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Abstract: We present an embeddable optimization-free application of a near-optimal MPC
implementation with continuous tuning capabilities. We propose a strategy combining the
advantages of explicit model predictive control with tunable properties that is implementable
on embedded platforms with limited memory and computational resources. We consider a
neural network (NN) learning procedure to mimic the control actions of an MPC strategy.
While acknowledging limited guarantees on the constraints satisfaction with just the NN-based
controller, we introduce an optimization-based corrector of the mimicked control action. Such
a corrector then steers the control authority of the mimicked controller such that constraints
on manipulated and process variables are enforced. To demonstrate the efficacy of the proposed
control strategy, a case study implemented on an embedded platform is shown.
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1. INTRODUCTION

The ability to change the aggressiveness of any controller
during the operation plays a vital role in all industrial
applications. It allows for a change in closed-loop per-
formance without the need for extensive retuning proce-
dures which often include system identification or other
experiments. The retuning concept is especially resource-
demanding in the application of Model Predictive Control
(MPC), where choosing the weighing factors is often dif-
ficult for system operators and requires deeper knowledge
about the controller structure (Wojsznis et al., 2003). For
practical approaches, it is very convenient to have a spe-
cific interval in which the tuning factors can be changed.
Naturally, the controller needs to provide satisfactory per-
formance within these intervals. This manuscript aims
precisely at this goal, where a control strategy improved
by neural networks provides near-to-optimal control action
subject to process measurements and choice of the tuning
matrices.

Application of the model predictive control strategy on
embedded platforms boils down to constructing an explicit
solution via parametric programming. In order to arrive
at a successful explicit solution in a reasonable time with
a reasonable memory footprint, we are limited by the
number of parameters, the length of the prediction hori-
zon, and subsequently by the memory capabilities of the
given embedded platform. Even though there exist several
strategies how to mitigate the memory requirements of the
explicit MPC, we are still limited to the fixed structure of
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the optimization problem, i.e., linear constraints and linear
or quadratic performance criteria. Such controllers can not
be considered when a change in tuning factors is required.
Several scientific works address the problem of memory
requirements for the explicit MPC, like (Kvasnica et al.,
2013; Holaza et al., 2015) and references therein, but all
motioned works are limited to the fixed structure of the
optimization problem.

Of course, the problem with tunability does not arise in the
implicit solution, where the change of the tuning factors
does not affect the procedure of solving the problem. In
the case of the explicit MPC, the parametric programming
must be performed each time the tuning factors change.
Another possibility would be to consider the tuning factors
as parameters, but then we no longer keep the favorable
structure of linear constraints and quadratic objective
function.

One of the remedies to previous design obstacles is the
MPC imitated by the neural networks (denoted as NN-
controller). Such a concept is gaining much popularity in
the control community in recent years. Among theoret-
ical approaches, as presented by Lucia et al. (2021), a
significant amount of application-based results has been
published (Lohr et al., 2019; Karg and Lucia, 2020, 2018).
In fact, the tunability aspects of the MPC can be easily
adopted in the training procedure to obtain an NN-based
controller in which input parametric space can cover not
only state measurements but also values of the tuning
factors (Kǐs et al., 2020).

To consider a sole NN-controller as the main governing
body raises an issue of constraint satisfaction. Even though
the neural network is trained to imitate the MPC strat-
egy, output constraint satisfaction is difficult. Therefore,
we suggest adopting a mechanism called MPC-based cor-
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rectors (Kvasnica et al., 2012), which steers the control
authority of the NN-controller such that constraints on
process variables are enforced. Unfortunately, the consider-
ation of the optimization-based corrector decreases the ap-
plicability of the entire scheme on the embedded hardware.
We propose to solve the corrector problem with the Ran-
dom Shooting approach (Bakaráč and Kvasnica, 2018),
which relies only on simple mathematical operations, that
do not require any optimization solvers. Therefore, the
entire implementation of the control strategy is free of op-
timization the explicit MPC construction, and moreover,
we allow for continuous tuning during the operation of the
control.

Proposed control strategy offers 4 distinct advantages
compared to known control schemes including explicit
model predictive control:

(1) implementation on embedded platforms (explicit na-
ture of the NN-controller with evaluation time on a
micro-second level),

(2) tunability of the controller in terms of varying weigh-
ing factors,

(3) input, and output constraint satisfactions with nearly
optimal control performance,

(4) drastic reduction of memory requirements compared
to explicit MPC.

We acknowledge, that such a control strategy does not
enforce any stability clauses, and the total quality of the
performance is largely determined by the quality of the
training process of the NN-based controller. On the other
hand, experimental results clearly support the validity of
the proposed strategy. Furthermore, we open the range of
applicability of NN-controllers to other fields, especially to
processes with extremely fast dynamics.

2. CONTROL PROBLEM AND PRELIMINARIES

2.1 Control Problem

We aim to construct a two-step control strategy, involving
a substitution of the MPC and a corrector term. The main
part of the control strategy involves a neural network,
which mimics the behavior of an MPC, hence its substi-
tution. Then, a corrector term is designed, which ensures,
that the joint control authority of the neural network and
the corrector satisfy constraints imposed on the controlled
process. The proposed control strategy is visualized in
Fig. 1(a).

The controller in the form of a neural network is formally
given by

unn = CNN(θx, θf), (1)

where unn denotes the control action provided by neural
network controller, vector θx represents measurements,
while the θf denotes the varying tuning factors. Concretely,
we store diagonal values of the weighing factors in the
vector θf. Specifics of the neural networks are presented
in the Section 2.3 Then, an optimization-based corrector
is synthesized as a copy of the MPC, later describe in
Section 2.2. To ease the notation, lets formally enclose the
corrector term into

ũ = CC(unn, θf, θx). (2)

CorrectorNN Process

(a) Closed loop with neural network and corrector con-
trollers.

MPC Process

NN

(b) Training of neural network controller.

Fig. 1. Integration of the closed-loop environment and
scheme of the neural network training.

Note, that both controllers, i.e., CNN and CC are evaluated
subsequently at each time instant.

Both steps of this control strategy heavily rely on the
casted model predictive controller. The first step, the NN-
based controller, imitates the MPC behavior with a near-
optimal performance as an explicit function similar to
explicit MPC. In the second step, the MPC solved with
the random shooting in principle can arrive to a good
nearly optimal control action, but we use the NN-based
control action as the warm-start for the RS algorithm. We
will show that such an initialization of the RS algorithm
reduces the overall evaluation time of the control law and
notably improves the performance of the RS implementa-
tion. Recall that random shooting has been successfully
used to solve the model predictive control problems Dyer
et al. (2002), but results presented here focus on tunable
and embeddable aspects of the control strategy; hence the
need for improved warm-starting is called for.

2.2 Model Predictive Control

We consider a reference tracking formulation of the model
predictive controller with a discrete time state space
model. The MPC is given as

min ||xN ||QN
+

N−1∑
k=0

||yk − rk||Qy
+

N−1∑
k=0

||∆uk||Qdu
(3a)

s.t. xk+1 = Axk +Buk, ∀k ∈ NN−1
0 , (3b)

yk = Cxk +Duk, ∀k ∈ NN−1
0 , (3c)

∆uk = uk − uk−1, ∀k ∈ NN−1
0 , (3d)

xk+1 ∈ X , uk ∈ U ,∆uk ∈ Udu, ∀k ∈ NN−1
0 , (3e)

x0 = x(t), u−1 = u(t− Ts). (3f)

The objective function is in the quadratic form, where
||z||Q = z⊺Qz, with terminal penalty, penalization of
control action deviations and control error in the term
(yk−rk), where the rk denotes reference at given prediction
step. All state variables are enforced for entire length
of the prediction horizon. The formulation of the MPC
in (3) ensures offset-free reference tracking given the
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assumption that the prediction model in (3b), (3c) is
identical to the controller process. Otherwise an extension
with disturbance modeling is necessary to satisfy the offset
free control performance (Pannocchia, 2003). The MPC is
initialized with

θx = [x(t)⊺, u(t− Ts)
⊺, r(t)⊺]⊺, (4)

where x(t) represents the state measurement and the u(t−
Ts) represent the previous control action.

The MPC presented in this section plays two roles in the
manuscript. First, it is used to generate data for neural
network controller, and second, it is used as as baseline
for evaluating the control performance of proposed tunable
strategy.

2.3 Neural Networks

We design the neural network such that it maps mea-
surements and tuning factors θ = [θ⊺x , θ

⊺
f ]

⊺ to the value
of the control action unn, which should be as close as
possible with the optimal control action provided by (3).
The training of the neural network is posed as a regression
problem over m data points. The results of the regres-
sion gives the optimal parameters of the neural network
controller. The training procedure relies on solving the
following optimization problem with minimization of the
square error (MSE),

min
W,B

m∑
k=1

(unn,k − u⋆
k)

2 (5a)

s.t. unn,k = CNN(θk), ∀k ∈ Nm
1 (5b)

where the neural network model is given as a mesh of in-
terconnected M neurons expressed as activation functions
arranged in L layers. In our case we considered the rectified
linear units (ReLU) as activation functions

ReLU(v) = max(0, w · v + b), (6)

where v stands for the input to the neuron from neurons
in previous layers and coefficients w and b are optimized
by (5). Note, that for convenience we stack all coefficients
w and b for each neuron into an aggregated vector W and
B respectively.

Training and testing data for the neural network con-
struction are generated via repeatedly solving the optimal
control problem (3) m-times for different values of initial
conditions of parameters θx and θf. We considered equidis-
tant gridding of the feasible input space to generate the
input set of initial conditions. Even though issues with
data generation are not directly related to this paper, we
acknowledge that the equidistant approach is applicable
only for systems with a low number of parameters. For a
large-scale system, a set with reasonable spaced points in
various combinations is necessary to cover (Liu and Bellet,
2019). Since the optimal input by the MPC is applied in
the receding horizon fashion, we similarly structure the
training data. The i−th row of the training set D consist
of vector tuples given by particular value θx, θf and the
optimal control action u⋆

0 associated with these particular
values of input parameters θ. The process of learning an
approximate controller (Karg and Lucia, 2021) is summa-
rized in the following algorithm After the training, the
local minimizer W ⋆, B⋆ is found, and the resulting neural

Algorithm 1 Neural Network based MPC.

1: Design the MPC Controller (3)
2: for i=1. . .m do:
3: Solve MPC feedback law for set of initial values
θx, θf.
4: Add the pair (θi, u

⋆
i ) to the dataset D.

5: end for
6: Solve (5) with (L layers, M neurons) and obtain W ⋆

and B⋆.
7: Validate MSE criterion from (5a), potentially repeat
the step 6 with different L, M .
8: The approximate controller CNN is defined by
M,L,W ⋆, B⋆.

network in form of a controller CNN is only an approxi-
mation of the real MPC feedback law, which means that
the solution is sub-optimal with a small approximation
error. Due to the simplicity of the structure of the neural
network, we do assume that there are minor constraints-
violations presented.

2.4 Random Shooting

The Random Shooting (RS) control strategy slightly dif-
fers from the standard optimal MPC control policy. In-
stead of performing the optimization process, only simple
mathematical operations are involved in a control input
evaluation. A large number of control scenarios are inves-
tigated while the control inputs are generated randomly.
During the testing of individual scenarios, several factors
influencing decision-making are considered, such as the
value of the objective function the fulfillment of all con-
straints. It is based on a stochastic approach where no reg-
ularity conditions are required. Therefore, the performance
index or model of the system is allowed to be non-linear,
and constraints can be non-convex. Despite the apparent
sub-optimality, there is a strong tendency to converge the
result to the neighborhood of the optimum. This claim is
supported not only by results presented in this manuscript
but also in works by (Dyer et al., 2002; Piovesan and
Tanner, 2009).

The detailed algorithm performed each sampling period
to obtain the control input value is deeply described
in (Bakaráč and Kvasnica, 2018) and is conceptually
visualized in Fig. 2. Briefly, the algorithm consists of three
main steps

(1) the control input sequence is randomly generated,
(2) the performance index along the whole prediction

window is quantified and compared with so far the
best one. If the current value of performance index Jc
is lower, it is stored the best value Jbest,

(3) in addition to the evaluation of the performance in-
dex, the satisfaction of the constraints is also exam-
ined.

This procedure is cyclically repeated NRS times. This
parameter affects the quality of the result and the time
required for the calculation. The higher value of the
parameter NRS, the better is the result and the longer
the evaluation time.

In Section 2.3, the neural network has been used as the
approximation of optimal MPC strategy. Despite all the
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Fig. 2. Integration of NN-controller with and corrector
solved by Random Shooting method.

benefits, the resulting control input sequence can lead the
system behind the constraints and violate them. There is
no guarantee of the constraints satisfaction. On the other
hand, the neural network result is potentially closed to the
optimal one. The RS strategy suffers from the increasing
interval of control input values but provides a closed-
loop stabilizing result which guarantees the satisfaction
of the system constraints. Therefore, the combination of
the; neural network and Random Shooting strategy is
proposed. More specifically, the idea is to provide the
output from the neural network as a kind of warm-start
for RS strategy. By doing that, the probability of superior
results is significantly increased. Moreover, the satisfaction
of all system constraints is guaranteed.

2.5 Metrics for Control Performance Evaluation

The performance of proposed control strategy is evaluated
with standardizes integral quality criteria, given by

IAE =
1

T

Tf∑
k=1

|yk − rk| (7)

in which Tf denotes the length of the simulation window,
yk represents the measurement at specific sampling instant
k, and the rk is the reference value at time instant k.

Next, we evaluate constraints violation by proposed near-
optimal approximation methods. In this part of the per-
formance evaluation, we focus on the number of samples,
where the near-optimal strategy crosses the limits, and the
amount of which the limits are crossed. This evaluation
is focused on violation in the state variable x, and ∆u
signal. The actual control inputs u is not considered in the
constraints violation investigation since we employ simple
clipping prior to feeding the signal to the process.

3. SIMULATION RESULTS ON EMBEDDED
PLATFORM

3.1 Comparisons of Control Performance

To demonstrate the control performance we considered
a double integrator simulation model, with discrete time
dynamics with Ts = 0.1s,

xk+1 =

[
1 Ts

0 1

]
xk +

[
T 2
s

2
Ts

]
uk, (8a)

yk = [1 0] , (8b)

subject to constraints[
−5
−5

]
≤ xk ≤

[
5
5

]
, (9a)

− 1 ≤ uk ≤ 1, (9b)

− 0.25 ≤ ∆uk ≤ 0.25. (9c)

We are interested in reference tracking (i.e. position track-
ing) by solving the MPC problem in (3) with the pre-
diction horizon N = 20, Qy = I and the interval for
Qdu ∈ [0.01, 200]. To train this controller we have collected
5·104 data points. The NN controller CNN consists of L = 3
layers of M = 30 fully connected neurons. Neural network
model was trained with randomly initialized weights using
Adam optimizer (Kingma and Ba, 2014) with the learning
rate of 0.001. The training was performed on 2 ·103 epochs
with early stopping based on development set MSE (5a)
as the loss function.

To demonstrate the online tunability of controllers and
the ability to track the reference we choose the simulation
scenario with varying reference r and varying weight
matrix Qdu. The control scenario is as follows

• at time t = 0 s x0 = [0, 0]⊺,
• the reference r is switched periodically each 5 s be-

tween values 4 and −4,
• the weighting matrix Qdu is changed each 10 s from

values 0.012 → 1.2 → 120.

The simulation results obtained with the micro-controller
implementation are presented in Fig. 3. Here, Fig. 3(a)
and 3(b) shows the time profile of state variables. Recall
that the first state x1 is the controlled variable. The
profiles are generated under the control authority (cf. 3(c))
of the (i) baseline MPC, (ii) pure NN-based controller, (iii)
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Fig. 3. Comparison of control performance of individual near-optimal strategies. Dashed blue line presents the reference,
solid red covers the baseline MPC profiles, dashed green shows pure CNN controller, dashed yellow depicts the
solution via random shooting, while the solid blue represents the joint strategy CNN → CC.

pure CC controller, and (iv) by joint strategy CNN → CC.
We can observe that all three versions of approximated
controllers track the reference very closely while respecting
the constraints in general. Minor violations are observed
with a pure NN-based controller. Note that even such
performance might be acceptable given the fact that
the evaluation time of CNN requires only less than 1
millisecond (time evaluation comparison is presented in
Section 3.2). On the other hand, considering a pure RS
solution to the MPC results in worsening the tracking
performance. The main benefit of the RS method is that
it ensures the constraints satisfaction by compromising
on the performance. To improve on that performance,
we direct the reader to the performance of the joint
strategy, where the warm-starting by CNN, actually moves
the performance of the pure RS method almost as close
to the pure CNN, which actually tracks the optimal MPC
solution.

The numerical evaluation of the performance criteria
shows that we gain extremely fast control law evaluation
by considering pure NN-based controller, with less than
1.5% of performance deterioration and slight constraints
violations. If we consider the pure RS approach, we gain
constraint satisfaction, but the performance deteriorates
even further, up to 25%. However, by joining these two
approaches, we improve the evaluation time, we enforce
constraint satisfaction, and we improve the overall control
performance. The total performance degradation in this
joint case is less than 12%. Specific values are reported in
the table 1. Moreover, this table summarizes the number
of violated constraints on a given signal, denoted by N (·),
and maximum value of constraints violation Vm(·).

3.2 Implementation Aspects

The control algorithms have been implemented on the em-
bedded hardware to illustrate the practical aspects of the
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Table 1. Qualitative evaluation of control per-
formance.

IAE (7) constraints violation

N (x2) Vm(x2) N (∆u) Vm(∆u)
MPC 574 0 0 0 0
NN 580 19 0.140 29 0.036
RS 717 0 0 0 0
RS+NN 647 0 0 0 0

Table 2. Comparison of evaluation times. All
reported values are in ms.

tw tb tm ta

Pure NN-controller 0.142 0.131 0.131 0.132
Pure RS-controller 303.509 7.417 23.255 39.798
RS warm-started with NN 142.296 1.288 11.556 17.132

proposed strategy. The objective of the experiment is to
prove that both control approaches, both CNN and CC, are
easily deployable on hardware with limited computational
resources without compromising the control performance.
The micro-control unit chosen for experimental tests is a
32-bit microprocessor ESP32. It is equipped with 520 KB
of RAMmemory that is used to store the internal variables
and 4 MB of flash memory designed to store the source
code of algorithms and libraries. The clock frequency of
the chip is 240MHz.

The particular implementation of the random shooting
algorithm consists only of simple mathematical operations
thus the compilation of the source code did not require
any additional libraries. The parameters NRS is set to 50.

To successfully deploy the neural network controller, CNN,
in the micro-controller unit, the EloquentTinyML 1 library
has been added into the source code. Once the warm-
starting was provided to the CC, we managed to decrease
NRS = 10. Hence the overall time to arrive at the value of
the control input was drastically reduced.

The time required to evaluate the control input has been
measured for both control algorithms separately and for
the joint strategy as well. Specifically we evaluated the
worst-case time tw, best-evaluation time tb, most common
evaluation time tm, and average time of control action
evaluation ta. Particular times required for control action
evaluation are reported in the Table 2.

4. CONCLUSION

We proposed a novel strategy to formulate an approxi-
mated embeddable near-optimal controller with on-the-fly
tunable capabilities. The near-optimal behavior is enforced
by constructing a neural network trained from optimal
control actions generated by the model predictive con-
troller. Since the training procedure does not guarantee
constraint satisfaction with the pure NN-based controller
in operation, a control action corrector has been designed
to mitigate the violations. The corrector term is solved
with a random shooting algorithm. The entire implemen-
tation of the control strategy is free of optimization and
relies only on mere function evaluations. The control strat-
egy was implemented on embedded hardware with lim-
1 https://github.com/eloquentarduino/EloquentTinyML/

ited computational and memory resources. Experimental
results with micro-controller implementation demonstrate
that the combination of trained neural network and cor-
rector solved with random shooting provides a minimal
decrease in the optimality of the control performance. On
the other hand, it allows for continuous changes in weight-
ing factors, guarantees both input and output constraints
satisfaction, and the entire evaluation of the control law
requires less than a few milliseconds.
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Bakaráč, P. and Kvasnica, M. (2018). Fast nonlinear model predictive
control of a chemical reactor: a random shooting approach. Acta
Chimica Slovaca, 11(2), 175–181.

Dyer, M., Kannan, R., and Stougie, L. (2002). A simple randomised
algorithm for convex optimisation. Mathematical Programming,
147. doi:10.1007/s10107-013-0718-0.
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