction horizon for state variables in order to evaluate the state equation
of the model. Therefore, the objective has the dimension 62 × 1. The linear constraints
are initial conditions and also the state equations of the system model, both for two
state variables over the whole prediction horizon. This means we have (2 × 20 + 2)
linear constraints for 62 optimized variables. We also need to take into consideration

Table 3.3: Memory footprint.

Decoupled Layer Coordination Layer
Number

of Doubles [-] Memory [kB] Number
of Doubles [-] Memory [kB]

Implicit MPC 1 552 12.42 2 708 21.66
Explicit MPC 6 261 50.09 2 708 21.66
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the right side of each constraint, so the final number of doubles is defined by (62 × 1
+ 42 × 62 + 42 × 1).

Decoupled layer contains 20 optimization problems of 5 optimized variables (one input
variable, two current system states and two following state variables). The size of
objective functions is the same for all steps of prediction horizon, so there are (20
× (5 × 1)) doubles. To evaluate the number of doubles in the constraints, we need
to consider two cases. In the first step of the prediction horizon, there are two state
equations, two initial conditions, and eight constraints for minimal and maximal values
of the current and future state values. There are also two constraints for the limits of
the input variable. Then the matrix of left-hand side constraints is of the dimension
14 × 5 and the right-hand side vector has 14 elements. In the following steps of the
prediction horizon, there are no initial conditions for the state variables. This means
that the left-hand side matrix has a dimension of 12 × 5 and the right-hand side
vector 12 × 1. The final number of doubles defining the constraints is (14 × 5 + 14 +
19 × (12 × 5 + 12)).

In the explicit MPC, it is necessary to store both, the matrices for domains of particular
solutions and the matrices defining the control law. These have to be evaluated for
all three explicit controllers constructed in the offline phase. As we mentioned before,
in the first controller - for the first step of the prediction horizon, 4 regions were
created within the polytopic partition. Since in this step we solve the problem for 3
parameters - the auxiliary variable z in the current and in the following control step
and the Lagrange multiplier λ in the next step of the prediction horizon, all these
regions are defined by 6 columns. The controller for the inner steps of the prediction
horizon is defined for 29 regions, each with 8 columns, as we consider 4 two-dimensional
optimized parameters - the help variable z in the current and in the following step
and the Lagrange multiplier λ in the current step and in the following step of the
prediction horizon. The final step of the prediction horizon is defined by 6 regions with
4 columns. The multiparametric optimization problem in this step is solved subject to
2 parameters - the help variable z in the current step and the Lagrange multiplier λ in
the current step of the prediction horizon. As a result, we can see in the second line of
the Table 3.3, that to control the system using explicit MPC, we need to store 37.67
kB more than in the case of the implicit MPC. This increase of memory footprint is
caused by the fact that, we solve the multi-parametric optimization problem with four
additional parameters.

We also need to take care of the size of the optimization problem. In this thesis,
the controlled plant is a benchmark system of two liquid tanks connected in series.
However, if the system would be more complex the memory footprint of the explicit
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MPC will be rising rapidly, whilst the increase in the implicit MPC will not be so
significant. To implement explicit MPC to the microcontroller, we need to consider
additional reduction of complexity, for instance using the approximation with the
neural network.

3.2.4 Closed-loop Simulation
As we mentioned in the Section 3.2.1, the trajectories of the input variables obtained
after one iteration and after at most fifteen iterations of the ALADIN algorithm, are
both sufficiently approximating the optimal solution. To better analyse the quality
of the control performance using these inputs, we decided to run the closed-loop
simulations. For both mentioned cases, were performed simulation with the simulation
time set to 30 s. In the first case, we took the input action after the first iteration and
apply this to the state-space system of the controlled plant. The generated simulation
results can be seen in the Figures 3.10 and 3.12.

In the second case, we took the input of the last performed iteration. Within this
approach, we observed that after a few iterations over the simulation horizon, the
ALADIN algorithm stopped by activating the stopping criterion of the minimal size
of the change of the state variables. Results of control using the input action of the
last iteration are displayed in the Figure 3.11 for the control input - the external
flow-rate q0, and in the Figure 3.13 for the controlled variable - liquid level in the
second tank h2.

As we can see in the pairs of figures referring to the input variable (Figures 3.10
and 3.11) and the output variable (Figures 3.12 and 3.13), respectively, the results of
these approaches do not differ significantly. The values of the integral square error
criteria also confirm this visual verification, since the value of the ISE criterion for the
second approach is only 0.02 % smaller than in the first approach. However, we have
to consider also the computational time. In the case if apply to the controlled system
the input action from the last iteration of the ALADIN algorithm solved using the
implicit MPC, the needed time can be over the sampling time, so we will not be able
to apply it to the plant.
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Figure 3.10: Closed-loop trajectory of the input after the 1st iteration of ALADIN
algorithm (blue solid) and non-distributed MPC (grey dashed).

Figure 3.11: Closed-loop trajectory of the input after at most the 15th iteration
of ALADIN algorithm (blue solid) and non-distributed MPC (grey
dashed).
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Figure 3.12: Closed-loop trajectory of the output after the 1st iteration of ALADIN
algorithm (blue solid), non-distributed MPC(grey dashed), and the
reference (black dashed).

Figure 3.13: Closed-loop trajectory of the output after at most the 15th iteration of
ALADIN algorithm (blue solid), non-distributed MPC (grey dashed),
and the reference (black dashed).



Chapter 4

Conclusions

The main aim of the thesis was to design a model predictive control using a method
of distributed optimization for a plant in the chemical industry. For these purposes,
we decided to use a method that is currently becoming more popular in the scientific
community - the Augmented Lagrangian based Alternating Direction Inexact Newton
method. This approach has been demonstrated to be capable of effective controller
design in a distributed fashion, which can aid in implementing the MPC on systems
with fast dynamics.

Since we decided to pay increased attention, especially to the development of a
calculation algorithm, to verify the accuracy of our method, we decided to use a
benchmark system of two tanks with an interaction. The task of the proposed control
was to solve the regulatory problem of the controller design. In other words, we wanted
to achieve steady-state liquid levels in both tanks in the presence of non-zero initial
conditions. Since MPC belongs to a group of control methods based on a mathematical
model of a controlled system, the first task was to derive the model of the controlled
plant. Once we obtained it, we were able to incorporate it into the optimization
problem, solved by the ALADIN method.

The optimization process is performed iteratively in two phases. In the first phase,
so-called the decoupled layer, small sub-problems were solved, potentially in parallel
fashion, along the entire prediction horizon. In order to obtain a continuous solution,
it was necessary to subsequently optimize the obtained results in the second phase,
so-called the coordination layer. Here, a quadratic optimization problem with linear
constraints is solved, which ensures the minimization of gaps between state values
following after each other within the prediction horizon. The use of our proposed
algorithm required, in addition to the traditional weight matrices Q and R, used in the
design of the MPC, also setting of some other tuning parameters. These parameters -
the penalty parameter ρ and the scaling matrix Ω, allow us to additionally tune the
convergence of the optimization algorithm.
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The control of the investigated controlled system was designed using two MPC ap-
proaches. First, we use the method of implicit MPC. This included solving the
optimization algorithm online, in the real-time control. To verify the obtained results
from the numeric optimization method, we decided to compare the prediction trajecto-
ries to the optimal one obtained using the YALMIP toolbox with the GUROBI solver
in MATLAB programming environment. We analyzed these results in two controller
design scenarios. In the first, the results were obtained after one iteration of the
ALADIN algorithm, and in the second scenario, we decided to run the iteration at the
most for fifteen times. Comparing these results, we found out that our algorithm was
correct, as trajectories in both cases converged close to the reference MPC solution.
Moreover, we noticed that even the control action designed from the first algorithm
might be sufficient enough. It means that this might be a way to spare more time in
real-time optimization.

Subsequently, we decided to utilize the advantages of the explicit MPC. As this
method can be highly demanding on computational memory in the case of larger
optimization problems, we chose to apply it to the decoupled layer as it solves small
simple sub-problems. The major benefit of explicit MPC implementation was, that
the optimization problems are not solved in real-time. There is an offline phase, in
which the explicit controllers are constructed. This means the control law over the
polytopic partition was obtained before the real-time control. The solution is stored in
the form of the look-up table. We used the Multi-Parametric Toolbox 3 in MATLAB
to solve the resulting multi-parametric optimization problems. In the online phase
was solved only the point location problem and the obtained solution was used in the
coordination layer.

Results of the open-loop simulation of both, implicit and explicit MPCs, were analysed
and as we expected the generated results were identical. To see the advantages and
disadvantages of the approaches, we additionally analysed the results from the view-
point of computational complexity, as this is the key factor in practical implementation.
We analyzed two aspects - the solver-time needed in the online phase to solve the
optimization problem and also the memory footprint necessary to store the explicit
solution. In terms of evaluation time, it is obvious that the favorite for practical
implementation would be the approach with the use of explicit MPC to solve the
problem at the decoupled layer, as this helped us to decrease the overall time of the
online phase almost 10-times. However, the microcontrollers have limited memory
capacity and usage of the external flash memory significantly increases the calculation
time. Based on our simulation results, we evaluated that for explicit MPC, almost
40 kB of extra memory is needed to store. We need to consider the fact that these
results are obtained for a simple controlled process with few constraints. For the larger
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MIMO system with large number of state and input variables, the memory footprint
of the explicit MPC will rise exponentially.

With these results kept in mind, we performed also the closed-loop simulation, so we
could analyse how the offsets from the reference control trajectory would affect the
overall control. Within the simulation, we investigated the results of control using the
input action from the first iteration and the final iteration of the ALADIN algorithm.
The simulations aimed to get the liquid levels in both tanks to their steady-state within
the simulation time set to 30 s. Obtained close-loop control results were analysed and
investigated also by using the ISE criterion. We observed that these control trajectories
did not differ significantly. This leads us to the conclusion that it is sufficient to
consider just a single iteration of ALADIN algorithm.

In conclusion, we consider the designed distributed optimization algorithm for MPC
as a suitable starting point for further research in which we could focus to adapt
the algorithm so that it would be guaranteed that the result of one iteration of the
ALADIN algorithm would be sufficient for the good performance of the controlled
system.Based on the generated simulation results, the use of explicit MPC can help
to shorten the computational time significantly. However, we would like to explore
the possibilities of approximating the polytopic partition and the associated control
law by a neural network in order to decrease the memory footprint. Another possible
direction for future research can be a modification of the coordination layer to decrease
its evaluation time and also the memory consumption so that the proposed control
algorithm would be implementable in the embedded microcomputers used in practice.



Chapter 5

Resumé

Prediktívne riadenie (z angl. Model Predictive Control, MPC) sa od svojho vzniku stalo
jednou z populárnych metód pre pokročilé procesné riadenie vo viacerých odvetviach
priemyslu [2]. Dôvodom tejto obľuby je okrem iného aj možnosť zahrnúť do návrhu
riadenia aj technologické obmedzenia riadiacich, stavových, ako aj výstupných veličín.
Ďalšou z výhod je možnosť ladenia tohto typu regulátora vzhľadom na konkrétne
požiadavky daného riadeného procesu. Vďaka týmto možnostiam sme schopní mini-
malizovať náklady na riadenie alebo nežiaduci vplyv na životné prostredie, ale takisto
máme možnosť maximalizovať kvalitu získaného produktu.

V spoločnostiach chemického priemyslu sa často nachádzajú veľké procesy, ktorých
riadenie môže byť výpočtovo, ale aj časovo náročné. Dostupný čas na výpočet vhodného
akčného zásahu je často značne limitovaný, keďže v rámci jednej periódy vzorkovania
je potrebné vykonať meranie procesných veličín, samotný výpočet akčného zásahu a
následne aj aplikovať vypočítané akčné zásahy do procesu. V takýchto prípadoch už
tradičné optimalizačné metódy nemusia postačovať. Svoje uplatnenie tu nachádzajú
metódy distribuovanej optimalizácie.

Tieto metódy využívajú skutočnosť, že v rámci spomínaných veľkorozmerných procesov
je možné identifikovať symetrické štruktúry, ktoré sa periodicky opakujú v priestore
alebo v čase. Na základe toho je možné riadený proces rozdeliť na viacero jednoduchších
podprocesov, ktoré sú navzájom prepojené. To umožňuje riešenie takýchto úloh par-
alelne. V súčasnosti existuje viacero metód distribuovanej optimalizácie. V rámci tejto
diplomovej práce sme sa rozhodli analyzovaž ť metódu ALADIN (z angl. Augmented
Lagranian based Alternating Direction Inexact Newton method), ktorá v porovnaní s
ďalšími podobnými metódami dosahuje vyššiu konvergenciu optimalizačných problé-
mov [6].

V rámci našej práce sme sa rozhodli venovať väčšiu pozornosť návrhu výpočtového
algoritmu, ktorý bude v sebe kombinovať výhody metód prediktívneho riadenia a dis-
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tribuovanej optimalizácie pomocou metódy ALADIN. Z tohto dôvodu sme na overenie
správnosti nášho prístupu zvolili systém dvoch zásobníkov kvapaliny s interakciou,
ktorý chceme riadiť z nenulových začiatočných podmienok späť do jeho pôvodného
ustáleného stavu. Keďže MPC patrí medzi riadiace metódy, vychádzajúce z matem-
atického modelu riadeného systému, našou prvou úlohou bolo odvodiť tento model
a zahrnúť ho vo vhodnom tvare do optimalizačného problému riešeného pomocou
metódy ALADIN.

Optimalizačný proces sa vykonáva iteračne v dvoch fázach. V prvej fáze, nazývanej
distribuovaná vrstva, boli malé optimalizačné podproblémy vyriešené v rámci celého
predikčného horizontu. Na dosiahnutie spojitého riešenia, bolo potrebné využiť získané
výsledky v druhej fáze, nazývanej koordinačná vrstva. V rámci tejto vrstvy dochádza
k riešeniu kvadratického problému s lineárnymi ohraničeniami, ktorý zabezpečuje
minimalizáciu medzier medzi hodnotami stavov, ktoré po sebe nasledujú v jednotlivých
krokoch predikčného horizontu. Použitie nášho algoritmu vyžadovalo okrem tradičných
váhových matíc Q a R používaných pri návrhu prediktívneho riadenia, aj nastavenie
dodatočných ladiacich parametrov. Tieto parametre – penalizujúci parameter ρ a škálo-
vacia matica Ω, nám umožňujú dodatočne ladiť rýchlosť konvergencie optimalizačného
algoritmu.

Riadenie daného procesu bolo navrhnuté s využitím dvoch prístupov k MPC. Najskôr
sme použili metódu implicitného MPC. Toto si vyžadovalo riešenie optimalizačného
problému na distribuovanej vrstve online, v reálnom čase riadenia. Kvôli overeniu kval-
ity výsledkov získaných pomocou numerickej optimalizačnej metódy, sme sa rozhodli
porovnať predikované trajektórie s optimálnym riešením získaným využitím toolboxu
YALMIP spolu s riešiteľom GUROBI v prostredí MATLAB. Výsledky sme analyzovali
vzhľadom na dva prípady. V prvom prípade sme použili výsledky získané už po prvej
iterácii algoritmu ALADIN a v druhom prípade sme sa rozhodli vykonať najviac
pätnásť iterácií. Porovnaním týchto výsledkov sme zistili, že náš algoritmus je správny,
keďže v obidvoch prípadoch sa trajektórie približovali k referenčnému riešeniu MPC.
Naviac sme si všimli, že postačujúcim by mohlo byť už riadenie pomocou akčného
zásahu vypočítaného v prvej iterácii algoritmu. To by znamenalo možnosť ušetriť viac
času v rámci optimalizácie v reálnom čase.

Následne sme sa rozhodli využiť výhody, ktoré poskytuje explicitné prediktívne riadenie.
Keďže táto metóda môže byť v prípade väčších optimalizačných problémov veľmi
pamäťovo náročná, rozhodli sme sa aplikovať ju na riešenie distribuovanej vrstvy,
ktorá je tvorená malými jednoduchými podproblémami. Hlavnou výhodou použitia
explicitného MPC bol fakt, že optimalizačné problémy nie sú riešené v reálnom čase,
ale v rámci offline fázy, v rámci ktorej sú skonštruované regulátory. To znamená, že
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zákony riadenia pre vytvorenú polytopickú partíciu, sú získané vopred a uložené sú v
prehľadávacej tabuľke. Tento krok sme uskutočnili s využitím Multiparametrického
Toolboxu 3 v prostredí MATLAB. Následne bol v online fáze len vyhľadaný región, v
ktorom sa nachádzali aktuálne hodnoty parametrov, potom bol vyhodnotený zákon
riadenia a získaný výsledok bol použitý v rámci koordinačnej vrstvy.

Výsledky simulácie implicitného a explicitného MPC v otvorenej slučke boli analy-
zované a ako sme predpokladali, boli identické. Aby sme videli výhody a nevýhody
oboch prístupov, výsledky sme následne porovnali z hľadiska výpočtovej náročnosti,
keďže práve tá je kľúčovým faktorom pri praktickej implementácii. Analyzovali sme
dva aspekty – čas potrebný na online fázu optimalizácie a tiež vygenerovanú pamäťovú
stopu. Z hľadiska času vyhodnocovania je zrejmé, že vhodnejším pre praktickú imple-
mentáciu je prístup s použitím explicitného MPC na vyriešenie problému distribuovanej
vrstvy, keďže nám to umožnilo skrátiť celkový čas online fázy takmer 10-krát. Avšak,
mikrokontroléry majú obmedzenú kapacitu pamäte a použitie externej flash pamäte
výrazne predlžuje čas výpočtu. Z nášho skúmania sme zistili, že na riadenie s explicit-
ným MPC je potrebných o takmer 40 kB viac na uloženie. Musíme vziať do úvahy aj
skutočnosť, že tieto výsledky boli získané pre jednoduchý riadený proces s niekoľkými
obmedzeniami. Pre väčšie MIMO systémy s veľkým počtom stavových premenných
bude pamäťová stopa explicitného MPC rásť exponenciálne.

S ohľadom na tieto výsledky sme vykonali aj simuláciu riadenia v uzavretej slučke, aby
sme videli, ako odchýlky od referenčnej trajektórie riadenia ovplyvnia celkovú kvalitu
riadenia. V rámci simulácie sme porovnávali výsledky riadenia použitím akčného
zásahu z prvej iterácie a z najviac 15. iterácie algoritmu ALADIN. Cieľom riadenia
bolo dostať hladiny kvapalín v oboch nádržiach z nenulových začiatočných podmienok
do ich ustáleného stavu v rámci simulačného času nastaveného na 30 s. Získané
výsledky riadenia boli analyzované graficky a tiež pomocou kritéria ISE. Zistili sme, že
tieto trajektórie riadenia sa významne nelíšia. To nás vedie k záveru, že z časového
hľadiska postačuje uskutočniť iba jednu iteráciu algoritmu ALADIN a použiť získané
výsledky.

Na záver je možné zhrnúť, že navrhnutý distribuovaný optimalizačný algoritmus pre
MPC považujeme za vhodný východiskový bod pre ďalší výskum, v ktorom by sme
sa mohli zamerať na prispôsobenie algoritmu tak, aby bolo zaručené, že výsledok
jednej iterácie algoritmu ALADIN bude postačovať pre kvalitné riadenie procesu. Ako
sme sa presvedčili, použitie explicitného MPC môže výrazne skrátiť výpočtový čas.
Chceli by sme však preskúmať možnosti aproximácie polytopickej partície a riadiaceho
zákona pomocou neurónovej siete, aby sa zmenšila pamäťová stopa. Ďalším možným
smerom budúceho výskumu môže byť úprava koordinačnej vrstvy, aby sa skrátil čas
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jej vyhodnocovania a tiež spotreba pamäte tak, aby bol navrhnutý riadiaci algoritmus
implementovateľný do bežných mikropočítačov používaných v praxi.
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