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Abstract: We investigate the problem of robust design of experiments (rDoE) in the context
of nonlinear maximum-likelihood parameter estimation. It is assumed that an experimenter
designs a series of experiments with the possibility of a re-design after a particular experiment
run. We present a novel rDoE approach that uses multi-stage decision making in order to
explicitly account for the experiment re-designs. This is an extension to our previous work Gottu
Mukkula et al. (2021) whereby we focus on the framework of the exact joint-confidence regions
for uncertain model parameters. An over-approximation of the exact joint-confidence region is
used for designing robust A-optimal experiments. We compare the presented approach with the
standard robustification approaches and report the findings on a simple nonlinear case study.
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1. INTRODUCTION

Mathematical modeling has been at the core of engineer-
ing, physics, chemistry, etc. for many years. In process
industries, mathematical models are used widely for pro-
cess and control system design, process optimization, etc.
Model development is usually divided into three major
steps a) identification of the model structure, b) design
and realization of the experiments, and c) estimation of the
unknown parameters. In the latter phase, one often realizes
maximum-likelihood estimation via least-squares method-
ology as he/she assumes that the measurement error cor-
rupting the measured data is statistically distributed as
a white Gaussian noise. Once the parameter estimates
are known, the experimenter commonly determines the
quality of the obtained model. This can be done either by
using some validation data—if available—or by assessing
the joint-confidence regions of the estimated parameters.
If the model quality is unsatisfactory, it is possible to
simply re-run the experiment or to re-design and run a
new experiment based on the lessons learned.

Design of experiments (DoE) is a branch of mathematics
that determines the most favorable experimental condi-
tions that allow the most informative data to be collected
during an experiment. Unlike in linear parameter models,
the model nature is highly influenced by the parameter
values in nonlinear models. This makes DoE for nonlinear
parameter models to be heavily dependent on the a priori
knowledge of the uncertain parameters. This phenomenon
is commonly referred to as a chicken-and-egg problem,

? RP acknowledges the contribution of the Slovak Research and
Development Agency under the project APVV-20-0261 and the
Scientific Grant Agency of the Slovak Republic under the grants
VEGA 1/0691/21 and VEGA 1/0297/22.

where one requires precise knowledge of the parameters
a priori to estimate parameters with high precision.

A standard procedure of experiment design for nonlinear
models is to select nominal values of the uncertain param-
eters in the nominal model and perform DoE. The nominal
design will be suboptimal—or even infeasible to conduct
in the presence of strict plant constraints—if the nomi-
nal values of the uncertain parameters are far from real-
ity (Pronzato and Walter, 1985). Several approaches such
as the robust min-max optimization (Walter and Pronzato,
1987) and stochastic (Galvanin et al., 2010; Streif et al.,
2014; Mesbah and Streif, 2015; Nimmegeers et al., 2020) or
scenario-based (Telen et al., 2014; Welsh and Rojas, 2009)
approaches have been proposed to overcome this problem.
An overview of the different approaches for robust design
of experiments (rDoE) is available in Asprey and Macchi-
etto (2002). A majority of these approaches concentrate
primarily on fulfilling the process operational constraints.
Additionally, they try to decrease the loss in optimality
by optimizing experiments for the worst-case or the most
probable model, based on some a priori information.

A series of successive experiments are often performed in
the experimentation phase of model building as the initial
experiment—designed with DoE or rDoE methods using
a nominal model—might not be optimal (Vanaret et al.,
2021). At the same time, information gained from the
previous experiments can be used to design the next exper-
iments better—based on model parameters re-estimated
from the newly available data. This gives rise to the design
of sequential experiments (Barz et al., 2010), which is
sometimes referred to as Bayesian design of experiments
because of the ability of Bayesian techniques to incorpo-
rate the a priori knowledge that can be present by his-
torical experience or by some past experiments. Recently,



Gottu Mukkula and Paulen (2017b); Gottu Mukkula et al.
(2021) proposed a multi-stage rDoE framework in the
context of guaranteed parameter estimation and linearized
(maximum-likelihood) confidence regions. In the proposed
rDoE framework, the whole series of experiments are op-
timized while explicitly accounting for the possible re-
design of the successive experiments once new information
becomes available.

In this paper, we study the rDoE problem and particularly
address the situation, where one can plan a series of exper-
iments ahead, considering the possibility of re-estimating
the uncertain model parameters in-between the experi-
ments. We study the rDoE using the exact (nonlinear)
confidence regions (Gottu Mukkula and Paulen, 2017a,
2019). We organized the paper as follows. The concepts of
nonlinear parameter estimation are introduced first. Next,
the formulation for the experiment design using nonlinear
(exact) confidence regions is reviewed. Further, well-known
rDoE approaches are briefly shown and the proposal for
robust multi-stage DoE is outlined in detail. Lastly, in the
case study section, we illustrate the theoretical findings on
a simple nonlinear model.

2. PRELIMINARIES

2.1 Mathematical Model

In this paper, a mathematical model of a nonlinear param-
eter system is represented by

ŷ(p, τ) = F (p,uτ ), (1)

with ŷ as ny output variables, uτ as nu degrees of freedom
and p̂ as np uncertain parameters. Here τ represents an
ordinal number of a data point taken in one or more
experiments. Nonlinear function F : Rnp × Rnu → Rny

is considered to be a twice continuously differentiable
mapping. Throughout the paper, we resort to the rep-
resentation in (1), which considers the system model as
static and explicit w.r.t. output variables. However, the
presented findings can straightforwardly be extended to
dynamic and implicit models.

We will assume throughout the paper that the model is
not over-parameterized and that all the parameters are
identifiable. We consider that, upon the realization of an
experiment or several experiments, N instances are gath-
ered of ny-dimensional vector of plant measurements ym
and are subsequently used for the estimation of unknown
parameters. Throughout the paper, we will assume a white
Gaussian noise to be corrupting the measurements. In the
following subsections, existing frameworks are presented
for the identification of the unknown parameters and the
corresponding exact confidence regions for nonlinear pa-
rameter estimation problems.

2.2 Parameter Estimation

Given a static nonlinear mathematical model (1), the
expected values of parameters p̂ are identified by solving
the following weighted least-squares estimation problem

p̂ = arg min
p
J(p), (2)

with

J(p) :=

ny∑
i=1

τN∑
τ=τ1

σ−2i (ym,i(τ)− ŷi(p, τ))2. (3)

Here ym,i and σi represent the plant-output measurement
and the standard deviation of the measurement noise for
the ith measured output variable, respectively.

The exact joint-confidence region of the uncertain model
parameters is defined as a set of all parameters that satisfy
the implicit nonlinear inequality (Seber and Wild, 2003)

J(p)− J(p̂) ≤ χ2
α,np

. (4)

Unlike in the linear parameter estimation, the exact con-
fidence region does not generally take a shape of an ellip-
soid due to nonlinearity. We also note that—despite using
standard asymptotic confidence regions in this paper—
there exist non-asymptotic confidence regions (Campi and
Weyer, 2005; Perić et al., 2018) that can be used in non-
linear parameter estimation and also in experiment design
through the developments presented here.

2.3 Model-based Design of Experiments

In this paper, we assume that the joint-confidence region
of the uncertain model parameters is continuous. It is gen-
erally suggested to re-parameterize the model if the joint-
confidence region is discontinuous (Bates and Watts, 1988)
as this indicates (local) indetifiability issues. Without loss
to generality—even for the latter rDoE—we will consider
that limits of the experimental degrees of freedom uτ are
the only constraints for the experiment. We also assume
that an estimate p̂ is available. The final assumption—
inherent to the standard experiment design techniques—is
that there exists no structural plant-model mismatch and
that the expected realization of the measurement noise is
0. In turn, this results in ym(τ) = ŷ(p̂, τ), ∀τ .

Several criteria for DoE such as A, D, E, Modified E, V, Q,
M and so on are proposed in the literature (Franceschini
and Macchietto, 2008). Each of these design criterion aims
to tune a specific property of the joint-confidence region. In
this study, we use the A design criterion, yet other design
criteria might be considered using the ideas presented
herein.

The optimization problem of the nonlinear A design can
be stated as (Gottu Mukkula and Paulen, 2019)

u? :=arg min
u
φA(u) := arg min

u
max
π

np∑
j=1

pUj − pLj (5a)

s.t. ∀τ ∈ {τ1, . . . , τN}, ∀j ∈ {1, . . . , 2np} :

ŷ(πj , τ) = F (πj ,uτ ), (5b)

ym(τ) = ŷ(p̂, τ) = F (p̂,uτ ), (5c)

J(πj)− J(p̂) ≤ χ2
α,np

, (5d)

uL ≤ uτ ≤ uU . (5e)

Here, the vector π represents 2np anchor points

π :=



pL1
p1,L2

...
p1,Lnp

,

pU1
p1,U2

...
p1,Unp

,

p2,L1

pL2
...

p2,Lnp

, · · · ,

p
np,U
1

p
np,U
2
...
pUnp


 , (6)
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Fig. 1. Illustration of the nonlinear A design.

where each point represents a lower or an upper limit of
an uncertain parameter within the exact confidence region.
The idea is illustrated in Figure 1 for a two-dimensional
parametric space. The anchor points—illustrated by blue
squares in Figure 1—are identified by solving the maxi-
mization problem in (5), which inflates a box around the
confidence region such that the box intersects the confi-
dence at all anchor points (see (5d)) at least in one point.
The experiment design objective then acts counteractively
and tries to minimize the dimensions of the box. Hence this
gives rise to the min-max problem.

Note that the maximization problem in (5) is well struc-
tured and separable. Besides that, the maximization prob-
lem is non-convex and the number of its optimization
variables (2n2p) grows quadratically with the number of
uncertain parameters. Therefore the identification of an
orthotope might get challenging for the state-of-the-art
solvers and high-dimensional problems.

In this work, we will refer to the presented DoE method
as a nominal DoE.

3. ROBUST DESIGN OF EXPERIMENTS

The nominal DoE might be significantly suboptimal if the
nominal parameters p̂ are far from the true values p?.
In this section, we summarize ways for robustifying the
DoE with well-known robust DoE techniques and propose
a methodology based on multi-stage decision making. We
shall assume that a set P is available such that p? ∈ P .

3.1 Sequential Approach

If it is possible to run a series ofNe experiments (adding up
to a total of N experiments), sequential design (Barz et al.,
2010) is one of the simplest robustifying schemes. Here p̂
is iteratively adjusted based on the experiments performed
and the nominal design (Section 2.3) is re-conducted. The
pseudo-algorithm for the sequential approach is:

1. Set p̂ such that p̂ ∈ P .
2. Perform the nominal DoE (Section 2.3) for Ne < N

experiments using the known value for p̂. Get u?.
3. Conduct the designed Ne according to u? and obtain

the measurements ym.
4. Compute a new value of p̂ and the corresponding

confidence region using the least-squares estimation
(Section 2.2) over all the past experiments.

5. Go to step 2. unless:
a. the maximum (user-defined) number of possible

experiments was conducted, or
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Fig. 2. Illustration of scenario-based and multi-stage DoE.

b. only a marginal (user-defined) improvement of
the confidence region—measured by the chosen
design criterion—was reached, or

c. only a marginal (user-defined) update of the
least-squares estimates was obtained.

6. Terminate.

3.2 Min-max Approach

Min-max formulation of DoE (Pronzato and Walter, 1988)
identifies the optimal experiment conditions u under the
worst-case realization of p̂ ∈ P . For the nonlinear DoE,
the formulation reads as

min
u

max
π, p̂∈P

np∑
j=1

pUj − pLj (7a)

s.t. ∀τ ∈ {τ1, . . . , τN}, ∀j ∈ {1, . . . , 2np} :

ŷ(πj , τ) = F (πj ,uτ ), (7b)

ym(τ) = ŷ(p̂, τ) = F (p̂,uτ ), (7c)

J(πj)− J(p̂) ≤ χ2
α,np

, (7d)

uL ≤ uτ ≤ uU . (7e)

We note here that the optimization for the worst case can
lead to overly conservative results (Lucia et al., 2013) and
its benefits are mostly gained by seeking a feasible design
with strict constraints on the experiments.

3.3 Scenario-based Approach

Opposed to the robust min-max design, the idea behind
scenario-based DoE (Telen et al., 2014; Welsh and Rojas,
2009) is to optimize for the mean value of the objective
under the stochastic realization of the uncertainty. This
approach considers ns discrete realizations (scenarios) of
p̂ from the set P and is illustrated in Figure 2. The
figure shows a scenario tree with black nodes representing
N experiments in ns branches. Each branch represents a
particular realization of p̂.

In the simplest alternative, the scenarios can be selected
as combinations of minimal, nominal and maximal param-
eter values from P if one assumes a uniform probability
distribution of p̂ over P . If P represents a joint-confidence
region, the scenarios can be selected to represent the (ap-
proximate) sigma points of P (Nimmegeers et al., 2020).
One can also consider scenarios to be the samples from
the underlying probability distribution within P (Mesbah
and Streif, 2015). In all the cases, one can assign a certain
probability to the scenarios selected.



The optimization then seeks a common experiment pol-
icy that minimizes the average—weighted by the scenario
probability—of the objectives of the individual scenarios.
The associated optimization problem in the case of non-
linear DoE is given as

min
us,∀s∈{1,...,ns}

ns∑
s=1

ωs max
πs

np∑
j=1

pU,sj − pL,sj (8a)

s.t. u1
τ = u2

τ = · · · = uns
τ , ∀τ ∈ {τ1, . . . , τN}, (8b)

∀τ ∈ {τ1, . . . , τN}, ∀j ∈ {1, . . . , 2np},
∀s ∈ {1, . . . , ns} :

ŷs(πsj , τ) = F (πsj ,u
s
τ ), (8c)

ysm(τ) = ŷ(p̂s, τ) = F (p̂s,usτ ), (8d)

J(πsj)− J(p̂s) ≤ χ2
α,np

, (8e)

uL ≤ usτ ≤ uU , (8f)

where ωs represents the weight of the sth scenario and p̂s

is the particular realization of p̂ in the sth scenario. The
problem—compared to the min-max formulation (7)—
maintains a highly structured form and the maximization
problems are separable. We also note that the scenario-
based approach can be a viable alternative to truly ro-
bust (min-max) optimization for strictly constrained DoE
problems. This is supported by possibility of identify-
ing a worst-case scenario—in terms of feasibility—that
is often present in practical applications or can be pre-
identified (Holtorf et al., 2019). Such scenarios can then
be added among the branches of the scenario tree to
guarantee robust feasibility.

3.4 Multi-stage Approach to Robust Design of Experiments

The scenario-based and min-max DoE are one-shot (single-
stage) approaches in principle, i.e., all the N experiments
are conducted once the design is calculated. Of course, one
can combine these approaches with sequential approach for
iterative re-design. The major issue within this approach is
that the aforementioned designs do not consider explicitly
the possibility of re-estimation and re-design based on the
available intermediate information.

The explicit consideration of the so-called recourse ac-
tions (Garstka and Wets, 1974) gives rise to a multi-
stage decision making. Such scheme effectively combines
elements of sequential and scenario-based DoE. We illus-
trate the approach in Figure 2 for a situation of two-
stage decision making. The green-colored branches of the
scenario tree represent the first-stage decisions, i.e., the
design is essentially equivalent to scenario-based DoE.
After the N th

e experiment is performed, a sequential-design
principle is applied for the second stage over the indi-
vidual branches. This is represented by the branches of
different colors (in Figure 2), which illustrates that the
decisions are decoupled and that ns individual re-designs
are performed. The overall optimization takes both stages
into account and finds the best conditions for initial Ne
experiments, which make the successive N−Ne redesigned
(recourse) experiments to minimize the weighted-average
performance of the outcome from N experiments. In our
previous work, we suggested a similar strategy in the
context of set-membership (guaranteed) estimation (Gottu
Mukkula and Paulen, 2017b), which offers even more in-
tuitive explanation of the effects of multi-stage decision

making on experiment design. The optimization problem
for the A optimal design with a multi-stage approach
can be formulated by a slight alteration of the scenario-
based approach. For completeness, we state the underlying
optimization problem here in full length, despite it only
requires a minor modification of the problem (8) regard-
ing the so-called non-anticipativity constraints (8b). The
problem reads as

min
us,∀s∈{1,...,ns}

ns∑
s=1

ωs max
πs

np∑
j=1

pU,sj − pL,sj (9a)

s.t. u1
τ = u2

τ = · · · = uns
τ , ∀τ ∈ {τ1, . . . , τNe

}, (9b)

∀τ ∈ {τ1, . . . , τN}, ∀j ∈ {1, . . . , 2np},
∀s ∈ {1, . . . , ns} :

ŷs(πsj , τ) = F (πsj ,u
s
τ ), (9c)

ysm(τ) = ŷ(p̂s, τ) = F (p̂s,usτ ), (9d)

J(πsj)− J(p̂s) ≤ χ2
α,np

, (9e)

uL ≤ usτ ≤ uU . (9f)

Allocation of the number of experiments for the first and
the second stage, respectively, is an adjustable parameter.
If no prior experimental results are available—i.e., one
only possesses the knowledge of P—he/she would nat-
urally set Ne such that Ne × ny ≥ np to satisfy the
standard minimal identifiability conditions. We note that
there are other criteria for selecting the least number
of experiments (Georgakis, 2013), yet a study of these
aspects is beyond our scope in this paper. A simulation-
based tuning is also in principle possible here combined
with some previous plant expertise. The case, in which
past experiments are available, naturally opens up wider
options to tune the parameter Ne especially in situations,
where N is relatively small.

The optimization problem (9) is formulated for the two-
stage decision making and is thus optimistic. It assumes
that a true value of the parameter is inferred once the
Ne experiments are conducted. There are two possible
modifications for more realistic uncertainty modeling. One
represents the use of multi-stage decision making, where
one continues to branch the tree after the stage Ne and the
optimization thus still accounts for the uncertainty in the
recourse experiments. The mathematical formulation of
such problem can be derived from our earlier work (Gottu
Mukkula et al., 2021). The second option lies in the usage
of techniques from a so-called dual control, where the
essential part of the technology is the stochastic prediction
of future estimates (Filatov and Unbehauen, 2004). As an
example, Thangavel et al. (2018) illustrated a dual-control
approach in the framework of multi-stage NMPC, which
is directly applicable here.

The application of the two-stage design can either be done
in an open-loop or in a closed-loop manner. In the open-
loop approach, re-estimation is performed at the stage Ne,
i.e., after the designed experiments are performed. This
is followed by a (nominal) re-design and realization of
the remaining experiments. In the closed-loop approach,
the two-stage DoE is applied in a moving-horizon fashion,
i.e., it is recast from the stage Ne repetitively. The decision
of performing open- or closed-loop approach is mainly
connected to the number of possible experiments N and to



the quality of estimates obtained at the stage Ne. Similar
approaches can be devised for the multi-stage designs.

4. CASE STUDY

We study a two-parameter kinetic model of the reaction

A
p1−→ B

p2−→ C taken from Atkinson and Hunter (1968).
The concentration of B follows

yτ =
p1

p1 − p2
(exp(−p2uτ )− exp(−p1uτ )) , (10)

where uτ represents the time at which the concentration of
component B is measured. We can observe that both pa-
rameters enter the model equation in a nonlinear fashion,
which might foreshadow the utility of a robust design.

The true parameter values are unknown but are assumed
to lie within P := [0.55, 0.9] × [0.1, 0.45]. The nominal
values of parameters are taken as the midpoint of P .
We consider the measurement error to be a random
variable distributed as zero-mean, white Gaussian noise
with standard deviation σ = 0.1/3. The general structure
of the designs is to repetitively take (two) measurements
at uτ ∈ [0.9, 1.6] to estimate p1 and uτ ∈ [5.4, 11.0] to
estimate p2.

We test the presented methodologies using the simplest
possible setup regarding the number of consecutive DoEs
and the number of experiments considered, i.e., N := 4
and Ne := 2 with two consecutive DoEs and two experi-
ments in each DoE. We generate all the rDoE procedures
outlined above using the numerical implementation de-
scribed in our previous work (Gottu Mukkula and Paulen,
2019).

As the scenario-based designs consider discretization of the
set P into finite number of scenarios, we implement the
same strategy in the min-max approach to make a fair
comparison among these approaches. To solve the aris-
ing bi-level programs we use the nested approach (Gottu
Mukkula and Paulen, 2019) with BARON (Matlab inter-
face) as a global solver and with fminunc (quasi-Newton
method option) and fmincon (SQP method option) as
local solvers. BARON is also used for all the single-level
(minimization) problems. All solvers are used with default
settings.

The presented rDoE methodologies are evaluated in the
following setup: a) In the first stage, the parameters are
only known to lie in the set P . A designed experiment is
executed until Ne measurements are obtained. b) After
taking Ne measurements, it is assumed that the least-
squares estimation reveals true values of the parameters.
This serves for a fair comparison of the designs as it miti-
gates the effects connected to the actual noise realization.
The outlined implementation naturally does not hold for
the nominal design, which is evaluated in an open-loop
fashion (no re-estimation) and serves as a reference case.
The performance of the different designs measured by the
true value of A-design criterion is evaluated using Monte
Carlo simulation, where the true values of parameters for
each simulation are taken from a uniform 10 × 10 grid
discretized from P .

We compare the performance of the different methods
for rDoE measured by the value of the respective A-
optimal design objective function. Figure 3 shows the box
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Fig. 3. A box plot of performance of the different ap-
proaches to robust nonlinear A design.

plot of performance reached over the 100 Monte Carlo
simulations. The central horizontal-line marker indicates
the median, the bottom and top edges of the box indicate
the 25th and 75th percentiles, respectively, the whiskers
extend to the most extreme data points not considered
outliers, and the outliers are plotted individually using
the ‘+’ symbol. First, we can observe that the variance of
the performance of the different designs is higher than the
differences among them. This can be expected given the
analysis concerning model nonlinearity. We can observe
that

• Nominal design performs relatively poorly (largest
performance variance), which can be expected given
the elevated nonlinearity.

• Sequential design achieves the best performance in
the best case but does not perform well w.r.t. to
the worst case. Also its performance variance is not
satisfactory.

• Min-max design gives the worst performance in terms
of median and best case as could be expected. Its
worst-case performance is very good despite not being
the best, contrary to all expectations.

• Scenario-based strategy achieves the best median
performance that is, however, outweighed by the large
performance variance that diminishes it.

• Two-stage design is the best in terms of the median
performance, very good performance w.r.t. the best
and the worst case. The improvement in mean perfor-
mance is around 5% compared to the nominal design.
Also its performance variance is comparatively good
and definitely better than the closest competitors, i.e.,
the sequential and scenario-based design.

5. CONCLUSIONS

In this paper, we presented and compared some well-
known schemes for robust design of experiments. We have
proposed and studied a novel method based on multi-
stage decision making, which is found to be a viable
methodology for (re-)design of experiments. We used a
simple nonlinear case study for evaluation of the presented
method and we have shown few interesting insights into
the problem of robust DoE. The proposed multi-stage ap-



proach, in the context of the exact joint-confidence region,
clearly stands for a viable alternative to more standard
robustification approaches to DoE. It achieves very good
performance in terms of best-case, median and worst-case
performance. We note here that its performance can be
even improved in more advanced rolling-horizon strategies,
if one considers the setup with unknown measurement vari-
ance, or if the number of the experiments to be designed
is large.
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