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Foreword

This textbook is mainly intended for undergraduate students in engineering in cybernetics
at the Faculty of Chemical and Food Technology at the Slovak University of Technology in
Bratislava. This text is used in seminars of the course Theory of Automatic Control I in the first year
of engineering (master’s) studies. It can also be of interest to engineers or applied scientists. It is
focused on problems in the theory of automatic control, process dynamics, control performance,
and controller design.

The mathematical level of the covered topics is oriented to students in chemical engineering
with knowledge of mass and energy balances and modelling, differential equations, Laplace
transform, that is, those who have completed an introductory course in cybernetics or process
control.

The contents of the book can be divided into two major parts. The first part considers process
modelling, time-domain, and frequency-domain properties. Process modelling is based on
dynamic mass and energy balances for processes that are typical in chemical, food, and bio-
engineering. These models can further be simplified to linear state-space and input-output
representations that are sufficiently precise for controller design. The course and the book
concentrate on single-input, single-output (SISO) continuous-time input-output models, while
state-space representations, discrete-time, multivariate systems are considered in subsequent
courses.

The properties of input-output models described by transfer functions include time-domain
characteristics resulting from process dynamics represented by poles and zeros as well as
frequency-domain characteristic, the Bode and Nyquist plots, and relative stability.

The second part of the book considers closed-loop systems: feedback control, its components,
and definition of control performance indices. The most common controller type, a PID controller,
is investigated together with its properties, issues, and practical aspects. Special focus is on
the root-locus method, i.e., characterisation of the closed-loop pole locations. Finally, selected
controller design procedures are explained and compared.

The structure of each chapter is uniform: it starts with a list of new skills and knowledge that the
students will acquire. Then, theoretical foundations are explained in an engineering fashion and
are mostly declarative. It is assumed that a rigorous theoretical treatment is presented elsewhere
– selected references are mentioned at the end of the chapter.

Theoretical concepts are further elaborated using solved examples and simulations. Two nonlin-
ear process models are used throughout the book: two tanks with interaction as an example of a
nonlinear stable process, and two tanks with a pump that constitute an example of an open-loop
unstable process.
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The third part of each chapter contains practice examples. These are intended to be solved
in seminars with teaching assistants. Both simulations and real-time experiments are used.
We provide two editions of the book: while the print version contains practice example with
solutions, the electronic version can provide practice examples without solution so that students
can investigate various paths towards the solutions and later compare their approaches with the
ones in the book. Also, solved practice examples can be a base for work in later chapters.

Each chapter contains problems where solutions are provided without explanation. These can
serve for self-study and usually examine some broader topics.

Each chapter concludes with small fragments of code from MATLAB and Python. These are
meant to complement chapter content and to help in implementation of concrete topics.

The textbook is complemented with other learning materials. The youtube section for students at
UIAM web page: https://www.uiam.sk contains links and metadata to lecture videos avail-
able at youtube channel of the institute: https://www.youtube.com/c/UIAMFCHPTSTU.
The complete course lives at out Moodle server: https://elearn.uiam.sk and is available
using guest access.

Material for the publication evolved for more than a decade. We would like to thank to many
colleagues and doctoral students that contributed in some way and shaped the material. We
were heavily influenced by Profs. Mikleš and Mészáros who had taught this course at our faculty
in the past. We acknowledge assistance from Prof. Kvasnica, assoc. Prof. Bakošová and also our
present colleagues at the Institute of Information Engineering, Automation and Mathematics for
the collegial atmosphere. We would specifically wish to thank to Prof. Shardt from TU Ilmenau
for his careful proofreading, suggestions to improve consistency, spelling, and language, and
many constructive remarks. We also thank the reviewers, Prof. Alena Kozáková and assoc.
Prof. Martin Gulan for their detailed notes and opinions that further greatly improved the
manuscript.

Bratislava, July 2022 authors

Acknowledgement to Slovak grant agencies: the textbook would not appear without the support
of the Scientific Grant Agency of the Slovak Republic under the grants 1/0585/19, 1/0545/20,
1/0691/21, 1/0297/22 and of the Slovak Research and Development Agency under the grants
APVV-15-0007, APVV-20-0261, APVV-21-0019.
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CHAPTER 1

Mathematical Modelling of Continuous-Time
Systems

In this chapter, you will deepen your knowledge and learn new skills with the following goals:

• the importance and techniques of mathematical modelling of processes,

• the characterisation of processes and definition of corresponding systems,

• the description of systems evolving in time using differential equations,

• the linearisation of nonlinear models using the Taylor expansion,

• the determination of equilibrium points and steady states,

• the characterisation of linear state-space systems,

• the creation of block diagrams of systems and subsystems,

• the simulation of systems described by differential equations.

We will use process modelling and simulations of controlled processes for the study of their
properties, for the synthesis of controllers, and for the characterisation of the properties of the
resulting closed-loop system.

1.1 Overview

Mathematical models are constructed from the mass and energy balances. Dynamic mathemati-
cal models are used to describe the behaviour of phenomena (processes) that have some internal
inertia. Such models consist of differential equations.

A mass balance of a process with time-varying inputs can be formulated as:(
sum of the mass flow rates

entering the system

)
=
(

sum of the mass flow
leaving the system

)
+
(

rate of the mass
accumulation in the system

)
.

13



1 Mathematical Modelling of Continuous-Time Systems 14

An analogous formulation for energy balances is:(
sum of the energy fluxes

entering the system

)
=
(

sum of the energy fluxes
leaving the system

)
+
(

rate of the energy
accumulation in the system

)
.

If chemical reactions are concerned, mass and/or energy can seemingly appear or disappear
and other (source and sink) terms have to be considered.

The accumulation term can be represented as a time derivative of the total mass or energy in the
system.

In the next step, the model is analysed, its constants and parameters are specified. The model
can be solved if the number of equations is equal to the number of unknown variables. All other
variables have to be specified as known inputs: some of them as manipulated variables that can
be changed by our interventions; others as variables that act as disturbances.

1.1.1 Linear Approximations of Nonlinear Systems

The majority of processes in the chemical and food industries are modelled by nonlinear models.
However, if they operate in the vicinity of the steady state, where process variables change only
a little and deviations from the steady states are small, nonlinear behaviour can be approximated
by linear models. Such approximations can be obtained using Taylor expansion to give only
linear terms. Such models are more suitable for control design as there exists a broad variety of
control design methods for linear systems.

The linearity of a system is defined by studying its inputs and outputs (responses). A linear
system has to obey the principle of superposition and homogeneity. If the response of the system
to the input of magnitude u1 is y1 and the response to the input of magnitude u2 is y2 then the
principle of superposition states that the response to the input of magnitude u1 + u2 is y1 + y2.
Similarly, if the input is multiplied by a constant k to become ku1 then the output is ky1, which
is the principle of homogeneity.

In general, a function f(x) is linear with respect to the variable x if its first-order derivative with
respect to x is a constant.

For example the function f(x) = 3x is linear with respect to x as its derivative is a constant
df(x)/dx = 3. Functions f(x) = 3x2, f(x) =

√
x, and f(x) = 4/x2 are all nonlinear.

When considering a multivariate function, such as f(x1, x2) = a
√

bx1 + cx2
2 (with a, b, c being

constant parameters), is linear with respect to x1 and nonlinear with respect to x2.

A general linearisation procedure for models described by a nonlinear differential equation
consists of the following steps:

1. Given a nonlinear mathematical model described by a differential equation:

dz(t)
dt

= ż(t) = f(z(t), v(t)). (1.1)

2. Find the steady-state form of the model (or in general in some equilibrium-state form):

dzs

dt
= f(zs, vs) = 0. (1.2)

Steady-state values of the time-varying variables will be denoted with the superscript
“s” as vs.
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3. Define the deviation variables as the difference between the time-varying variables and
their steady-state values. The usual notation uses u = v − vs for the deviation in the
manipulated input, d for the deviation disturbance input, x = z − zs for the deviation state,
and y for the deviation in the output. Subtract the approximated nonlinear model and the
steady-state model, that is,

dz(t)
dt

− dzs

dt
= d(z(t) − zs)

dt
= f(z, v) − f(zs, vs). (1.3)

4. Approximate all nonlinear terms on the right-hand side of (1.1) using the first-order Taylor
expansion about the steady state. For functions of a single variable f(v) this is of the form

f(v) = f(vs) + df(v)
dv

∣∣∣∣
v=vs

(v − vs), (1.4)

and for functions of two variables f(v, z), this is

f(v, z) = f(vs, zs) + ∂f(v, z)
∂v

∣∣∣∣
v=vs, z=zs

(v − vs) + ∂f(v, z)
∂z

∣∣∣∣
v=vs, z=zs

(z − zs), (1.5)

and similarly for functions of multiple variables.

5. Replace the original variables with their corresponding deviational variables.

A general linearised mathematical model in the deviation variables with n dimensional vector of
states x(t) (with initial condition x0 = 0), m dimensional vector of inputs u(t) and r dimensional
vector of outputs y(t) can then be characterised by the state and output equations

ẋ(t) = Ax(t) + Bu(t), x(0) = 0, (1.6)
y(t) = Cx(t) + Du(t), (1.7)

with matrices A[n, n], B[n, m], C[r, n], and D[r, m].

Matrices A and B can also be directly obtained from the original nonlinear model with inputs
v(t) and states z(t) around some operating point zs, vs

ż(t) = f(z(t), v(t)), (1.8)

as follows:

A = ∂f

∂z

∣∣∣∣
z=zs

, B = ∂f

∂v

∣∣∣∣
v=vs

, (1.9)

with deviational variables x(t) = z(t) − zs and u(t) = v(t) − vs.

In the same manner, if there is a measured output w(t) with relation to the states and the inputs
of the form

w(t) = g(z(t), v(t)), (1.10)

matrices C and D are

C = ∂g

∂z

∣∣∣∣
z=zs

, D = ∂g

∂v

∣∣∣∣
v=vs

, (1.11)

and the deviational output is defined as y(t) = w(t) − ws.
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Example. 1.1: Linearisation

Consider a dynamic mathematical model described by the differential equation of the
form

dh(t)
dt

= −h(t) + h(t)q(t) + q(t), h(0) = hs = 2. (1.12)

Find a linearised state-space model using the general linearisation procedure.

The corresponding steady state is obtained by adding superscript “s” to all time-dependent
variables

dhs

dt
= −hs + hsqs + qs. (1.13)

Note, that the left-hand side term dhs

dt is equal to zero as the steady-state value hs of the
state variable does not depend on time. This means there is no accumulation of mass in
the system.

Subtract the nonlinear and steady-state models

d(h(t) − hs)
dt

= −(h(t) − hs) + h(t)q(t) − hsqs + (q(t) − qs). (1.14)

We can define deviation variables x(t) = h(t) − hs, u(t) = q(t) − qs. The term h(t)q(t) is
nonlinear and will be linearised using the Taylor expansion

h(t)q(t) = hsqs + ∂(hq)
∂h

∣∣∣∣
h=hs, q=qs

(h(t) − hs) + ∂(hq)
∂q

∣∣∣∣
h=hs, q=qs

(q(t) − qs)

= hsqs + q|h=hs, q=qs (h(t) − hs) + h|h=hs, q=qs (q(t) − qs)
= hsqs + qs(h(t) − hs) + hs(q(t) − qs). (1.15)

The last equation is linear as qs and hs are constants. Substituting back into (1.14) gives

d(h(t) − hs)
dt

= −(h(t) − hs) + qs(h(t) − hs) + hs(q(t) − qs) + (q(t) − qs),

dx(t)
dt

= −x(t) + qsx(t) + hsu(t) + u(t), x(0) = 0. (1.16)

The linearised model has the initial condition equal to zero (x(0) = 0) as the deviation
variable definition gives x(0) = h(0) − hs = 0.

1.2 Examples

1.2.1 Liquid Level in a Tank

We want to study the dynamic properties of a tank with vertical walls and a cross-sectional
area F that holds a liquid with the height (liquid level) h(t) and the volume V (t) = Fh(t). A
model of the system is depicted in Figure 1.1. The liquid flows into the tank from its top. The
volumetric flow rate of this stream q0(t) is adjustable by a valve. The exiting stream leaves
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q0(t)

q1(t)

h(t)

k

Figure 1.1: A schematic model of a tank.

the tank at the bottom of the tank and its flow rate is driven by gravity, i.e., according to the
Torricelli’s law q1(t) = k

√
h(t), where k is the valve constant. We can assume that the density of

the liquid ρ is constant.

The values of parameters and signals of the process at the initial time are q0(0) = qs
0 = 0.3 m3/s,

h(0) = 0 m, F = 0.5 m2, and k = 1.15 m2.5/s.

1.2.1.1 Select the input and the state variables of the above described system.

Input variables: liquid inlet flow q0, state variables: height of the liquid in the tank
h(t).

1.2.1.2 Write the (dynamic) mass balance of the liquid in the tank and express it in terms of the
input and state variables.

The mass balance of the system gives:

dm(t)
dt

= m0(t) − m1(t), (1.17)

where m(t) is the mass of the liquid in the tank and m0(t) and m1(t) are the mass
flows of the inflowing and the outflowing liquid, respectively.

We can further write, using the volume V and volumetric flow rates q0, q1:

dρV (t)
dt

= ρq0(t) − ρq1(t). (1.18)

Using V (t) = Fh(t) and re-arranging, we get

dh(t)
dt

= q0(t)
F

− k

F

√
h(t). (1.19)

1.2.1.3 Find the steady-state value hs of the liquid level in the tank for the given input qs
0.
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0 = qs
0

F
− k

F

√
hs → hs =

(
qs

0
k

)2
. (1.20)

1.2.1.4 If necessary, linearise the model.

The square root of the state variable constitutes a nonlinearity of the model. For
the linearisation, we first define the deviational variables:

x(t) = h(t) − hs, u(t) = q0(t) − qs
0. (1.21)

The linearised model is then given by:

dx(t)
dt

= ax(t) + bu(t), (1.22)

where

a =
∂
(

q0(t)
F − k

F

√
h(t)

)
∂h(t)

∣∣∣∣
hs,qs

0

= − k

2F
√

hs
, b =

∂
(

q0(t)
F − k

F

√
h(t)

)
∂q0(t)

∣∣∣∣
hs,qs

0

= 1
F

.

(1.23)

1.2.1.5 Create a Simulink model to simulate the nonlinear and linearised models for some given
values of the initial conditions, parameters of the model, and inputs.

Simulation models of nonlinear and linearised models are built from the basic
building blocks (e.g. gain, multiply, divide, sum, integrate, and square root)
are shown in Figures 1.2 and 1.3, respectively. Another possibility is to use the
S-function approach, where the process differential and output equations are
specified directly.

1.2.1.6 Embed the nonlinear and linear systems as subsystems. Run the simulations and com-
pare the responses of the nonlinear and linearised models.

The simulation for both nonlinear and linearised models is shown in Figure 1.4.

Assuming that the Scope block is configured to save all signals to a variable h, we
can then use the following MATLAB snippet to plot the results, save them, and to
compare the simulated liquid level responses in the tank (Figure 1.5, left).

plot(h(:,1), h(:,2), h(:,1), h(:,3), 'linewidth', 2);
xlabel('time [s]'); ylabel('level h(t) [m]'); grid on
legend('nonlinear', 'linear', 'location', 'southeast');
iam_save_pdf('h_t.pdf');

1.2.1.7 Run the same simulation as in the previous step. After t = 2 s, change the input to
q0 = 0.2 m3/s. Compare the responses of the nonlinear and linearised models.

The results are shown in Figure 1.5 (right).
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Figure 1.2: Simulink model of the nonlinear model of the tank.
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Figure 1.3: Simulink model of the linearised model of the tank.
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Figure 1.4: Simulation model of the nonlinear and linearised models of the tank.
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Figure 1.5: Comparison of the simulated levels of nonlinear and linearised models of the tank.
(left) The first simulation (constant input and empty tank) and (right) the second
simulation (continuation with a step change of the input at t = 2 s).

1.2.1.8 Plot and calculate steady-state values of the linearised model for a range of input flows
qs

0 ∈ [0, 2], if the operating point is qs
0 = 0.3 m3/s with the corresponding level steady

state hs = 0.068 m. Compare the results with the steady states of the nonlinear model for
specific values of the input flow qs

0 = (0.2, 0.3, 0.6, 0.9).

Steady-state values are calculated from the steady-state input/output charac-
teristics (also called the static characteristics) defined by (1.20). To calculate the
steady-state values of the linearised model, we need to obtain the linearised coun-
terpart of the steady-state characteristics. The linearised characteristics can be
obtained by applying the first order Taylor expansion from Section 1.1.1, namely
the relations (1.4) to (1.20). The linearised version of the static characteristics is
given as

hs
L(q0) ≈

(
qs

0
k

)2
+

d
( q0

k

)2
dq0

∣∣∣∣∣
q0=qs

0

(q0 + qs
0), (1.24)

which gives

hs
L(q0) ≈ 0.454q0 + 0.068. (1.25)

Once we plot the nonlinear static characteristics along with the linearised version,
we can understand the impact of the linearisation on the potential differences
between the linear and nonlinear dynamic models. The visual comparison is
shown in Figure 1.6. The differences in the steady state of the linear and nonlinear
models are given in Table 1.1. Note, that values for the input qs

0 = 0.2 m3/s can
also be observed in Figure 1.5 which compares the simulated dynamic responses.

1.2.2 Two Tanks with Interaction

We study a process consisting of two tanks with interaction (see Figure 1.7). Each tank is
structurally equivalent to the tank described in Section 1.2.1. Therefore, the process parameters
include the cross-sectional areas F1, F2, the valve constants k11, k22, and the density ρ. There are
two adjustable liquid streams entering the tanks at their top: q0,1(t) to the first tank and q0,2(t)
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Table 1.1: Comparison of the steady-state values.

qs
0 hs hs

L

0.2 0.0302 0.0227
0.3 0.0681 0.0681
0.6 0.2722 0.2042
0.9 0.6125 0.3403

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

q(t) [m 3/s]

0

0.5

1

1.5

2

2.5

3

3.5

h(
t)

 [m
]

nonlinear

linearised

steady states for nonlinear

steady states for linearised

Figure 1.6: Comparison of the static characteristics of nonlinear and linearised models of a single
tank system.

to the second tank. The exiting stream q1(t) leaves the first tank at the bottom and its flow rate is
driven by gravity and difference between the levels in the tanks, i.e., according to the Torricelli’s
law q1(t) = k11

√
h1(t) − h2(t). The exiting stream q2(t) leaves the second tank at the bottom and

its flow rate is given by q2(t) = k22
√

h2(t). We assume that we can only measure the level in the
second tank and that the levels are initially at some steady state hs

1, hs
2.

q0,1(t) q0,2(t)

h1(t)

k11 q1(t)

q2(t)

h2(t)

k22

Figure 1.7: A model of two tanks with interaction.
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The values of parameters and variables of the process are qs
0,1 = 0.9 m3/s, qs

0,2 = 0 m3/s, F1 =
0.5 m2, F2 = 0.6 m2, k11 = 0.8 m2.5/s, and k22 = 0.5 m2.5/s.

1.2.2.1 Define a system and select its input, state, and output variables.

Input variables: liquid inlet flows q0,1(t), q0,2(t), state variables: heights of the
liquid in the tanks h1(t), h2(t), output variables: measured height h2(t).

1.2.2.2 Write down the (dynamic) mass balances of the liquid in the tank and express it in terms
of the input and state variables.

The mass balance of the system is

dρF1h1
dt

= ρq0,1 − ρq1 = ρq0,1 − ρk11
√

h1 − h2, (1.26)

dρF2h2
dt

= ρq0,2 + ρq1 − ρq2 = ρq0,2 + ρk11
√

h1 − h2 − ρk22
√

h2, (1.27)

dh1
dt

= q0,1
F1

− k11
F1

√
h1 − h2, h1(0) = hs

1, (1.28)

dh2
dt

= q0,2
F2

+ k11
F2

√
h1 − h2 − k22

F2

√
h2, h2(0) = hs

2. (1.29)

Note, that this mathematical model implicitly assumes that h1 > h2 and that the
liquid flows from the first tank to the second one. If this assumption is not valid
(for example if q0,1 = 0 and q0,2 > 0), the model needs to be modified using the
information on the sign of the expression h1 − h2.

sh = sgn(h1 − h2) =
{

−1 if h1 − h2 ≥ 0,

1 if h1 − h2 < 0,
(1.30)

dh1
dt

= q0,1
F1

− sh
k11
F1

√
|h1 − h2|, h1(0) = hs

1, (1.31)

dh2
dt

= q0,2
F2

+ sh
k11
F2

√
|h1 − h2| − k22

F2

√
h2, h2(0) = hs

2. (1.32)

However, we will assume for further derivations that h1 > h2.

1.2.2.3 Derive the steady-state values of the process.

0 =
qs

0,1
F1

− k11
F1

√
hs

1 − hs
2, ⇒ hs

1 =
(

qs
0,1

k11

)2

+ hs
2, (1.33)

0 =
qs

0,2
F2

+ k11
F2

√
hs

1 − hs
2 − k22

F2

√
hs

2, ⇒ hs
2 =

(
qs

0,1 + qs
0,2

k22

)2

. (1.34)

1.2.2.4 Linearise the model if necessary.

Let us first decide whether linearisation is necessary: if the derivatives of the
right-hand sides of the differential equations with respect to the state and input



1 Mathematical Modelling of Continuous-Time Systems 23

variables are constant, the model is linear. Otherwise, it is nonlinear.

We define the deviational variables for the inputs, states, and outputs as

x1(t) = h1(t) − hs
1, x2(t) = h2(t) − hs

2, y1 = x2, (1.35)
u1(t) = q0,1(t) − qs

0,1, u2(t) = q0,2(t) − qs
0,2. (1.36)

The model is nonlinear as differentiation of the square root terms with respect to
tank levels is not constant. Linearisation of the nonlinear terms:

k11
√

h1 − h2 = k11
√

hs
1 − hs

2 + k11
2
√

hs
1 − hs

2
(h1 − hs

1) − k11
2
√

hs
1 − hs

2
(h2 − hs

2)

(1.37)

= k11
√

hs
1 − hs

2 + k1(h1 − hs
1) − k1(h2 − hs

2), (1.38)

k22
√

h2 = k22
√

hs
2 + k22

2
√

hs
2
(h2 − hs

2) = k22
√

hs
2 + k2(h2 − hs

2), (1.39)

k1 = k11
2
√

hs
1 − hs

2
, k2 = k22

2
√

hs
2
. (1.40)

Then, the resulting linear equations are

dx1
dt

= 1
F1

u1 − k1
F1

x1 + k1
F1

x2, x1(0) = h1(0) − hs
1 = 0, (1.41)

dx2
dt

= 1
F2

u2 + k1
F2

x1 − k1 + k2
F2

x2, x2(0) = h2(0) − hs
2 = 0. (1.42)

1.2.2.5 Define a linear state-space model, that is, matrices A, B, C, D according to Equa-
tions (1.6) and (1.7)

State-space description:

A =
(

− k1
F1

k1
F1

k1
F2

−k1+k2
F2

)
, B =

( 1
F1

0
0 1

F2

)
, C =

(
0 1

)
, D = 0. (1.43)

1.2.2.6 Build a Simulink model from the basic building blocks to simulate the evolution of the
liquid heights for some given values of the initial conditions and inputs. The Simulink
model should compare the nonlinear model with its linear approximation.

The simulation models are shown in Figs. 1.8 and 1.9.

1.2.2.7 Run the simulation from the steady-state conditions. Change q0,1 = 0.9qs
0,1 after the first

5 seconds. How do you expect the tank levels to behave? Plot the simulation results as
state and input variables vs. time.

As the flow q0,1 is reduced, we expect that tank levels will decrease as well. This
change will be slower in the second tank as the tank level in the first tank will not
decrease immediately. The results are shown in Figure 1.10.
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Figure 1.8: Simulink model of the nonlinear model of two tanks with interaction.
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Figure 1.9: Simulink model of a linear state-space model described by matrices A, B, C, D.
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Figure 1.10: Comparison of the simulated levels of nonlinear and linearised models for two
tanks with interaction (left – inputs, right – outputs).



1 Mathematical Modelling of Continuous-Time Systems 25

h1 h2

F1
F2

q1

q0

q2

Figure 1.11: The model of two tanks with a pump.

1.2.3 Two Tanks with a Pump

We study the dynamic properties of the process again consisting of two tanks with interaction.
However, now the exiting stream leaving the second tank at the bottom of the tank with flow
rate q2 is determined by a pump (see Figure 1.11).

Values of parameters and variables of the process are F1 = 0.5 m2, F2 = 0.6 m2, k11 = 0.8 m2.5/s,
q0(0) = 0.9 m3/s, q2(0) = q0(0), h1(0) = 4.506 m, and h2(0) = 3.24 m.

1.2.3.1 Define a system and select its input, state, and output variables.

Input variables: liquid inlet flow q0, liquid outlet flow q2, state variables: heights
of the liquid in the tanks h1(t), h2(t), output variables: measured height h2(t).

1.2.3.2 Write down the (dynamic) mass balances of the liquid in the tank and express it in terms
of the input and state variables.

The mass balances of the system yield:

dρF1h1
dt

= ρq0 − ρq1 = ρq0 − ρk11
√

h1 − h2, (1.44)

dρF2h2
dt

= ρq1 − ρq2 = ρk11
√

h1 − h2 − ρq2, (1.45)

dh1
dt

= q0
F1

− k11
F1

√
h1 − h2, h1(0) = h1,0, (1.46)

dh2
dt

= k11
F2

√
h1 − h2 − q2

F2
, h2(0) = h2,0. (1.47)

1.2.3.3 Discuss the steady-state behaviour of the process.

It is not possible to find a steady-state value of hs
2. In fact, arbitrary value of h2

can stay constant as long as q1 = q2. The value of hs
1 can be obtained from

qs
0 = qs

1 = qs
2 = k11

√
hs

1 − hs
2, hs

1 = hs
2 +

(
qs

0
k11

)2
. (1.48)

The process model includes a simple integrator.

1.2.3.4 Linearise the model if necessary.
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Figure 1.12: Simulink model of the nonlinear model of two tanks with pump.

Clearly, the model equations are nonlinear in h1 and h2 and linear in q0 and q2.

We define deviational variables for the inputs, states, and outputs:

x1(t) = h1(t) − h1(0), u1(t) = q0(t) − q0(0), (1.49)
x2(t) = h2(t) − h2(0), u2(t) = q2(t) − q2(0), (1.50)

y1 = x2. (1.51)

The resulting linear equations are (k1 = k11
2
√

h10−h20
):

dx1
dt

= u1
F1

− k1
F1

x1 + k1
F1

x2, x1(0) = h1(0) − h10 = 0, (1.52)

dx2
dt

= − u2
F2

+ k1
F2

x1 − k1
F2

x2, x2(0) = h2(0) − h20 = 0. (1.53)

1.2.3.5 Define a linear state-space system description, that is the matrices A, B, C, D as in
Equations (1.6) and (1.7)

State-space description:

A =
(

− k1
F1

k1
F1

k1
F2

− k1
F2

)
, B =

( 1
F1

0
0 − 1

F2

)
, C =

(
0 1

)
, D =

(
0 0

)
.

(1.54)

1.2.3.6 Build a Simulink model from the basic building blocks that will simulate the evolution
of the heights of the liquid for some given values of the initial conditions and inputs.

Simulation model is shown in Figure 1.12.

1.2.3.7 Run the simulation with the given initial conditions. Change q0 = 0.9q0(0) at t = 5 s
and q2 = 0.9q2(0) at t = 25 s. How do you expect the tank levels to behave? Plot the
simulation results as state and input variables vs. time.
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Figure 1.13: Comparison of simulated levels of nonlinear and linearised models for two tanks
with pump.

Simulation results are shown in Figure 1.12. In this case, the difference between
the nonlinear and linear models is practically negligible and the major impact on
the dynamic properties is the integrating behaviour of the process.

1.2.4 Two Tanks in Series

We study a process consisting of two tanks connected in series. Each tank is structurally
equivalent to the tank in Example 1.2.1. Liquid flows into the first tank with a flow rate of q0
and exits from the tank by gravity with a flow rate of q1 that then enters the second tank. We
assume that we only can measure the level in the second tank.

1.2.4.1 Define the system by using serial connection of the two systems from Example 1.2.1.
Connect the corresponding inputs, states, and outputs.

The first tank:

• input variable: liquid inlet flow q0,

• state variable: height of the liquid in the tank h1(t).

The second tank:

• input variable: liquid inlet flow q1,

• state variable: height of the liquid in the tank h2(t).

Two tanks (notice that the output variable of the first tank defines the input
variable of the second tank q1 = k11

√
h1. Thus both variables do not appear in the

two-tank system description):

• input variable: liquid inlet flow q0,

• state variables: heights of the liquid in the particular tanks h1(t) and h2(t),

• output variable: height of the liquid in the second tank h2(t).
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1.2.4.2 Build the mathematical model from the individual models.

F1
dh1
dt

= q0 − k11
√

h1, h1(0) = hs
1, (1.55)

F2
dh2
dt

= k11
√

h1 − k22
√

h2, h2(0) = hs
2, (1.56)

with hs
1 = (qs

0/k11)2 and hs
2 = (qs

0/k22)2.

1.2.4.3 Define the linearised model by using the linear models from Example 1.2.1.

For both subsystems, define the deviational variables for the states and inputs:

x1(t) = h1(t) − hs
1, u1(t) = q0(t) − qs

0, (1.57)
x2(t) = h2(t) − hs

2, u2(t) = q1(t) − qs
1, (1.58)

and the linearised models

dx1(t)
dt

= a1x1(t) + b1u1(t), a1 = − k11
2F1

√
hs

1
, b1 = 1

F1
, (1.59)

dx2(t)
dt

= a2x2(t) + b2u2(t), a2 = − k22
2F2

√
hs

2
, b2 = 1

F2
. (1.60)

To connect both subsystems, note that u2 is related to x1 using the Taylor expansion
of q1(t):

u2 = q1(t) − qs
1 = k11

√
h1 − k11

√
hs

1 = a1x1. (1.61)

Hence, the overall linearised model is

dx1(t)
dt

= a1x1(t) + b1u1(t), (1.62)

dx2(t)
dt

= b2a1x1(t) + a2x2(t), (1.63)

y(t) = x2(t), (1.64)

A =
(

a1 0
b2a1 a2

)
, B =

(
b1
0

)
(1.65)

C =
(
0 1

)
, D = 0. (1.66)

1.2.4.4 Generalise the state-space description for n tanks in series.

If we assume that only the last tank contains a level sensor, the state-space model



1 Mathematical Modelling of Continuous-Time Systems 29

contains n differential equations and is given as

A =


a1 0 0 0 . . . 0

b2a1 a2 0 0 . . . 0
0 b3a2 a3 0 . . . 0
...

...
0 . . . 0 0 bnan−1 an

 , B =


b1
0
0
...
0

 , (1.67)

C =
(
0 . . . 0 1

)
, D = 0, (1.68)

where

ai = − kii

2Fi

√
hs

i

, bi = 1
Fi

. (1.69)

1.3 Practice Examples

1.3.1 A One-Dimensional Car

We study a motion of a car. For simplicity, the car can only move in one dimension (Figure 1.14).
Assume that the car is a point of mass m = 1 kg. We can directly influence its acceleration and
can determine its properties: position and velocity.

1.3.1.1 Select the input variables and the state variables of the system.

Input variables: acceleration u(t), state variables: position x1(t) and velocity x2(t).

1.3.1.2 Write down the equation of movement for the car (use Newton’s second law of motion)
and transform it to a set of first-order, ordinary differential equations.

d2x(t)
dt

= mu(t) = u(t), (1.70)

where x(t) is the position of the car. First define:

x1(t) = x(t), (1.71)

x2(t) = dx(t)
dt

, (1.72)

0 x(t)

Figure 1.14: Motion of a one-dimensional car.
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u(t) x2 x1

acceleration	-	u(t) position	-	x1(t)int	x2(t)

init.	cond.	x1

++

int	u(t)

init.	cond.	x2

++

velocity	-	x2(t)

Figure 1.15: A Simulink model of the movement of the car.

which gives

dx1(t)
dt

= dx(t)
dt

= x2(t), (1.73)

dx2(t)
dt

= d2x(t)
dt

= u(t). (1.74)

1.3.1.3 Discuss the steady-state behaviour of the system.

The steady state only exists when u(t) = us = 0 and xs
2 = x2(t) = 0. The value xs

1
of x1(t) is arbitrary at the steady state.

1.3.1.4 The obtained model is a double integrator. Linearise the model if necessary.

The model can be written as:

d
dt

(
x1(t)
x2(t)

)
= A

(
x1(t)
x2(t)

)
+ B u(t) =

(
0 1
0 0

)(
x1(t)
x2(t)

)
+
(

0
1

)
u(t), (1.75)

so it is linear.

1.3.1.5 Build a Simulink model that will simulate the movement of the car for some given values
of the initial conditions and inputs.

The Simulink model is shown in Figure 1.15.

1.3.1.6 Run the simulation with initial conditions of 0 m for the position and 10 m/s for the
velocity. Use the input value of 5 m/s2 for the first 10 s and 0 m/s2 for the next 10 s. Plot
the simulation results as state variables vs. time.

(Optional) Add an input value of −5 m/s2 between t ∈ (20, 30).

(Optional) Check the correctness of the simulation results by analytically solving the
model equations.
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Figure 1.16: (left) Position and (right) velocity time trajectories of the car.

Run the simulation (Figure 1.15) and plot the results shown in Figure 1.16.

sim('double_integrator')
plot(tx1(:,1), tx1(:,2), 'LineWidth', 2);
xlabel('time [s]'); ylabel('x_1(t)'); grid on
% iam_save_pdf('x1_t.pdf');

plot(tx2(:,1), tx2(:,2), 'LineWidth', 2);
xlabel('time [s]'); ylabel('x_2(t)'); axis([0 20 0 63]); grid on
% iam_save_pdf('x2_t.pdf');

For the analytical solution of the model equations, we will make use of the fact
that the input is piecewise constant. For the velocity, we can write:

dx2(t)
dt

= u →
∫ x2(t)

x2,0
dx2(t) =

∫ t

0
u dt → x2(t) = x2,0 + u t, (1.76)

which means that if u ̸= 0 the velocity is a linear function of time. The plot of the
simulation results for x2(t) should therefore show a line with slope u. If u = 0, the
velocity does not change with time.

For the position, we arrive at:

dx1(t)
dt

= x2(t) →
∫ x1(t)

x1,0
dx1(t) =

∫ t

0
x2,0+u t dt → x1(t) = x1,0+x2,0 t+ 1

2u t2,

(1.77)

which means that if u ̸= 0 the position is a quadratic function of time. The plot of
the simulation results for x2(t) should therefore show part of a parabola. If u = 0,
the position is a linear function of time.

1.3.1.7 Create a Simulink subsystem in order to separate the structure of the dynamic system
and the data that might change in different simulations.

The simulation model is shown in Figure 1.17.

(Optional) Simplify the Simulink model representation for maximal re-use (imagine
using a triple or quadruple integrator).
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velocity	-	x2(t)

Figure 1.17: (top) A Simulink model with a subsystem and (bottom) the detail of the subsystem.

The simulation model with two simple integrator blocks is shown in Figure 1.18.

1.3.1.8 (Optional) Simulate the system with initial conditions x1(0) = 0 m for the position and
x2(0) = 10 m/s for the velocity and with a controller whose control law is given by
u(t) = −K1x1(t) − K2x2(t) where K1 = 1, K2 = 1.73. Observe the results by plotting
velocity vs. position.

We will re-use the model in Figure 1.17 and close the loop as in Figure 1.19.

1.4 Problems

Problem. 1.1: Linearisation

Consider a nonlinear function of the form F (x) = x3 + 3x2 − x + 1. Find a linear function
F0(x) that approximates F (x0) at x0 = 2.

F0(x) = 23x − 27

Problem. 1.2: Linearisation

Consider a nonlinear model of a dynamic system of the form ẏ(t) + 0.5y2(t) + y(t) =
v(t). Its steady state is characterised by the values vs, ys. Determine the corresponding
linearised model in deviational variables defined by x(t) = y(t) − ys, u(t) = v(t) − vs.

ẋ(t) + x(t)(yss + 1) = u(t)
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Figure 1.18: A Simulink model of two simple integrators.
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Figure 1.19: A Simulink model of the state-feedback control of car.

Problem. 1.3: Mass on a Spring

Consider a system consisting of mass M = 1 kg hanging on a spring (see Figure 1.20). The
spring force is given by Hooke’s Law, Fs = ks(x(t) − x0), where ks is the spring constant,
x(t) is the position of the mass (distance from the ceiling), and x0 is the equilibrium
position of the end of the spring with no mass attached. We assume the friction force is
proportional to the velocity of the mass Fr = krẋ(t), where kr is the friction coefficient.
The position of the mass is measured, hence y(t) = x(t).
In general, the mass is affected by the gravitational force Fg, which together with other
forces creates a momentum displacement force Fm.

1. Create the mathematical model of the process that describes the position of the
mass.

2. Define the deviational variables and transform the model to use them.

ẍ(t) + krẋ(t) + ksx(t) = ksx0 + g, (1.78)
y(t) = x(t) − xs, ẏ(t) = ẋ(t), ÿ(t) = ẍ(t), (1.79)
ÿ(t) + krẏ(t) + ksy(t) = 0, ẏ(0) = y(0) = 0. (1.80)
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Figure 1.20: Mass-on-a-spring system.

Problem. 1.4: Mixing of Liquids

Consider a tank with m [kg] of salt water where m is constant and the mass fraction of
salt in the water w(t) can change with time. There are two inlet streams: m1(t) [kg/s] with
salt mass fraction w1(t) and m2(t) [kg/s] with salt mass fraction w2(t). The water outlet
contains the salt with the same concentration as in the tank.

1. Define a system and select its input, state, and output variables.

2. Write down the (dynamic) mass balances for the total mass and mass of the salt in
the tank.

3. Calculate the steady-state salt concentration (mass) in the tank.

4. Linearise the model.

5. Define a linear state-space system if the salt concentration in the tank is considered
to be measured.

dw

dt
= m1

m
(w1 − w) + m2

m
(w2 − w), ws = m1w1 + m2w2

m1 + m2
, (1.81)

u1 = m1 − ms
1, u2 = m2 − ms

2, u3 = w1 − ws
1, u4 = w2 − ws

2, (1.82)
x = w − ws, (1.83)

m
dx

dt
= u1 (ws

1 − ws) + u2 (ws
2 − ws) + u3ms

1 + u4ms
2 − x (ms

1 + ms
2) , (1.84)

A = −ms
1 + ms

2
m

, B = 1
m


ws

1 − ws

ws
2 − ws

ms
1

ms
2

 , (1.85)

C = 1, D = 0. (1.86)
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Figure 1.21: Two heat exchangers in series.

Problem. 1.5: Two Heat Exchangers in Series

Consider a series of heat exchangers shown in Figure 1.21. The inlet stream to the first
heat exchanger enters with a temperature ϑ0 [◦C]. The heat exchangers are heated with
the condensing vapour of temperature ϑv [◦C]. The temperatures inside of units are
ϑ1, ϑ2 [◦C]. Constant process parameters include the volumetric flow rate of the inlet
and outlet streams q [m3/s], density ρ [kg/m3], volumes V1, V2 [m3], liquid specific heat
capacity cp [J kg−1 K−1], the heat transfer areas F1, F2 [m2], and heat transfer coefficient
α [W m−2 K−1].
Further assumptions for development of the model are negligible wall accumulation, zero
heat losses, and well-mixed tanks.

1. Define a system and select its input, state, and output variables.

2. Write the dynamic energy balances.

3. Calculate the steady-state temperatures in the heat exchangers.

4. Define a linear state-space system if the temperature ϑ2 is measured.

T1
dϑ1
dt

= −ϑ1 + K11ϑv + K12ϑ0, (1.87)

T2
dϑ2
dt

= −ϑ2 + K21ϑv + K22ϑ1, (1.88)

T1 = V1ρcp
qρcp + αF1

, K11 = αF1
qρcp + αF1

, K12 = qρcp
qρcp + αF1

, (1.89)

T2 = V2ρcp
qρcp + αF2

, K21 = αF2
qρcp + αF2

, K22 = qρcp
qρcp + αF2

, (1.90)

ϑs
1 = K11ϑs

v + K12ϑs
0, ϑs

2 = K21ϑs
v + K22ϑs

1, (1.91)
u1 = ϑv − ϑs

v, u2 = ϑ0 − ϑs
0, x1 = ϑ1 − ϑs

1, x2 = ϑ1 − ϑs
1, (1.92)

y = x2, (1.93)

A =
(

− 1
T1

0
K22
T2

− 1
T2

)
, B =

(
K11
T1

K12
T1

K21
T2

0

)
, C =

(
0 1

)
, D = 0. (1.94)
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1.5 MATLAB Snippets

• Linearisation of the function F (x) = x3 + 3x2 − x + 1 about the operating point x0 = 2
using symbolic operations
syms x x0
F = x^3 + 3 * x^2 - x + 1;
F0 = subs(F, x, x0) + (x-x0) * subs(diff(F, x), x, x0)
fplot(F, [-5, 5])
hold on
fplot(subs(F0, x0, 2), [0 5])
legend('F(x)', 'Flin(x)')

• Definition of a state-space model
A = [-1, -2; 1, -1]; B = [0.5; 0];
C = [0, 1]; D = 0;
sys = ss(A,B,C,D)

• Simulation of a state-space model response with nonzero initial conditions and zero input
x0 = [1; 2];
initial(sys, x0)

• Simulation of a state-space model response with nonzero initial conditions and nonzero
input
t = 0:0.01:10;
u = ones(1, length(t));
% u = sin(t);
lsim(sys, u, t, x0)

• Solution of a set of differential equations
x0 = [1; 2];
t = 0:0.01:10;
f=@(t,x) [-x(1) - 2 * x(2) + 0.5; x(1) - x(2)]
[tn, xn]=ode45(f, t, x0);
plot(tn, xn(:, 2))

• Linearisation of a Simulink model MDL at the operating point IO
linsys = linearize(mdl, io)

• Find the operating point in the Simulink model.
mdl = 'tanks'; open_system(mdl)
opspec = operspec(mdl)
op = findop(mdl, opspec)

• Save figures to a pdf file and crop the result. This function is used in the book to produce
MATLAB figure files. It should be added to the path so that it is accessible in other chapters
as well.
function [] = iam_save_pdf(filename, width, height)
% Save FILENAME (with extension pdf) of the current figure.
% Default values for figure dimensions are WIDTH=16cm, HEIGHT=11cm
% The final figure is cropped using external file pdfcrop (should exist)

if nargin == 1
width = 16; height = 11;

end
fig = gcf;
FigurePaperUnits = 'centimeters'; FigurePaperPositionMode = 'manual';
FigurePaperPosition = [0 0 width height]; FigurePaperSize = [width height];
print(filename, '-painters', '-dpdf');
system(['pdfcrop ', filename, ' ', filename]);

end
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• Save Simulink model to a pdf file and crop the result.

function [] = iam_save_slx_pdf(filename, slxfile, slxmodel)
% Save FILENAME (with exptension pdf) of the model SLXMODEL in SLXFILE.
% The final figure is cropped using external file pdfcrop (should exist)
% If only one input parameter is specified, it is SLXMODEL.

if nargin == 1
slxmodel = filename;
slxfile = [filename,'.slx'];
filename = [filename,'.pdf'];

end
open_system(slxfile)
print(['-s',slxmodel],filename,'-dpdf', '-painters');
system(['pdfcrop ', filename, ' ', filename]);
close_system(slxfile)

end

• Run MATLAB script before opening the Simulink model (initialise all model constants).

Simulink uses a mechanism of model callback functions at certain points (model opening,
saving, closing, etc.). In the Simulink Editor, open the Property Inspector. In the Modelling
tab, under Design, click Property Inspector. Here, choose a suitable callback and specify
the MATLAB code or script that should be used, for example LoadFcn (only once) or
InitFcn (at every simulation run).

1.6 Python Snippets

We also include one example for the Python programming language that models the process with
one tank that reproduces the results shown in Figure 1.5. The python library python-control
is used for automatic control, numpy for data manipulation, and matplotlib for graphs.

import control
import numpy as np
import math
import matplotlib.pyplot as plt

def iam_save_pdf(plt, filename, width=16, height=11):
"""Write actual plot to filename with default width = 16 and height = 11"""
plt.rc('text', usetex=True)
plt.rc('font', family='serif')
plt.gcf().set_size_inches(width/2.54, height/2.54)
plt.tight_layout()
plt.savefig(filename)

def tank_derivative(t, x, u, params): # right hand side of differential equation
F = params.get('F')
k = params.get('k')

h = x[0]
q0 = u
if h < 0: # numerical issues

h = 0
dh = (q0 - k * math.sqrt(h)) / F
return dh

def tank_output(t, x, u, params): # output equation
return x[0]
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tank = control.NonlinearIOSystem(
tank_derivative, tank_output, input='q0', output=('h'),
states='h', params = {'F':0.5, 'k':1.15}, name='tank')

T = np.linspace(0, 4, 100)
q0 = np.array([

0.3 if t <= 2 else
0.2 for t in T])

q0s = 0.3
h0 = 0
hs, qs = control.find_eqpt(tank, h0, q0s)
t, h = control.input_output_response(tank, T, q0, h0, solve_ivp_method='BDF')
ss_sys = control.linearize(tank, hs, q0s)
tank_lin = control.LinearIOSystem(ss_sys)
t, hl = control.input_output_response(tank_lin, T, q0 - q0s, -hs)

plt.close('all')
plt.figure(1)
plt.step(T, q0)
plt.xlabel('time [s]')
plt.ylabel('flow $q_0(t)$ [m$^3$/s]')
plt.grid(True)
plt.title('Input flowrate $q_0$')
# iam_save_pdf(plt, "h_t2_q0.pdf")

plt.figure(2)
plt.plot(T, h, label='h-nonlinear')
plt.plot(T, hl+hs, label='h-linear')
plt.legend()
plt.xlabel('time [s]')
plt.ylabel('level $h(t)$ [m]')
plt.title('Tank level $h$')
plt.grid(True)
plt.show(block=False)
# iam_save_pdf(plt, "h_t2.pdf")

1.7 Bibliography

The theoretical background for modelling, simulation, linearisation can be found in Mikleš and
Fikar (2007, Chapter 2), information in Slovak in Bakošová and Fikar (2008, Chapter 4) or Huba,
Hubinský, and Žáková (2006, Chapter 1).

For additional information, see for example Ogata (2010, Chapters 2-4), Corriou (2004, Chapter
1), Bequette (2003, Chapter 2) or Dorf and Bishop (2008, Chapter 2). Process oriented point of
view is emphasised in Shinskey (1979), Luyben (1990), Seborg, Edgar, Mellichamp, and Doyle
(2016), Stephanopoulos (1984), and Marlin (1995).



CHAPTER 2

Input-Output Characteristics of Dynamic
Systems

In this chapter, you will review your knowledge and learn new terms with the following
outcomes:

• definition of transfer functions and transfer matrices,

• conversions between differential equations and transfer functions,

• conversions between state-space and transfer-function representations,

• the algebra of transfer functions,

• the important state-space representations.

We will review the formal equivalence of the input-output and state-space representations.

2.1 Overview

2.1.1 Transfer Functions

Linear continuous single-input, single-output (SISO) systems with constant coefficients with
input u(t) and output y(t) can be described by a differential equation of the form

dny(t)
dtn

+ an−1
dn−1y(t)

dtn−1 + · · · + a0y(t) = bm
dmu(t)

dtm
+ · · · + b0u(t), (2.1)

where we suppose that u(t) and y(t) are deviation variables and without loss of generality we
set an = 1. Physical feasibility (causality) requires that n ≥ m. We distinguish proper n = m
and strictly proper (n > m) systems.

After performing the Laplace transform of (2.1) and assuming zero initial conditions we get

(sn + an−1sn−1 + · · · + a0)Y (s) = (bmsm + · · · + b0)U(s), (2.2)

39
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Figure 2.1: Algebra of transfer functions: serial (A), parallel (B), and feedback (C) connections.

or

G(s) = Y (s)
U(s) = B(s)

A(s) , (2.3)

where

B(s) = bmsm + bm−1sm−1 + · · · + b0, A(s) = sn + an−1sn−1 + · · · + a0. (2.4)

G(s) is called a transfer function of the system and is defined as the ratio of the Laplace
transforms of the output and the input variables under zero initial conditions.

We can understand its behaviour when studying the relationship Y (s) = G(s)U(s). This means
that if the Laplace transform of the input is U(s) then the Laplace transform of the output is
described by G(s)U(s).

The equation Y (s) = G(s)U(s) in the time domain is a convolution integral and when assuming
zero initial conditions, gives

y(t) = g(t) ∗ u(t) =
∫ T

0
g(t − τ)u(τ)dτ, (2.5)

where g(t) represents impulse response of the system (output of the system when the input is
an impulse).

2.1.2 The Algebra of Transfer Functions

All block representations of dynamics systems given by partial transfer functions can be decom-
posed into three basic connections (Figure 2.1):

1. Serial connection: Y1(s) = G1(s)U1(s) and Y2(s) = G2(s)Y1(s). The resulting transfer
function is given as

G(s) = Y2(s)
U1(s) = G1(s)G2(s). (2.6)

2. Parallel connection: Y1(s) = G1(s)U(s), Y2(s) = G2(s)U(s), and Y (s) = Y1(s) + Y2(s). The
resulting transfer function is given as

G(s) = Y (s)
U(s) = G1(s) + G2(s). (2.7)



2 Input-Output Characteristics of Dynamic Systems 41

3. Feedback connection: Y (s) = G1(s)E(s), Y1(s) = G2(s)Y (s), and E(s) = U(s) ∓ Y1(s).
The resulting transfer function is given as

G(s) = Y (s)
U(s) = G1(s)

1 ± G1(s)G2(s) . (2.8)

2.1.3 Converting State-Space Representations to Transfer-Functions Representa-
tions

The standard and natural description of a system with m inputs and r outputs (multiple-input,
multiple-output – MIMO) is in the form of state-space model

dx(t)
dt

= Ax(t) + Bu(t), (2.9)

y(t) = Cx(t) + Du(t). (2.10)

The Laplace transform gives

Y (s) =
(
C(sI − A)−1B + D

)
U(s) +

(
C(sI − A)−1

)
x0. (2.11)

Assuming zero initial conditions x0 = 0 gives

Y (s) = G(s)U(s), (2.12)

where

G(s) = C(sI − A)−1B + D, (2.13)

is a transfer matrix with dimensions [r × m]. Its individual elements Gij(s), i = 1, . . . r, j =
1, . . . m are transfer functions between the i-th output and j-th input, i.e. Gij(s) = Yi(s)/Uj(s).

The matrix G(s) can also be written as

G(s) = Cadj(sI − A)B + D

m(s) , (2.14)

where m(s) = |sI − A| and the roots of the polynomial m(s) are poles of G(s).

2.1.4 Converting Transfer-Function Representations to State-Space Representations

While the conversion of a state-space representation into a transfer function is unique, there
are infinitely many possible state-space conversions and representations. We will study two
representations in this section.

Controllable Canonical Form

Consider a system with a transfer function

G(s) = bmsm + bm−1sm−1 + · · · + b1s + b0
sn + an−1sn−1 + · · · + a1s + a0

, n ≥ m, (2.15)



2 Input-Output Characteristics of Dynamic Systems 42

or in the time domain equivalently described by the following differential equation (we denote
n differentiations of the variable y(t) with respect to time by y(n)(t))

y(n)(t) + an−1y(n−1)(t) + · · · + a1ẏ(t) + a0y(t) = . . .

· · · = bmu(m)(t) + bm−1u(m−1)(t) + · · · + b1u̇(t) + b0u(t). (2.16)

Let us introduce an auxiliary variable z(t) and its Laplace image Z(s) such that

Y (s)
Z(s) = bmsm + bm−1sm−1 + · · · + b1s + b0, (2.17)

Z(s)
U(s) = 1

sn + an−1sn−1 + · · · + a1s + a0
. (2.18)

Equation (2.18) corresponds to the following differential equation

z(n)(t) + an−1z(n−1)(t) + · · · + a1ż(t) + a0z(t) = u(t). (2.19)

Now let us define state variables by the following relationships

x1 = z, x2 = ż, . . . xi = di−1z(t)
dti−1 , . . . xn = dn−1z(t)

dtn−1 , (2.20)

which implies

dxi(t)
dt

= xi+1(t), i = 1, 2, . . . , n − 1. (2.21)

Equation (2.19) can now be transformed into n first-order differential equations

dx1(t)
dt

= x2(t),

dx2(t)
dt

= x3(t),
... (2.22)

dxn−1(t)
dt

= xn(t),

dxn(t)
dt

= dnz(t)
dtn

= −an−1xn − · · · − a1x2(t) − a0x1(t) + u(t).

If n = m then Eq. (2.17) corresponds to

y(t) = b0x1(t) + b1x2(t) + · · · + bn−1xn(t) + bnẋn(t). (2.23)

ẋn(t) from the above equation can be obtained from Eq. (2.22) and gives

y(t) =(b0 − a0bn)x1(t) + (b1 − a1bn)x2(t) + · · · + (bn−1 − an−1bn)xn(t) + bnu(t). (2.24)

Equations (2.22) and (2.24) form a general state-space model (A, B, C, and D) given as

Ac =


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1

 , Bc =


0
0
...
0
1

 , (2.25)

Cc =
(
b0 − a0bn b1 − a1bn . . . bn−1 − an−1bn

)
, Dc = bn. (2.26)

We can observe that if m < n then Dc = 0. This state-space representation is called the
controllable canonical form.
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Observable Canonical Form

Consider again the system with transfer function (2.15) and its representation as a differential
equation (assuming n = m)

y(n)(t) + an−1y(n−1)(t) + · · · + a1ẏ(t) + a0y(t) = . . .

· · · = bnu(n)(t) + bn−1u(n−1)(t) + · · · + b1u̇(t) + b0u(t). (2.27)

The observable canonical form is

Ao =


0 0 0 . . . 0 −a0
1 0 0 . . . 0 −a1
0 1 0 . . . 0 −a2
...

. . .
...

0 0 0 . . . 1 −an−1

 , Bo =


b0 − a0bn

b1 − a1bn
...

bn−2 − an−2bn

bn−1 − an−1bn

 , (2.28)

Co =
(
0 . . . 0 1

)
, Do = bn. (2.29)

Note that the observable canonical form can be obtained from the controllable canonical form as

Ao = A⊺
c , (2.30)

Bo = C⊺
c , (2.31)

Co = B⊺
c , (2.32)

Do = Dc. (2.33)

For the derivation of this canonical form and its physical explanation see also Kailaith 1980.

2.2 Examples

2.2.1 Conversion of Second-Order Transfer Functions to the Controllable Canonical
Form

Consider a second-order dynamic system described by the following differential equation

ÿ(t) + a1ẏ(t) + a0y(t) = b2ü(t) + b1u̇(t) + b0u(t). (2.34)

Apply the Laplace transform under zero initial conditions

s2Y (s) + a1sY (s) + a0Y (s) = b2s2U(s) + b1sU(s) + b0U(s). (2.35)

The resulting transfer function is then given as

G(s) = Y (s)
U(s) = b2s2 + b1s + b0

s2 + a1s + a0
. (2.36)

2.2.1.1 Derive the controllable canonical form if b1 = b2 = 0.

If the numerator of the transfer function is a constant, we study the process
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described by the transfer function

Y (s)
U(s) = b0

s2 + a1s + a0
, (2.37)

and by the differential equation

ÿ(t) + a1ẏ(t) + a0y(t) = b0u(t). (2.38)

The controllable canonical form defines the first state as the output variable y(t)
and the other states as derivatives of the state with respect to time with a gradually
increasing order. As the differential equation (or the denominator of the transfer
function) is of order 2, there will be two states x1 = y and x2 = ẏ. If we differentiate
both states with respect to time we get ẋ1 = ẏ and x2 = ÿ. Next, we substitute the
defined states for y(t) and its derivatives in the respective expressions

ẋ1 = x2, (2.39)
ẋ2 = b0u − a0x1 − a1x2, (2.40)

where the second equation results from the differential equation of the sys-
tem (2.38). The state-space matrices Ac and Bc are then(

ẋ1
ẋ2

)
=
(

0 1
−a0 −a1

)(
x1
x2

)
+
(

0
b0

)
u, (2.41)

Ac =
(

0 1
−a0 −a1

)
, Bc =

(
0
b0

)
. (2.42)

Definition of matrices Cc and Dc follows from the fact that the first state is equal
to the output, hence

y = x1 =
(
1 0

)(x1
x2

)
, (2.43)

and

Cc =
(
1 0

)
, Dc = 0. (2.44)

2.2.1.2 Derive the controllable canonical form if b2 = 0.

In this case, the system transfer function is strictly proper

Y (s)
U(s) = b1s + b0

s2 + a1s + a0
, (2.45)

and described by the differential equation

ÿ(t) + a1ẏ(t) + a0y(t) = b1u̇(t) + b0u(t). (2.46)

We will find the solution in two steps. Firstly, we will reduce the problem to the
previous one (constant numerator of the transfer function).
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To this end, we define an intermediate variable z(t) and an intermediate transfer
function

Z(s)
U(s) = 1

s2 + a1s + a0
. (2.47)

The relationship between Z(s) and Y (s) can be obtained if we divide the transfer
function (2.45) by (2.47)

Y (s)
U(s)
Z(s)
U(s)

=

b1s + b0
s2 + a1s + a0

1
s2 + a1s + a0

, (2.48)

Y (s)
Z(s) = b1s + b0, (2.49)

Y (s) = B(s)Z(s), (2.50)
y(t) = b1ż(t) + b0z(t). (2.51)

We define states as the respective time derivatives of the intermediate variable
x1 = z and x2 = ż which gives rise to the same state equations and matrices Ac
and Bc as before

ẋ1 = x2, (2.52)
ẋ2 = u − a0x1 − a1x2. (2.53)

The output equation is obtained by substituting states for the derivatives of z

y = b0z + b1ż = b0x1 + b1x2. (2.54)

The matrices of the state-space representation in a controllable canonical form are
given as

Ac =
(

0 1
−a0 −a1

)
, Bc =

(
0
1

)
, (2.55)

Cc =
(
b0 b1

)
, Dc = 0. (2.56)

2.2.1.3 Derive the controllable canonical form if b2 ̸= 0.

This case involves a proper transfer function where the numerator and denomina-
tor have the same degree

Y (s)
U(s) = b2s2 + b1s + b0

s2 + a1s + a0
, (2.57)

and the process is described by the differential equation

ÿ(t) + a1ẏ(t) + a0y(t) = b2ü(t) + b1u̇(t) + b0u(t). (2.58)

Again, we define the intermediate variable Z(s)/U(s) = 1/A(s), the correspond-
ing differential equation:

z̈(t) + a1ż(t) + a0z(t) = u(t), (2.59)
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and the states x1 = z and x2 = ż. State and output equations are then

ẋ1 = x2, (2.60)
ẋ2 = u − a0x1 − a1x2, (2.61)
y = b0z + b1ż + b2z̈ = b0x1 + b1x2 + b2(u − a0x1 − a1x2). (2.62)

The matrices of the state-space representation in a controllable canonical form are
given as

Ac =
(

0 1
−a0 −a1

)
, Bc =

(
0
1

)
, (2.63)

Cc =
(
b0 − a0b2 b1 − a1b2

)
, Dc = b2. (2.64)

Another possibility to obtain the solution is to separate the absolute term and the
strictly proper part by dividing the numerator by the denominator

G(s) = Y (s)
U(s) = b2s2 + b1s + b0

s2 + a1s + a0
(2.65)

= b2 + (b1 − a1b2)s + (b0 − a0b2)
s2 + a1s + a0

. (2.66)

The absolute term represents the matrix D and the strictly proper part corresponds
to the triplet (A, B, C).

2.2.2 Two Tanks with Interaction

We study the dynamic properties of two tanks with interaction from Example 1.2.2. There, we
derived the state-space representation characterised by the matrices A, B, C and D:

A =
(

− k1
F1

k1
F1

k1
F2

−k1+k2
F2

)
=
(

−a a
b −c

)
, B =

( 1
F1

0
0 1

F2

)
=
(

d 0
0 e

)
, (2.67)

C =
(
0 1

)
, D =

(
0 0

)
. (2.68)

2.2.2.1 Derive all the transfer functions using the Laplace transform of the state equations.

The process involves two inputs and one output. Therefore, two transfer functions
can be derived

G1(s) = Y (s)
U1(s) , G2(s) = Y (s)

U2(s) . (2.69)

Matrices A and B correspond to state differential equations:

dx1(t)
dt

= −ax1(t) + ax2(t) + du1(t), (2.70)

dx2(t)
dt

= bx1(t) − cx2(t) + eu2(t). (2.71)
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In the first step, we apply the Laplace transform and under zero initial conditions:

sX1(s) = −aX1(s) + aX2(s) + dU1(s), (2.72)
sX2(s) = bX1(s) − cX2(s) + eU2(s). (2.73)

As the output variable is defined by y(t) = x2(t), we solve the first equation for
X1(s) and substitute the result into the second equation. This gives

Y (s) = X2(s) = bd

s2 + s(a + c) + a(c − b)U1(s)

+ e(s + a)
s2 + s(a + c) + a(c − b)U2(s). (2.74)

This results in two transfer functions G1 for (U2(s) = 0) and G2 for (U1(s) = 0)

G1(s) = Y (s)
U1(s) = bd

s2 + s(a + c) + a(c − b)

= k1
F1F2s2 + (k1F1 + k1F2 + k2F1)s + k1k2

, (2.75)

G2(s) = Y (s)
U2(s) = e(s + a)

s2 + s(a + c) + a(c − b)

= F1s + k1
F1F2s2 + (k1F1 + k1F2 + k2F1)s + k1k2

. (2.76)

2.2.2.2 Derive all the transfer functions using the matrix-based approach from (2.13).

This approach directly gives the overall transfer function matrix. Its derivation
using MATLAB is given at the end of this example and also in Section 2.5.

sI − A =
(

s + a −a
−b s + c

)
, (2.77)

|sI − A| = s2 + s(a + c) + a(c − b), (2.78)

(sI − A)−1 = 1
|sI − A|

(
s + c a

b s + a

)
, (2.79)

G(s) = C (sI − A)−1 B + D (2.80)

= 1
s2 + s(a + c) + a(c − b)

(
bd e(s + a)

)
(2.81)

=
(
G1(s) G2(s)

)
. (2.82)

2.2.2.3 Derive a state-space representation from the previously derived transfer functions.

We observe that both transfer functions have the same denominator. Therefore, we
can start by converting the common part into a state-space representation using
intermediate variables Z1(s) = G(s)U1(s) and Z2(s) = G(s)U2(s)

G(s) = Z1(s)
U1(s) = Z2(s)

U2(s) = 1
F1F2s2 + (k1F1 + k1F2 + k2F1)s + k1k2

. (2.83)
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We convert the common transfer function into the controllable state-space repre-
sentation (e.g., manipulating the expressions for Z1(s)/U1(s)) – see Section 2.1.4

ẋ1 = x2, (2.84)
ẋ2 = (u1 − k1k2x1 − (k1F1 + k1F2 + k2F1)x2)/(F1F2), (2.85)
z1 = x1. (2.86)

We apply the similar procedure for Z2(s)/U2(s) defining the states x3 and x4,
where z2 = x4.

The, we can express the output as a combination of two signals

Y (s) = Y1(s) + Y2(s) (2.87)
= k1Z1(s) + (F1s + k1)Z2(s) (2.88)
= k1G(s)U1(s) + (F1s + k1)G(s)U2(s). (2.89)

The overall state-space representation is then obtained by combining the partial
controllable state-space representations of the common transfer function G(s)

ẋ1 = x2, (2.90)

ẋ2 = u1 − k1k2x1 − (k1F1 + k1F2 + k2F1)x2
F1F2

, (2.91)

ẋ3 = x4, (2.92)

ẋ4 = u2 − k1k2x3 − (k1F1 + k1F2 + k2F1)x4
F1F2

, (2.93)

y1 = k1x1, (2.94)
y2 = k1x3 + F1x4, (2.95)
y = y1 + y2 = k1x1 + k1x3 + F1x4. (2.96)

2.2.2.4 Simulate the step responses of all the representations.

Step responses of all representations are the same even if the state-space represen-
tations do not share the same number of states.

q01s = 0.9; q02s = 0.0; F1 = 0.5; F2 = 0.6; k11 = 0.8; k22 = 0.5;
h2s = ((q01s+q02s)/k22)^2; h1s = (q01s/k11)^2 + h2s;
us = [q01s; q02s]; ys = h2s; xs = [h1s; h2s];
k1=k11/(2*sqrt(h1s-h2s)); k2=k22/(2*sqrt(h2s));
A = [-k1/F1 k1/F1; k1/F2 -(k1+k2)/F2]; B = [1/F1 0; 0 1/F2];
C = [0 1]; D = 0;
G1 = tf(k1, [F1*F2 k1*F1+k1*F2+k2*F1 k1*k2]);
G2 = tf([F1 k1], [F1*F2 k1*F1+k1*F2+k2*F1 k1*k2]);
An = [0 1 0 0

-k1*k2/(F1*F2) -(k1*F1+k1*F2+k2*F1)/(F1*F2) 0 0
0 0 0 1
0 0 -k1*k2/(F1*F2) -(k1*F1+k1*F2+k2*F1)/(F1*F2)];

Bn = [0 0 ; 1 0; 0 0; 0 1];
Cn = [k1 0 k1 F1];
Dn = [0 0];
sys1 = ss(A,B,C,D); sys2 = [G1 G2]; sys3 = ss(An,Bn,Cn,Dn);
step(sys1, sys2, sys3); grid on
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2.2.3 Two Tanks with a Pump

We study the dynamic properties of two tanks with interaction modelled in Section 1.2.3. The
derived state-space representation is characterised by the matrices A, B, C, and D:

A =
(

− k1
F1

k1
F1

k1
F2

− k1
F2

)
=
(

−a a
b −b

)
, B =

( 1
F1

0
0 − 1

F2

)
=
(

d 0
0 −e

)
, (2.97)

C =
(
0 1

)
, D =

(
0 0

)
. (2.98)

2.2.3.1 Derive the transfer functions using the matrix-based approach from (2.13).

Application of (2.13) gives

sI − A =
(

s + a −a
−b s + b

)
, |sI − A| = s2 + s(a + b), (2.99)

(sI − A)−1 = 1
|sI − A|

(
s + b a

b s + a

)
, (2.100)

G(s) = C (sI − A)−1 B + D (2.101)

= 1
s2 + s(a + b)

(
bd −e(s + a)

)
(2.102)

=
(

k1
F1F2s2+(k1F1+k1F2)s

−F1s−k1
F1F2s2+(k1F1+k1F2)s

)
. (2.103)

Note that the denominator has one root at s = 0 which indicates an integrating
dynamics. Also, the negative sign of the second transfer function results from the
inverse character of this process — an increase in the pump revolutions gives a
higher flow out of the tank and thus, a level decrease in the second tank.

2.3 Practice Examples

2.3.1 A One-Dimensional Car

We study the movement of a car modelled in Section 1.3.1.

2.3.1.1 Recall the choice of the input and the state variables of the system. Select the output
variables of the system while assuming that we measure both the position and velocity
of the car. Write down the linear state-space representation of the system:

dx1(t)
dt

= x2(t), (2.104)

dx2(t)
dt

= u(t). (2.105)

Input variables: acceleration u(t), state variables: position x1(t) and velocity x2(t).
The output variables are the both states, y1(t) = x1(t) and y2(t) = x2(t). The
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state-space representation of the dynamic system is:(
ẋ1(t)
ẋ2(t)

)
=
(

0 1
0 0

)
︸ ︷︷ ︸

A

(
x1(t)
x2(t)

)
+
(

0
1

)
︸ ︷︷ ︸

B

u(t), (2.106)

(
y1(t)
y2(t)

)
=
(

1 0
0 1

)
︸ ︷︷ ︸

C

(
x1(t)
x2(t)

)
+
(

0
0

)
︸ ︷︷ ︸

D

u(t). (2.107)

2.3.1.2 Derive the transfer matrix of the system.

From the definition of the transfer matrix (Laplace transform of the state-space
model with zero initial conditions), we obtain:

G(s) = C(sI − A)−1B + D =
(

1 0
0 1

)(
s −1
0 s

)−1(
0
1

)
+
(

0
0

)
. (2.108)

The inverse of the matrix can be found, using the determinant and the adjoint
matrix, by:(

s −1
0 s

)−1

= 1
s2

(
s 1
0 s

)
. (2.109)

The resulting transfer function matrix is:

G(s) = 1
s2

(
s 1
0 s

)(
0
1

)
= 1

s2

(
1
s

)
=


1
s2

1
s

 =
(

Gy1u(s)
Gy2u(s)

)
. (2.110)

2.3.1.3 Create a Simulink model that will simulate the position of the car using one of the
derived transfer functions for some given values of the initial conditions and the inputs.

position	x1(t)

++

init.	cond.	x1

2.3.1.4 Run the simulation setting the initial conditions to be 10 m for the position and 0 m/s
for the velocity. Verify the correctness of the results by comparing with the results of
the simulation created in the previous chapter. Plot the simulation results as the output
variable as a function of time.
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Figure 2.2: Time reponse of the car position.

plot(tx(:,1), tx(:,2), 'LineWidth', 2);
xlabel('time [s]'); ylabel('position y(t) [m]'); grid on
iam_save_pdf('x_t.pdf')

Simulation results are shown in Figure 2.2.

2.3.2 Two Tanks in Series

We study a system with two tanks in series described in Example 1.2.4 with a modification that
both tanks have independent inlet flows with flow rates q0,1 and q0,2 as shown in Figure 2.3.

The values of parameters and initial signals of the process are: qs
0,1 = 0.3 m3/s, qs

0,2 = 0.5 m3/s,
F1 = 0.5 m2, F2 = 0.8 m2, k11 = 1.15 m2.5/s, and k22 = 1.3 m2.5/s.

2.3.2.1 Select the input, state, and output variables of the system.

Input variables: liquid inlet flows q0,1 and q0,2, state variables: height of the liquid
in the tanks h1(t) and h2(t), output variables: h2(t).

2.3.2.2 Write down the mass balance of the liquid in the tanks.

The mass balance of the first tank (from the previous chapter) is

dh1(t)
dt

= q0,1(t)
F1

− k11
F1

√
h1(t). (2.111)

The mass balance of the second tank is

dh2(t)
dt

= q0,2(t)
F2

+ k11
F2

√
h1(t) − k22

F2

√
h2(t). (2.112)

2.3.2.3 Recall the steady-state value of the liquid level in the tanks from the previous chapter.
Adapt these expressions for the tanks in the system at hand.
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Figure 2.3: Schematic diagram of two tanks in series.

The steady-state value of the liquid level in the tank 1 can be found from

hs
1 =

(
qs

0,1

k11

)2

. (2.113)

From (2.112) and (2.113), the steady state of the level in the tank 2 is given by:

hs
2 =

(
qs

0,2

k22
+ k11

k22

√
hs

1

)2

=
(

qs
0,1 + qs

0,2

k22

)2

. (2.114)

2.3.2.4 If necessary, linearise the model. Write down the state-space representation of the
linearised model.

The derived model is nonlinear because of the presence of the square roots of the
state variables in (2.111), (2.112). For the linearisation, we first define the deviation
variables:

x1(t) = h1(t) − hs
1, u1(t) = q0,1(t) − qs

0,1, (2.115)

x2(t) = h2(t) − hs
2, u2(t) = q0,2(t) − qs

0,2. (2.116)

The linearised model is then given by:

dx1(t)
dt

= a11x1(t)+b11u1(t), dx2(t)
dt

= a21x1(t)+a22x2(t)+b22u2(t), (2.117)
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where

a11 = − k11
2F1

√
hs

1

def= − k1
F1

, b11 = 1
F1

, (from the previous chapter)

(2.118)

a21 =
∂

q0,2(t)
F2

+ k11
F2

√
h1(t) − k22

F2

√
h2(t)

∂h1(t)

∣∣∣∣
hs

1,hs
2,qs

0,1

= k11
2F2

√
hs

1

def= k1
F2

, (2.119)

a22 =
∂

q0,2(t)
F2

+ k11
F2

√
h1(t) − k22

F2

√
h2(t)

∂h2(t)

∣∣∣∣
hs

1,hs
2,qs

0,1

= − k22
2F2

√
hs

2

def= − k2
F2

,

(2.120)

b22 =
∂

q0,2(t)
F2

+ k11
F2

√
h1(t) − k22

F2

√
h2(t)

∂q0,2(t)

∣∣∣∣
hs

1,hs
2,qs

0,1

= 1
F2

. (2.121)

The state-space model is then(
ẋ1(t)
ẋ2(t)

)
=
(

− k1
F1

0
k1
F2

− k2
F2

)
︸ ︷︷ ︸

A

(
x1(t)
x2(t)

)
+
( 1

F1
0

0 1
F2

)
︸ ︷︷ ︸

B

(
u1(t)
u2(t)

)
, (2.122a)

y(t) =
(
0 1

)
︸ ︷︷ ︸

C

(
x1(t)
x2(t)

)
+
(
0 0

)
︸ ︷︷ ︸

D

(
u1(t)
u2(t)

)
. (2.122b)

2.3.2.5 Derive the transfer matrix of the system.

From the definition of the transfer matrix (Laplace transform of the state-space
model with zero initial conditions), we obtain:

G(s) = C(sI −A)−1B+D =
(
0 1

)(s + k1
F1

0
− k1

F2
s + k2

F2

)−1( 1
F1

0
0 1

F2

)
+
(
0 0

)
.

(2.123)

The inverse of a matrix can be found using its determinant and adjoint matrix:(
s + k1

F1
0

− k1
F2

s + k2
F2

)−1

= 1(
s + k1

F1

) (
s + k2

F2

) (s + k2
F2

0
k1
F2

s + k1
F1

)
, (2.124)

which results in:

G(s) =
(
0 1

) 1(
s + k1

F1

) (
s + k2

F2

) (s + k2
F2

0
k1
F2

s + k1
F1

)( 1
F1

0
0 1

F2

)
(2.125)

=
(
0 1

) 1(
s + k1

F1

) (
s + k2

F2

)
 1

F1

(
s + k2

F2

)
0

k1
F1F2

1
F2

(
s + k1

F1

) (2.126)

=

 k1
F1F2(

s+ k1
F1

)(
s+ k2

F2

) 1
F2

s + k2
F2

 =
(
Gyu1(s) Gyu2(s)

)
. (2.127)
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2.3.2.6 Verify the correctness of the derived transfer function Gyu1(s) applying the algebra of
transfer functions on the individual transfer functions of the first and second tanks with
respect to input u1(t) derived using the explicit Laplace transform.

The Laplace transform of the first linearised differential equation gives:

sX1(s) = − k1
F1

X1(s) + 1
F1

U1(s) ⇒
(

s + k1
F1

)
X1(s) = 1

F1
U1(s). (2.128)

We will define a temporary output variable Y1(s) = X1(s). The respective transfer
function can be derived as:

Gy1u1(s) = Y1(s)
U1(s) =

1
F1

s + k1
F1

. (2.129)

The Laplace transform of the second linearised differential equation gives:

sX2(s) = k1
F2

X1(s) − k2
F2

X2(s) ⇒
(

s + k2
F2

)
X2(s) = k1

F2
X1(s). (2.130)

Using the definition of the output variable Y (s) = X2(s), the transfer function is

Gyy1(s) = Y

Y1(s) =
k1
F2

s + k2
F2

. (2.131)

The resulting transfer function is

Gyu1(s) = Y (s)
U1(s) = Gy1u1(s)Gyy1(s) =

k1
F1F2(

s + k1
F1

) (
s + k2

F2

) . (2.132)

2.3.2.7 Verify the equivalence of the state-space representation and the transfer function Gyu1(s)
using a simulation. Apply a unit step increase of q0,1 at t = 1 and a unit step increase of
q0,2 at t = 5 of the simulation.

We build the Simulink model (Figure 2.4) with the parameters

q01s = 0.3; q02s = 0.5; k11 = 1.15; k22 = 1.3;
h1s = (q01s/k11)^2; h2s = (q01s/k22 + q02s/k22)^2;
k1 = k11/2/sqrt(h1s); k2 = k22/2/sqrt(h2s); F1 = 0.5; F2 = 0.8;

Simulation results can be plotted and are shown in Figure 2.5.

plot(th(:,1), th(:,2), th(:,1), th(:,3), 'linewidth', 2);
xlabel('time [s]'); ylabel('level h(t) [m]'); grid on
legend('SS','TF');
iam_save_pdf('h_t_ss_tf.pdf')

We can observe, that both dynamic models coincide until time 5 of the simulation.
As the transfer-function model cannot handle the second input to the state-space
system, the outputs differ if the second input is changed.

2.3.2.8 Repeat the previous simulation and compare the results obtained using the state-space
and the nonlinear models. Rerun the simulation with a 10% change in process inputs.
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Figure 2.4: A Simulink model to compare the state-space and transfer-function models.

We build the nonlinear model in Simulink from the basic building blocks. For the
linear model, we use the state-space block but care has to be taken of its inputs
and outputs with respect to deviation variables. The final model is shown in
Figure 2.6 and simulation results in Figure 2.7 (left). We can see that the models
behave quite differently. This is caused by a large change in the operating point.
Thus, the linearisation is then very inaccurate.

We repeat the simulation, but with a 10% change in the inlet flows. This time, both
models show similar behaviour – Figure 2.7 (right). Thus, the linear state-space
model can be used in place of the full nonlinear model.

2.3.2.9 Assume that the process is in the initial steady state and that the inlet q0,1 is reduced to
90% of its original value. Calculate the new steady-state values of the level h2 using the
nonlinear and transfer function models.

The new steady state for the nonlinear model can be obtained from (2.114)

hs
2 =

(
qs

0,1 + qs
0,2

k22

)2

=
(0.3 · 0.9 + 0.5

1.3

)
= 0.35 m. (2.133)

An approximate value can be also be found from the linear model and transfer
functions

Y (s) = Gyu1(s)U1(s) + Gyu2(s)U2(s). (2.134)

Since u1 = q0,1 − qs
0,1 = −0.1qs

0,1 and u2 = q0,2 − qs
0,2 = 0, it follows that

Y (s) = Gyu1(s)U1(s) = −
k1

F1F2(
s + k1

F1

) (
s + k2

F2

) 0.1qs
1,0

s
, (2.135)

y(∞) = lim
t→∞

y(t) = lim
s→0

sY (s) = −
0.1qs

1,0
k2

, (2.136)

h2,lin = hs
2 + y(∞) = 0.37 m. (2.137)

where we used the final value theorem for stable systems (relationship between
the final value of a variable in the time domain and the corresponding expression
in the Laplace transform) in (2.136).
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Figure 2.5: Comparison of linear models.
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Figure 2.6: A Simulink model to compare the state-space and nonlinear models.
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Figure 2.7: Comparison of linear and nonlinear models. (left) Large change in the inputs, (right)
small change in the inputs.
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2.3.2.10 (Optional) Derive the state-space representation of the transfer function Gyu1(s) in the
controllable canonical form.

First, we rewrite the transfer function as:

Gyu1(s) =
k1

F1F2

s2 +
(

k1
F1

+ k2
F2

)
s + k1

F1
k2
F2

= Y (s)
U1(s) . (2.138)

We perform the inverse Laplace transform to obtain:

ÿ(t) +
(

k1
F1

+ k2
F2

)
ẏ(t) + k1

F1

k2
F2

y(t) = k1
F1F2

u1(t). (2.139)

We define new state variables

ξ1(t) = y(t), ξ2(t) = ẏ(t). (2.140)

We can then write:

ξ̇1(t) = ξ2(t), ξ̇2(t) = −
(

k1
F1

+ k2
F2

)
ξ2(t)− k1

F1

k2
F2

ξ1(t)+ k1
F1F2

u1(t). (2.141)

This finally gives:(
ξ̇1(t),
ξ̇2(t)

)
=
(

0 1
− k1

F1
k2
F2

−
(

k1
F1

+ k2
F2

))
︸ ︷︷ ︸

Ac

(
ξ1(t)
ξ2(t)

)
+ k1

F1F2︸ ︷︷ ︸
Bc

u1(t), (2.142)

y(t) =
(
1 0

)
︸ ︷︷ ︸

Cc

(
ξ1(t)
ξ2(t)

)
+ 0︸︷︷︸

Dc

u1(t). (2.143)

2.3.2.11 (Optional) Verify the equivalence of the input-output representation and the derived
state-space model in the controllable canonical form.

We implement the model shown in Figure 2.8. Simulations show that the output
trajectories are the same.

2.4 Problems

Problem. 2.1: A transfer function from a differential equation

Find a transfer function between the output y(t) and the input u(t) of the system described
by the differential equation

y(3)(t) + 3ÿ(t) + 12ẏ(t) + 4y(t) = 2ü(t) + u(t). (2.144)
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Figure 2.8: A simulation model to compare the linear state-space controllable form and the
state-space representation (obtained from the mass balance).

G(s) = Y (s)
U(s) = 2s2 + 1

s3 + 3s2 + 12s + 4 . (2.145)

Problem. 2.2: A transfer function from a differential equation

Find transfer functions between the output (variable on the left-hand side) and the input
(variable on the right-hand side) of systems described by the differential equations

1. y(3)(t) + 10ÿ(t) + 30ẏ(t) + 20y(t) = 4ü(t) + 5u̇(t) + 6u(t),

2. 6z(5)(t) + 20z(4)(t) + 2z(3)(t) = v(4)(t) + 3v̈(t) + v(t),

3. u(3)(t) − 10u̇(t) + 12u(t) = e(t),

4. ẋ(t) + 3
√

x(t) = u(t).

G1(s) = Y (s)
U(s) = 4s2 + 5s + 6

s3 + 10s2 + 30s + 20 , (2.146)

G2(s) = Z(s)
V (s) = s4 + 3s2 + 1

6s5 + 20s4 + 2s3 , (2.147)

G3(s) = U(s)
E(s) = 1

s3 − 10s + 12 . (2.148)

The last problem is not linear, we cannot define the transfer function.

Problem. 2.3: A transfer matrix from a state-space representation

Find the transfer matrix for the system, whose state-space representation is given by the
matrices

A =

−1 2 0
2 −2 3
1 −1 −1

 , B =

1 2
2 3
3 4

 , C =

1 0 0
0 1 0
1 1 1

 , D =

0 0
0 0
0 0

 . (2.149)



2 Input-Output Characteristics of Dynamic Systems 59

G(s) =



s2 + 7s + 27
s3 + 4s2 + 4s − 5

2s2 + 12s + 40
s3 + 4s2 + 4s − 5

2s2 + 15s + 16
s3 + 4s2 + 4s − 5

3s2 + 22s + 25
s3 + 4s2 + 4s − 5

6s2 + 30s + 39
s3 + 4s2 + 4s − 5

9s2 + 45s + 60
s3 + 4s2 + 4s − 5

 . (2.150)

Problem. 2.4: A differential equation from a transfer function

Find the differential equation describing a PID controller with the output u(t) and input
e(t) described by the transfer function

G(s) = U(s)
E(s) = 2s2 + 3s + 1

s
. (2.151)

Note that the degree of the transfer function numerator is higher than the degree of the
denominator and the controller cannot be realised.

u̇(t) = 2ë(t) + 3ė(t) + e(t). (2.152)

A standard representation of a PID controller is obtained when this equation is integrated
to get the output u(t)

u(t) = 2ė(t) + 3e(t) +
∫ T

0
e(τ)dτ. (2.153)

Problem. 2.5: Controllable and observable canonical forms from a transfer function

Find the controllable and observable canonical forms for the transfer function given as

G(s) = Y (s)
U(s) = 2s2 + 1

s3 + 3s2 + 12s + 4 . (2.154)

Ac =


0 1 0 0
0 0 1 0
0 0 0 1

−4 −12 −3 −1

 , Bc =


0
0
0
1

 , (2.155)

Cc =
(
1 0 2 0

)
, Dc = 0, (2.156)

Ao =


0 0 0 −4
1 0 0 −12
0 1 0 −3
0 0 1 −1

 , Bo =


1
0
2
0

 , (2.157)

Co =
(
0 0 0 1

)
, Do = 0. (2.158)
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2.5 MATLAB Snippets

• Calculation of the symbolic expression for the transfer matrix of two tanks with interaction
by (2.13)

syms a b c d e s
A = [-a a ; b -c], B=[d 0 ;0 e], C=[0, 1], D=[0,0];
G = C*inv(s*eye(2)-A)*B+D;
pretty(G) % pretty print of G using ascii art

• Creation of a transfer function

G1 = tf([1 2],[1 0 10])
G1delay = tf([1 2],[1 0 10], 'OutputDelay', 1)
s = tf('s'); G2 = exp(-s)*(s+2)/(s^2+10)
G2o1i = tf( {[1 2] ; 4} , {[1 0 10] ; [1 1 0]})

• Algebra of transfer functions

G1 = tf([1 2],[1 0 10]), G2 = tf(1,[1 2 1]),
G3series = G1*G2,
G3paralel = G1+G2,
G3fb = G1*G2/(1+G1*G2)
G3fb = minreal(G3fb) % reduce to a fraction of coprime polynomials

• Creation of a state-space representation, conversion of the state-space representation to a
transfer matrix and access to its data

A=[-1 2 0; 2 -2 3; 1 -1 -1], B =[1 2; 2 3; 3 4]
C=[1 0 0 ; 0 1 0; 1 1 1], D=[0 0;0 0; 0 0]
abcd = ss(A,B,C,D)
g = tf(abcd)
[num,den] = tfdata(g)

• Conversion of a transfer function to a state-space representation and access to its data

G1 = tf([1 2],[1 0 10])
abcd = ss(G1)
[A,B,C,D] = ssdata(abcd)

• MATLAB uses canon() function to perform conversion between canonical forms.

2.6 Python Snippets

• Calculation of the symbolic expression for the transfer matrix of two tanks with interaction
by (2.13)

import sympy as sym
a, b, c, d, e, s = sym.symbols('a, b, c, d, e, s')
A = sym.Matrix([[-a, a], [b, -c]])
B = sym.Matrix([[d, 0], [0, e]])
C = sym.Matrix([[0, 1]])
D = sym.Matrix([[0, 0]])
sia = sym.Matrix([[s, 0], [0, s]]) - A
G = C @ sia.inv() @ B + D

• Creation of a transfer function

import control
G1 = control.tf([1, 2],[1, 0, 10]); print(G1)
s = control.tf('s'); G2 = (s + 2) / (s**2 + 10); print(G2)
num = [[[1, 2]], [[4]]]; den = [[[1, 0, 10]], [[1, 1, 0]]];
G2o1i = control.tf(num, den); print(G2o1i)
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• Algebra of transfer functions

from control.matlab import *
G1 = tf([1, 2],[1, 0, 10]); G2 = tf(1,[1, 2, 1])
G3series = G1 * G2
G3paralel = G1 + G2
G3fb = G1 * G2 / (1 + G1 * G2)
G3fb = minreal(G3fb) #reduce to a fraction of coprime polynomials

• Creation of a state-space representation, conversion from the state-space representation to
a transfer function and access to its data

from control.matlab import *
A = [[-1, 2, 0], [2, -2, 3], [1, -1, -1]]
B = [[1, 2], [2, 3], [3, 4]]
C = [[1, 0, 0], [0, 1, 0], [1, 1, 1]]
D = [[0, 0], [0, 0], [0, 0]]
abcd = ss(A, B, C, D)
g = tf(abcd)
num, den = tfdata(g)

• Conversion of a transfer function to a state-space representation and access to its data

from control.matlab import *
G1 = tf([1, 2],[1, 0, 10])
abcd = ss(G1)
A, B, C, D = ssdata(abcd)

• python-control provides function canonical_form(sys, form=’reachable’), where
the form can be ’reachable’, ’observable’ or ’modal’.

2.7 Bibliography

Transfer functions play a pivotal role in continuous-time control analysis and design. The
theoretical background for this chapter can be found in Mikleš and Fikar (2007, Chapter 3),
information in Slovak in Bakošová and Fikar (2008, Chapter 2).

Further sources of information are for example Ogata (2010, Chapter 2), Golnaraghi (2010,
Chapter 3), or Dorf and Bishop (2008, Chapter 2).





CHAPTER 3

Poles, Zeros, and Their Effects on Process
Dynamics

In this chapter, you will study the basic characteristics of dynamic systems in time domain. In
particular:

• determination of the step response for selected processes,

• characterisation of step responses,

• relationship between the locations of the poles and zeros and the time-domain characteris-
tics of processes,

• relationship between the step, impulse, and ramp responses.

3.1 Overview

We already know how to model processes using differential equations or transfer functions and
how to convert them to each other. If we want to study the behaviour of processes, we can
examine their responses to standard input signals. The behaviour of the process is determined
by its dynamics and by the chosen input signal. We can expect that two different input signals
will result in different dynamic responses of the process. Also, if two different processes will
respond to the same input signal, their responses will be different.

There are four commonly used standard input signals: step, impulse, ramp, and sine wave.
In this chapter, we will work mainly with step input, but will consider the impulse and ramp
signals. Process response to a sinusoid will be studied in the next chapter.

A transfer function can be represented as:

1. Ratio of two polynomials

G(s) = bmsm + bm−1sm−1 + · · · + b0
ansn + an−1sn−1 + · · · + a0

, n ≥ m. (3.1)

63
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2. Poles and zeros

G(s) = bm(s − z1)(s − z2) . . . (s − zm)
an(s − p1)(s − p2) . . . (s − pn) . (3.2)

Roots of the characteristic polynomial (denominator of the transfer function) p1, . . . , pn are
system poles. Roots of the numerator polynomial z1, . . . , zm are system zeros. Note that pi

or zi can occur in complex conjugate pairs.

If the transfer function is stable, minimum phase, with real poles and zeros that are all
negative, it is common to write the transfer function as

G(s) = k
(s + z1)(s + z2) . . . (s + zm)
(s + p1)(s + p2) . . . (s + pn) . (3.3)

with pi and zi being positive.

3. Time constants

G(s) = K
(TN,1s + 1)(TN,2s + 1) . . . (TN,ms + 1)

(T1s + 1)(T2s + 1) . . . (Tns + 1) , (3.4)

where T1, . . . , Tn, TN,1, . . . , TN,m are the time constants and K is the system (static) gain.
This expression for transfer function can only be written if all poles and zeros are real.
Time constants correspond to negative inverses of poles and zeros. Therefore, as time
constants are in units of time, poles and zeros are in units of frequency. Note that this form
of representation cannot capture any possible integrators or differentiators.

Static Gain

The static gain K of a stable system with a transfer function G(s) is defined as the value of the
output y(t) at steady state (t → ∞) if the system input is a unit step change. It can be determined
using the Final Value Theorem

K = lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sG(s)U(s) = lim
s→0

sG(s)1
s

= G(0). (3.5)

Note, that the above formula holds only for stable systems, i.e., a transfer function with all poles
having negative real parts. If we consider the transfer function (3.1) then

K = b0
a0

. (3.6)

If the process is in an initial steady state with output value y0 and the input step change is
∆u = u∞ − u0 then the static gain can be determined as the ratio of the changes in the output to
the input

K = y∞ − y0
u∞ − u0

, (3.7)

where y∞ is the value of the output at the new steady state.

Impulse Response

If the input to the system is the unit impulse (Dirac delta) with U(s) = 1 then the process reacts
with an impulse response

Y (s) = G(s)U(s) = G(s), y(t) = g(t), (3.8)

where the impulse response g(t) is also called the weighting function.

In general, the impulse response can be obtained as a time derivative of the step response.
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3.1.1 Step Response of a First-Order System

Consider a first-order system described by the differential equation

a1ẏ(t) + a0y(t) = b0u(t), (3.9)

and with the transfer function of the form

G(s) = b0
a1s + a0

= K

Ts + 1 , K = b0
a0

, T = a1
a0

, (3.10)

= k
1

s + p
, k = b0

a1
= K

T
, p = a0

a1
= 1

T
. (3.11)

Let u(t) be the unit step input with the corresponding Laplace image U(s) = 1/s. Then,
assuming zero initial conditions, the system output is

Y (s) = G(s)U(s) = K

s(Ts + 1) . (3.12)

The partial fraction expansion of this expression gives

K

s(Ts + 1) = k1
s

+ k2
Ts + 1 . (3.13)

There are several methods to obtain the coefficients k1 and k2. One of them is to multiply the
equation by the denominator s(Ts + 1) and equate the powers of s on both sides. This gives

K = k1(Ts + 1) + k2s, (3.14)

from which it follows

s0 : K = k1, (3.15a)

s1 : 0 = Tk1 + k2. (3.15b)

If the poles are real and distinct, we can multiply both sides of the equation by a pole and
evaluate the resulting equation at the pole. For example, multiplication by s and evaluating at
s = 0 directly gives k1

K

Ts + 1 = k1 + k2s

Ts + 1 , (3.16)

K = k1. (3.17)

Similarly, we can multiply the equation by (Ts + 1) and evaluate at s = −1/T to get k2

K

s
= k1(Ts + 1)

s
+ k2, (3.18)

K

− 1
T

= −KT = k2. (3.19)

Therefore, the step response in Laplace and time domains is given as

Y (s) = K
1
s

− KT
1

Ts + 1 = K

(
1
s

− 1
s + 1

T

)
, (3.20)

y(t) = K
(
1 − e− t

T

)
. (3.21)
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Step responses for various values of K and T are shown in Figure 3.1. We can observe that
increasing the value of T stretches the graph horizontally and increasing the value of K stretches
it vertically.

The step response function (3.21) can be used to determine the values of the parameters K and
T from the step response plot. Clearly, K = y(∞) which also follows from (3.21). As far as the
time constant is concerned, there are several methods. We can, for example, observe that

y(T ) = K(1 − e−1) = 0.63K ≈ 2
3K. (3.22)

Therefore, it can be obtained as the time when the step response reaches roughly 2/3 of its
steady-state value.

There are several time-domain indices that can characterise the step response of a first-order
system. All of them can be expressed as linear functions of T .

Settling time Tϵ is given as the time after which the output value remains within some pre-
scribed percentage distance ϵ around the steady state. Similarly to the preceding discus-
sion (3.22)

1 − e
Tϵ
T = 1 − ϵ. (3.23)

The usual considered values are ϵ = 0.02 or ϵ = 0.05, which gives

T0.05 ≈ 3T, T0.02 ≈ 4T. (3.24)

Therefore, another possibility to estimate the time constant from the step response is using
the fact that it takes approximately 3–5 time constants for the step response to settle down
(to reach the steady state).

Rise time Tc is the time required for the response to rise from 0% to c% of its final value. For
underdamped responses, a time point T100 is considered (time when the output signal
reaches its final value for the first time. For overdamped responses, a time point T90 is
commonly used as the time elapsed between reaching 10% and 90% of the new steady-state
output signal. T90 can be approximated as:

T90 = 2.2T. (3.25)

Example. 3.1: Impulse and ramp responses of a first-order system

Derive the impulse and ramp responses of the system

G(s) = K

Ts + 1 . (3.26)

and compare them with the step response of this system.

The impulse response g(t) is given as

g(t) = K

T
e− t

T , y(t) = g(t), (3.27)

and can be obtained as the time derivative of expression (3.21).
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Figure 3.1: Step responses and pole/zero maps of a first-order system.
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To derive the ramp response, we consider the input signal to the process u(t) = t and its
Laplace transform U(s) = 1/s2. This gives

Y (s) = G(s)U(s) = K

s2(Ts + 1) = K

s2 − K

s
+ KT 2

Ts + 1 , (3.28)

y(t) = K
(
t − 1 + T e− t

T

)
. (3.29)

We note that the time derivative of the ramp response is the process step response.

Example. 3.2: Rectangular pulse response of a first-order system

Consider rectangular pulse at the input of the form

u(t) =


0, t < 0,

c, 0 ≤ t < t1,

0, t ≤ t1.

(3.30)

Derive the response of a first-order system with gain K and time constant T .

The pulse is composed of two step changes: the first one with a magnitude c at time t = 0
and the second one with a magnitude −c at time t = t1. Therefore, its Laplace transform
is given as

U(s) = c

s
− c

s
e−t1s = c

s

(
1 − e−t1s

)
. (3.31)

The Laplace transform of the response can also be expressed as the sum of two step
responses

Y (s) = cK

s(Ts + 1) − cK

s(Ts + 1)e−t1s. (3.32)

The inverse Laplace transform gives the desired expression for y(t)

y(t) =

cK
(
1 − e−t/T

)
, t < t1,

cK
(
1 − e−t/T

)
− cK

(
1 − e−(t+t1)/T

)
, t ≥ t1.

(3.33)

3.1.2 Effects of an Additional Pole on the Step Response

Now, let us examine a combination of a first-order system with gain K and time constant T = 1 s
in series with an additional first-order system with the unit gain and the time constant 1/p (or
equivalently a stable pole −p). The combined transfer function is given as

G(s) = 1
(s + 1)

(
1
ps + 1

) . (3.34)

We can choose, without loss of generality, K = 1 as the gain just stretches the step response
vertically without any other effects. We can expect that the step response will be for large values
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Figure 3.2: Step responses and pole/zero maps of a second-order system with a varying position
of the pole p.

of p close to the step response of the first-order system. In that case, it should settle down in a
new steady state within 3–5 seconds.

The actual step response will differ depending on whether the value of p is equal to or distinct
from the value of the other pole (corresponding to T = 1).

Y (s) = G(s)U(s) = 1
s(s + 1)

(
1
ps + 1

) =


1
s

− 1
s + 1 − 1

(s + 1)2 , if p = 1,

1
s

− p

p − 1
1

s + 1 + 1
p(p − 1)

1
1
p

s + 1
, if p ̸= 1.

(3.35)

y(t) =
{

1 − e−t − te−t, if p = 1,

1 − p
p−1e−t − 1

p−1e−pt, if p ̸= 1.
(3.36)

Figure 3.2 shows the step responses and pole locations for systems with various values of p.
If p → ∞, we recover the original first-order system. We can see that the step response with
p = 10 is very close to that of the first-order system. The pole p ≫ 1 is very fast and its effect
vanishes quickly. In this case, the pole p = 1 dominates the step response. If the value of p is
close to one, the step response moves to the right (the process response is slower) and exhibits a
clearly visible inflection point. For very small values of p, the pole at p would dominate the step
response and the step response would again resemble a first-order system.

Dominant time constant TDOM If one time constant is at least 10 times higher than other ones,
it dominates the dynamic properties of the process. The corresponding pole is then the
dominant pole (or a couple of dominant poles if they are complex conjugates) and it is the
closest pole to the origin.

A practical rule of thumb is that Tϵ ≈ (3 to 5)TDOM.

In general, an additional pole slows down the process response if it is comparable with the other
poles. Its effects on the step response will be negligible if it is at least 10 times faster than other
poles. On the other hand, it will dominate the dynamic properties if it is at least 10 times slower
than the other poles.
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Figure 3.3: Step responses and pole/zero maps of a second-order system with a varying position
of a stable rezal zero z in the complex plane.

3.1.3 Effects of an Additional Zero on the Step Response

Let us now consider adding a zero to the process transfer function and study its influence on the
step response. We will distinguish two cases: a stable and an unstable zero.

Let us consider a system with two poles p1 and p2 as in the previous section and a zero z. We
can derive the step response of the system without zero y0(t) and the influence of the zero

G(s) = s + z

(s + p1)(s + p2) = (s/z + 1) 1
(s/p1 + 1)(s/p2 + 1) , (3.37)

Y (s) = G(s)U(s) = (s/z + 1) 1
(s/p1 + 1)(s/p2 + 1)

1
s

, (3.38)

Y0(s) = G0(s)U(s) = 1
(s/p1 + 1)(s/p2 + 1)

1
s

, (3.39)

y(t) = y0(t) + 1
z

ẏ0(t). (3.40)

As the derivative ẏ0(t) is positive, the smaller the zero, the faster the step response is.

Stable Zero

Figure 3.3 shows the step responses of a process with poles at p1 = 1 and p2 = 10, hence the pole
p1 is dominant. Without the zero (z → ∞), the step response resembles the step response of the
first-order system with T = 1. Actually, the values of zeros z = 10 and z = 1 cancel one of the
poles and leave the first-order system with time constant T = 1 and T = 0.1, respectively.

In general, the presence of a stable zero reduces the rise time. As far as the settling time is
concerned, the step response settles the fastest if the zero cancels out the dominant pole. If the
zero is very small (in the sense of its absolute value) and dominant (the closest to the imaginary
axis), it results in an overshoot and the settling time increases again.
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Figure 3.4: Step responses and pole/zero maps of a second-order system with a varying position
of an unstable zero z.

Unstable Zero

Negative value of the process zero results in the initial part of the step response taking the
opposite direction to the final part. This is shown in Figure 3.4. Again, the largest effect is caused
by the dominant (smallest) unstable zero the closest to the imaginary axis.

3.1.4 Step Response of a Second-Order System

Let us now consider systems with a a dominant pair of complex conjugate poles. Such systems
can be described by the transfer function (here normalised with K = 1)

G(s) = 1
T 2s2 + 2Tζs + 1 = ω2

0
s2 + 2ζω0s + ω2

0
, ζ ∈ (0, 1), (3.41)

where T is the time constant, ω0 = 1/T is the undamped natural frequency, and ζ is the damping
ratio (relative damping, damping coefficient). If ζ ≥ 1 we speak about an overdamped system
with two real poles. If ζ ∈ (0, 1) the system is underdamped and its poles occur as a complex
conjugate pair given as

s1,2 = −ζω0 ± jω0P, P =
√

1 − ζ2. (3.42)

We can calculate the magnitude (distance from the origin) and phase (angle from the origin) of
the complex poles

|s1,2| =
√

(−ζω0)2 + (ω0P )2 = ω0, (3.43)

ϕ(s1) = tan−1
(

ω0P

−ζω0

)
= − tan−1 P

ζ
, ϕ(s2) = tan−1 P

ζ
. (3.44)

While the magnitude on ω0 only, the phase depends on ζ only.
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Let us now derive the step response by partial fractioning the Laplace transform of the output
Y (s) to

Y (s) = G(s)U(s) = ω2
0

s(s2 + 2ζω0s + ω2
0)

= k1
s

+ k2s + k3
s2 + 2ζω0s + ω2

0
(3.45)

= 1
s

− s + 2ω0
s2 + 2ζω0s + ω2

0
(3.46)

= 1
s

− s + ω0
(s + ζω0)2s + (ω0P )2 − ζ

P

ω0P

(s + ζω0)2s + (ω0)P 2 . (3.47)

The inverse Laplace transform then gives the step response

y(t) = 1 − 1
P

e−ζω0t (P cos(ω0Pt) + ζ sin(ω0Pt)) (3.48)

= 1 − 1
P

e−ζω0t sin(ω0Pt + φ), φ = cos−1 ζ. (3.49)

Step responses and pole/zero maps for various values of the parameters ζ and ω0 are shown in
Figure 3.5. The response of the system is damped, oscillating with the frequency ω0P (period
of oscillations 2π/ω0P ). We note that if ω0 is fixed, the damping ratio ζ stretches the graph
vertically and the poles lie on the circular arc with radius ω0. If ζ is close to one, the step response
resembles the one with two real poles. As ζ approaches zero, oscillations are more pronounced
and the system is closer to instability.

If ζ is fixed, the undamped natural frequency ω0 stretches the graph horizontally. The poles lie
on the lines running at an angle dependeding on ζ only.

The rise time is determined for underdamped systems as T100 from the condition y(t) = y∞.
This gives

T100 = 1
ω0P

[
π − tan−1

(
P

ζ

)]
. (3.50)

The settling time can just be approximated. We start from (3.49) and over/underapproximate
the function by

y(t) ≈ 1 ± 1
P

e−ζω0t, (3.51)

as the values of the sine function lie within [−1, 1]. The condition y(Tϵ) = 1 ± ϵ gives

Tϵ ≈ 1
ζω0

ln 1
ϵP

, T0.02 ≈ 4
ζω0

, T0.05 ≈ 3
ζω0

. (3.52)

We can define some additional characteristics of the oscillatory step responses:

Maximum overshoot emax or σ is usually defined as the ratio between the maximum and
steady-state outputs in percents

emax = σ = ymax − y∞
y∞ − y0

× 100%. (3.53)

Peak time Tσ is the time when the maximum overshoot occurs.
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Figure 3.5: Step responses and pole/zero maps of a second-order underdamped system for
various values of ζ and ω0. Smaller ζ results in a less damped response, smaller ωo

makes the response faster.
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Both the aforementioned characteristics can be derived from the step response setting the
derivative of the output y(t) with respect to time equal to zero. The derivative of (3.48) gives

sin(ω0Pt) = 0 ⇒ Tσ = π

ω0P
. (3.54)

If ω0 is fixed, the peak time reduces with decreasing ζ and converges towards Tσ = π/ω0 = πT .
The value of the dominant time constant can be estimated in a similar way as for the first-order
system and its settling time, T ≈ (3 to 4)Tσ.

Substituting back the expression for Tσ into (3.48) gives

y(Tσ) = 1 + e− πζ
P ⇒ emax = e− πζ

P ⇒ ζ = | ln emax|√
π2 + ln2 emax

, (3.55)

where we can see that the maximum overshoot is a function of the damping ratio only. The
value of ζ can thus be determined from the maximum overshoot.

3.2 Examples

3.2.1 Two Tanks with Interaction

We study the dynamic properties of two tanks with interaction modelled in Example 1.2.2. The
process parameters are as follows: qs

0,1 = 0.9 m3/s, qs
0,2 = 0 m3/s, F1 = 0.5 m2, F2 = 0.6 m2,

k11 = 0.8 m2.5/s, and k22 = 0.5 m2.5/s.

We have also derived two possible transfer functions of the system (Eqs. (2.75) and (2.76)) given
as

G1(s) = Y (s)
U1(s) = k1

F1F2s2 + (k1F1 + k1F2 + k2F1)s + k1k2
= 7.2

6.075s2 + 9.326s + 1 , (3.56)

G2(s) = Y (s)
U2(s) = F1s + k1

F1F2s2 + (k1F1 + k1F2 + k2F1)s + k1k2
= 10.12s + 7.2

6.075s2 + 9.326s + 1 . (3.57)

3.2.1.1 Rewrite the transfer functions in terms of zeros and poles. Draw the poles and zeros in
the complex plane.

Both transfer functions are second order with two stable poles p1 = −0.12, p2 =
−1.42 and a gain K = 7.2. The second transfer function also has one stable zero
z1 = −0.71.

G1(s) = 1.19
(s + 1.42)(s + 0.12) , (3.58)

G2(s) = 1.67 s + 0.71
(s + 1.42)(s + 0.12) . (3.59)

g1 = tf(7.2, [6.075 9.326 1]); g2 = tf([10.12 7.2], [6.075 9.326 1]);
zpk(g1), zpk(g2)
pzmap(g1); figure; pzmap(g2)

Pole-zero maps of both transfer functions are shown in Figure 3.6.

3.2.1.2 Discuss the step response corresponding to the transfer functions and estimate the
settling times. Plot the step responses to confirm your findings.
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Figure 3.6: Pole-zero map of tanks with interaction.
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Figure 3.7: Step responses of two tanks with interaction.

Both transfer functions have stable real poles, hence, their step responses will be
overdamped (no oscillations). As far as G1(s) is concerned, pole p1 is dominant
with the corresponding time constant T1 = −1/p1 = 8.6 s. We can expect that the
step response will resemble that of the first-order system with the time constant
T1 and the settling time approximately 30 s.

The step response of G2(s) will be influenced by the additional zero. This is
located between the poles and will speed up the response a bit. However, the pole
p1 remains dominant and will still influence the response.

step(g1,g2)
legend('G_1', 'G_2')

Both step responses are shown in Figure 3.7.



3 Poles, Zeros, and Their Effects on Process Dynamics 76

3.2.1.3 Determine the damping ratio ζ and the natural frequency ω0 of both transfer functions.

The natural frequency can be obtained if the denominator polynomial is monic
(i.e. the coefficient at the highest degree of s is equal to one) and written as
s2 + 2ζω0s + ω2

0 = 0

6.075s2 + 9.326s + 1 = 0 ⇒ s2 + 1.54s + 0.17 = 0 ⇒ ω2
0 = 0.17.

The coefficient of s1 can be used to determine ζ, since it corresponds to 2ζω0

ζ = 1.54
2ω0

= 1.89.

The system is overdamped as ζ > 1.

3.2.2 Two Tanks with a Pump

We study the dynamic properties of two tanks with a pump modelled in Example 1.2.3. The
process parameters are: qs

0,1 = 0.9 m3/s, qs
0,2 = 0 m3/s, F1 = 0.5 m2, F2 = 0.6 m2, k11 = 0.8 m2.5/s,

and k22 = 0.5 m2.5/s.

We have also derived two possible transfer functions between the output and two inputs (2.103)

G1(s) = k1
F1F2s2 + (k1F1 + k1F2)s, (3.60)

G2(s) = −F1s − k1
F1F2s2 + (k1F1 + k1F2)s. (3.61)

3.2.2.1 Derive the step response corresponding to the transfer functions.

Both transfer functions have a pole at the origin and are thus unstable.

Y1(s) = G1(s) = k1
s2(F1F2s + k1F1 + k1F2) , (3.62)

Y2(s) = G2(s) = −F1s − k1
s2(F1F2s + k1F1 + k1F2) . (3.63)

Applying the inverse Laplace transform gives the desired expressions for the step
response (see Section 3.5):

y1(t) = t

F1 + F2
− F1F2

k1 (F1 + F2)2

(
1 − e− k1(F1+F2)

F1 F2
t
)

, (3.64)

y2(t) = − t

F1 + F2
− F1

2

k1 (F1 + F2)2

(
1 − e− k1 (F1+F2)

F1 F2
t
)

. (3.65)

3.2.2.2 Discuss asymptotic behaviour of the step responses.

The first term in both (3.64) and (3.65) is a ramp function, the second term is a
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Figure 3.8: Step response of the four dynamic systems.

constant and the third term is a stable exponential with the time constant

T = F1F2
k1(F1 + F2) , (3.66)

which goes to zero after (3 to 5)T . The first term dominates, thus the step response
is asymptotically a linear function with the slope ±1/(F1 + F2).

3.3 Practice Examples

3.3.1 An Introductory Example

Figure 3.8 shows step responses of four different systems after a perturbation by the step function
at time t0 = 0 from zero initial conditions.

Match the given transfer functions with the corresponding step response. Justify your answers
briefly. Characterise the step response in terms of stability, oscillatory behaviour, time delay, and
minimum/nonminimum phase.



3 Poles, Zeros, and Their Effects on Process Dynamics 78

G1(s) = 0.5
s

, G2(s) = 1
s2 + s + 1 , G3(s) = 1 − s

(s + 1)2 , (3.67)

G4(s) = e−3s

s + 1 , G5(s) = 1 + s

(s + 1)2 . (3.68)

A – G4(s), B – G1(s), C – G3(s), D – G2(s).

3.3.2 Two Tanks in Series

We study the nonlinear process with two tanks in series, for which we have derived the transfer
function matrix in Example 2.3.2.

The derived transfer function between the input u1(t) (the deviation variable of the inflow q0,1(t)
from its steady state) and the output y(t) (the deviation variable of the liquid level in the second
h2(t) from its steady state) is of the form:

G(s) =
k1

F1F2(
s + k1

F1

) (
s + k2

F2

) = k1
(F1s + k1) (F2s + k2) (3.69)

=
1
k2(

F1
k1

s + 1
) (

F2
k2

s + 1
) =

1
k2

F1
k1

F2
k2

s2 +
(

F1
k1

+ F2
k2

)
s + 1

. (3.70)

3.3.2.1 Transform the transfer function into the form:

G(s) = Kω2
0

s2 + 2ζω0s + ω2
0

, (3.71)

and define ω0, ζ, and K in terms of the process parameters. Discuss the meaning of the
process parameters to the system dynamics. How can you change the steady state (gain)
of the system?

G(s) =
k1

F1F2(
s + k1

F1

) (
s + k2

F2

) =
k1

F1F2

s2 +
(

k1
F1

+ k2
F2

)
s + k1

F1
k2
F2

= Kω2
0

s2 + 2ζω0s + ω2
0

. (3.72)

From this, it follows:

ω2
0 = k1

F1

k2
F2

, (3.73)

2ζω0 = k1
F1

+ k2
F2

⇒ 2ζ

√
k1
F1

k2
F2

= k1
F1

+ k2
F2

⇒ ζ =
k1
F1

+ k2
F2

2
√

k1
F1

k2
F2

, (3.74)

Kω2
0 = k1

F1F2
⇒ K

k1
F1

k2
F2

= k1
F1F2

⇒ K = 1
k2

. (3.75)

The steady-state gain of the system can be changed solely by the valve constant at
the outlet of the second tank. The overall system dynamics is given by the cross-
sectional areas of the tanks and by the values of valve constants. The damping
ratio ζ is always greater than 1 (notice here the relationship between the arithmetic
and geometric mean of two numbers).
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Figure 3.9: Two tanks in series: step responses and cumulative pole-zero maps for various
values of F2.

3.3.2.2 Let us study a system where the valve constants are k1 = k2 = 1 m2/s and the cross-
sectional area of the first tank is F1 = 5 m2. Compare the step responses of three
systems, where the cross-sectional area of the second tank is F2 = 0.1 m2, F2 = 1 m2,
and F2 = 10 m2, respectively. Discuss the results. Would the results change if the
cross-sectional area of the second tank was F2 = 5 m2 and F1 = 0.1 m2, F1 = 1 m2, and
F1 = 10 m2, respectively? What physical change in the system would you recommend to
make so that the overall response of the system becomes faster but without oscillations
and without a change in the steady-state gain?

The results would not change if we exchanged values of F1 and F2. This would
only change the behaviour of particular tanks but not the overall system behaviour
as the poles would remain unchanged by the transformation.

If we want to make the response of the system faster, we need to change the
slowest (dominant) pole. This can be done by decreasing the cross-sectional area
of the tank with the slowest pole or by increasing the valve constant (opening the
valve more) of the tank with the slowest pole, but only in the case if this tank is
the first in the series.

Figure 3.9 shows the step responses and pole-zero maps for F2 ∈ {0.1, 1, 10}m2.

3.3.2.3 (Optional) Show the recommendations from the previous point by numerical simulation.
Try to make the system response twice as fast.
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If F2 = 1 m2 then we can set F1 = 2.5 m2 or k1 = 2 m2/s.

3.3.2.4 Consider the steady-state process with parameters and initial values as follows: qs
0,1 =

0.3 m3/s, qs
0,2 = 0.5 m3/s, F1 = 0.5 m2, F2 = 0.8 m2, k11 = 1.15 m2.5/s, and k22 =

1.3 m2.5/s.

Calculate the maximal liquid height in the second tank if the process is subject to
following trajectory of q0,1

q0,1(t) =


0.3 m3/s, t < 5 s,

0.33 m3/s, t ∈ [5, 7) s,

0.2 m3/s, t ≥ 7 s.

(3.76)

Confirm your findings in a simulation using the nonlinear model. (Hint: calculate the final
response of the linearised model as a weighted sum of two step responses at t = 5 s and t = 7 s,
respectively, using the inverse Laplace transform).

The transfer function between h2 and q0,1 is given by (2.127) and we can express
the output y(t) using the inverse Laplace transform considering u(t) = 1

Gyu1
(s) =

k1
F1F2(

s + k1
F1

) (
s + k2

F2

) = 5.51
s2 + 5.729s + 5.82 , (3.77)

Y (s) = Gyu1
(s)U(s) = 5.51

s3 + 5.729s2 + 5.82s
, (3.78)

y(t) =
{

0.4e−4.4t − 1.35e−1.32t + 0.95, t ≥ 0,

0, t < 0.
(3.79)

As the system is linear, its response to two step changes is given as a weighted
sum of the individual responses. In our case, this gives

h2(t) = hs
2 + 0.03y(t − 5) − 0.13y(t − 7). (3.80)

The maximum height will be achieved at time t = 7 and is given as h2(7) = 0.4 m.

The nonlinear process will reach the maximum height at the same time and its
value will differ from the linear approximation by a few percent.

3.3.3 Mass on a Spring

Consider a system of a unit mass hanging from a spring as described in Problem 1.3.

3.3.3.1 Write down mathematical model of the system such that one can infer the position.

From the force balance:

Fg = Fm + Fs + Fr, (3.81)

where Fg is the force due to gravity. Using the expressions for forces, we obtain:

g = ks(x(t) − x0) + ẍ(t) + krẋ(t), (3.82)
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which can be rewritten as:

ẍ(t) + krẋ(t) + ksx(t) = ksx0 + g. (3.83)

3.3.3.2 Rewrite the model such that the initial conditions when set to zero would represent the
steady state.

The steady state can be found for conditions ẍ(t) = ẋ(t) = 0 as:

ksx
s = ksx0 + g ⇒ xs = x0 + g

ks
. (3.84)

Then, we can write for the deviation variable y(t) and its derivatives:

y(t) = x(t) − xs, ẏ(t) = ẋ(t), ÿ(t) = ẍ(t). (3.85)

Finally

ÿ(t) + krẏ(t) + ksy(t) = 0, ẏ(0) = y(0) = 0. (3.86)

3.3.3.3 Transform the model into a transfer function of the form:

G(s) = Kω2
0

s2 + 2ζω0s + ω2
0

, (3.87)

and define ω0, ζ, and K in terms of the process parameters.

G(s) = 0
s2 + krs + ks

= Kω2
0

s2 + 2ζω0s + ω2
0

(3.88)

From this, it follows that

ω2
0 = ks, (3.89)

2ζω0 = kr ⇒ 2ζ
√

ks = kr ⇒ ζ = kr

2
√

ks
, (3.90)

Kω2
0 = 0 ⇒ K = 0. (3.91)

3.3.3.4 Simulate the response of the system where (a) ks = 10 and kr = 1, (b) ks = 100 and
kr =

√
10, (c) ks = 10 and kr = 0 and (d) ks = 10 and kr = 10. Comment on the system

response regarding the values of ω0 and ζ.

We will first convert the model to a state-space form with states x1 = y, x2 = ẏ

ẋ1 = x2, (3.92)
ẋ2 = −ksx1 − krx2. (3.93)

% Case A
ks = 10; kr = 1;
initial(ss([0 1; -ks -kr], [], [1 0], 0), [1 0], 30)

% Case B
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Figure 3.10: Time response of the position of the mass-spring process for different values of the
parameters.

ks = 100; kr = 1*sqrt(10);
initial(ss([0 1; -ks -kr], [], [1 0], 0), [1 0], 30)

% Case C
ks = 10; kr = 0;
initial(ss([0 1; -ks -kr], [], [1 0], 0), [1 0], 30)

% Case D
ks = 10; kr = 10;
initial(ss([0 1; -ks -kr], [], [1 0], 0), [1 0], 30)

Time response of the output variable is shown in Figure 3.10. The Cases A and
C exhibit the same frequency of oscillations with ω0 = 3.33, the case A oscillates
three times faster with ω0 = 10. Damping ratio is the same in the cases A and B
(ζ = 0.16) and ten times higher in the case D. Therefore, the cases A and B exhibit
the same decay rate and the case D is overdamped. Finally, ζ = 0 characterises a
marginally stable system with sustained oscillations.

3.4 Problems

Problem. 3.1: Reluctance area of the first-order system

Consider a step response of the first-order system with the gain K and time constant T .
Calculate analytically area A between this curve and line r(t) = K. Confirm your results
using numerical integration in MATLAB.
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A = KT . This information can also be used to determine the value of the time constant T
experimentally.

T = 3; K = 4;
g = tf(K,[T 1]);
[y,t]=step(g);
area = trapz(t, K-y) % = 12.0006
T1 = area/K % = 3.0002

Problem. 3.2: Additional pole/zero with a transfer function involving complex conju-
gate poles

Examine the step responses of the systems of the form

Gz(s) = ω2
0(s + z)

s2 + 2ζω0s + ω2
0

, (3.94)

Gp(s) = ω2
0

(s + p)(s2 + 2ζω0s + ω2
0)

, (3.95)

where ζ ∈ (0, 1) and z and p are a stable zero and pole, respectively. What happens if
these become dominant? Examine the maximum overshoot, rise, and settling times.

An additional zero makes the step response faster and an additional pole makes the step
response slower. A dominant pole/zero will reduce the influence of the complex poles.

Problem. 3.3: Lead-lag system

A lead-lag system is characterised by one pole and one zero

G(s) = T1s + 1
T2s + 1 . (3.96)

Plot the step responses and consider both cases: T1 > T2 and T1 < T2.

T1 = 1; T2 = 2;
G1 = tf([T1 1],[T2 1]); G2 = tf([T2 1],[T1 1]);
step(G1, G2)

As the system is proper (the same degree of the numerator and denominator), the step
response exhibits a discontinuity. If a lead (T1 < T2) is used in series with another system,
it increases the speed of the overall response. As the static gain of the lead-lag system is
equal to one, this system only modifies the transient response.

Problem. 3.4: Time-delay system

A system with a time delay is characterised by the transfer function

G(s) = G0(s)e−TDs. (3.97)

Plot the step responses of the first-order system with gain K = 1, time constant T = 1, and
time delays TD ∈ {0.1, 1, 5}. Approximate the time delay by a fraction of two polynomials
(Padé approximation) in s.



3 Poles, Zeros, and Their Effects on Process Dynamics 84

T = 1; K = 1;
G0 = tf(K,[T 1]);
G1 = tf(K,[T 1], 'InputDelay', 0.1);
G2 = tf(K,[T 1], 'InputDelay', 1);
G3 = tf(K,[T 1], 'InputDelay', 5);
step(G0, G1, G2, G3)

Time delay shifts the step response to the right. If it is smaller than the time constant,
the step response remains dominated by the time constant. In that case, the first- or the
second-order Padé approximation can be used

e−TDs ≈
1 − TD

2 s

1 + TD
2 s

(3.98)

≈
1 − TD

2 s + T 2
D

12 s2

1 + TD
2 s + T 2

D
12 s2

(3.99)

T = 1; K = 1; TD=0.1;
G0 = tf(K,[T 1]); G1 = tf(K,[T 1], 'InputDelay', 0.1);
G1d = tf([-TD/2 1],[TD/2 1]); G1a = G0 * G1d;
step(G1, G1a)

Problem. 3.5: Oscillatory step response

Estimate the static gain, damping ratio, and undamped natural frequency from a step
response that exhibits an overshoot ymax = 3.2 at t = 2 s and settles down at y∞ = 2.

K = 2, ζ = 0.16, ω0 = 1.59.

K = 2; zeta = 0.16; om0 = 1.59;
g = tf(K*om0^2,[1 2*zeta*om0 om0^2]);
step(g)

Problem. 3.6: Step and impulse responses

Compare the step response of the first-order system with gain K and time constant T
with the impulse response of an unstable process with a transfer function of the form

G(s) = K

s(Ts + 1) . (3.100)

The responses are the same.

Problem. 3.7: Ramp and step responses

Compare the ramp response of the first-order system with gain K and time constant T
with a step response of an unstable process with a transfer function of the form

G(s) = K

s(Ts + 1) . (3.101)
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The responses are the same.

3.5 MATLAB Snippets

• Inverse Laplace transform using symbolic operations to derive the step response (3.64)
and (3.65)

syms k1 F1 F2 s
g1 = k1/(F1*F2*s^2 + k1*(F1+F2)*s); y1 = g1/s;
yt1 = simplify(ilaplace(y1))
g2 = -(F1*s+k1)/(F1*F2*s^2 + k1*(F1+F2)*s); y2 = g2/s;
yt2 = simplify(ilaplace(y2))

• Polynomial and pole-zero representations of transfer functions

num = [1 3 2]; den=[1 2 3 1];
g1 = tf(num, den), g2 = zpk(g1)

• Step response can be calculated and/or plotted using step or stepplot (Figure 3.1).

K = 1; T = [0.1 0.5 1.0];
G1 = tf(K, [T(1) 1]); G2 = tf(K, [T(2) 1]); G3 = tf(K, [T(3) 1]);
h = stepplot(G1, G2, G3);
setoptions(h,'XLim',[0, 6.5],'YLim',[0, 1.1],'grid','on')
legend('T=0.1','T=0.5','T=1.0', 'Location', 'southeast');
title('Step response, K=1');

Similarly for impulse response: impulse or impulseplot

• There is no built-in command for the ramp response as this can be obtained from the step
response of a system with the transfer function G(s)/s

• Transfer function from K, ω0, and ζ

K = 2; zeta = 0.16; om0 = 1.59;
g = tf(K*om0^2,[1 2*zeta*om0 om0^2]);
[num, den] = ord2(om0, zeta);
g2 = tf(K*om0^2*num, den)

• Pole-zero map (see Figure 3.1)

pzmap(G1, G2, G3); axis([-10.5 0 -1 1]);
legend('1/T=10','1/T=2','1/T=1', 'Location', 'southeast');

This plot can be customised with pzplot.

• Static gain of a transfer function K = G(0)
K = dcgain(g);

3.6 Python Snippets

• Inverse Laplace transform using symbolic operations to derive step responses (3.64) and
(3.65)

import sympy as sym
s = sym.symbols('s')
F1, F2, k1, t = sym.symbols('F1, F2, k1, t', positive=True)
a = F1 * F2; b = k1 * (F1 + F2)
g1 = k1 / (a * s**2 + b * s)
y1 = g1 / s
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sym.inverse_laplace_transform(y1, s, t)
g2 = -(F1 * s + k1) / (a * s**2 + b * s)
y2 = g2 / s;
sym.inverse_laplace_transform(y2, s, t)

• Polynomial and pole-zero representations of transfer functions

from control.matlab import *
num = [1, 3, 2]; den = [1, 2, 3, 1]
g1 = tf(num, den)
z, p, k = tf2zpk(num, den)
g2 = zpk2tf(z, p, k)

• Step response can be calculated and/or plotted using step (Figure 3.1).

from control.matlab import *
import matplotlib.pyplot as plt
K = 1; T = [0.1, 0.5, 1.0];
G1 = tf(K, [T[0], 1]); G2 = tf(K, [T[1], 1]); G3 = tf(K, [T[2], 1]);
y1, t1 = step(G1, 7); y2, t2 = step(G2, 7); y3, t3 = step(G3, 7);
plt.figure(1)
plt.plot(t1, y1, t2, y2, t3, y3); plt.legend(['T=0.1','T=0.5','T=1.0'])
plt.grid(); plt.xlabel('Time (seconds)'); plt.ylabel('Amplitude')
plt.title('Step response, K=1')
plt.show()

Similarly for impulse responses impulse. There also exist functions for a response with
nonzero initial conditions (initial) and a simulation with an arbitrary input (lsim)

• Poles, zeros, and pole-zero map (see Figure 3.1)

from control.matlab import *
import matplotlib.pyplot as plt
num = [1, 3, 2]; den = [1, 2, 3, 1]; g1 = tf(num, den);
z = zero(g1); p = pole(g1)
p, z = pzmap(g1, plot=True, grid=True)
plt.show()

• Static gain of a transfer function K = G(0)
K = dcgain(g1)

3.7 Bibliography

Understanding of dynamic properties of processes represents a crucial knowledge for process
control engineering. The theoretical background for this chapter can be found in Mikleš and
Fikar (2007, Chapter 4), information in Slovak in Bakošová and Fikar (2008, Chapter 3).

Additional information can be found for example in Seborg, Edgar, Mellichamp, and Doyle
(2016, Chapters 5-6), or Stephanopoulos (1984, Chapter 3).



CHAPTER 4

Frequency-Domain Characteristics of Dynamic
Systems

Expected outcomes of this chapter are:

• refresh of knowledge on complex numbers, their representations, and mathematical
operations involving them,

• understand the properties of dynamic systems in frequency domain, frequency responses
of dynamic systems and their graphical representations: Bode and Nyquist diagrams,

• ability to sketch Bode diagrams for basic transfer function components of linear systems
(consisting of gain, real and complex poles, integrators, derivators, delays),

• understanding the relationships between poles, zeros, and frequency-domain properties.

In the previous chapter, we studied the characteristics of dynamic systems in the time domain
and the responses to step, impulse, or ramp signals. While it is possible to determine time-
domain properties for the first and the second order systems, it is difficult to do so for higher-
order systems. Moreover, controller design methods that set time-domain characteristics are
mostly iterative and their use was possible only due to the power of digital computers.

Another commonly used input signal is a sine wave as a function of frequency ω. We will study
the asymptotic time response of processes to this (harmonic) signal and relate them to frequency-
domain transfer functions where the variable s is substituted for the complex variable jω. We
will see that it is possible to predict time-domain properties based on their frequency-domain
counterparts.

While two different dynamic systems can exhibit similar time-domain characteristics (e.g. step
responses, rise time, settling time), their differences will clearly show in frequency domain.
Moreover, powerful methods exist for open- or closed-loop analysis, controller design using
frequency-domain tools.

Frequency-domain analysis does not mean that the process input is sinusoidal. Rather, we will
be able to study the controlled process, controller, or closed-loop system from a different point
of view.
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Figure 4.1: Complex numbers z and z̄.

4.1 Overview

4.1.1 Complex Numbers, Variables, and Functions

A complex number z and its conjugate form z̄ can be represented in algebraic, trigonometric,
and polar forms as

z = a + bj = |z|(cos φ + j sin φ) = |z|ejφ, (4.1)

z̄ = a − bj = |z|(cos φ − j sin φ) = |z|e−jφ, (4.2)

where j is defined by j =
√

−1, thus, j2 = −1. Real-valued parameters a and b of the algebraic
form are real and imaginary parts that can be thought of as coordinates of a point in a two-
dimensional space (Figure 4.1). The second equality represents the trigonometric and the last
equality the polar form expressed by the magnitude (amplitude) and phase (angle). Clearly, the
magnitude or absolute value (distance from the origin) |z| and phase or angle φ (to horizontal,
real axis) can be determined as

|z| =
√

a2 + b2, cos φ = a

|z|
, sin φ = b

|z|
, tan φ = b

a
. (4.3)

Care has to be taken when determining the phase using the last formula to detect the correct
quadrant (as with a = −1, b = −1).

Useful formulae for magnitude and phase of the composite complex numbers arising from
multiplication and division are (consider polar form zi = |zi|ejφi , i = 1, 2, 3)

z = z1z2
z3

= |z1|ejφ1 |z2|ejφ2

|z3|ejφ3
= |z1||z2|

|z3|
ej(φ1+φ2−φ3) = |z|e−jφ, (4.4)

|z| = |z1||z2|
|z3|

, φ = φ1 + φ2 − φ3. (4.5)

Let us now consider a complex variable s = σ + jω and a function G(s). It follows that G(s) is
also a complex-valued function that can be represented by its real/imaginary parts, or by the
magnitude and phase

G(s) = R(G(s)) + jI(G(s)) = |G(s)|eφ(G(s)). (4.6)
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Example. 4.1: Complex variable

Characterise the real and imaginary parts, magnitude, and phase of the complex function

G(s) = s + 2
s(s + 1) , (4.7)

for s = 3j.

The real and imaginary parts can be obtained by substituting for s = 3j and by eliminating
j from the denominator

G(3j) = 3j + 2
3j(3j + 1) = 3j + 2

−9 + 3j

(−9 − 3j)
(−9 − 3j) = −9 − 33j

81 + 9 = − 9
90 − 33

90j = − 3
30 − 11

30j. (4.8)

The absolute value can either be calculated from the real and imaginary parts or as the
absolute value of the numerator divided by the absolute value of the denominator

|G(3j)| =

√( 3
30

)2
+
(11

30

)2
, |G(3j)| = |3j + 2|

|3j||3j + 1|
=
√

13
90 . (4.9)

The phase (or angle) can either be calculated from the real and imaginary parts or as the
sum of phases in the numerator minus the sum of phases in the denominator

tan φ(G(3j)) = 11
3 , φ(G(3j)) = φ(3j + 2) − φ(3j) − φ(3j + 1). (4.10)

Example. 4.2: Complex function

Characterise the real and imaginary parts, magnitude, and phase of the complex function

G(s) = K

Ts + 1 , (4.11)

for the real positive parameters K and T and for s = jω, where ω ∈ ⟨0, ∞).

The real and imaginary parts can be obtained by substituting s = jω and removing j from
the denominator

G(jω) = K

Tjω + 1 = K

1 + Tωj

1 − Tωj

1 − Tωj
= K(1 − Tωj)

1 + T 2ω2 = K

1 + T 2ω2 − KTω

1 + T 2ω2 j. (4.12)

The absolute value can either be calculated from the real and imaginary parts or as the
absolute value of the numerator divided by the absolute value of the denominator

|G(jω)| = K√
1 + T 2ω2

. (4.13)

The phase can either be calculated from the real and imaginary parts or as the difference
of the phase in the numerator (zero) and the phase in the denominator

tan φ(G(jω)) = −Tω. (4.14)



4 Frequency-Domain Characteristics of Dynamic Systems 90

4.1.2 Frequency Responses and Characteristics

As we have seen in the example above, a transfer function can be represented as a function of a
complex variable j and frequency ω. We can characterise its magnitude and phase as functions
of frequency.

Another physical observation can be derived when introducing harmonic signal of the form
u(t) = a sin(ωt) to a process described by a transfer function G(s). The process response settles
down to a harmonic signal of the same frequency ω but with a different magnitude after some
transient period and it is delayed by a phase shift corresponding to the magnitude and phase of
the transfer function at that particular frequency:

y(t) = b sin(ωt + φ), (4.15)

where

b = a|G(jω)|, (4.16)
φ = φ(G(jω)). (4.17)

The most popular representations of transfer function frequency-domain properties are the
frequency characteristics – plotted for values of frequency either ω ∈ (0, ∞) or ω ∈ (−∞, ∞)

• Magnitude: |G(jω)| = f(log10 ω) or 20 log10 |G(jω)| = f(log10 ω),

• Phase: arg(G(jω)) = φ(ω) = f(log10 ω),

• Magnitude/Phase: G(jω) = f(ω).

The first two plots are usually shown together and called Bode diagram. The third one is called
the Nyquist diagram.

Bode diagrams use semilog ω-axis. Magnitude is plotted in decibels (dB, 20 log10 |G|), which is
again in a logarithmic scale. The main advantage of this representation lies in the fact that the
absolute values of individual components of the transfer function (containing poles, zeros, gain)
can be summed in both magnitude and phase.

Consider for example a system with the transfer function given as

G(s) = B(s)
A(s) = K

sk(1 + s
z1

) · · · (1 + s
zm

)
sl(1 + s

p1
) · · · (1 + s

pn
) . (4.18)

Its logarithmic magnitude and phase can then be written as a sum of individual components:

20 log |G(jω)| = 20 log |K| + 20(k − l) log ω +
m∑

i=1
20 log

∣∣∣∣1 + j
ω

zi

∣∣∣∣− n∑
i=1

20 log
∣∣∣∣1 + j

ω

pi

∣∣∣∣ ,
(4.19)

φ(ω) = 90(k − l) +
m∑

i=1
φ

(
1 + j

ω

zi

)
−

n∑
i=1

φ

(
1 + j

ω

pi

)
. (4.20)

Moreover, the individual contributions of simple poles and zeros to the magnitude can conve-
niently be approximated by asymptotes whereby any asymptote can only have a slope that is an
integer multiple of 20 dB per decade. This is shown in Figure 4.2, and 4.3 (complex poles are
represented by the polynomial s2 + 2ζs + 1 where ζ ∈ (0, 1)).
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Figure 4.2: (left) Bode diagrams of component transfer functions: gain, (right) integrator/deriva-
tor.
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Figure 4.3: (left) Bode diagrams of component transfer functions: simple pole/zero, (right) two
complex poles.

4.1.3 Stability Margins

When considering a transfer function of the controlled process and the controller connected
in series, we speak of open-loop transfer function and denote the respective system transfer
function as Go(s).

• The gain crossover point in the frequency-domain plot of Go(jω) is the point at which
|Go(jω)| = 1 or 20 log |Go(jω)| = 0 dB. The frequency at the gain crossover point is called
the gain crossover frequency ωg.

• The phase crossover point in the frequency-domain plot of Go(jω) is the point at which
φ(Go) = −180◦. The frequency at the phase crossover point is called the phase crossover
frequency ωp.

• The gain margin gm is the amount of gain K in decibels (dB) that has to be added to
the open-loop system at frequency ωp before the closed-loop system becomes unstable
(|Go(ωp)| = 1), that is,

|Go(ωp)|K = 1, gm = 20 log K = −20 log (|Go(ωp)|) . (4.21)

• The phase margin φp is defined as the angle in degrees by which the Nyquist diagram of
the open-loop system has to be rotated about the origin so that the gain crossover passes
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the −1 + 0j point and the closed-loop system becomes unstable, that is,

φ(Go(ωg)) + φp = −180, φp = −180 − φ(Go(ωg)). (4.22)

Gain and phase margins along with the corresponding frequencies are shown in the Bode
diagram in Figure 4.4. The same information in the Nyquist diagram is shown in Figure 4.5.

4.2 Examples

Example. 4.3: Bode diagrams of the basic dynamic components

Derive and examine the magnitude and phase frequency characteristics of a gain, a chain
of integrators, a simple pole/zero, and complex conjugate poles that are in Figures 4.2,
4.3.

• Gain G(s) = K: 20 log |G(jω)| = 20 log |K| and φ = 0◦ (for positive K). This
corresponds to a horizontal line in the magnitude plot which is positive if K > 1.
Negative values in decibels represent the value of 1/K as

20 log K = −20 log 1
K

. (4.23)

Gain does not change the phase for positive values. If negative, then the phase shift
is −180◦.

• Multiple integrators G(s) = 1/sn:

20 log |G(jω)| = 20 log 1
|jω|n

= 20 log 1
ωn

= −20n log ω, (4.24)

φ = φ(1) − φ((jω)n) = 0◦ − n90◦ = −n90◦. (4.25)

The magnitude plot is a straight line that crosses the point (ω = 100, 20 log |G| =
0 dB) with a slope of −20n. Hence, if the frequency increases 10 times, the magnitude
in decibels decreases 20n. We speak of a decrease of 20n decibels per decade.

Each integrator exhibits a constant phase shift of −90◦ over the entire frequency
range.

Note that multiple derivators G(s) = sn just change the sign of both frequency
characteristics. Magnitude plots increase 20n dB per decade while the phase shift is
constant and positive.

• Simple zero G(s) = s/z + 1:

20 log |G(jω)| = 20 log
∣∣∣∣jω

z
+ 1

∣∣∣∣ =
{

0, if ω ≪ z,

20 log ω − 20 log z, if ω ≫ z,
(4.26)

φ = φ(1) − φ

(
jω

z
+ 1

)
=
{

0◦, if ω ≪ z,

−90◦, if ω ≫ z.
(4.27)

The magnitude frequency characteristics can be approximated by asymptotes and
divided into two regions. For small frequencies, it is constant and stays at 0 dB while



4 Frequency-Domain Characteristics of Dynamic Systems 93

Figure 4.4: Relative stability in Bode diagram
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Figure 4.5: Relative stability in Nyquist diagram
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for large frequencies it is a straight line that increases at a rate of 20 dB per decade.
These two asymptotes meet at the corner frequency ωc = z, where asymptotes differ
from the real magnitude value by about 3 dB.

Phase frequency characteristics can also be approximated by asymptotes. It is zero
for small frequencies and 90◦ for large frequencies. The middle section can be
approximated by a straight line starting from the zero asymptote one decade before
the corner frequency and ending one decade after the corner frequency.

Note that a simple pole G(s) = 1/(s/p + 1) just changes the sign of both frequency
characteristics. The magnitude graph decreases 20 dB per decade for large frequen-
cies defined by the corner frequency ωc = p and the phase graph converges to
−90◦.

• Complex conjugate poles with a damping ratio ζ ∈ (0, 1) and a time constant T (or
natural frequency ω0 = 1/T )

G(s) = 1
T 2s2 + 2ζTs + 1 = 1(

s
ω0

)2
+ 2ζ s

ω0
+ 1

, (4.28)

20 log |G(jω)| = −20 log

√√√√(1 − ω2

ω2
0

)2
+
(

2ζ
ω

ω0

)2
(4.29)

=
{

0, if ω ≪ ω0,

−40 log ω − 40 log ω0, if ω ≫ ω0,
(4.30)

φ = tan−1

 2ζ ω
ω0

1 − ω2

ω2
0

 =


0◦, if ω ≪ ω0,

−90◦, if ω = ω0,

−180◦, if ω ≫ ω0.

(4.31)

The presence of two poles indicates that the magnitude frequency characteristics
can be approximated by an initial asymptote at 0 dB at smaller frequencies and by
an asymptote declining by 40 dB per decade at higher frequencies. Again, these two
asymptotes intersect at the corner frequency ωc = ω0.

Complex conjugate poles can give rise to a local maximum at the resonant frequency
ωr (called a resonance peak) near the corner frequency. This can be obtained by
taking the derivative of the magnitude with respect to ω and setting it to zero. This
gives:

ωr = ω0

√
1 − 2ζ2, (4.32)

|G(jωr)| = 1
2ζ
√

1 − ζ2 . (4.33)

The maximum of the magnitude plot occurs only for smaller values of the damping
ratio ζ < 1/

√
2 ≈ 0.7 and its value depends on ζ only.

The resonant frequency is always smaller than the corner frequency but converges
towards it if the damping ratio decreases.

Phase plot can be approximated by constant lines of 0◦ for small frequencies and
−180◦ for large frequencies. It is equal to −90◦ at the corner frequency ωc = ω0.
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Figure 4.6: Nyquist diagrams of the first-, second-, third-, and fourth-order systems.

Example. 4.4: Nyquist diagrams of multiple systems

Examine the Nyquist diagrams of the following four dynamic systems

Gn(s) = 1
(s + 1)n

, n = 1, 2, 3, 4. (4.34)

We derive the magnitude and phase frequency characteristics for the transfer functions
Gn(jω)

|Gn(jω)| = 1
|1 + jω|n

= 1(√
1 + ω2

)n , (4.35)

φn = −n tan−1 ω. (4.36)

The main difference between the systems lies in the phase characteristics. While G1(jω)
decreases from the initial 0◦ to −90◦, the increasing order of the system adds an additional
integer multiples of −90◦ decrease. The resulting Nyquist diagrams are shown in Fig-
ure 4.6. Note that MATLAB shows these plots both for positive and negative frequencies –
the plot is symmetric along the real axis. We usually describe only the part with positive
frequencies.

While G1(jω) lies entirely in the fourth quadrant (and its mirror image along the real
axis in the first quadrant), G2(jω) terminates in the third quadrant, G3(jω) in the second
quadrant, and G4(jω) in the first quadrant. Note also the point −1+0j marked with a red
cross. It represents the gain equal to one and the phase of −180◦. If the frequency response
passes this point, the system is marginally stable. We can see that with increasing order
the system moves closer to this point indicating possible stability issues.



4 Frequency-Domain Characteristics of Dynamic Systems 96

10 -4 10 -3 10 -2 10 -1 100 101 102

Frequency (rad/sec)

-80

-60

-40

-20

0

20

40

60

80

M
ag

ni
tu

de
 (

dB
)

K=10

1/s

T
1
=100

T
2
=1

Bode Diagram

Frequency  (rad/s)

-160

-120

-80

-40

0

40

80

120

M
ag

ni
tu

de
 (

dB
)

0.0001 0.001 0.01 0.1 1 10 100
-270

-240

-210

-180

-150

-120

-90

P
ha

se
 (

de
g)

Figure 4.7: Bode diagrams of the third-order system. (left) Magnitude – asymptotes of the
individual components, (right) Bode diagram with asymptotes.

Example. 4.5: Unstable third-order system

Examine the Bode diagram of the following system consisting of a gain, integrator, and
two poles

G(s) = K

s(T1s + 1)(T2s + 1) . (4.37)

The magnitude and the phase can be obtained as follows:

20 log |G(ω)| = 20 log |K| − 20 log ω − 20 log
√

(T1ω)2 + 1 − 20 log
√

(T2ω)2 + 1,

(4.38)

φ(ω) = −90◦ − tan−1(T1ω) − tan−1(T2ω). (4.39)

The magnitude-frequency characteristics will be a sum of the characteristics of the four
individual systems. The magnitude in decibels of each pole is equal to zero at low
frequencies. At the corner frequency ωc = 1/Ti, an asymptote start decreasing by 20 dB
per decade. The integrator decreases by 20 dB per decade over the entire ω span and
crosses the point (ω = 100, 20 log |G| = 0 dB). Finally, the gain K shifts the magnitude
plot up or down depending on the value of 20 log |K|.

Similarly, phases of the individual components are: the gain K has a phase of 0◦ and the
integrator has a phase of −90◦. Phase of each pole starts at 0◦, and bends down around
its corner frequency and ends at −90◦.

Let us assume the values K = 10, T1 = 100, T2 = 1. Magnitudes of the individual
components are shown in the left part of Figure 4.7. When summed up at each frequency,
they give the final magnitude plot shown in the right part of the figure.
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Figure 4.8: Stability margins of 3rd order systems. (left) unstable, (right) stable.

Example. 4.6: Stability margins of a stable and unstable third-order system

Let us study the stability margins of the following transfer functions:

G1(s) = 10
s(s + 1)(100s + 1) , G2(s) = 10

(s + 1)(10s + 1)(100s + 1) . (4.40)

We will use the command margin that adds stability margins to the Bode diagram.

g1 = tf(10, [100 101 1 0])
margin(g1);
g2 = tf(10, [1000 1110 111 1]);
margin(g2);

The result is shown in Figure 4.8. Two horizontal lines are added to the plots: for the
magnitude plot, one line with the value 0 dB that corresponds to the gain equal to one
and in the phase plot, one line with the value corresponding to −180◦. Subsequently, two
vertical lines are plotted: the one where the magnitude plot crosses the horizontal line
0 dB that extends to the phase plot and marks the complement to −180◦. If the phase
plot crosses this line from above, we observe a positive phase margin. Otherwise, the
closed-loop system is unstable due to the phase.

The second vertical line rises from the intersection of the phase plot with the line corre-
sponding to −180◦ up to the magnitude plot. Then we can read the difference in decibels.
If it is negative, the closed-loop system is unstable due to the gain.

4.2.1 Two Tanks with Interaction

We study the dynamic properties of two tanks with interaction modelled in Example 1.2.2. The
process parameters are as follows: qs

0,1 = 0.9 m3/s, qs
0,2 = 0 m3/s, F1 = 0.5 m2, F2 = 0.6 m2,

k11 = 0.8 m2.5/s, and k22 = 0.5 m2.5/s.

We have also derived two possible transfer functions between the output and the two inputs
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Figure 4.9: Bode diagrams for two tanks with interaction. (left) G1(s), (right) G2(s).

(equations (2.75), (2.76)) given as

G1(s) = Y (s)
U1(s) = k1

F1F2s2 + (k1F1 + k1F2 + k2F1)s + k1k2
= 7.2

6.075s2 + 9.326s + 1 , (4.41)

G2(s) = Y (s)
U2(s) = F1s + k1

F1F2s2 + (k1F1 + k1F2 + k2F1)s + k1k2
= 10.12s + 7.2

6.075s2 + 9.326s + 1 . (4.42)

4.2.1.1 Compare the Bode diagrams for both transfer functions and discuss the differences.

Both transfer functions are second order, with two stable poles p1 = −0.12 and
p2 = −1.42 and a gain K = 7.2. In addition, the second transfer function involves
one stable zero z1 = −0.72.

The resulting Bode diagrams are shown in Figure 4.9. At smaller frequencies,
the magnitude plots have a constant value 20 log K = 17.15 until the first pole p1
starts to influence the plot and bends the magnitude down towards a decrease of
20 dB per decade. For G1(s), the magnitude decreases further and near the second
pole p2 starts to follow the final asymptote with a slope of 40 dB per decade.

On the other hand, G2(s) has a zero z1 that counteracts the 20 dB decrease back to
a constant value. However, the second pole cancels the effect of the zero for larger
frequencies and the final asymptote decreases by 20 dB per decade.

A similar situation occurs with the phase plot. Both start at 0◦. For G1(s), the
phase plot ends at −180◦ whereas for G2(s) at −90◦. In both cases, we can see the
effect of the relative degree: an excess of the number of poles to the number of
zeros.

4.2.1.2 Find the selected points of the frequency response of a nonlinear process.

A frequency-response characteristics can be determined experimentally using
various methods. One point of the frequency response can be obtained by feeding
a harmonic signal u(t) = a sin(ωt) (as deviation from the steady state) and and
calculating the ratio of the output signal mangitude to the input signal magnitude
as well as the phase shift. This can be repeated for a range of frequencies.

It is possible to determine the frequency characteristics from a single experiment
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Figure 4.10: Bode diagrams for two tanks with a pump. (left) G1(s), (right) G2(s).

using more sophisticated methods based on Fourier analysis. However, it is
beyond the scope of this book.

4.2.2 Two Tanks with a Pump

We study the dynamic properties of two tanks with interaction modelled in Example 1.2.2. The
process parameters are as follows: qs

0,1 = 0.9 m3/s, qs
0,2 = 0.9 m3/s, F1 = 0.5 m2, F2 = 0.6 m2,

k11 = 0.8 m2.5/s, and k22 = 0.5 m2.5/s.

We have also derived two transfer functions between the output and the two inputs (equa-
tions (2.103)) given as

G1(s) = Y (s)
U1(s) = k1

F1F2s2 + (k1F1 + k1F2)s = 0.91
0.77s2 + s

, (4.43)

G2(s) = Y (s)
U2(s) = −F1s − k1

F1F2s2 + (k1F1 + k1F2)s = −1.28s − 0.91
0.77s2 + s

. (4.44)

Compare the Bode diagrams for both transfer functions and discuss the differences.

Both transfer functions are second order, with one unstable pole p1 = 0, one stable pole
p2 = −1.42, and a numerator which evaluated at s = 0 equals b = ±0.91. G2(s) also has
one stable zero z1 = −0.71.

The resulting Bode diagrams are shown in Figure 4.10. The integrator (1/s) results in
a decrease of 20 dB per decade from the start of the magnitude-frequency plot. The
additional pole at p2 = −1.3 bends the magnitude further down to 40 dB per decade (left).
The occurrence of a zero in G2(s) effectively suppresses the pole and the magnitude plot
on the right-hand side resembles a single integrator.

The phase plot of G1(s) starts at −90◦ and ends at −180◦. On the other hand, the stable
zero of G2(s) keeps its phase plot practically constant at −270◦ = 90◦. Compared to
a single integrator which stays at −90◦, the negative sign in the numerator adds an
additional −180◦.
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4.3 Practice Examples

4.3.1 First-Order System

Consider a first-order linear dynamic system without time delay with a gain K and a time
constant T given as

G(s) = K

Ts + 1 . (4.45)

4.3.1.1 Derive the response of the system y(t) if the input is u(t) = A sin(ωt). Discuss the results.

Using the transfer function of the system:

G(s) = Y (s)
U(s) = K

Ts + 1 , (4.46)

we obtain:

Y (s) = K

Ts + 1U(s). (4.47)

Next, we introduce the Laplace transform of the input:

u(t) = A sin(ωt) L(·)=⇒ U(s) = Aω

s2 + ω2 . (4.48)

and obtain:

Y (s) = K

Ts + 1
Aω

s2 + ω2 . (4.49)

Partial fractioning gives

K

Ts + 1
Aω

s2 + ω2 = C

Ts + 1 + Ds + E

s2 + ω2 , (4.50)

which leads to the relationship

KAω = C(s2 + ω2) + (Ds + E)(Ts + 1) (4.51)

= (C + DT )s2 + (D + ET )s + Cω2 + E. (4.52)

We compare left- and right-hand coefficients to get:

0 = C + DT ⇒ C = −DT = (KAω − Cω2)T 2, (4.53)

0 = D + ET ⇒ D = −ET = −(KAω − Cω2)T, (4.54)

KAω = Cω2 + E ⇒ E = KAω − Cω2. (4.55)

Re-arranging gives

C + Cω2T 2 = KAωT 2 ⇒ C = KAωT 2

1 + ω2T 2 , (4.56)

D = −
(

KAω − KAω3T 2

1 + ω2T 2

)
T = − KAωT

1 + ω2T 2 , (4.57)

E = KAω − KAω3T 2

1 + ω2T 2 = KAω

1 + ω2T 2 . (4.58)
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The final Laplace transform of the output is

Y (s) = KAω

1 + ω2T 2

(
T 2

Ts + 1 + −Ts + 1
s2 + ω2

)
(4.59)

= KAω

1 + ω2T 2

(
T 2

Ts + 1 + −Ts

s2 + ω2 + 1
s2 + ω2

)
. (4.60)

Using inverse Laplace transform, we obtain:

y(t) = KAω

1 + ω2T 2

(
T e− t

T − T cos(ωt) + 1
w

sin(ωt)
)

. (4.61)

Here the first term vanishes over time. Now we can use a trigonometric identity

a1 cos(b) + a2 sin(b) =
√

a2
1 + a2

2 sin
(

b + tan−1
(

a1
a2

))
. (4.62)

We obtain the intermediate result

y(t) = KAω

1 + ω2T 2

√
T 2 +

( 1
ω

)2
sin(ωt + tan−1(−Tω)︸ ︷︷ ︸

φ

), (4.63)

which upon simplification gives

y(t) = KA√
1 + ω2T 2

sin(ωt + φ). (4.64)

Both the magnitude and the phase depend on the frequency ω. The magnitude is
given by | KA√

1+ω2T 2 | and the phase is tan−1(−Tω). The magnitude and phase both
decrease as the frequency increases.

4.3.1.2 Verify the observations made by simulating the response of the system with K = 2
and T = 10 to the input u(t) = A sin(ωt) with A = 1 and three different frequencies
ω = {0.01, 0.1, 10}. Discuss the results.

We will make use of the Simulink model shown in Figure 4.11 and apply different
input frequencies ω = {0.01, 0.1, 10}. The results are shown in Figure 4.12.

The simulation results confirm the theoretical findings. At small frequencies, the
magnitude of the input is given by ≈ |KA|. An increase of the input frequency
decreases the magnitude towards 0. The phase is close to 0 at small frequencies
and then decreases towards −90◦. At ω = 0.1, it is −45◦.

4.3.1.3 Plot the frequency response of the system using the Bode and Nyquist diagrams. Discuss
the results.

The Bode and Nyquist diagrams of the system can be created in MATLAB and are
shown in Figure 4.13. The vertical line represents the pole location of the system
at s = 0.1.

g = tf(2,[10 1]);
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Figure 4.11: Simulation of response of the first-order system to a harmonic signal.
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Figure 4.12: Simulation results of the response of the first-order system to a harmonic signal.

bode(g); grid
figure; nyquist(g)

Bode diagram: the magnitude plot shows a decay of 20 dB per decade after
reaching the frequency of the pole. The phase plot reaches −90◦ which shows the
presence of one pole and no zeros.

Nyquist diagram: MATLAB plots two curves which are symmetric about the
x-axis. The upper one is for negative frequencies (−∞, 0) and the lower one for
positive frequencies (0, ∞). The positive plot starts at K + 0j for ω = 0 and
asymptotically approaches the point 0 + 0j for ω → ∞. The phase shift is always
negative and varies from 0◦ at low frequencies to −90◦ at high frequencies.
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Figure 4.13: Bode and Nyquist diagrams for the first-order system.
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Bode Diagram
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Figure 4.14: Bode diagram of the first-order system with the asymptotes in the magnitude and
phase plots.

4.3.1.4 Draw the asymptotes that correspond to the beginning and the end of the magnitude
and phase plots. Comment on the results.

The asymptotes of the magnitude plot of the Bode diagram are lines with an
increase/decrease by integer multiple of 20 dB per decade (the top part of Fig-
ure 4.14). The maximum deviation between the Bode diagram and the asymptotes
is about 3 dB and occurs at the pole location (at the corner frequency).

The lower plot shows the horizontal asymptotes on the phase plot.

4.3.2 A One-Dimensional Car

We study the motion of a car modelled in Section 1.3.1.

Plot the Bode diagram. Discuss the results.

g = tf(1, [1 0 0])
bode(g)
grid
h1=findall(gcf); hline=findobj(gcf,'Type','line');
for i=1:length(hline)

hline(i).LineWidth=2;
end

iam_save_pdf('bod_plt_car.pdf');

The phase plot is constant at −π, which suggests the presence of a double integrator
(Figure 4.15). This is confirmed by the magnitude plot, which crosses zero at the frequency
ω = 1 and decreases by 40 dB per decade.
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Figure 4.15: Bode diagram of the one-dimensional car.

4.3.3 Two Tanks in Series

We study a system with two tanks in series (Example 1.2.4), for which we have derived the
transfer matrix in Section 2.3.2.

4.3.3.1 Plot the Bode diagram and discuss the results. The parameters of the system are k11 =
1.15 m2.5/s, k22 = 1.3 m2.5/s, F1 = 0.5 m2, and F2 = 0.8 m2. Use the input values of
q0,1 = 0.3 m3/s and q0,2 = 0.5 m3/s to define the steady state.

q01s = 0.3; q02s = 0.5;
k11 = 1.15; k22 = 1.3;
h1s = (q01s/k11)^2; h2s = (q01s/k22 + q02s/k22)^2;

k1 = k11/2/sqrt(h1s); k2 = k22/2/sqrt(h2s);
F1 = 0.5; F2 = 0.8;

g = tf(k1/(F1*F2), [1 (k1/F1+k2/F2) k1*k2/(F1*F2)]);
figure; bode(g);
grid on;

iam_save_pdf('bod_plt_tank.pdf');

keyboard % select the first plot

iam_save_pdf('bod_plt_tank.pdf');

poles = pole(g);
hold on
plot(-[poles(1), poles(1)], [-180, 180])
plot(-[poles(2), poles(2)], [-180, 180])

keyboard % select the first plot
% plot the asymptotes by hand



4 Frequency-Domain Characteristics of Dynamic Systems 105

10 -2 10 -1 100 101 102
-180

-135

-90

-45

0

P
ha

se
 (

de
g)

Bode Diagram

Frequency  (rad/s)

-80

-60

-40

-20

0

M
ag

ni
tu

de
 (

dB
)

Figure 4.16: Bode diagram of two liquid tanks in series.

hold on
plot(-[poles(1), poles(1)], [-180, 180])
plot(-[poles(2), poles(2)], [-180, 180])

iam_save_pdf('bod_plt_tank.pdf');

Similar conclusions can be made as in the case of a first-order system. Yet, we can
observe a decrease of the phase up to −π for increasing frequencies (Figure 4.16).
We can also observe that for high frequencies the decrease in magnitude is 40 dB
per decade. These two observations suggest the presence of two poles. When we
plot the poles and asymptotes of the contribution of each pole and the gain, we
clearly see that that the asymptotes intersect at the frequencies that correspond to
the poles of the transfer function.

4.4 Problems

Problem. 4.1: Systems with a time delay and with a nonminimum phase zero

Compare the frequency characteristics of the following systems

G11(s) = 1
s + 1 , G12(s) = 1

s + 1e−5s, (4.65)

G21(s) = s + 1
s + 10 , G22(s) = s − 1

s + 10 . (4.66)
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Figure 4.17: Identify respective transfer functions from the given asymptotes.

G11 = tf(1, [1 1]); G12 = tf(1, [1 1], 'InputDelay', 5);
G21 = tf([1 1], [1 10]); G22 = tf([1 -1], [1 10]);
bode(G11); figure; bode(G21);
figure; bode(G21); figure; bode(G22);

Note that a time delay or nonminimum phase behaviour do not change the magnitude
plot. Hence, unlike for minimum phase systems where we are able to derive the phase
plot based on the known magnitude plot, this is not possible in the case of nonminimum
phase system.

Problem. 4.2: Lead-lag system

A lead-lag system is characterised by one pole and one zero

G(s) = T1s + 1
T2s + 1 . (4.67)

Plot the Nyquist and Bode diagrams considering both cases: T1 > T2 and T1 < T2,

T1 = 1; T2 = 2;
G1 = tf([T1 1], [T2 1]); G2 = tf([T2 1], [T1 1]);
bode(G1, G2); figure; nyquist(G1, G2)

Problem. 4.3: Asymptotes in the Bode diagrams

Draw asymptotes of the magnitude and phase plots of the Bode diagram for systems with
the following transfer functions

G1(s) = 0.1s + 1
s(s2 + 3s + 2) , G2(s) = 10

s2(s2 + 3s + 2) . (4.68)

Verify your results using Bode diagrams.
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Problem. 4.4: Identification of systems from asymptotes

Derive respective transfer functions from the Bode diagram asymptotes shown in Fig-
ure 4.17. Verify your results using Bode diagrams.

The resulting transfer functions are

G1(s) = 10(s + 6)
(s + 1)(s + 20) ,

G2(s) = 10(s + 6)
s

.

Problem. 4.5: Stability margins

Find stability margins for the following systems

G1(s) = 10(s + 6)
(s + 1)(s + 20) , G2(s) = 10(s + 6)

s
, G3(s) = 5

(s + 1)(2s + 1)(5s + 1) . (4.69)

gm,1 = ∞, φm,1 = 126◦,

gm,2 = ∞, φm,2 = ∞,

gm,3 = 8 dB, φm,3 = 33◦.

4.5 MATLAB Snippets

• Complex number representations
z = complex(a, b); z1 = a+b*j; z2=c+d*i; % instance of complex numbers
zbar = conj(z)
re = real(z); im = imag(z); magn = abs(z); phase = angle(z)
zn = magn * exp(j * phase) % zn == z

• Evaluation of a frequency response at a certain frequency based on the transfer function
g = tf(2, [10 1])
omega = 4
evalfr(g, omega*j)
freqresp(g, omega)

• Bode and Nyquist plots, stability margins
K = 2; T = 10; g1 = tf(K, [T 1]); g2 = tf(K, [T^2 2*T 1])
bode(g1); % plot Bode diagram
[magnitude, phase, frequency] = bode(g1); % do not plot, store graphs
bode(g1, g2);
nyquist(g1)
margin(g1)

• Customisation of Bode diagrams
K = 2; T = 10; g1 = tf(K, [T 1])
h = bodeplot(tf(2, [10 1]));
bodeoptions % see a list of changeable items
setoptions(h, 'FreqUnits', 'Hz', 'PhaseVisible', 'off'); % plot magnitude only
setoptions(h, 'PhaseVisible', 'on', 'MagVisible', 'off'); % plot phase only
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• Plotting the asymptotes on Bode diagram1

s = tf('s'); g = K/(T*s+1)
w = logspace(-3, 1);
asymp(g, w(1), w(end))

• Manually plotting the Bode diagram with the asymptotes

w = logspace(-2, 2);
[m1, p1]=bode(1, [1 1], w); [m2, p2] = bode([1, 1], 1, w);
subplot(211)
semilogx(w, 20 * log10(m1)); hold on; semilogx(w, 20 * log10(m2))
semilogx([0.01 1 100], [0 0 40]); semilogx([0.01 1 100], [0 0 -40])
grid on; hold off
xlabel('Frequency (rad/sec)'), ylabel('Magnitude (dB)')

subplot(212)
semilogx(w, p1); hold on; semilogx(w, p2)
semilogx([0.01 0.1 10 100], [0 0 90 90]);
semilogx([0.01 0.1 10 100], [0 0 -90 -90])
grid on; hold off
xlabel('Frequency (rad/sec)'), ylabel('Phase (deg)')
legend('pole', 'zero', 'asympt pole', 'asympt zero')

4.6 Python Snippets

• Complex number representations

z = complex(3, 4); z1 = 3+4j; z2 = 1+2j; # instance of complex numbers
zbar = z.conjugate()
re = z.real; im = z.imag; magn = abs(z)
import cmath, math, numpy
phase = cmath.phase(c)
print('Phase in Degrees =', numpy.degrees(phase))
zn = cmath.polar(z) # zn is z in polar coordinates

• Evaluation of a frequency response at a certain frequency based on the transfer function

from control.matlab import *
g = tf([2], [10, 1])
omega = 4; s = 1j * omega
evalfr(g, s)
frequencies = [0.1, 1, 10]
mag, phase, omega = freqresp(g, frequencies)

• Bode and Nyquist plots, stability margins

from control.matlab import *
K = 2; T = 10; g1 = tf(K, [T, 1]); g2 = tf(K, [T**2, 2*T, 1])
bode(g1, plot=True); plt.show()
magnitude, phase, frequency = bode(g1) # do not plot, store graphs
bode(g1, g2, plot = True); plt.show()
nyquist(g1)
gm, pm, wg, wp = margin(g1)

• Manually plotting the Bode diagram with the asymptotes

from control.matlab import *
import matplotlib.pyplot as plt
import numpy as np
import math
w = logspace(-2, 2)

1https://uk.mathworks.com/matlabcentral/fileexchange/10183-bode-plot-with-asymptotes

https://uk.mathworks.com/matlabcentral/fileexchange/10183-bode-plot-with-asymptotes
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g1 = tf(1, [1, 1]); g2 = tf([1, 1], 1)
m1, p1, om1 = bode(g1, w); m2, p2, om2 = bode(g2, w)
plt.close('all')
plt.subplot(2, 1, 1)
plt.semilogx(om1, 20 * np.log10(m1), om2, 20 * np.log10(m2))
plt.semilogx([0.01, 1, 100], [0, 0, 40]); plt.semilogx([0.01, 1, 100], [0, 0,

-40])
plt.grid()
plt.xlabel('Frequency (rad/sec)'); plt.ylabel('Magnitude (dB)')

plt.subplot(2,1,2)
p2 += 2 * math.pi
plt.semilogx(w, p1, w, p2)
plt.semilogx([0.01, 0.1, 10, 100], [0, 0, math.pi/2, math.pi/2]);
plt.semilogx([0.01, 0.1, 10, 100], [0, 0, -math.pi/2, -math.pi/2])
plt.grid()
plt.xlabel('Frequency (rad/sec)'); plt.ylabel('Phase (deg)')
plt.legend(['pole','zero','asympt pole','asympt zero'])
plt.show()

4.7 Bibliography

Although chemical process control is mostly studied in time domain, frequency representation
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(2007, Chapter 4), information in Slovak in Huba, Hubinský, and Žáková (2006, Chapter 5),
Mikleš and Hutla (1986, Chapter 2).

For complementary information, see for example Ogata (2010, Chapter 7), Golnaraghi (2010,
Chapter 8), or Dorf and Bishop (2008, Chapter 8).





CHAPTER 5

Control Performance

The main objective of the control design is to guarantee closed-loop stability and performance.
In this chapter, we will introduce various specifications to assess performance. Mainly,

• we review the already discussed time-domain specifications and add some new ones,

• we introduce optimal control measures: integral cost functionals, performance indices ,

• we discuss frequency-domain indices both in open- and closed-loop setup,

• we introduce standard polynomials.

We will investigate how are these specifications related to the placement of poles and zeros in
the complex plane.

5.1 Overview

5.1.1 Time-Domain Specifications

The most commonly used performance indices are the time-domain ones that specify the speed
of the response. It is sought to make them as small as possible:

Settling time Tϵ is given as the minimum time after which the output value remains within
some prescribed percentile distance ϵ from the steady state. The usually values considered
are about 2 – 5%.

Rise time Tb is the time required for the response to rise from 0% to b% of its final value. For
underdamped responses, the value T100 is considered (indicating time when the output
reaches its final value for the first time). For overdamped responses, T90 is commonly used
as the time elapsing between 0% and 90% of the new steady state output.

Dominant time constant TDOM If one time constant is at least 10 times slower than other ones,
it dominates the dynamic properties of the process. The corresponding pole is then the

111
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dominant pole (or a couple of dominant poles if they are complex conjugates) and it is the
closest pole to the origin of the complex plane.

Peak time Tσ is the time when the maximum overshoot occurs.

Feedback performance ratio is the ratio of the closed-loop to the open-loop settling times.

Other time-domain performance indices include:

Maximum overshoot emax or σ is usually defined in percentage as a ratio of the maximum
(ymax) and steady state (new steady state: y∞, previous steady state: y0) outputs

emax = σ = ymax − y∞
y∞ − y0

× 100%. (5.1)

The recommended value is emax < 25% for the underdamped response specifications. Note
that this definition is suitable for setpoint changes. If the step response is overdamped and
without overshoot then emax = 0. If a step disturbance is considered, the absolute value of
emax can be used (Figure 5.1(b)).

Decay rate is defined as the ratio between amplitudes of two subsequent peaks of an under-
damped response. The recommended value is up to 30%.

Steady-state control error e(∞) (bias, offset) is the difference between the setpoint and the
process output in the steady state. For some processes, a nonzero value can be accepted,
otherwise a zero value is usually desired.

A graphical representation of selected time-domain indices is shown in Figure 5.1. We can
distinguish between the closed-loop response to a step change in the setpoint or the disturbance.

Note that Figure 5.1(a) also depicts the times Tu (intersection of the time axis and the tangent
to the response at the inflection point) and Tn (intersection of the output steady-state value
and the tangent to the response at the inflection point). These indices can be used for process
identification from its step response.

Time-domain indices are an intuitive and preferred way to specify closed-loop performance. If
the controlled process is of first- or second-order, we have seen that there is a direct relationship
between these indices and process characteristics. However, for higher-order systems, we can
only approximate their behaviour. Also, the actual controller design in time domain is not so
straightforward.

5.1.2 Integral Criteria

Integral criteria possess one advantage over the time-domain specifications. Instead of multiple
indices, only one is sufficient to characterise the performance as a function of the control error
that should ideally be minimised. The respective general cost function can be defined as

J =
∫ ∞

0
f [e(t)]dt. (5.2)

Most often, the following forms are used:

IAE – integral absolute value of error f = |e(t)| : This form is suitable for oscillatory responses.
However, from the computational point of view, it can be difficult to implement as the
absolute value is nondifferentiable.
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(a) Response to a step change in the setpoint.

(b) Response to a step change in the disturbance.

Figure 5.1: Time-Domain specifications.

ITAE – integral time multiplied absolute value of error f = |e(t)|t : the additional time term
improves the settling time.

ISE – integral squared value of error f = e2(t) : similar to IAE. Due to squaring, large values
of control error are penalised more heavily than the small ones. Closed-loop system
usually shows larger settling times as compared to IAE cost. However, squared error is
mathematically convenient for analytical purposes.

Q – quadratic f = e2(t) + λu2(t) : penalises both the manipulated variable (control effort) and
the control error (control quality) and simply adjusts the trade-off between speed and
robustness of the controller.

5.1.3 Frequency-Domain Indices

One of the drawbacks of the time-domain performance indices is that they do not consider
stability issues. This is more easily performed in the frequency domain, where we can distinguish
between open- and closed-loop criteria. Another advantage of the frequency-domain approach
is that higher-order systems pose no problems and that certain types of controllers can be tuned
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very efficiently. On the other hand, it can be difficult to specify frequency-domain criteria
because their relationship to the time-domain performance is not so obvious.

Let us recall the open-loop frequency-domain indices from Section 4.1.3:

Gain margin (gm) is the amount of gain in decibels (dB) that can be added to the open-loop
system before the closed-loop system becomes unstable. If step responses are considered,
the recommended values of gm are between −12 to −20 dB, for disturbance rejection
between −4 to −9 dB.

Phase margin (φp) is the phase (angle) by which the Nyquist plot of the open-loop system has
to be be rotated about the origin so that the gain crossover passes the point −1 + 0j and
the closed-loop system becomes unstable. The recommended values of φp are for setpoint
tracking between 40◦ to 60◦ and for disturbance rejection between 20◦ to 50◦.

For an underdamped second-order system (3.41), we can derive the gain-crossover frequency
ωg and phase margin as

ωg

ω0
=
√√

4ζ4 + 1 − 2ζ2, (5.3)

φp = arctan
(

2ζ
ω0
ωg

)
. (5.4)

Useful approximations for higher-order systems related to other indices and parameters are

ωgT50 ≈ 1.5 − emax[%]
250 , (5.5)

70 ≈ φp[◦] + emax[%], (5.6)

ζ ≈
φp

100[◦] , ζ ∈ (0.0, 0.6). (5.7)

When the closed-loop transfer function between the output and the setpoint is considered,
several frequency-domain performance criteria can be taken into account:

Bandwidth ωb is defined as the frequency range where the magnitude is approximately constant
compared to the value at some specified frequency (usually zero) and differs by not more
than −3 dB, so that the larger the bandwidth, the faster the response.

Resonant peak is the maximum of the magnitude frequency response. Recommended values
are between 1.1 to 1.5. This indicates relative stability. For the second-order system
see (4.33).

Resonant frequency ωr is the frequency at which the resonance peak occurs. See (4.32) for the
second-order system.

Bandwidth is defined by |G(jωb)| = 1/
√

2|G(0)|. For the underdamped second-order sys-
tem (3.41),

ωb = ω0

√
1 − 2ζ2 +

√
1 + (1 − 2ζ2)2, (5.8)

tan φb =
2ζ
√

1 − 2ζ2 +
√

1 + (1 − 2ζ2)2

2ζ2 −
√

1 + (1 − 2ζ2)2 , (5.9)
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Figure 5.2: Area of desired pole locations.

which are functions of the damping ratio ζ. If higher-order systems are considered, there are
some useful approximations that relate these indices to the transfer function parameters:

ωb

ω0
≈ 1.8 − 1.1ζ, ζ ∈ (0.3, 0.8), (5.10)

|φb| ≈ π − 2.23ζ, ζ ∈ (0, 1), (5.11)
ωbT50 ≈ 2.3, ζ ∈ (0.3, 0.8). (5.12)

5.1.4 Pole Placement

Finally, we can express the desired closed-loop performance directly by placing the closed-loop
transfer-function poles and zeros. We usually start by inspecting the poles and zeros of the
controlled system. A general rule of thumb is to move dominant poles more to the left, but not
too far as that would make the closed-loop system response too fast with large values of control
actions.

Let us recall properties of a second order system in terms of its dominant poles:

• the distance from the imaginary axis: ζω0, if too small, the response sluggish and/or
oscillatory ,

• the distance from the origin is equal to ω0 (3.43),

• the angle to the horizontal axis depends on ζ (3.44), it is recommended that ζ > 0.7 which
represents less than 45◦.

Desired pole locations are shown in Figure 5.2 as area within the desired angles (as a function of
ζ) and outside of semicircle characterised by the frequency ω0.

One of possible approaches is to define the n-th closed-loop characteristic polynomial as:

• A binomial expansion form with a real stable pole s = −ω0 with a multiplicity of n.

s + ω0
s2 + 2ω0s + ω2

0
s3 + 3ω0s2 + 3ω2

0s + ω3
0

s4 + 4ω0s3 + 6ω2
0s2 + 4ω3

0s + ω4
0
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Figure 5.3: Step responses and corresponding pole locations of systems with standard polyno-
mials in the denominator: (top left) binomial, (top right) minimal T5%, (bottom left)
ITAE, (bottom right) Butterworth).

• Minimal T5% – the fastest transient response with a maximum overshoot of 5%.

s + ω0
s2 + 1.4ω0s + ω2

0
s3 + 1.55ω0s2 + 2.10ω2

0s + ω3
0

s4 + 1.60ω0s3 + 3.15ω2
0s2 + 2.45ω3

0s + ω4
0

• Minimum of the ITAE cost function.
s + ω0

s2 + 1.4ω0s + ω2
0

s3 + 1.75ω0s2 + 2.15ω2
0s + ω3

0
s4 + 2.1ω0s3 + 3.4ω2

0s2 + 2.7ω3
0s + ω4

0

• Butterworth polynomials (roots are located on a semicircle in the left half-plane with the
radius ω0 symmetrically distributed with respect to the imaginary axis).

s + ω0
s2 + 1.4ω0s + ω2

0
s3 + 2ω0s2 + 2ω2

0s + ω3
0

s4 + 2.6ω0s3 + 3.4ω2
0s2 + 2.6ω3

0s + ω4
0

Step responses and pole locations for standard polynomials with ω0 = 1 are shown in Figure 5.3.

Note that standard polynomials only approximate the desired behaviour, assuming there are no
transfer function zeros. Obviously, the closed-loop dynamics is also influenced by its zeros.

When control is expensive, we can place the dominant closed-loop poles at the stable plant poles
and at mirrors (the reflection about the y-axis) of unstable plant poles. On the other hand, when
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control is cheap, we can place dominant closed-loop poles at stable plant zeros and mirrors of
unstable plant zeros, while placing the other nondominant poles according to the Butterworth
pattern.

5.2 Examples

Example. 5.1: Time-domain indices

Consider an unstable process with the transfer function

GS(s) = 1
s(s + 0.5) , (5.13)

controlled with a unit-gain proportional controller. Determine the rise time, peak time,
maximum overshoot, settling time, and steady-state control error if there is a unit-step
change in the setpoint.

The closed-loop transfer function between the setpoint and the process output with the
controlled process and controller is given by

Gcl(s) = GS(s)Gc(s)
1 + GS(s)Gc(s) , (5.14)

where Gc(s) is the controller transfer function. This gives in our case the second-order
transfer function (3.41)

Gcl(s) = 1
s2 + 0.5s + 1 , (5.15)

with complex conjugate poles with ω0 = 1 and ζ = 0.25 and the gain Kp = 1. Therefore,
we can use formulae from Section 3.1.4 (P =

√
1 − ζ2).

T100 = 1
ω0P

[
π − tan−1

(
P

ζ

)]
= 1.88, (5.16)

T0.02 ≈ 4
ζω0

= 16, T0.05 ≈ 3
ζω0

= 12, (5.17)

Tσ = π

ω0P
= 3.24, (5.18)

emax = e− πζ
P = 44%. (5.19)

The steady-state control error for a unit-step change in the setpoint can be calculated
using the Final Value Theorem

y(∞) = lim
s→0

sY (s) = lim
s→0

sGcl(s)1
s

= Gcl(0) = 1. (5.20)

Therefore, e(∞) = 1 − y(∞) = 0.

Gs = tf(1, [1, 0.5, 0]); Gc = 1;
Gcl = Gs * Gc / (1 + Gs * Gc);
step (Gcl)



5 Control Performance 118

Example. 5.2: Controller design with time-domain indices

Consider again the unstable process with the transfer function

GS(s) = 1
s(s + 0.5) , (5.21)

controlled with a proportional controller. Determine the gain of the controller so that the
settling time is 10 s and the maximum overshoot of the output variable is 10% if there is a
unit-step change in the setpoint.

The closed-loop transfer function between the setpoint and the process output with the
controlled process and controller is given as

Gcl(s) = GS(s)Gc(s)
1 + GS(s)Gc(s) , (5.22)

where Gc(s) = Kp is the controller transfer function. This gives, in our case, a second-
order transfer function (3.41)

Gcl(s) = Kp
s2 + 0.5s + Kp

, (5.23)

with complex conjugate poles with ω0 =
√

Kp and ζ = 0.25/ω0. The expressions for T0.05
and emax are functions of ζ and ω0

T0.05 ≈ 3
ζω0

⇐⇒ ω0 = 3
ζT0.05

, (5.24)

emax = e− πζ
P ⇐⇒ ζ = | ln emax|√

π2 + ln2 emax

. (5.25)

Then, (5.25) gives ζ = 0.59 and (5.24) gives ω0 = 0.51. Therefore, Kp = ω2
0 = 0.26.

The Simulink model and the resulting step response are shown in Figure 5.4. We can see
that the desired indices are fulfilled.

Gp = tf(1, [1, 0.5, 0]); Gc = 0.26;
Gcl = Gp * Gc / (1 + Gp * Gc);
step (Gcl)

Example. 5.3: Gain and phase margins

Let us consider a process with the transfer function

G(s) = 20
s2 + 10s + 100 , (5.26)

controlled with an integral controller Gc(s) = 20/s. Determine the gain and phase
margins.

We will first derive the expressions for the magnitude and phase of the open-loop system
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Figure 5.4: A Simulink model and step response for Example 5.2.

G(s)Gc(s) with the transfer function of the form

Go(s) = 400
s(s2 + 10s + 100) . (5.27)

Substituting s = jω, the magnitude and phase of the transfer function are given as

|Go(jω)| =
∣∣∣∣ 400
(jω)3 + 10(jω)2 + 100(jω)

∣∣∣∣ (5.28)

= 400
| − 10ω2 + j(100ω − ω3)| = 400√

100ω4 + (100ω − ω3)2 , (5.29)

φ = φ(400) − φ(−10ω2 + j(100ω − ω3)) = − tan−1 100 − ω2

10ω
. (5.30)

The gain margin is defined for the frequency ωg when the phase is equal to φ = −π. This
gives

−π = − tan−1 100 − ω2
g

10ωg
⇒

100 − ω2
g

10ωg
= tan π ⇒ ωg =

√
100 = 10. (5.31)

The gain margin is given by the reciprocal of the magnitude of the transfer function at
this frequency 1/|Go(jωg) and it is usually defined in decibels, hence

gm = 20 log10
1

|Go(jωpi)|
= −20 log10 |Go(jωg)| = −20 log10 0.4 = 7.96 dB. (5.32)
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The phase margin is defined at the frequency ωp when |Go(jωp)| is equal to one, that is,

400√
100ω4

p + (100ωp − ω3
p)2

= 1. (5.33)

Manipulating this equation gives a sixth-order equation (or the third order equation in
the variable ω2

p)

ω6
p − 100ω4

p + 1002ω2
p − 4002 = 0. (5.34)

Solving this equation gives a single real positive root ωp = 4.35 and the corresponding
phase ϕpm

= 61.8◦.

g = tf(20,[1 10 100]); gc = tf(20,[1 0]);
go = g * gc;
margin(go)

Example. 5.4: Determination of the closed-loop bandwidth

Let us again consider the process with the transfer function

G(s) = 20
s2 + 10s + 100 , (5.35)

controlled with an integral controller Gc(s) = 20/s. Determine the closed-loop bandwidth
and estimate the rise time T50.

The closed-loop transfer function is given as

Gcl(s) = G(s)Gc(s)
1 + G(s)Gc(s) = Go(s)

1 + Go(s) = 400
s3 + 10s2 + 100s + 400 . (5.36)

The magnitude of this transfer function is given as

|Gcl(jω)| =
∣∣∣∣ 400
(jω)3 + 10(jω)2 + 100(jω) + 400

∣∣∣∣ (5.37)

= 400
|(400 − 10ω2) + j(100ω − ω3)| = 400√

(400 − 10ω2)2 + (100ω − ω3)2 .

(5.38)

The magnitude value at s = 0 is |Gcl(0)| = 1. To find the bandwidth frequency ωb the
magnitude should be 3 dB less than the initial one, i.e. −3 dB (1/

√
2G(0) = 0.707 ≈ −3 dB)

1√
2

= 400√
(400 − 10ω2

b)2 + (100ωb − ω3
b)2

⇒ ωb = 9.8. (5.39)

To estimate T50, we will use the relationship T50ωb ≈ 2.3 which gives T50 = 0.23. This can
be confirmed by plotting the closed-loop step response.
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5.3 Practice Examples

5.3.1 Two Tanks in Series

We study a system with two tanks in series, for which we have derived the transfer function
matrix in Section 2.3.2.

The derived transfer function between the input u1(t) (the deviation variable of the inflow q0,1(t)
from its steady state) and the output y(t) (the deviation variable of the liquid level in the second
tank h2(t) from its steady state) is of the form:

G(s) =

K︷︸︸︷
1
k2

ω2
0︷ ︸︸ ︷

k1k2
F1F2

s2 + 2
k1
F1

+ k2
F2

2
√

k1
F1

k2
F2︸ ︷︷ ︸

ζ

√
k1k2
F1F2︸ ︷︷ ︸
ω0

s + k1k2
F1F2︸ ︷︷ ︸

ω2
0

=
k1

F1F2

s2 +
(

k1
F1

+ k2
F2

)
s + k1k2

F1F2

. (5.40)

We remind the reader, that the parameters of the two-tank-in-series system are given in Sec-
tion 2.3.2, for convenience are presented again here:

q01s = 0.3; q02s = 0.5; k11 = 1.15; k22 = 1.3;
h1s = (q01s/k11)^2; h2s = (q01s/k22 + q02s/k22)^2;
k1 = k11/2/sqrt(h1s); k2 = k22/2/sqrt(h2s); F1 = 0.5; F2 = 0.8;

5.3.1.1 Consider the tracking problem. Formulate the closed-loop transfer function with a
negative feedback and a proportional controller with a gain Kp.

Gcl(s) = KpG(s)
1 + KpG(s) =

Kp

k1
F1F2

s2+
(

k1
F1

+ k2
F2

)
s+ k1k2

F1F2

1 + Kp

k1
F1F2

s2+
(

k1
F1

+ k2
F2

)
s+ k1k2

F1F2

=

=
Kp

k1
F1F2

s2 +
(

k1
F1

+ k2
F2

)
s + k1k2

F1F2
+ Kp

k1
F1F2

. (5.41)

5.3.1.2 Re-arrange the transfer function obtained into the form

Gcl(s) =
Kclω

2
0,cl

s2 + 2ζclω0,cls + ω2
0,cl

, (5.42)

and define ω0, ζ, and K in terms of the process parameters. Discuss the meaning of the
process parameters for the dynamics of the system.
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It follows that:

ω2
0,cl = k1k2

F1F2
+ Kp

k1
F1F2

, (5.43)

2ζclω0,cl = k1
F1

+ k2
F2

⇒ 2ζcl

√
k1k2
F1F2

+ Kp
k1

F1F2
= k1

F1
+ k2

F2
(5.44)

⇒ ζcl =
k1
F1

+ k2
F2

2
√

k1k2
F1F2

+ Kp
k1

F1F2

, (5.45)

Kclω
2
0 = Kp

k1
F1F2

⇒ Kcl

(
k1k2
F1F2

+ Kp
k1

F1F2

)
= Kp

k1
F1F2

(5.46)

⇒ Kcl =
Kp

k1
F1F2

k1k2
F1F2

+ Kp
k1

F1F2

= Kp
k2 + Kp

. (5.47)

For small values of Kp, the coefficient ζcl will be greater than one and the steady-
state gain Kcl will be smaller than one, so the closed-loop step response will be
aperiodic and the output will not reach the reference value. On the other hand,
for larger values of Kp the value of ζcl will be positive and less than one and
the steady-state gain Kcl will approach one, so the closed-loop response will be
periodic but the steady-state control error will be smaller.

5.3.1.3 Verify the observations from simulations. Consider a system with the valve constants
k1 = k2 = 1 m2/s and the cross-sectional areas F1 = 5 m2 and F2 = 1 m2, for the first
and the second tank, respectively. Compare the performance under different controllers
by plotting the closed-loop step responses, the closed-loop poles, and evaluating the
following performance criteria: maximum overshoot, rise time, T0.05, and the bandwidth
frequency.

Tune the controllers such that:

a) ζcl = 1.2,
b) ζcl = 1,
c) we have a steady-state error of 10%,
d) we have a steady-state error of 1%,
e) we have a maximum overshoot of 25%.

Discuss the results obtained.

Maximum overshoot:

emax = e
− πζ√

1−ζ2 . (5.48)

Rise time:

T100 = 1
ω0P

[
π − tan−1

(
P

ζ

)]
. (5.49)

Settling time:

Tϵ ≈ 1
ζω0

ln 1
ϵP

, (5.50)

T0.05 ≈ 3
ζω0

. (5.51)
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Bandwidth frequency ωb (the larger ωb means the faster response)

ωb = ω0

√
1 − 2ζ2 +

√
1 + (1 − 2ζ2)2. (5.52)

We obtain from (5.45):

Kp =

(
k1
F1

+ k2
F2

2ζcl

)2

− k1k2
F1F2

k1
F1F2

, (5.53)

which gives the controller gain that corresponds to the chosen ζcl.

Using this:

a) Kp = 0.25,

b) Kp = 0.8.

Results are shown in Figure 5.5.

We can obtain from (5.47):

Kcl

(
k1k2
F1F2

+ Kp
k1

F1F2

)
= Kp

k1
F1F2

⇒ Kp =
Kcl

k1k2
F1F2

(1 − Kcl) k1
F1F2

, (5.54)

which gives the controller gain that corresponds to the chosen Kcl.

Using this for Kcl = 0.9 and Kcl = 0.99 we get:

c) Kp = 9,

d) Kp = 99.

Results are shown in Figure 5.6.

Damping ratio ζcl is obtained from (3.55)

ζcl = | ln emax|√
π2 + ln2 emax

, (5.55)

which gives the controller gain that corresponds to the chosen Kcl.

Using this we get:

e) ζ = 0.4037, Kp = 10.044. Results are shown in Figure 5.7.

Kp maximum overshoot rise time T0.05 bandwidth frequency

0.25 0 ∞ 12.3 0.25
0.80 0 ∞ 7.80 0.39
9.00 23% 1.57 5.16 1.91

99.00 65% 0.38 4.50 6.86
10.04 25% 1.46 5.14 2.04
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k1 = 1; k2 = 1; F1 = 5; F2 = 1;

xi = 1.2;
Kp = (((k1/F1+k2/F2)/2/xi)^2 - k1*k2/F1/F2)/(k1/F1/F2)
G = tf(Kp*k1/F1/F2, [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G); grid on
% pause
save_pdf(4, 4, 20,'plt_xi12.pdf');
!pdfcrop plt_xi12.pdf plt_xi12.pdf

w0 = sqrt(k1*k2/F1/F2 + Kp*k1/F1/F2);
emax = exp(-pi*xi/sqrt(1-xi^2))
T100 = 1/w0/sqrt(1-xi^2)*(pi - atan(sqrt(1-xi^2)/xi))
T005 = 1/xi/w0*log(1/0.05/sqrt(1-xi^2))
T005 = 3/xi/w0
wb = w0*sqrt(1-2*xi^2+sqrt(1+(1-2*xi^2)^2))
bode(G)

xi = 1;
Kp = (((k1/F1+k2/F2)/2/xi)^2 - k1*k2/F1/F2)/(k1/F1/F2)
G = tf(Kp*k1/F1/F2, [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G); grid on
% pause
save_pdf(4, 4, 20,'plt_xi1.pdf');
!pdfcrop plt_xi1.pdf plt_xi1.pdf

w0 = sqrt(k1*k2/F1/F2 + Kp*k1/F1/F2);
emax = exp(-pi*xi/sqrt(1-xi^2))
T100 = 1/w0/sqrt(1-xi^2)*(pi - atan(sqrt(1-xi^2)/xi))
T005 = 1/xi/w0*log(1/0.05/sqrt(1-xi^2))
T005 = 3/xi/w0
wb = w0*sqrt(1-2*xi^2+sqrt(1+(1-2*xi^2)^2))
bode(G)

Kcl = 0.9;
Kp = Kcl*k1*k2/F1/F2/(1-Kcl)/(k1/F1/F2)
G = tf(Kp*k1/F1/F2, [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G); grid on
% pause
save_pdf(4, 4, 20,'plt_kcl09.pdf');
!pdfcrop plt_kcl09.pdf plt_kcl09.pdf

w0 = sqrt(k1*k2/F1/F2 + Kp*k1/F1/F2);
xi = (k1/F1 + k2/F2)/2/sqrt(k1/F1*k2/F2 + Kp*k1/F1/F2)
emax = exp(-pi*xi/sqrt(1-xi^2))
T100 = 1/w0/sqrt(1-xi^2)*(pi - atan(sqrt(1-xi^2)/xi))
T005 = 1/xi/w0*log(1/0.05/sqrt(1-xi^2))
T005 = 3/xi/w0
wb = w0*sqrt(1-2*xi^2+sqrt(1+(1-2*xi^2)^2))
bode(G)

Kcl = 0.99;
Kp = Kcl*k1*k2/F1/F2/(1-Kcl)/(k1/F1/F2)
G = tf(Kp*k1/F1/F2, [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G); grid on
% pause
save_pdf(4, 4, 20,'plt_kcl099.pdf');
!pdfcrop plt_kcl099.pdf plt_kcl099.pdf

w0 = sqrt(k1*k2/F1/F2 + Kp*k1/F1/F2);
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Figure 5.5: (left) Closed-loop step responses with ζcl = 1.2 and (right) ζcl = 1.

xi = (k1/F1 + k2/F2)/2/sqrt(k1/F1*k2/F2 + Kp*k1/F1/F2)
emax = exp(-pi*xi/sqrt(1-xi^2))
T100 = 1/w0/sqrt(1-xi^2)*(pi - atan(sqrt(1-xi^2)/xi))
T005 = 1/xi/w0*log(1/0.05/sqrt(1-xi^2))
T005 = 3/xi/w0
wb = w0*sqrt(1-2*xi^2+sqrt(1+(1-2*xi^2)^2))
bode(G)

emax = 0.25;
xi = abs(log(emax))/sqrt(pi^2 + log(emax)^2)
Kp = (((k1/F1+k2/F2)/2/xi)^2 - k1*k2/F1/F2)/(k1/F1/F2)
G = tf(Kp*k1/F1/F2, [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G); grid on
% pause
save_pdf(4, 4, 20,'plt_over025.pdf');
!pdfcrop plt_over025.pdf plt_over025.pdf

w0 = sqrt(k1*k2/F1/F2 + Kp*k1/F1/F2);
xi = (k1/F1 + k2/F2)/2/sqrt(k1/F1*k2/F2 + Kp*k1/F1/F2)
emax = exp(-pi*xi/sqrt(1-xi^2))
T100 = 1/w0/sqrt(1-xi^2)*(pi - atan(sqrt(1-xi^2)/xi))
T005 = 1/xi/w0*log(1/0.05/sqrt(1-xi^2))
T005 = 3/xi/w0
wb = w0*sqrt(1-2*xi^2+sqrt(1+(1-2*xi^2)^2))

5.3.1.4 (Optional) Evaluate the ISE and IAE indices under a controller that guarantees damping
ratio of the closed-loop response ζcl = 1.2 and under the controller that gives a steady-
state error of 1%.

5.3.1.5 Consider the disturbance-rejection problem. Plot the closed-loop response to the unit
step in the disturbance u2(t), which is the deviation variable between the inflow into
the second tank and the steady-state value of the inflow qs

2. Compare the closed-loop
responses of the systems under the controllers from the previous question.
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Figure 5.6: (left) Closed-loop step responses with Kcl = 0.9 and (right) Kcl = 0.99.
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Figure 5.7: Closed-loop step response with Kp = 10.04 for a 25% overshoot.

Gcl,d(s) = Gd(s)
1 + KpG

=

1
F2

s + k2
F2

1 + Kp

k1
F1F2

s2+
(

k1
F1

+ k2
F2

)
s+ k1k2

F1F2

(5.56)

=
1

F2

(
s + k1

F1

)
s2 +

(
k1
F1

+ k2
F2

)
s + k1k2

F1F2
+ Kp

k1
F1F2

. (5.57)

xi = 1.2;
Kp = (((k1/F1+k2/F2)/2/xi)^2 - k1*k2/F1/F2)/(k1/F1/F2);
G = tf([1/F2 k1/F1/F2], [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G)
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save_pdf(4, 4, 20,'plt_dist_xi12.pdf');
!pdfcrop plt_dist_xi12.pdf plt_dist_xi12.pdf

xi = 1;
Kp = (((k1/F1+k2/F2)/2/xi)^2 - k1*k2/F1/F2)/(k1/F1/F2);
G = tf([1/F2 k1/F1/F2], [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G)
save_pdf(4, 4, 20,'plt_dist_xi1.pdf');
!pdfcrop plt_dist_xi1.pdf plt_dist_xi1.pdf

Kcl = 0.9;
Kp = Kcl*k1*k2/F1/F2/(1-Kcl)/(k1/F1/F2);
G = tf([1/F2 k1/F1/F2], [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G)
save_pdf(4, 4, 20,'plt_dist_kcl09.pdf');
!pdfcrop plt_dist_kcl09.pdf plt_dist_kcl09.pdf

Kcl = 0.99;
Kp = Kcl*k1*k2/F1/F2/(1-Kcl)/(k1/F1/F2);
G = tf([1/F2 k1/F1/F2], [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G)
save_pdf(4, 4, 20,'plt_dist_kcl099.pdf');
!pdfcrop plt_dist_kcl099.pdf plt_dist_kcl099.pdf

emax = 0.25;
xi = abs(log(emax))/sqrt(pi^2 + log(emax)^2);
Kp = (((k1/F1+k2/F2)/2/xi)^2 - k1*k2/F1/F2)/(k1/F1/F2);
G = tf([1/F2 k1/F1/F2], [1 (k1/F1+k2/F2) k1*k2/F1/F2+Kp*k1/F1/F2]);
step(G)
save_pdf(4, 4, 20,'plt_dist_over025.pdf');
!pdfcrop plt_dist_over025.pdf plt_dist_over025.pdf

Results are shown in Figure 5.8.

5.3.1.6 Consider the full nonlinear model of the process (qs
0,1 = 0.3 m3/s, qs

0,2 = 0.5 m3/s, F1 =
0.5 m2, F2 = 0.8 m2, k11 = 1.15 m2.5/s, and k22 = 1.3 m2.5/s). Implement proportional
feedback control of the level h2 with feed flow q0,1 and unmeasurable disturbance q0,2.
The desired value of h2(t) can be described by

hr
2(t) =


hs

2, t ≤ 1,

1.1hs
2, t ∈ (1, 10],

0.8hs
2, t ∈ (10, 30].

(5.58)

The disturbance trajectory is

q0,2(t) =
{

qs
0,2, t ≤ 20,

0.9qs
0,2, t ∈ (20, 30].

(5.59)

The manipulated variable is constrained by 0.05 ≤ q0,1(t) ≤ 1. Choose controllers b), c),
d) and compare the results with the results obtained in the previous steps.

The simulation model is shown in Figure 5.9.
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Figure 5.8: Closed-loop disturbance step responses.
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Figure 5.9: A model of feedback control loop with a proportional controller of the two-tanks-in-
series process.

5.4 Problems

Problem. 5.1: Time-domain performance indices for a higher-order system

Examine the step response of the system with the transfer function

G(s) = 0.5s2 + 0.6s + 6
s4 + 4s3 + 6s2 + 8s + 6 ,

using MATLAB and determine the rise time, peak time, maximum overshoot, and settling
time.
Optionally, find the dominant complex conjugate poles and the approximate time-domain
indices using the second-order-system formulae.

T100 = 2.29, Tσ = 3.25, emax = 33.4%, T0.02 = 24.19.

5.5 MATLAB Snippets

• Time-domain specifications (rise time, settling time, peak time, . . . )

g = tf(1, [1 1 1])
stepinfo(g)
stepinfo(g, 'RiseTimeLimits', [0,1])

• Calculate closed-loop bandwidth ωb, resonant peak, and frequency

gcl = tf(400, [1 10 100 400])
omb = bandwidth(gcl)
[gpeak, fpeak] = getPeakGain(gcl), gpeak_dB = 20 * log10(gpeak)

• Calculate the integral indices using numerical integration

gcl = tf(400, [1 10 100 400])
[y, t] = step(gcl); r = ones(size(t)); plot(t, r, t, y)
e = r - y;
IAE = trapz(t, abs(e))
ISE = trapz(t, e.^2)
ITAE = trapz(t, t.*abs(e))
ITSE = trapz(t, t.*e.^2)
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• Find the time performance indices for Problem 5.1
g = tf([0.5 0.6 6], [1 4 6 8 6])
[y, t] = step(g);
plot(t, y)
grid
i = find(y >= 1); % if needed, improve using interpolation here
i100 = i(1); T100 = t(i100)
[m,i] = max(y);
sigma = (y(i) - 1) / (1 - y(1))
isigma = i; Tsigma = t(isigma)
epsilon = 0.02;
i = find (abs(y - 1) < epsilon);
ii = find(ischange(i, 'linear'));
i002 = i(ii(end)); T002 = t(i002)
hold
plot([t(1) t(end)], (1 + epsilon)*ones(1, 2), '--', [t(1) t(end)], (1 - epsilon

)*ones(1, 2), '--')
plot(T100, y(i100), '*', Tsigma, y(isigma), '*', T002, y(i002), '*')

5.6 Python Snippets

• Calculate closed-loop bandwidth ωb, resonant peak, and frequency
from control.matlab import *
import matplotlib.pyplot as plt
import numpy as np
import math
gcl = tf(400, [1, 10, 100, 400])
m, p, om = bode(g)
i = np.where(m < m[0] / math.sqrt(2))
omb = om[i[0][0]]
ii = np.argmax(m); gpeak = m[ii]; fpeak = om[ii]
gpeak_dB = 20 * math.log10(gpeak)

• Calculate the integral indices using numerical integration
from control.matlab import *
import numpy as np
import matplotlib.pyplot as plt
gcl = tf(400, [1, 10, 100, 400])
y, t = step(gcl); r = np.ones(len(t))
plt.plot(t, r, t, y); plt.show()
e = w - y
IAE = np.trapz(abs(e), t)
ISE = np.trapz(e**2, t)
ITAE =np.trapz(t * abs(e), t)
ITSE= np.trapz(t * e**2, t)

• Find the time performance indices for Problem 5.1
from control.matlab import *
import matplotlib.pyplot as plt
import numpy as np
import math
g = tf([0.5, 0.6, 6], [1, 4, 6, 8, 6])
y, t = step(g)
i = np.where(y >= 1) # when needed, improve using interpolation here
i100 = i[0][0]; T100 = t[i100]
i = np.argmax(y); m = y[i]
sigma = (m - 1) / (1 - y[0])
isigma = i; Tsigma = t[isigma]
epsilon = 0.02
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i = np.where (abs(y - 1) < epsilon)
ii = i[0]; iii = np.where(np.diff(ii) - 1 > 0)
iiii = iii[0][-1] # last nonzero difference
i002 = ii[iiii + 1] - 1 # index of last y outside
T002 = t[i002]
plt.plot(t,y)
plt.plot([t[0], t[-1]], [1 + epsilon, 1 + epsilon], 'k--')
plt.plot([t[0], t[-1]], [1 - epsilon, 1 - epsilon], 'k--')
plt.plot(T100, y[i100], 'r*', Tsigma, y[isigma], 'r*', T002, y[i002], 'r*')
plt.grid()
plt.show()

5.7 Bibliography

Control performance can be specified using various methods. The theoretical background
for this chapter can be found in Mikleš and Fikar (2007, Chapter 7), information in Slovak
in Bakošová and Fikar (2008, Chapter 5), Mikleš and Hutla (1986, Chapter 2).

For supplemental information, see for example Unbehauen (1986, Chapter 8), Golnaraghi (2010,
Chapter 9), or Dorf and Bishop (2008, Chapter 5).





CHAPTER 6

Closed-Loop Systems and PID Controllers

This chapter deals with the properties of closed-loop control systems and reviews the PID
controller, its parameters and properties. It is assumed that students already understand
stability, e.g., are acquainted with stability criteria for polynomials. In addition to stability,
disturbance rejection and setpoint tracking problems are introduced. Different PID controller
structures are discussed, together with anti-windup strategies and bumpless transfer between
controllers.

6.1 Overview

6.1.1 A Closed-Loop System

A physical process is controlled by a feedback controller and constitutes a closed-loop, feedback
system. This system consists of the following components: a controlled process, a measurement
device (a sensor), a controller, and an actuator (a final control element). In addition, there is a
block that compares the desired reference (setpoint) value r(t) with the measured value of the
process output ym(t). Figure 6.1(a) shows the corresponding block diagram with the individual
components represented by transfer functions. The presence of an external signal d(t) which
acts as a disturbance is assumed with its influence specified by a transfer function Gd(s).

We can derive an expression for the process output y(t) as a function of the inputs r(t) and d(t)
using block algebra

Y (s) =
Gp(s)Ga(s)Gc(s)

1 + Gm(s)Gp(s)Ga(s)Gc(s)R(s) + Gd(s)
1 + Gm(s)Gp(s)Ga(s)Gc(s)D(s) (6.1)

= Gyr(s)R(s) + Gyd(s)D(s), (6.2)

Gyr(s) =
Gp(s)Ga(s)Gc(s)

1 + Gm(s)Gp(s)Ga(s)Gc(s) , (6.3)

Gyd(s) = Gd(s)
1 + Gm(s)Gp(s)Ga(s)Gc(s) . (6.4)

The common denominator of both transfer functions is the characteristic equation of the closed-

133
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(a) Full diagram.

Gd

GSGc

−

y(t)

d(t)

u(t)e(t)r(t)

(b) Simplified diagram.

Figure 6.1: A block diagram of the closed-loop system.

loop system

1 + Gm(s)Gp(s)Ga(s)Gc(s) = 0. (6.5)

Three basic closed-loop features are:

1. Stability – roots of the characteristic equation should have negative real parts.

2. Tracking – process output follows the setpoint, thus Gyr(0) ≈ 1.

3. Regulation – process output should be insensitive to disturbances, thus Gyd(0) ≈ 0.

Quite often, we group the process itself together with the measurement device and the final
control element. This can be represented by a simplified block diagram shown in Figure 6.1
(right). In this case, expressions for the process output and the closed-loop transfer functions
become

Y (s) = GS(s)Gc(s)
1 + GS(s)Gc(s)R(s) + Gd(s)

1 + GS(s)Gc(s)D(s) = Gyr(s)R(s) + Gyd(s)D(s), (6.6)

Gyr(s) = GS(s)Gc(s)
1 + GS(s)Gc(s) , Gyd(s) = Gd(s)

1 + GS(s)Gc(s) . (6.7)

The common denominator of both transfer function is the closed-loop characteristic equation

1 + GS(s)Gc(s) = 0. (6.8)

6.1.2 PID Controller

Proportional Control

The output signal of this controller is proportional to the actual control error, u(t) = Kpe(t) and
its transfer function is thus given as

Gc(s) = Kp, (6.9)

where Kp is called the proportional gain. As the transfer function is static, the controller does
not change the number of closed-loop poles, but it can influence their positions.
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As the control signal can only operate between its minimum umin and maximum umax values,
we can define a proportional band Pp as the range of outputs where u(t) is between these limits.
Usually umin = 0 and umax = 100%, which gives

umax = Kpemax, umin = Kpemin, Pp = emax − emin, Pp = 100%
Kp

. (6.10)

Controllers with a small proportionality band act almost as on/off controllers.

Example 6.2 derives expressions for steady-state error for a first-order system. We can see
that, both for tracking and regulation, there is a nonzero steady-state error that depends on the
value of controller gain, which is reduced for large values of Kp. This is a common issue of
proportional controller. On the other hand, a faster controller can also bring the closed-loop
system to instability, as will be shown later.

To reduce the steady-state control error for a particular setpoint, a bias correction ub can used:

u(t) = Kpe(t) + ub. (6.11)

Proportional plus Integral Control

One possibility to deal with the issue of a steady-state tracking error under a proportional
control is to make the bias ub variable with time and to follow the actual control signal u(t) via a
first-order system with a time constant Ti:

u(t) = Kpe(t) + ub(t), ub(t) = 1
Tis + 1u(t). (6.12)

Elimination of ub(t) results in a PI (proportional + integral) controller with the transfer function
and control law

Gc(s) = U(s)
E(s) = Kp

(
1 + 1

Tis

)
, (6.13)

u(t) = Kpe(t) +
Kp

Ti

∫ t

0
e(τ)dτ. (6.14)

The additional parameter Ti is the integral time constant.

The PI controller increases the order of the closed-loop system (adds one pole) and also adds
one stable zero that can influence the performance. In addition, the controller pole at s = 0
eliminates the steady-state error as shown in Example 6.3.

Example. 6.1: Need for PI controller

Consider a first-order system with static gain K and time constant T . We would like to
design a controller that perfectly tracks the setpoint (i.e., the closed-loop gain equals to
one), such that the closed-loop dynamics corresponds to a first-order system with a time
constant Tcl < T .

The tracking-problem transfer function should be of the form

Gyr(s) = 1
Tcls + 1 = GS(s)Gc(s)

1 + GS(s)Gc(s) . (6.15)
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Figure 6.2: The first-order system (K = 2, T = 5) closed-loop control using the PI controller.

The controller transfer function is then

Gc(s) = T

TclK

(
1 + 1

Ts

)
, (6.16)

which is a PI controller. The derived transfer function also suggests suitable values of
controller parameters: Ti = T and Kp = k/K where k = T/Tcl > 1 to reduce the settling
time. Thus, the closed-loop system will have the same settling time as the controlled
process if Tcl = T and Kp = 1/K; will be twice faster if Tcl = T/2 and Kp = 2/K; and
five times faster if Tcl = T/5 and Kp = 5/K. Simulation results together with the step
response of the uncompensated system GS are shown in Figure 6.2.

Proportional plus Derivative Control

Another enhancement of the pure proportional control is to act not only on the control error but
also on its rate of change. The controller then anticipates the future behaviour of the control
error. If there is no change in the control error, the derivative controller does not act. Therefore,
it is never used alone but at least with a proportional controller:

u(t) = Kp

(
e(t) + Td

de(t)
dt

)
, Gc(s) = Kp(1 + Tds). (6.17)

Here, Td is a derivative time constant of the controller serving as a prediction of the control error
e(t + Td). The PD controller thus realises the anticipatory action.

An ideal PD controller is not feasible as the controller output at time t cannot anticipate exactly
the future behaviour (e(t + Td)) as it would be a noncausal system. The derivative part can be
delayed by filtering, e.g., using a first-order filter. This gives a causal controller transfer function
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of the form

Gc(s) = Kp

(
1 + Tds

1 + Td
N s

)
, (6.18)

with N ∈ [5, 20].

The derivative part of the PD controller has no effect on the steady-state error. The controller
adds one stable zero and one stable pole to the closed-loop thus increasing its order. It can
improve the speed of control as well.

Proportional plus Integral plus Derivative Control

The complete controller is known as PID controller and it is used in more than 90% of all control
loops. It adds together all three parts. Each of them looks at a different time window and treats
the tracking error in a different way: proportional acts on the present (value), integral acts on
the (sum of the) past (values), and derivative on the future (predicted values).

PID Structures

There are several basic PID controller structures combining proportional, integral, and derivative
actions:

• without interaction (ideal, standard PID)

Gc(s) = Kp

(
1 + 1

Tis
+ Tds

)
, (6.19)

• with interaction (serial form)

Gc(s) = Kp

(
1 + 1

Tis

)
(1 + Tds) , (6.20)

• parallel form

Gc(s) = Kp + 1
Tis

+ Tds. (6.21)

Modifications of the standard PID controller include separate actions for setpoints and distur-
bances, leading to controllers with additional parameters and two-degree-of-freedom (2DoF)
structure:

• PI-D: This structure can avoid a phenomena called “derivative kick”. It occurs due to
instantaneous change of the tracking error caused by the setpoint adjustment. This results
in a large value of the derivative part and sudden saturation of the controller output. As a
remedy, it is assumed that the setpoint is constant, and therefore de/dt = −dy/dt:

U(s) = Kp

(
1 + 1

Tis

)
R(s) − Kp

(
1 + 1

Tis
+ Tds

)
Y (s). (6.22)

• I-PD: In addition to the elimination of the derivative kick, a sudden change of the controller
output is avoided also for the proportional part (setpoint kick). The integral part cannot
be turned off.

U(s) = Kp
1

Tis
R(s) − Kp

(
1 + 1

Tis
+ Tds

)
Y (s). (6.23)
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Figure 6.3: An anti-windup model AW1 with PI controller.
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Figure 6.4: An anti-windup model with back-integration (AW2).

• 2DoF PID: b, c < 1, (b ∈ (0.3, 0.8))

U(s) = Kp

(
b + 1

Tis
+ cTds

)
R(s) − Kp

(
1 + 1

Tis
+ Tds

)
Y (s). (6.24)

This is a generalisation of PI-D and I-PD controllers.

Practical Issues

If controller with integral action saturates at its minimum or maximum output due to a large
setpoint change or disturbance, a phenomenon called integral windup occurs. The controller is
unaware of the fact that the calculated value of plant input was not applied to the process and,
instead, its saturated value was used, and keeps increasing the integral part of the control signal.
Afterwards, when eventually the controlled output reaches the setpoint and the sign of the
control error reverses, the integral action is reduced only slowly. This means that the controller
still remains on the saturated value even if it should not. Only once the integral term becomes
sufficiently small (its absolute value), does the control signal not exhibit saturation anymore.

There are several possibilities to deal with windup. The first one (AW1) uses the original PI
configuration (6.12), where the bias ub acts on the saturated control signal and is implemented
in Figure 6.3

u(t) = Kpe(t) + ub(t), ub(t) = 1
Tis + 1uSAT(t). (6.25)

The second option (AW2) modifies the control error signal entering the integral term and back-
integrates the difference between the calculated and the saturated control signals (Figure 6.4).
This configuration involves an additional tuning parameter Tt (or a gain 1/Tt) which is usually
chosen similar to Ti or as the geometric mean of Ti and Td, i.e.,

√
TiTd.

The second solution introduces a PID controller feature called external feedback. Here, the input
signals to the controller do not include only the setpoint and the controlled output but also the
actual value of the manipulated variable applied. This is useful in situations where multiple
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controllers are used, for example manual/automatic or heating/cooling. The transfer between
controllers should be smooth and an external feedback can be used for this purpose. Therefore,
the inactive controller uses the output of the active controller as its external signal and follows it.
If this controller is activated, its output is the same as the actual one. Such a switch of controllers
is called “bumpless transfer”.

6.2 Examples

Example. 6.2: Control error for a first-order system using a P controller

Consider a first-order system with a static gain K and a time constant T controlled by a
proportional controller with a gain Kp. Assume that the disturbance transfer function is
also first order with a gain Kd and a time constant Tpd

GS = K

Ts + 1 , Gc = Kp, Gd = Kd

Tpds + 1 . (6.26)

Derive the expressions for the steady-state error for the tracking and regulation problems
if there be a step change in either the setpoint r(t) = A or the disturbance d(t) = A.

Disturbance rejection problem: We consider d(t) = A and r(t) = 0. The steady-state
error is given as e(∞) = r(∞) − y(∞). We apply the Final Value Theorem

y(∞) = lim
s→0

sY (s), Y (s) = Gyd(s)D(s), (6.27)

Gyd(s) = Gd(s)
1 + GS(s)Gc(s) =

Kd
Tpds+1

1 + K
T s+1Kp

= Kd(Ts + 1)
(Tpds + 1)(Ts + 1 + KKp) ,

(6.28)

y(∞) = lim
s→0

s
Kd(Ts + 1)

(Tpds + 1)(Ts + 1 + KKp)
A

s
= Kd

1 + KKp
A ̸= 0, (6.29)

e(∞) = r(∞) − y(∞) = 0 − Kd

1 + KKp
A = − Kd

1 + KKp
A. (6.30)

Setpoint tracking problem: We consider d(t) = 0 and r(t) = A. It follows that

y(∞) = lim
s→0

sY (s), Y (s) = Gyr(s)R(s), (6.31)

Gyr(s) = GS(s)Gc(s)
1 + GS(s)Gc(s) =

K
T s+1Kp

1 + K
T s+1Kp

=
KKp

Ts + 1 + KKp
, (6.32)

y(∞) = lim
s→0

s
KKp

Ts + 1 + KKp

A

s
=

KKp

1 + KKp
A < A, (6.33)

e(∞) = r(∞) − y(∞) = A −
KKp

1 + KKp
A = 1

1 + KKp
A. (6.34)

Simulation results for both cases are shown in Figure 6.5. Increasing Kp reduces the
control error and the closed-loop time constant (settling time).
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Figure 6.5: Responses of the first-order system controlled by a P controller: (left) regulation and
(right) tracking problems (K = 2, T = 5, Kd = 1, and Tpd = 0.2).

Example. 6.3: Control error for a first-order system using a PI controller

Consider a first-order system with a static gain K and time constant T controlled by a PI
controller with a gain Kp and a integral constant Ti. Assume that the disturbance transfer
function is also first order with a gain Kd and a time constant Tpd

GS = K

Ts + 1 , Gc = Kp

(
1 + 1

Tis

)
, Gd = Kd

Tpds + 1 . (6.35)

Derive the steady-state error for the tracking and regulation problems if there be a step
change in either the setpoint r(t) = A or the disturbance d(t) = A.

Disturbance rejection problem: We consider d(t) = A and r(t) = 0. The steady-state
error is given as e(∞) = r(∞) − y(∞). We apply the Final Value Theorem

y(∞) = lim
s→0

sY (s), Y (s) = Gyd(s)D(s), (6.36)

Gyd(s) = Kd(Ts + 1)s
(Tpds + 1)(Ts2 + s + KKps + KKp

Ti
)
, (6.37)

y(∞) = lim
s→0

s
Kd(Ts + 1)s

(Tpds + 1)(Ts2 + s + KKps + KKp
Ti

)
A

s
= 0

KKp
Ti

A = 0, (6.38)

e(∞) = r(∞) − y(∞) = 0 − 0 = 0. (6.39)
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Figure 6.6: Responses of the first-order system controlled by a PI controller: (left) regulation
and (right) tracking problems (K = 2, T = 5, Kd = 1, Tpd = 0.2, and Kp = 10).

Setpoint tracking problem: We consider d(t) = 0 and r(t) = A. It follows that

y(∞) = lim
s→0

sY (s), Y (s) = Gyr(s)R(s), (6.40)

Gyr(s) = GSGc

1 + GSGc
=

K(Kps + Kp
Ti

)

Ts2 + s + K(Kps + Kp
Ti

)
, (6.41)

y(∞) = lim
s→0

s
K(Kps + Kp

Ti
)

Ts2 + s + K(Kps + Kp
Ti

)
A

s
= A, (6.42)

e(∞) = r(∞) − y(∞) = A − A = 0. (6.43)

Simulation results for both cases are shown in Figure 6.6. Note how the decreasing value
Ti (increasing the integral action) makes the dominant zero leading to an overshoot and
oscillations.

6.2.1 Two Tanks with Interaction

We study PI control of two tanks with interaction modelled in Example 1.2.2. The process
parameters are: qs

0,1 = 0.9 m3/s, qs
0,2 = 0 m3/s, F1 = 0.5 m2, F2 = 0.6 m2, k11 = 0.8 m2.5/s, and

k22 = 0.5 m2.5/s.

The manipulated and disturbance variables are q0,1 and q0,2, respectively. The controlled variable
is the level h2 measured with a certain precision (modelled by additive white noise). The desired
reference is 20% above the initial steady state up to t = 25 s and 30% of the initial steady state
afterwards. The disturbance is zero up to t = 40 s and 0.1 m3/s afterwards. The valve on the
manipulated variable cannot be fully closed leading to the lower limit q0,1,min = 0.05 m3/s. The
fully open valve gives the upper limit q0,1,max = 2.0 m3/s.

We had derived the process gain and time constants in Example 3.2.1: K = 7.2, T1 = 8.6, and
T2 = 0.7.

6.2.1.1 Design a Simulink model corresponding to the problem description and simulate the
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Figure 6.7: PI control of two tanks with interaction: a Simulink model.
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Figure 6.8: PI control of two tanks with interaction: simulation results.

closed-loop system response.

To propose PI constants, we will start with guidelines from Example 6.1. The proportional
gain will be Kp = 5/K and the integral time constant will be between the time constants
of the process, thus Ti = 2.

The model is shown in Figure 6.7 and the simulation results are shown in Fig-
ure 6.8. In the first half of the simulation, we can see that the controller behaves
satisfactorily as it does not use a fully open valve. It is able to achieve a settling
time of about 15 s with a reasonable overshoot. Also, disturbance rejection after
t = 40 s is fast. The integral part of the controller removes the steady-state control
error.

Note that the constant qs
0,1 added to the output of the PI controller in Figure 6.7 is

not strictly necessary, and the controller can operate without it. It only influences
the initial behaviour of the controller. If it were not included, the controller would
start from zero initially decreasing the controlled level. As a remedy, industrial
controllers include external feedback to guarantee bumpless transfer when the
controller starts or resumes its operation.

The tracking between t ∈ (25, 40) demonstrates the problem of integral windup.
The controller output is at the lower limit even after time t = 30 s when the
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Figure 6.9: PI control of two tanks with interaction: a Simulink model with anti-windup en-
hancement AW1.
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Figure 6.10: PI control of two tanks with interaction: simulation results with anti-windup
enhancement AW1.

controlled output crosses the setpoint. This causes a substantial overshoot and
almost drains the tank.

6.2.1.2 Design a Simulink model with the anti-windup structure AW1 and simulate the closed-
loop system response.

The model is shown in Figure 6.9 and the simulation results are shown in Fig-
ure 6.10. When we compare the results with the previous case, we can observe
that the first half of the simulation is the same. The saturation block uses the inner
controller signal and has to be set to (0.05 − qs

0,1, 2 − qs
0,1).

Tracking during t ∈ (25, 40) shows a correct action of the controller. It opens
the control valve much sooner than before and the overshoot is similar as in the
unconstrained case.

6.2.1.3 Design a Simulink model with the anti-windup enhancement AW2 and simulate the
closed-loop system response.
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Figure 6.11: PI control of two tanks with interaction: a Simulink model with anti-windup
enhancement AW2.
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Figure 6.12: PI control of two tanks with interaction: simulation results with anti-windup
enhancement AW2.

The model is shown in Figure 6.11. Simulink provides two anti-windup solutions
in the PID controller block, the solution AW2 is called a back-calculation and the
so-called clamping method. We have chosen the back-calculation coefficient 1/Ti.
Simulation results are shown in Figure 6.12. When we compare the result with the
uncompensated case, we can observe again that the first half of the simulation is
the same as we again use the addition of qs

0,1. However, note that the inner limits
within the PI controller have been set as (0.05 − qs

0,1, 2 − qs
0,1).

Tracking during t ∈ (25, 40) shows the correct action of the controller, and it be-
haves practically the same as AW1. The time the controller spends at the constraint
can be fine-tuned by changing the value of the back-calculation coefficient.

6.2.2 Two Tanks with a Pump

We study the proportional control of two tanks with a pump modelled in Example 1.2.3. The
process parameters are: qs

0,1 = 0.9 m3/s, qs
0,2 = 0.9 m3/s, F1 = 0.5 m2, F2 = 0.6 m2, k11 =

0.8 m2.5/s, and k22 = 0.5 m2.5/s.
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The manipulated and disturbance variables are q0,2, q0,1, respectively. The controlled variable is
the level h2 and it is measured with a certain precision (modelled by an additive white noise).
The desired setpoint is 20% above the initial steady-state level up to time t = 25 s and 30%
of the initial steady-state level afterwards. The disturbance is qs

0,1 up to t = 40 s and 0.9qs
0,1

afterwards. The valve on the manipulated variable cannot be fully closed leading to the lower
limit q0,2,min = 0.05 m3/s and fully open valve gives an upper limit q0,2,max = 2.0 m3/s.

6.2.2.1 Design a Simulink model corresponding to the problem description and simulate the
closed-loop system response with a P controller. The proposed controller is reversely
acting with a gain Kp = −2.

The model is shown in Figure 6.13 and the simulation results in Figure 6.14. We
can see that the P controller stabilises the closed-loop system, and the pump
always finds a correct value corresponding to the actual input disturbance in q0,1.
The process exhibits integrating behaviour. However, steady-state tracking error
can be observed due to the nonlinear characteristics of the process. Its amount can
be controlled by the appropriate choice of the proportional gain. Larger values,
however, increase the sensitivity of the controller to the measurement noise.

6.2.2.2 Simulate the closed-loop system with a PI controller with an anti-windup enhancement.
The proposed controller is reversely acting using the control law

Gc = −2
(

1 + 1
2s

)
. (6.44)

Simulation results are shown in Figure 6.15. Compared to the previous results,
the PI controller structure results in zero steady-state control error. If anti-windup
were not implemented, we would observe large overshoot in the process output
at t = 25 s. The observed overshoot is due to the dominant zero of the controller.

6.3 Practice Examples

6.3.1 First-Order System Control

We study a first-order system

G(s) = K

Ts + 1 , (6.45)

controlled by P and PI controllers.

6.3.1.1 Formulate a transfer function of the closed-loop system. Find its poles, zeros, the static
gain, and the time constant. Discuss the effect of tuning parameter(s) on the control
performance. Treat P and PI cases separately. PI hint: For simplicity start with Ti = T .
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Figure 6.13: Control of two tanks with a pump: a Simulink model.
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Figure 6.14: P control of two tanks with a pump: simulation results.
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Figure 6.15: PI control of two tanks with a pump: simulation results.
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• P controller: The closed-loop transfer function is:

Gcl(s) = GS(s)Gc(s)
1 + GS(s)Gc(s) =

Kc
K

T s+1
1 + Kc

K
T s+1

= KcK

Ts + KcK + 1 . (6.46)

The transfer function in (6.46) has no zeros. The closed-loop system is a
first-order system with the pole

s = − 1
T

− KcK

T
. (6.47)

Now, we are able to analyse the effect of the controller gain on closed-
loop system’s pole. Assuming that K > 0 and T > 0, with increasing Kc
the value of the pole becomes more negative. Therefore, the closed-loop
dynamics is faster.

To analyse the static gain and the time constant, we re-arrange the transfer
function into the following form:

Gcl(s) = KcK

Ts + KcK + 1 =
KcK

1+KcK
T

1+KcK s + 1
, (6.48)

where the static gain is

Kcl = KcK

1 + KcK
, (6.49)

and the time constant is

Tcl = T

1 + KcK
. (6.50)

For high values of the controller gain in (6.49), the static gain Kcl asymp-
totically approaches 1. For smaller values of the controller gain, the static
gain is always less than 1. By increasing the controller gain in (6.50), the
time constant Tcl decreases. As a consequence, the dynamics of the system
becomes faster.

• PI controller: The closed-loop transfer function is:

Gcl(s) = GS(s)Gc(s)
1 + GS(s)Gc(s) =

Kc(Tis+1)
Tis

K
T s+1

1 + Kc(Tis+1)
Tis

K
T s+1

. (6.51)

Assuming Ti = T , the transfer function (6.51) is simplified to:

Gcl(s) =
KcK
T s

1 + KcK
T s

=
KcK
T s

T s+KcK
T s

= KcK

Ts + KcK
. (6.52)

The closed-loop transfer function has no zeros and one pole:

s = −KcK

T
. (6.53)

Analogously to the previous case, when considering K > 0 and T > 0,
by increasing the controller gain, the pole becomes more negative and the
dynamics of the system increases.
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The static gain of the closed-loop system is:

Kcl = KcK

KcK
= 1, (6.54)

which means that the tuning of the controller gain has no effect on the
static gain and it is always equal to 1.

The closed-loop time constant is

Tcl = T

KcK
. (6.55)

By increasing the controller gain, the time constant Tcl decreases and
therefore the closed-loop dynamics is faster.

If we assume that Ti ̸= T , the transfer function is:

Gcl(s) =
Kc(Tis+1)

Tis
K

T s+1

1 + Kc(Tis+1)
Tis

K
T s+1

= KcK(Tis + 1)
Tis(Tis + 1) + KcK(Tis + 1) (6.56)

=
KcK
TiT

(Tis + 1)

s2 + Ti(KcK+1)
T Ti

s + KcK
TiT

. (6.57)

By comparing the transfer function (6.57) with the general form,

Gcl(s) =
Kclω

2
0,cl(Tis + 1)

s2 + 2ξclω0,cls + ω2
0,cl

, (6.58)

we are able to analyse the closed-loop dynamics and the static gain. The
static gain of the closed-loop system is

Kcl = 1, (6.59)

which means that the tuning the controller gain has no effect on the static
gain and is always 1. The frequency ω0,cl is

ω0,cl =
√

KcK

TTi
, (6.60)

which means that by increasing the controller gain Kc, the frequency
increases and the closed-loop dynamics bacomes faster.

6.3.1.2 Verify the theoretical analysis using numerical simulations.

6.3.1.3 (Optional) If available, implement experimental control of the Flexy2 device.

6.3.2 Two Tanks in Series

We study the process with two tanks in series from Example 1.2.4 with parameters qs
0,1 =

0.3 m3/s, qs
0,2 = 0.5 m3/s, F1 = 0.5 m2, F2 = 0.8 m2, k11 = 1.15 m2.5/s, k22 = 1.3 m2.5/s. The

process is in the initial steady state at t = 0.
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Table 6.1: Comparison of the PI controllers.

Kc = 10, Ti = 1 Kc = 1, Ti = 10

σ 61% 0
T100 0.59 -
T005 2.47 14.77
ISE 0.07 0.34

The manipulated and disturbance variables are q0,1 and q0,2, respectively. The controlled variable
is the level h2. The desired reference is 100% above the initial steady state up to t = 25 s and 70%
of the initial steady state afterwards. The disturbance is zero after t = 40 s. The manipulated
variable is limited between 0.1 m3/s and 2.0 m3/s.

6.3.2.1 Calculate the process steady state, the transfer functions between the output and the
input variables, their gains, poles, zeros, and time constants.

The process steady state is defined by (2.113), (2.114) as hs
1 = 0.07 m and hs

2 =
0.38 m. The transfer function between the output and the first input is:

Gyu1(s) =
k1

F1F2

(s + k1
F1

)(s + k2
F2

)
= 5.51

s2 + 5.73s + 5.82 . (6.61)

Its poles are

s1 = − k1
F1

= −4.41, s2 = − k2
F2

= −1.32, (6.62)

which means that the system is stable and overdamped.

The time constants are

T1 = F1
k1

= 0.23, T2 = F2
k2

= 0.76. (6.63)

Finally, the gain of the system is K = 0.95.

The transfer function between the output and the second input is:

Gyu2 =
1

F2

s + k2
F2

= 1.25
s + 1.32 . (6.64)

The pole of the system is s = −k2/F2 = −1.32, which means that the system is
stable and overdamped. The time constant is T = F2/k2 = 0.76. Finally, the gain
of the system is K = 0.95.

6.3.2.2 Design a feedback control strategy with a PI controller. Observe quality indicators
(overshoot, rise time, settling time, ISE) for various values of the controller parameters.

The solution for two values of controller parameters (up to t = 25 s) is summarised
in Table 6.1 and shown in Figure 6.16.
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Figure 6.16: Control of two tanks in series, comparison of PI controllers – (left) trajectory of
controlled variable h2(t), (right) manipulated variable q0,1(t).

6.3.2.3 Design a feedback control strategy with a PID controller and assume the measurement
noise is present in the controlled output. Choose the PI part of the controller as the
best one from the previous step. Observe the performance indices (overshoot, rise time,
settling time, ISE, steady-state control error) for various values of the derivative time
constant.

Increasing the derivative term in the controller improves overshoot and settling
time. However, the presence of measurement noise causes jitter – the manipulated
variable oscillates heavily.

6.3.2.4 Modify the PI controller to include anti-windup compensation AW2. Compare your
solution based on Figure 6.4 with the PI controller without AW.

Comparison of simulations with and without anti-windup is shown in Figure 6.17.
The controller parameters are Kc = 10, Ti = 1 and the AW parameter Tt = 1. We
can see that controller actions in regulation and tracking are comparable except
after t > 25 s where the original output variable suffers from windup.
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Figure 6.17: Control of two tanks in series, comparison of PI controllers with and without anti-
windup – (left) time responses of controlled variable h2(t), (right) manipulated
variable q0,1(t).

6.4 Problems

Problem. 6.1: Offset-free control of a two tanks system with a pump

Consider the two tanks system with a pump (Example 1.2.3). The process transfer function
was determined in (2.103) as

G(s) = Y (s)
U(s) = k1

s(F1F2s + k1F1 + k1F2) . (6.65)

Determine the steady-state error if the process is controlled either by a proportional
controller with a gain Kp or by a PI controller with parameters Kp and Ti.

As the loop contains an integrator in the process transfer function, the steady-state error
is zero as long as the closed-loop system is stable.

Problem. 6.2: Steady-state tracking error

Calculate the steady-state tracking error of a controlled system

GS(s) = 7
s3 + 4s2 + 3s + 2 , (6.66)

and the error of disturbance rejection for the disturbance transfer function

Gd(s) = 4
s + 2 . (6.67)
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Assume control with a proportional controller with Kp = 1. Check whether the closed-
loop system is stable. Consider two cases: step change in the setpoint with r(∞) = 1 and
step change in the disturbance with d(∞) = 1.

The closed-loop system is stable, er(∞) = 2/9, ed(∞) = 4/9.

gs = tf(7,[1 4 3 2]); gd = tf(4,[1 2]); gc = 1;
gyr = gs*gc/(1+gs*gc); gyr=minreal(gyr);
gyd = gpr/(1+gs*gc); gyd = minreal(gyd);
[num,den]=tfdata(gyr,'v'); roots(den)
er = 1-dcgain(gyr); ed = dcgain(gyd)

Problem. 6.3: Stability

Consider the closed-loop system from the previous problem with a proportional controller
with Kp = 4. Check whether the closed-loop system is stable. Determine the range of
values Kp for which the closed-loop system is stable.

Hint: Use Routh-Hurwitz stability criterion to find the critical controller gain. Kp < 10/7.

Problem. 6.4: Setpoint weighting

Consider again the controlled system

GS(s) = 7
s3 + 4s2 + 3s + 2 , (6.68)

and the PI controller Gc(s) = 0.5 + 0.1/s. Although the closed-loop system is stable, the
tracking behaviour is rather oscillatory. Apply a 2DoF controller (6.24) to improve the
tracking behaviour.

gs = tf(7,[1 4 3 2]); gc0 = pid(0.5, 0.1);
gyr0 = gs*gc0/(1+gs*gc0);
b = 0.3; gcf = pid(0.5*b, 0.1); gcb = gc0;
gyr = gs*gcf/(1+gs*gcb); step(gyr0,gyr)

6.5 MATLAB Snippets

• The PID controller transfer function

Gc(s) = Kp + Ki

s
+ Kds

Tfs + 1 .

gc = pid(Kp);
gc = pid(Kp, Ki);
gc = pid(Kp, Ki, Kd);
gc = pid(Kp, Ki, Kd, Tf);

with default values Kp = 1, Ki = 0, Kd = 0, and Tf = 0.



6 Closed-Loop Systems and PID Controllers 153

• Closed-loop stability

gs = tf(7, [1 4 3 2]); gc = 4;
gyr = gs * gc / (1 + gs * gc); gyr = minreal(gyr);
[num, den] = tfdata(gyr, 'v'); pole(gyr), roots(den), isstable(gyr), pzmap(gyr)

• Feedback connection of two systems

gs = tf(7, [1 4 3 2]); gc = 1;
gyr = gs * gc / (1 + gs * gc); gyr = minreal(gyr);
gyr2 = feedback(gs * gc, 1);
step(gyr, gyr2)

6.6 Python Snippets

• PID controller transfer function

Gc(s) = Kp + Ki

s
+ Kds

Tfs + 1 .

from control.matlab import *
gc = Kp
gc = tf([Kp, Ki], [1, 0])
gc = tf([Kd + Tf * Kp, Tf * Ki + Kp, Ki], [Tf, 1, 0])

• Closed-loop stability

from control.matlab import *
gs = tf(7, [1, 4, 3, 2]); gc = 4;
gyr = gs * gc / (1 + gs * gc); gyr = minreal(gyr);
[num,den]=tfdata(gyr); roots(den[0][0])
pzmap(gyr); plt.show()

• Feedback connection of two systems

gs = tf(7, [1, 4, 3, 2]); gc = 1
gyr = gs * gc / (1 + gs * gc); gyr = minreal(gyr)
gyr2 = feedback(gs * gc, 1)
step(gyr); step(gyr2)

6.6.1 PI Control of Two Tanks with Interaction

We will model both the process and the PI controller as nonlinear systems. The reason for a
nonlinear PI controller is the anti-windup structure AW1 (Figure 6.3). Both nonlinear systems
are defined by differential equations, output equation, and by final NonlinearIOSystem. The
feedback connection is implemented using the class InterconnectedSystem.

The program produces simulation results shown in Figs. 6.10.

import control
import numpy as np
import matplotlib.pyplot as plt
import math

def tanks2i_rhs(t, x, u, params):
F1, F2, k11, k22 = 0.5, 0.6, 0.8, 0.5
h1, h2 = x
q01, q02 = u
h2 = 0 if h2 < 0 else h2 # numerical issues
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h1 = h2 if h1 < h2 else h1
dh1 = (q01 - k11 * math.sqrt(h1 - h2)) / F1
dh2 = (q02 + k11 * math.sqrt(h1 - h2) - k22 * math.sqrt(h2)) / F2
return [dh1, dh2]

def tanks2i_out(t, x, u, params):
return x[1]

tanks2i_io = control.NonlinearIOSystem(
tanks2i_rhs, tanks2i_out, inputs=('q01','q02'), outputs=('h2'),
states=('h1', 'h2'), name='tanks2i')

def pi_rhs(t, x, u, params):
ti = params.get('ti')
r = u[0]; y = u[1]; ub = x[0]
usat = pi_out(t, x, u, params)
return (usat - ub) / ti

def pi_out(t, x, u, params):
kp = params.get('kp');
umin = params.get('umin', 0.0); umax = params.get('umax', 100.0)
r = u[0]; y = u[1]; ub = x[0]
return np.clip(kp * (r - y) + ub, umin, umax)

piaw_io = control.NonlinearIOSystem(
pi_rhs, pi_out, name='piaw',
inputs = ['r', 'y'], outputs = ['u'], states = ['x'],
params = {'kp':0.6944, 'ti':8.6216, 'umin':0.05, 'umax':2.0})

sum_noise = control.summing_junction(inputs=['y', 'n'],
output='ynoise',
name='sumn')

cls_io = control.interconnect(
(tanks2i_io, piaw_io, sum_noise),
name='clsio',
connections=(

['sumn.y', 'tanks2i.h2'],
['tanks2i.q01', 'piaw.u'],
['piaw.y', 'sumn.ynoise']),

inplist=('piaw.r', 'tanks2i.q02', 'sumn.n'),
inputs=('r', 'q02', 'n'),
outlist=('sumn.ynoise', 'tanks2i.q01'),
outputs=('h2n', 'u'))

q01s, q02s = 0.9, 0
hs, qs = control.find_eqpt(tanks2i_io, [2, 1], [q01s, q02s])
T = np.linspace(0, 50, 200)
noise = np.random.normal(0, 0.005, T.shape)
q02 = [

0 if t <= 40 else
.1 for t in T]

r = [
1.2 * hs[1] if t <= 25 else
0.3 for t in T]

t, y = control.input_output_response(cls_io, T, [r, q02, noise], [hs[0], hs[1], q01s
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])

plt.close('all')
plt.figure(1)
plt.step(T, r, label='setpoint'); plt.plot(t, y[0], label='h2'); plt.legend()
plt.figure(2)
plt.plot( t, y[1], label='q01'); plt.step(T, q02, label='q02'); plt.legend()
plt.show(block=False)

6.7 Bibliography

The theoretical background for this chapter is fairly standard and can be found in most of
texbooks on automatic control. For example in Mikleš and Fikar (2007, Chapter 7), information
in Slovak in Bakošová and Fikar (2008, Chapter 5).

For complementary information, see for example Seborg, Edgar, Mellichamp, and Doyle (2016,
Chapters 8, 9), Marlin (1995, Chapter 8), Åström and Hägglund (1995).





CHAPTER 7

Root-Locus Analysis and Design

In previous chapters, we have seen that the location of poles (and zeros) of a closed-loop system
determines its performance and its absolute and relative stability. Root-locus technique studies
the roots of the closed-loop characteristic equation as a function of a single control parameter.
We will study methods for sketching the plots of the roots-locus function and for generating
them using a computer. The controller structure and also the controller parameters can be
designed and tuned using the root-locus plots.

Based on this chapter, you should :

• understand the concept of root-locus plots in control system analysis and design,

• learn the basic rules that help to sketch root-locus plots,

• be able to generate root-locus plots using software,

• to analyse the root-locus plots,

• design PID controllers based on the root-locus analysis.

7.1 Overview

Consider a characteristic equation of a feedback control system with a controller Gc(s) and
process G(s)

1 + GcG = 1 + Ḡo = 1 + KGo = 0, (7.1)

where Ḡo denotes the open-loop transfer function consisting of the process and controller. It is
assumed that there is a single parameter K of this transfer function and we wish to study its
influence on the closed-loop pole locations. We assume that K can be any nonnegative number.

The transfer function Go(s) can be expressed as a fraction of two polynomials or in terms of
poles and zeros

Go = B(s)
A(s) = (s − z1) · · · (s − zm)

(s − p1) · · · (s − pn) . (7.2)

157
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Figure 7.1: (left) Root-locus plot for Example 7.1 and (right) Example 7.2

Therefore, the characteristic equation can be expressed as a polynomial f(s)

1 + KGo = 1 + K
B(s)
A(s) = 0, ⇒ f(s) = A(s) + KB(s) = 0. (7.3)

Example. 7.1: First-order system with an integral controller

Consider a process with a transfer function G(s) = 1/(s + 2) controlled by an integral
controller Gc = K/s. Calculate the closed-loop poles as functions of the gain K.

The characteristic equation of the closed-loop system is given as

1 + K
1

s(s + 2) = 0, s2 + 2s + K = 0. (7.4)

The roots are functions of K:

s1,2 =
{

−1 ±
√

1 − K, K ≤ 1,

−1 ± j
√

K − 1, K > 1.
(7.5)

Therefore, we can claim that the closed-loop system will never be unstable, as the poles
contain negative real parts or are negative real. Also, the system is overdamped for K ≤ 1
and underdamped for K > 1. The location of the roots start at the open-loop poles and
moves as two branches.

Figure 7.1 (left) shows the root-locus plot obtained with the simple command

rlocus(1,[1 2 0]) % 1/(s(s+2)) -> 1/(s^2 + 2s + 0)

Notice the the two branches (one for each root/pole) in blue and green.
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Example. 7.2: Second-order system with a PD controller

Consider a process with a transfer function G(s) = 1/(s + 1)(s + 2) controlled by a PD
controller Gc = K(1 + 0.2s). Calculate the closed-loop poles as functions of the gain K.

The characteristic equation of the closed-loop system is given as

0 = 1 + K
1 + 0.2s

(s + 1)(s + 2) , (7.6)

0 = s2 + (3 + 0.2K)s + (2 + K). (7.7)

The process characteristic equation is quadratic with a discriminant

D = (3 + 0.2K)2 − 4(2 + K). (7.8)

Positive values of the discriminant give rise to two real negative roots for either small
values of K, K < 0.36, or large values K > 70. The closed loop possesses two complex
conjugate roots with negative real parts for the intermediate values of K. If K → ∞, one
real root goes to −∞, the other one converges towards zero at z = −1/0.2 = −5.

Figure 7.1 (right) shows the root-locus plot obtained with the command

rlocus([0.2 1], [1 3 2])

Root-locus conditions follow from (7.1) as closed-loop poles must satisfy this equation. Since it
is a function of the complex variable s, it can be rewritten into magnitude and phase conditions:

KGo = −1 + 0j, (7.9)
|KGo| = 1, (7.10)

φ(KGo) = π ± 2kπ, k = 0, 1, 2, . . . (7.11)

7.1.1 General Features of a Root-Locus Plot

We consider a transfer function Go(s) from (7.2) with n poles and m zeros. We can state the
following rules that are valid for the closed-loop pole locations as functions of the parameter K
and help to sketch the root-locus plots:

R1 : The number of loci (branches) is equal to n.

R2 : The root locus on the real axis exists if there is an odd number of poles and zeros to the
right of it on the real axis.

R3 : The root locus is symmetric about the real axis. It is attracted by zeros and repelled by
poles.

R4 : The root loci originate at the poles of Go and they end either at the zeros (m) or at infinity
(n − m).

R5 : n − m branches converge to the asymptotes. The asymptotes intersect the real axis at the
centre of gravity σw with angles ϕk

σw =
∑n

k=1 pk −
∑m

k=1 zk

n − m
, ϕk = π + 2kπ

n − m
, k = 1, . . . , n − m. (7.12)
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R6 : Break-away (break-in) points – points σk on the real axis where the loci meet and leave

n∑
i=1

1
σk − pi

=
m∑

i=1

1
σk − zi

, or = 0 for m = 0, (7.13)

dK

ds
= 0. (7.14)

Note, that this is only a necessary condition, any solution found has to be checked so that
it is a positive value of K.

R7 : The value of K at point s is

K = −
∏n

i=1(s − pi)∏m
i=1(s − zi)

, or K = −
n∏

i=1
(s − pi) if m = 0. (7.15)

R8 : Stability limit Kc

Kc

m∏
i=1

(jωc − zi) +
n∏

i=1
(jωc − pi) = 0. (7.16)

7.2 Examples

7.2.1 Construction of Root-Locus Plots

Consider five different dynamic systems with the following transfer functions:

G1(s) = 1
s + 2 , (7.17a)

G2(s) = s + 8
s2 + 6s + 8 , (7.17b)

G3(s) = s + 4
s2 + 10s + 16 , (7.17c)

G4(s) = s + 2
s2 + 12s + 32 , (7.17d)

G5(s) = 1
s3 + 14s2 + 56s + 64 . (7.17e)

7.2.1.1 A proportional controller is chosen to adjust the input variable. Discuss the influence of
the value of a gain of the controller for stability, damping ratio, and response rate of the
system. Use the root-locus plot to support your arguments.

The final root-locus plots for all examples are shown in Figure 7.4.

(a) G1(s) = 1
s+2

R1 : There will be one branch in the root locus.

R2 : Every point on the real axis to the left of the pole at −2 is a part of
the root locus.

R3 : As there exists only one branch, the root locus will remain on the
real axis.
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R4 : As there are no zeros, the one branch will terminate at infinity.

This practically concludes the construction of the root-locus plot as we are
ready to draw the complete diagram and verify it using a computer.

G1 = tf(1, [1 2]);
figure; rlocus(G1)
iam_save_pdf('plt_rl_g1.pdf', 11, 11)

Influence of the increasing value of a gain of the controller:

• on stability: system will be always (theoretically) stable,

• on damping ratio: response will always be overdamped (non-oscillatory),

• on response rate of the system: system response will always speed
up.

(b) G2(s) = s+8
s2+6s+8

R1 : There will be two branches of the
root locus.

R2 : Every point on the real axis between
−∞ and −8 and between −4 and −2
is part of the root locus.

R3 : It will suffice to find one of the two
branches, the second one is its mirror
image.

R4 : The branches commence at the
points −4 and −2. As there is one
zero present at the point −8, one
branch will terminate at −8 and the
other branch will terminate at (mi-
nus) infinity.

R5 : There is only one asymptote with
the angle ϕ1 = (π + 2π) = π.

R6 : There are two points where
branches meet on the real axis:
1/(σk+4)+1/(σk+2) = 1/(σk+8) →
(σk + 2)(σk + 8) + (σk + 4)(σk + 8) =
(σk + 2)(σk + 4) →
σ2

k + 16σk + 40 = 0 → σ1 =
−12.8990, σ2 = −3.1010.
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Figure 7.2: Root-locus
sketch for G2(s).

We are ready to sketch the important parts of the root-locus diagram. The
actual diagram can be plotted using the commands below.

G2 = tf([1 8], [1 6 8]);
figure; rlocus(G2)
iam_save_pdf('plt_rl_g2.pdf', 11, 11)

Influence of the increasing value of a gain of the controller:

• on stability: system will be always (theoretically) stable,
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• on damping ratio: response will exhibit underdamped behavior
for middle range of gain values,

• on response rate of the system: system response will speed up
nearly always; for high range of gain values, the response settling
will become slower.

(c) G3(s) = s+4
s2+10s+16

R1 : There will be two branches of the root locus.

R2 : Every point on the real axis between −∞ and −8 and between −4
and −2 is a part of the root locus.

R3 : It will suffice to find one of the two branches, the second one is its
mirror image.

R4 : The branches commence at the points −8 and −2. As there is one
zero present at −4, one branch will terminate at the point −4 and
the other branch will terminate at infinity.

This practically concludes the construction of root-locus plot. As there are
no break-away points (two poles never meet each other), we are ready to
draw the complete diagram.
G3 = tf([1 4], [1 10 16]);
figure; rlocus(G3)
iam_save_pdf('plt_rl_g3.pdf', 11, 11)

Influence of the increasing value of a gain of the controller:

• on stability: system will be always (theoretically) stable,

• on damping ratio: response will always be overdamped (non-
oscillatory),

• on response rate of the system: system response will always speed
up, yet there will be a limit to response settling rate.

(d) G4(s) = s+2
s2+12s+32

R1 : There will be two branches of the root locus.

R2 : Every point on the real axis between −∞ and the point −8 and
between the points −4 and −2 is a part of the root locus.

R3 : It will suffice to find one of the two branches, the second one is its
mirror image.

R4 : The branches commence at −8 and −4. As there is one zero
present at the point −2, one branch will terminate at −2 and the
other branch will terminate at infinity.

This practically concludes the construction of root-locus plot. As there are
no break-away points (two poles never meet each other), we are ready to
draw the complete diagram.
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G4 = tf([1 2], [1 12 32]);
figure; rlocus(G4)
iam_save_pdf('plt_rl_g4.pdf', 11, 11)

Influence of the increasing value of a gain of the controller:

• on stability: system will be always (theoretically) stable,

• on damping ratio: response will always be overdamped (non-
oscillatory),

• on response rate of the system: system immediate response will
always speed up, yet the response settling rate will slow down.

(e) G5(s) = 1
s3+14s2+56s+64

R1 : There will be three branches of the
root locus.

R2 : Every point on the real axis between
−∞ and the point −8 and between
the points −4 and −2 is part of the
root locus.

R3 : It will suffice to find one of the two
branches with complex values, the
second one is its mirror image. The
third branch will reside on the real
axis.

R4 : The branches commence at the
points −8, −4 and −2. As there are
no zeros present, all three branches
will terminate at infinity.

R5 : Asymptotes start from σw = (−8 −
4 − 2)/3 = −4.6667 with angles ϕ1 =
(π + 2π)/3 = π, ϕ2 = (π + 4π)/3 =
5π/3, ϕ3 = (π + 6π)/3 = π/3

R6 : 1/(σk +8)+1/(σk +4)+1/(σk +2) =
0, σ1 = −6.4305 (not valid; part of the
root locus for K < 0), σ2 = −2.9028.
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Figure 7.3: Root-locus
sketch for G5(s).

We are ready to sketch the important parts of the root-locus plot. The
actual diagram can be plotted using the commands below.
G5 = tf(1,[1 14 56 64]);
figure; rlocus(G5)
iam_save_pdf('plt_rl_g5.pdf', 11, 11)

We can also find the critical value of a gain Kc and the corresponding
critical frequency ωc from R8. It gives a complex-valued equation that can
be separated into real and imaginary parts:

0 = Kc − ω3
c j − 14ω2

c + 56ωcj + 64, (7.18)

Re: 0 = Kc − 14ω2
c + 64, (7.19)

Im: 0 = −ω3
c + 56ωc, (7.20)
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and the resulting values (for Kc > 0) of Kc = 720, ωc =
√

56. Note, that
the point (0, ωc) is below the asymptote, not on it.

Another possibility to find the critical gain is to use the Routh reduction
algorithm for stability and look for condition when any of the coefficients
(functions of Kc) is zero.

Influence of the increasing value of a gain of the controller:

• on stability: system will be always stable unless the gain exceeds its critical value
Kc,

• on damping ratio: response will exhibit overdamped behavior only for low range
of gain values,

• on response rate of the system: system immediate response will speed up always;
for higher range of gain values, the response settling will become slower and
eventually settling will disappear (instability).

7.2.1.2 Verify some of the conclusions made. Calculate controller gains at break-away points.
Plot a closed-loop response of the system characterised by G2(s) with a proportional
controller. Next, use a controller with a gain Kp = 0.1, Kp = 3, and Kp = 500.

We use the break-away points from R6 and we calculate the gains from R7

K = −
∏n

i=1(σk − pi)∏m
i=1(σk − zi)

= −(σk + 2)(σk + 4)
σk + 8 = (0.2, 19.8). (7.21)

MATLAB code is shown below and the simulation results in Figure 7.5. Note the
time axis of each of the plots.

figure
Kp = 0.1; G = Kp*G2/(1+Kp*G2);
step(G); title('Step Response, Kp = 0.1');
iam_save_pdf('plt_rep_g3Kp01.pdf', 20, 12)

figure
Kp = 3; G = Kp*G2/(1+Kp*G2);
step(G); title('Step Response, Kp = 3');
iam_save_pdf('plt_rep_g3Kp3.pdf', 20, 12)

figure
Kp = 500; G = Kp*G2/(1+Kp*G2);
step(G); title('Step Response, Kp = 500');
iam_save_pdf('plt_rep_g3Kp500.pdf', 20, 12)

7.2.2 Two Tanks with Interaction

We study the dynamic properties of two tanks with interaction that we modelled in Example 1.2.2.
The process parameters are as follows: qs

0,1 = 0.9 m3/s, qs
0,2 = 0 m3/s, F1 = 0.5 m2, F2 = 0.6 m2,

k11 = 0.8 m2.5/s, and k22 = 0.5 m2.5/s.

The transfer function between the output h2 and manipulated input q01 (in deviation variables)
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Figure 7.4: Root-locus plot for G1 – G5.
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Figure 7.5: Feedback control of the process described by G2(s) with a proportional controller;
Kp = 0.1, Kp = 3, and Kp = 500.
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is given by (2.75)

G1(s) = Y (s)
U1(s) = k1

F1F2s2 + (k1F1 + k1F2 + k2F1)s + k1k2
(7.22)

= 7.2
6.075s2 + 9.326s + 1 = 1.19

(s + 1.42)(s + 0.12) . (7.23)

7.2.2.1 Assume that a proportional controller manipulates the input variable. Find the maximum
Kp using root locus so that the closed-loop system remains overdamped.

The process contains two stable real poles and root-locus plot (similar to the one in
Figure 7.1 left) will exhibit an overdamped response for small values of Kp with
the closed-loop poles coming closer to each other. The double pole can be found
using rule R6 and the open-loop poles p1 = −1.42 and p2 = −0.12:

1
σk − p1

+ 1
σk − p2

= 0, σ1 = −0.77. (7.24)

The corresponding value of the controller gain can be found using rule R7:

K = −(σ1 − p1)(σ1 − p2) = 0.4246, Kp1 = K

1.19 = 0.36. (7.25)

7.2.2.2 Assume again that a proportional controller manipulates the input variable. Find a value
of Kp using a root-locus plot such that the closed-loop system exhibits a 20% overshoot.

The overshoot depends only on the damping ratio ζ (3.55):

ζ = | ln emax|√
π2 + ln2 emax

= 0.46. (7.26)

We know that the damping ratio determines the angle of the poles and we are
looking for the intersection of the root-locus plot with the line from the origin
under this angle. The slope is given by

tan φ =
√

1 − ζ2

ζ
= 1.95. (7.27)

The intersection with the root locus gives the roots s = −0.77 ± 1.5j and the
desired gain

K = −(s − p1)(s − p2) = 2.67, Kp2 = K

1.19 = 2.25. (7.28)

7.2.2.3 Try to reduce the steady-state error by adding a lag compensator to the controller while
the keeping the other performance criteria the same.

A lag compensator is of the form

Ga(s) = s − z

s − p
, p ≪ z. (7.29)

In our case, the lag zero z can be chosen as the dominant stable pole p2 of the
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Figure 7.6: (left) Feedback control and (right) root-locus plot of the two tanks with interaction.

process and the pole of the compensator as p = −0.01. The resulting permanent
tracking error was reduced from 6% to less than 1%.

Step responses of the closed-loop system with all three controllers and the root-
locus plot of the original and lag-compensated process are shown in Figure 7.6.
The root-locus plots are very similar and the same holds for the step responses.

7.2.3 Two Tanks with a Pump

We study the dynamic properties of two tanks with a pump that we modelled in Example 1.2.3.
The process parameters are as follows: qs

0,1 = 0.9 m3/s, qs
0,2 = 0.9 m3/s, F1 = 0.5 m2, F2 = 0.6 m2,

k11 = 0.8 m2.5/s, and k22 = 0.5 m2.5/s.

The transfer function between the output h2 and manipulated input q02 (in deviation variables)
is given by (2.103)

G1(s) = Y (s)
U1(s) = k1

F1F2s2 + (k1F1 + k1F2)s = 1.185
s2 + 1.30s

. (7.30)

7.2.3.1 Assume that a proportional controller manipulates the input variable. Find Kp using the
root-locus plot such that the settling time is about 7 s.

The process contains one pole at the origin and one stable real pole. The root-locus
plot will be similar to the previous one and a stable closed-loop system will result
for any choice of Kp. The settling time is about 4/(ζω) with ζω being the real part
of the (dominant) closed-loop pole. Therefore

s = −ζω = − 4
T0.02

= −0.57, (7.31)

K = −(s − p1)(s − p2) = 0.41, (7.32)

Kp = K

1.19 = 0.35. (7.33)

The position of the pole on the root-locus plot suggests overdamped response.
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Figure 7.7: (left) Feedback control and (right) root-locus plot of the two tanks with a pump.

A step response of the closed-loop system and the root-locus plot are shown in
Figure 7.7.

7.2.3.2 From the root-locus plot, we observe that the underdamped poles have real values
of approximately −0.7 which has an influence on the settling time. If we choose an
overshoot of 5% we get Kp1 = 0.75. Let us now design a lead compensator that will
move the underdamped poles to the right and reduce the settling time. The compensator
is of the form

Ge(s) = s − z

s − p
, p > z. (7.34)

Design the compensator so that the step response of the closed-loop system has the same
overshoot but the settling time will be smaller.

We will place the compensator zero at the pole p2 and the pole p = 2p2. This will
move the vertical part of the root-locus branch of the underdamped poles to the
left (Figure 7.8, right) and we will find a controller gain that will provide the same
overshoot: Kp2 = 3.

Figure 7.8 (left) compares the step response of the uncompensated and compen-
sated closed-loop system. We can see that the settling time has been halved.

7.3 Practice Examples

7.3.1 Warm-up Examples

• Plot roots of the closed-loop system with a proportional controller. The controlled sys-
tem is described with G2(s) from Example 7.2.1. Consider 17 controller gains from the
logarithmically spaced interval (0.01, 100).

See Section 7.5.
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Figure 7.8: (left) Feedback control with/without a lead compensator and (right) root-locus plot
with lead compensator of two tanks with a pump.

• Is it possible to find the gain of a proportional controller that will stabilise the following
system G(s) = 1

(s+2)(s−1)?

No. Examination of the root-locus plot (rlocus(tf(1,[1, -1, -2]))) shows
that at least one closed-loop pole is always unstable.

7.3.2 Two Tanks in Series: Root-Locus Construction

We study a system with two tanks in series for which we have derived the transfer function
matrix in Section 2.3.2.

7.3.2.1 A proportional controller is chosen to adjust the input variable. Discuss the influence of
the value of the gain for stability, damping ratio, and response rate of the system. Use
the root-locus plot to support your arguments.

R1 : There will be two branches of the root locus.

R2 : Every point on the real axis between the points −1 and −0.2 is a part of
the root locus.

R3 : It will suffice to find one of the two branches, the second one is its mirror
image.

R4 : The branches commence at the points −1 and −0.2. As there are no zeros
present in the system, both branches will terminate at infinity.

R5 : σw = (−1 − 0.2)/2 = −0.6, ϕ1 = (π + 2π)/2 = 3π/2, ϕ1 = (π + 4π)/2 =
5π/2.

R6 : 1/(σk + 1) + 1/(σk + 0.2) = 0 → (σk + 0.2) + (σk + 1) = 0 → σ1 = −0.6.

We are ready to construct the root-locus plot which is shown in Figure 7.9.
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Figure 7.9: Root-locus plot for two tanks in series.

k1 = 1; k2 = 1; F1 = 5; F2 = 1;
G = tf(k1/F1/F2, [1 (k1/F1+k2/F2) k1*k2/F1/F2]);
figure; rlocus(G)
iam_save_pdf('plt_rl_tanks.pdf', 11, 11)

Influence of the increasing value of a gain of the controller:

• on stability: system will be always (theoretically) stable,

• on damping ratio: response will always be overdamped only for low
values of gain,

• on response rate of the system: system response rate will increase in the
low range of gain values; for middle to high range of gain values the
response settling rate will become approximately constant.

7.3.3 A One-Dimensional Car: Root-Locus Construction

We study the movement of a car that we modelled in Section 1.3.1.

7.3.3.1 A proportional controller is chosen to adjust the input variable. Discuss the influence of
the value of the gain for stability, periodicity, and response rate of the system. Use the
root-locus plot to support your arguments.

R1 : There will be two branches as there are two poles at the origin.

R2 : As there are two poles at the origin, none of the points on the real axis is
part of the root locus.

R3 : It will suffice to find one of the two branches, the second one is its mirror
image.
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Figure 7.10: Root-locus plot for a one-dimensional car.

R4 : As there are no zeros, the two branches will terminate at infinity.

R5 : σw = 0, ϕ1 = (π + 2π)/2 = 3π/2, ϕ2 = (π + 4π)/2 = 5π/2.

R6 : This rule does not apply as there are no points on the real axis (R2).

This concludes the construction of root locus as we are now ready to draw the
complete diagram as shown in Figure 7.10.

Influence of the increasing value of a gain of the controller:

• on stability: system will be always unstable,

• on damping ratio: response will always be underdamped,

• on response rate of the system: system response rate will not be affected
by the gain values.

7.3.4 Poles and Zeros of a PID Controller

Consider the transfer function of a general PID controller

Gc(s) = Kp

(
1 + 1

Tis
+ Tds

Tns + 1

)
= Kp +

Kp

Ti

1
s

+ KpTd
s

Tns + 1 . (7.35)

7.3.4.1 Identify the poles and zeros of the controller. Discuss the admissible range of values of
the poles and zeros.

The transfer function of the controller can be expressed as

Gc(s) = Kp
(TdTi + TiTn)s2 + (Ti + Tn)s + 1

Tis(Tns + 1) . (7.36)
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• Poles occur at: 0 and −1/Tn,

• Zeros occur at: −Ti+Tn±
√

(Ti+Tn)2−4(Td+Tn)Ti
2(TdTi+TiTn) ,

which means that two zeros and one pole can be freely selected (zeros can even be
complex conjugate) based on the values of Ti, Td, and Tn.

7.3.4.2 Identify the number of poles and zeros of the different possible controller structures (P, I,
PI, D, causal D, . . . ).

controller #poles #zeros

P
I

PI
. . .

PIDc

controller #poles #zeros

P 0 0
I 1 0

PI 1 1
D 0 1
Dc 1 1
PD 0 1
PDc 1 1
PID 1 2
PIDc 2 2

7.3.5 A One-Dimensional Car: PID Root-Locus Design

We study the movement of a car that we modelled in Section 1.3.1.

7.3.5.1 Plot the root-locus plots for all the controllers from the previous task. Use Ti = 1 s,
Td = 1 s, and Tn = 0.1 s.

close all
g = tf(1, [1 0 0]); % double integrator system
Ti = 1; Td = 1; Tn = 0.1;

subplot(3,3,1); gc = 1; rlocus(g*gc); title('P controller')
subplot(3,3,2); gc = tf(1, [Ti 0]); rlocus(g*gc); title('I controller')
subplot(3,3,3); gc = tf([Ti 1], [Ti 0]); rlocus(g*gc); title('PI

controller')
subplot(3,3,4); gc = tf([Td 0], 1); rlocus(g*gc); title('D controller')
subplot(3,3,5); gc = tf([Td 0], [Tn 1]); rlocus(g*gc); title('D_c
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controller')
subplot(3,3,6); gc = tf([Td 1], 1); rlocus(g*gc); title('PD controller'

)
subplot(3,3,7); gc = tf([Tn+Td 1], [Tn 1]); rlocus(g*gc); title('PD_c

controller')
subplot(3,3,8); gc = tf([Td*Ti Ti 1], [Tn 0]); rlocus(g*gc); title('PID

controller')
subplot(3,3,9); gc = tf([(Tn+Td)*Ti Tn+Ti 1], [Ti*Tn Ti 0]); rlocus(g*

gc); title('PID_c controller')
h1=findall(gcf); hline=findobj(gcf,'Type','line');
for i=1:length(hline)

hline(i).LineWidth=2;
end
iam_save_pdf('pid_rl_dinteg.pdf', 22, 22);

The resulting root-locus-plot matrix is shown in Figure 7.11.

7.3.5.2 Which of the controllers can you use to successfully adjust the car’s acceleration and
control its position? Test the best controller in a simulation. Plot both the control output
and control input and discuss the results.

All the controllers with nonzero derivative part can be used to control the car. We
will test the PDc controller with a gain of 2.66. The corresponding Simulink model
is shown in Figure 7.12 and the closed-loop results in Figure 7.13.

sim integ_pid

subplot(1,2,1); plot(y(:,1), y(:,2)); xlabel('time'); ylabel('y(t)');
grid on

subplot(1,2,2); plot(u(:,1), u(:,2)); xlabel('time'); ylabel('u(t)');
grid on

h1=findall(gcf); hline=findobj(gcf,'Type','line');
for i=1:length(hline)

hline(i).LineWidth=2;
end
iam_save_pdf('plt_ctrl_pdr_dinteg.pdf', 30, 11);

7.3.6 Two Tanks in Series: PID Root-Locus Design

We study a system with two tanks in series for which we have derived the transfer function
matrix in Section 2.3.2.

7.3.6.1 Tune a real PID controller such that you compensate:

(a) the slowest pole,

(b) the fastest pole,

(c) both the poles.

Plot the corresponding root-locus plot. Plot the step response of the closed-loop system.
Make a comparison with a corresponding proportional controller. Try controllers with
different gains: Kp = 5 and Kp = 50.
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Figure 7.11: Root-locus plot of a double integrator with different PID controllers.
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+− PID(s)
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Figure 7.12: A Simulink model for double-integrator PID control.
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Figure 7.13: Results of PID control of a double integrator (left: position, right: acceleration).

syms Ti Td Tn s p1 p2

collect(1 + 1 / Ti / s + Td * s / (Tn * s + 1))

den = (Ti * Tn * s^2 + Ti * s);
num = (Td * Ti + Ti * Tn) * s^2 + (Ti + Tn) * s + 1;

solve(num, s)

eqp1 = p1 + (Ti + Tn + (Ti^2 - 2 * Ti * Tn - 4 * Td * Ti + Tn^2)^(1/2))
/ (2 * (Td * Ti + Ti * Tn));

eqp2 = p2 + (Ti + Tn - (Ti^2 - 2 * Ti * Tn - 4 * Td * Ti + Tn^2)^(1/2))
/ (2 * (Td * Ti + Ti * Tn));

sol = solve(eqp1, eqp2, Ti, Td)
sol.Ti, sol.Td
close all
% G(s) = k1/F1/F2/(s+k1/F1)/(s + k2/F2);
k1 = 1; k2 = 1; F1 = 5; F2 = 1;
g = tf(k1/F1/F2, poly([-k1/F1 -k2/F2]));
axrl = [-2 0.2 -0.5 0.5];
% P controller
subplot(4, 3, 1)
gc = 1;
rlocus(g*gc)
axis(axrl); title('Root Locus, P')
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subplot(4, 3, 2)
K = 5;
step(gc*K*g/(1+gc*K*g)); title('P, K_p=5'); grid on
v=axis; axis([v(1), v(2), 0, 2])

subplot(4, 3, 3)
K = 50;
step(gc*K*g/(1+gc*K*g)); title('P, K_p=50'); grid on
v=axis; axis([v(1), v(2), 0, 2])

% PI controller
subplot(4, 3, 4)
Ti = 1/(k1/F1);
gc = tf([Ti 1],[Ti 0]);
rlocus(g*gc); title('Root Locus, PI_1')
axis(axrl)

subplot(4, 3, 5)
K = 5;
step(gc*K*g/(1+gc*K*g)); title('PI_1, K_p=5'); grid on
v=axis; axis([v(1), v(2), 0, 2])

subplot(4, 3, 6)
K = 50;
step(gc*K*g/(1+gc*K*g)); title('PI_1, K_p=50'); grid on
v=axis; axis([v(1), v(2), 0, 2])

% PI controller
subplot(4, 3, 7)
Ti = 1/(k2/F2);
gc = tf([Ti 1],[Ti 0]);
rlocus(g*gc); title('Root Locus, PI_2')
axis(axrl)

subplot(4, 3, 8)
K = 5;
step(gc*K*g/(1+gc*K*g)); title('PI_2, K_p=5'); grid on
v=axis; axis([v(1), v(2), 0, 2])

subplot(4, 3, 9)
K = 50;
step(gc*K*g/(1+gc*K*g)); title('PI_2, K_p=50'); grid on
v=axis; axis([v(1), v(2), 0, 2])

% PID controller
subplot(4, 3, 10)
p1 = -k1/F1; p2 = -k2/F2;
Tn = 1/2;
Ti = -(p1 + p2 + Tn*p1*p2)/(p1*p2);
Td = -(Tn*p1 + Tn*p2 + Tn^2*p1*p2 + 1)/(p1 + p2 + Tn*p1*p2);
gc = tf([Td*Ti+Ti*Tn Ti+Tn 1],[Ti*Tn Ti 0]);
rlocus(g*gc); title('Root Locus, PID')
axis(axrl)

subplot(4, 3, 11)
K = 5;
step(gc*K*g/(1+gc*K*g)); title('PID, K_p=5'); grid on
v=axis; axis([v(1), v(2), 0, 2])

subplot(4, 3, 12)
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K = 50;
step(gc*K*g/(1+gc*K*g)); title('PID, K_p=50'); grid on
v=axis; axis([v(1), v(2), 0, 2])
h1=findall(gcf); hline=findobj(gcf,'Type','line');
for i=1:length(hline)

hline(i).LineWidth=2;
end

iam_save_pdf('plt_rl_ctrl_tanks_pid.pdf',25, 30);

The results are shown in Figure 7.14.

7.4 Problems

Problem. 7.1: Fourth-order system

Construct the root-locus plot for the open-loop system

Go(s) = Y (s)
E(s) = K(s + 1)

s(s + 2)(s + 3)2 , (7.37)

and determine the critical gain Kc.

Kc = 96.1

Problem. 7.2: Two tanks with a pump

We derived the transfer function for two tanks with a pump

Gy,u1(s) = 1
0.8437s2 + 1.1s

. (7.38)

Construct the root-locus plot if this process is controlled by

• P controller

• PI controller of the form K(1 + 5/s)

• PI controller of the form K(1 + 0.5/s)

What can be said about the stability of the closed-loop system with these controllers?
What value of integral time constant Ti separates stable and unstable configurations?

The second controller cannot stabilise the process. The critical integral time constant is
given as the reciprocal value of the stable process pole.

Problem. 7.3: System with two poles and one zero

Consider a system with two stable poles (either real or complex conjugate) and one stable
zero. Sketch root-locus plots for all possible different scenarios.
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Figure 7.14: Different PID controllers with the corresponding root loci (left-hand column) and
simulation results (centre and right-hand column) for two-tank control.
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Figure 7.15: Root loci corresponding to different locations of real/complex poles and stable
zero.

Solution is visualised in Fig. 7.15.

Problem. 7.4: Overshoot

Consider a system with a transfer function of the form

G(s) = 18
(s + 1)(s + 3)(s + 6) . (7.39)

Design a proportional controller giving an overshoot of 10% using root-locus plot. Try to
fix the proportional gain and to tune the derivative time constant of a PD controller to
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improve the settling time.

Proportional controller: Kp = 1.4.

Problem. 7.5: Lead compensation

Consider the system from the previous problem with a transfer function of the form

G(s) = 18
(s + 1)(s + 3)(s + 6) . (7.40)

Try to approximate the resulting PD controller by the controller of the form

Gc(s) = K
s + z

z + p
, (7.41)

where z ≪ p (with the same zero and the pole ten times smaller). Plot the root-locus plots
for both controllers.

Problem. 7.6: Lag compensation

Consider a system with a transfer function of the form

G(s) = 4
(s + 1)(s + 4) . (7.42)

Design a PI controller with a stable zero z = −0.1 using the root-locus plot that will result
in damping ratio ζ = 0.7.
Alternatively, try to find a controller of the form

Gc(s) = K
s + z

z + p
, (7.43)

with the same damping ratio ζ = 0.7 and with z ≫ p that approximates the PI controller
(for example p = 0.01, z = 0.1). Such a controller (lag compensator) does not suffer from
windup effects. What is the difference in the steady-state error between the proportional
controller and the lag controller?

Damping ratio determines the angle of the closed-loop poles to the origin. Its intersection
with the root-locus plot provides the desired gain K.

7.5 MATLAB Snippets

• Basic root-locus plot, obtaining root-locus values as vectors or matrices

G2 = tf([1 8], [1 6 8]);
rlocus(G2);
[roots, gains] = rlocus(G2);

• Root-locus plot with damping ratio lines and customisation
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s=tf('s'); G2=(s + 8) / ((s + 2) * (s + 4));
h = rlocusplot(G2);
p = getoptions(h);
p.grid = 'on';
p.XLimMode = 'manual'; p.xlim = {[-20 4]};
p.title.FontSize = 12; p.title.String = 'Root Locus G2(s)';
setoptions(h,p);

• Root-locus plot with emphasis of the poles from 17 controller gains from the logarithmically
spaced interval (0.01, 100) (Section 7.3.1)

G2 = tf([1 8], [1 6 8]); K = logspace(-2, 2, 17);
poles=rlocus(G2, K);
plot(real(poles), imag(poles), 'rx', 'Markersize', 10); hold on
rlocus(G2)
hold off

• Read the gain, pole, damping ratio, overshoot, and frequency from root-locus plot: click
on the desired point of the rlocus results.

• Store selected gain and poles from root-locus plot

G2 = tf([1 8], [1 6 8]);
rlocus(G2);
[k, poles] = rlocfind(G2); % click the desired poles

• Plot a desired damping ratio and frequency on the root-locus plot

zeros = -8; poles = [-2 -4]; gain = 1;
G2 = zpk(zeros, poles, gain);
rlocus(G2);
omega = 10; zeta = 0.8;
sgrid(zeta, omega)

• Interactive plots of closed-loop system: step, root-locus plot, and Bode diagrams. Drag the
closed-loop poles in the root-locus plot to observe changes in other plots.

G2 = tf([1 8], [1 6 8]);
controlSystemDesigner(G2);

7.6 Python Snippets

• Basic root-locus plot, get values into vectors or matrices

from control.matlab import *
import matplotlib.pyplot as plt
G2 = tf([1, 8], [1, 6, 8])
roots, gains = rlocus(G2)
rlocus(G2)
plt.show()

• Root-locus plot with damping ratio lines and customisation

s = tf('s'); G2 = (s + 8) / ((s + 2) * (s + 4))
rlocus(G2, xlim = [-20, 4], grid = True)
plt.title('Root Locus G2(s)', fontsize = 12); plt.show()

• Root-locus plot with emphasis of the poles from 17 controller gains from the logarithmically
spaced interval (0.01, 100) (Section 7.3.1)

G2 = tf([1, 8], [1, 6, 8]); K = np.logspace(-2, 2, 18)
rlocus(G2)
poles, gains = rlocus(G2, K, plot = False)
plt.scatter(poles.real, poles.imag, marker = 'x', color = 'red')
plt.show()



7 Root-Locus Analysis and Design 183

• Read the gain, pole, and damping ratio: click on the desired point of the rlocus results.

• Plots of the system: step, root-locus plot, Bode diagrams, and margins.

G2 = tf([1, 8], [1, 6, 8])
sisotool(G2)
plt.show()

7.7 Bibliography

A good treatment of root-locus, lead and lag compensations can be found in Ogata (2010, Chapter
6), Golnaraghi (2010, Chapter 7), information in Slovak in Huba, Hubinský, and Žáková (2006,
Chapter 7).





CHAPTER 8

PID Tuning

In this chapter you will:

• learn selected experimental and model-based methods for PID tuning,

• understand the role of individual controller parameters for control performance,

• apply your knowledge to the real-time control design of a laboratory device.

A general tuning procedure chooses controller structure and parameters so that some perfor-
mance criteria of the closed-loop system are satisfied.

The selection of tuning methods presented here is by no means complete. These can be thought
of as a starting point for tuning. The controller parameters obtained are usually further refined.

8.1 Overview

Let us briefly review the individual parts of a PID controller and their effect on control perfor-
mance. Assume the controller in the parallel form

Gc(s) = Kp

(
1 + 1

Tis
+ Tds

)
. (8.1)

Table 8.1: Impact of the individual PID components on control performance.

Response Rise Time Overshoot Settling Time S-S Error

Kp ↓ ↑ – ↓
1/Ti ↓ ↑ ↑ 0
Td – ↓ ↓ –

In general, from Table 8.1, it follows that

185
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• proportional control improves the rise time,

• derivative control improves the overshoot,

• integral control eliminates the steady-state error,

and

• a standalone P controller is used when a steady-state offset can be accepted or if the process
contains a free integrator (for example, a tank with a pump),

• the most common controller is the PI controller, because it can remove the steady-state
offset,

• a PID controller can be used if there is not much measurement noise and we would like to
speed-up the closed-loop response compared to that of a PI controller,

• a PD controller can increase the controller gain (and reduce steady-state offset of a stan-
dalone P controller) without compromising closed-loop stability.

There are two classes of tuning methods: those based on experimental observation of input-
output behaviour of the process and those based on a process model.

8.1.1 Experimental Methods

All methods presented in this section, namely

• trial-and-error method,

• Ziegler-Nichols – steady-state oscillations,

• quarter-decay method,

• good-gain method,

return the parameters of a PID controller in parallel form (8.1).

Trial-and-Error Method

Typical PID controller parameters can be determined as follows:

• Start with a P controller with a small gain: Ti → ∞, Td = 0.

• Increase Kp until steady-state oscillations occur (without saturation) with Kpc.

• Set Kp = 0.5Kpc, decrease Ti until steady-state oscillations occur with Tic. Then, set
Ti = 3Tic.

• Increase Td until until steady-state oscillations occur with Tdc. Then, set Td = 0.33Tdc.
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Ziegler-Nichols – Steady-State Oscillations

Start with a P controller and increase its gain until steady-state oscillations occur with a gain
Kpc and a period Tc. Based on the controller structure, the final controller parameter values are
set according to Table 8.2.

Table 8.2: PID tuning formulae based on the “Ziegler-Nichols – steady-state-oscillations
method”.

Controller Kp Ti Td

P 0.5Kpc
PI 0.4Kpc 0.8Tc
PID 0.6Kpc 0.5Tc 0.125Tc

PID1 0.33Kpc 0.5Tc Tc/3
PID2 0.2Kpc 0.5Tc Tc/3

PI (TLM) 0.31Kpc 2.2Tc
PID (TLM) 0.45Kpc 2.2Tc 0.16Tc

PID1 gives smaller overshoot, while PID2 is underdamped. TLM stands for the Tyreus-Lyuben
method.

Quarter-Decay Method

Start with a P controller and increase its gain until the step response exhibits a damping ratio
of 0.25 (magnitudes of subsequent peaks, see Figure 8.1(a)) with a gain Kp4 and a period of
oscillations Tc4. Based on the controller structure, the final controller parameter values are set
according to Table 8.3.

Table 8.3: PID tuning formulae based on the quarter-decay method.

Controller Kp Ti Td

P Kp4
PI 0.9Kp4 Tc4
PID 1.2Kp4 0.6Tc4 0.15Tc4

Compared with the previous methods, the quarter-decay method is superior to previous ones
that it does not drive the closed-loop system to instability.

Good-Gain Method

Start with a P controller and increase its gain until the step response exhibits an overshoot and
an observable undershoot with the gain Kpg. Illustration of such a step response can be found
in Figure 8.1(b). The time Tg is defined as the difference between times of the undershoot and
overshoot.

The controller parameters are then: Kp = 0.8Kpg, Ti = 1.5Tg, and Td = 0.25Ti. This tuning is
based on requirements on the damping ratio and the overshoot: ζ = 0.6, σ = 10%.
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(a) quarter-decay method. (b) good-gain method.

Figure 8.1: Parameters determined by the quarter-decay method and the good-gain method
from the step response of closed-loop system.

8.1.2 Model-Based Methods

Ziegler-Nichols – Step Response

Step responses can be used as a non-parametric process model (Figure 8.2). It is assumed that
the process is in the steady state y0 with an input u0 changed at time t0 to a value u∞ to reach
the final value y∞. A tangent line in the inflection point of the step response is drawn to define
times t1 (intersection of the tangent with y0) and t2 (intersection of the tangent with y∞).

Based on this information, the static gain and the times tu and tn are determined as follows:

K = y(∞) − y(0)
u(∞) − u(0) , tu = t1 − t0, tn = t2 − t1, (8.2)

while the controlled parameters are given by Table 8.4. Note, that the form of the PID controller
considered by this design is the parallel form (8.1). Furthermore, this method holds only for
cases when t1 ̸= t0, i.e., for at least second-order systems.

Table 8.4: PID tuning formulae based on the “Ziegler-Nichols – step-response method”.

Controller Kp Ti Td

P
1
K

tn
tu

PI
0.9
K

tn
tu

3.33tu

PID
1.2
K

tn
tu

2tu 0.5tu
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Figure 8.2: Step response of a nonoscillatory stable system with a step change occurring at time
t0.

SIMC – Skogestad

This method considers a PID controller in the serial form

Gc = Kp

(
1 + 1

Tis

)
(1 + Tds) . (8.3)

The controller structure and parameters depend on the process model and are given in Table 8.5.

Table 8.5: PID tuning formulae based on the SIMC method.

PID Process Kp Ti Td

I Ke−TDs 2KTD

PI
K

Ts + 1e−TDs T

2KTD
min(T, 8TD)

PID
K

(T1s + 1)(T2s + 1)e−TDs T1
2KTD

min(T1, 8TD) T2

PI
K

s
e−TDs 1

2KTD
8TD

PID
K

s(T2s + 1)e−TDs 1
2KTD

8TD T2

PID
K

s2 e−TDs 1
16KT 2

D
8TD 8TD

All models are limited to contain only the gain K in the numerator and a nonzero time delay
TD. Skogestad proposes to reduce other models using the so-called half rule to either first- or
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second-order models. If the original model is of the form

GS(s) = 1∏n
i=1(Ti0s + 1)e−TD0s, (8.4)

with time constants sorted in decreasing order (Ti0 ≥ Ti+1,0), then the first-order approximation
is given as

GS(s) ≈ 1
T1s + 1e−TDs, T1 = T10 + T20

2 , TD = TD0 + T20
2 +

n∑
i=3

Ti0. (8.5)

Similarly, the second-order model can be approximated by

GS(s) ≈ 1
(T1s + 1)(T2s + 1)e−TDs, T1 = T10, T2 = T20+T30

2 , TD = TD0+T30
2 +

n∑
i=4

Ti0. (8.6)

If TD0 = 0 then T1 = T10/2, TD = T10/2.

Pole Placement

If the desired closed-loop poles are known, the controller parameters can be found by equating
the desired closed-loop characteristic polynomial with the one containing unknown controller
parameters. This gives a set of nonlinear equations. The controller structure has to be chosen in
such a way that the following holds:

• the number of closed-loop poles has to be equal to the number of controller parameters,

• proportional and derivative actions do not increase the degree of the characteristic polyno-
mial,

• integral action increases the degree of the characteristic polynomial.

Example. 8.1: Controller structure for a first-order system

Consider a controlled process with a first-order transfer function

G(s) = K

Ts + 1 , (8.7)

with a stable pole s = −1/T . Find which of the PID controller structures are applicable
using the pole-placement method and derive the expressions for the controller parameters.

When assuming a proportional controller Gc(s) = Kp, the closed-loop transfer function
between the output and setpoint can be derived as

Gyw(s) = KKp
Ts + (1 + KKp) =

KKp
T

s + 1+KKp
T

. (8.8)

We can see that the closed-loop characteristic equation is a first-order polynomial. There-
fore, it is possible to choose one pole which should be located to the left of the original
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pole. We will characterise it with a frequency ω0

ω0 >
1
T

. (8.9)

This gives a characteristic equation

s + ω0 = 0. (8.10)

For a given ω0, we can compare coefficients at the same powers of s to get

ω0 = 1 + KKp
T

. (8.11)

Therefore, the controller gain is defined by

Kp = ω0T − 1
K

. (8.12)

If we consider a general PID controller of the form

Gc(s) = Kp

(
1 + 1

Tis
+ Tds

)
= Kp(Tis + 1 + TiTds2)

Tis
, (8.13)

the closed-loop transfer function is of the form

Gyw(s) = KKp(Tis + 1 + TiTds2)
(T + KKpTd)s2 + (1 + KKp)s + KKp/Ti

. (8.14)

The characteristic polynomial is a second-order polynomial, so that two poles are to be
chosen. The PID controller has three parameters hence one of them can be omitted. This
is possible only if Td = 0 (recall that the integration part increases the number of poles so
removing it would decrease the number of poles to be placed). Then, the characteristic
equation can be simplified as

s2 + 1 + KKp
T

s + KKp
TTi

= 0, (8.15)

and to

s2 + 1 + KKp
T

s + KKp
TTi

= s2 + 2ζω0s + ω2
0, (8.16)

for chosen values of ζ and ω0. Equating the coefficients at respective powers of s gives

2ξω0 = 1 + KKp
T

, ω2
0 = KKp

TTi
, (8.17)

and the values of the PI controller parameters are given by

Kp = 2ξω0T − 1
K

, Ti = 2ξω0T − 1
Tω2

0
. (8.18)

Therefore, we can conclude that the pole-placement method is applicable to controller
design of a first-order system with PID controller structures: P and PI.
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Figure 8.3: Step response of two tanks with interaction.

8.2 Examples

Example. 8.2: PID control of two tanks with interaction

We study the PID control of two tanks with interaction modelled in Example 1.2.2. It
is desired to tune the controller parameters using two methods and to compare their
performance:

1. the Ziegler-Nichols – step response,

2. The SIMC method.

Implement the controller anti-windup feature to handle the flow constraints 0.05 m3/s ≤
q0,1(t) ≤ 2 m3/s.

1. We apply a 10% step change in the flow q0,1 at t = 10 s from the steady-state qs
0,1 =

0.9 m3/s to q0,1 = 0.99 m3/s. The resulting step response is shown in Figure 8.3.

We can estimate the inflection point and tangent line to the step response at this
point. This determines the time points t1 = 10.5 and t2 = 22. The initial and final
values of the process output are y0 = 3.24, y∞ = 3.91. Based on these values, the
process gain K and times tu and tn are given as (note that in this case it is quite
difficult to estimate the inflection point as the step response is very similar to a
first-order system without an inflection point)

K = y(∞) − y(0)
u(∞) − u(0) = 7.44, tu = t1 − t0 = 0.5, tn = t2 − t1 = 11.5. (8.19)

If we choose the PI control structure, the controller parameter values can be read
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Figure 8.4: PI control of the two tanks with interaction process: (left) Ziegler-Nichols, (right)
SIMC.

from the Ziegler-Nichols table (Table 8.4):

Kp = 0.9
K

tn
tu

= 2.8, Ti = 3.33tu = 1.7. (8.20)

The process is controlled using the anti-windup AW2 configuration shown in Fig-
ure 6.11. Time trajectories of the controlled output and both inputs are shown in
Figure 8.4 (left). We can observe that the Ziegler-Nichols rules provide controller
yielding a rather oscillatory performance, but the controller can handle well both
tracking (time points 0 s and 25 s) and regulation (t = 40 s) problems.

2. To apply the SIMC method, we need the process model. We can either estimate the
model from the step response (as a first-order process with delay) or we can use the
knowledge about its transfer function

G(s) = 7.2
(8.6s + 1)(0.7s + 1) . (8.21)

The model is not among the supported structures, hence we apply the half rule and
reduce the model to

G(s) = 7.2
9s + 1e−0.35s. (8.22)

The corresponding structure is a PI controller with parameters

Kp = T

2KTD
= 1.8, Ti = min(T, 8TD) = 2.8, (8.23)

and its performance is shown in Figure 8.4 (right). We can see that the response is
not so oscillatory but still sufficiently fast.
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8.3 Practice Examples

8.3.1 PID Controller Design for Two Tanks in Series

Consider the process of two tanks in series, whose nonlinear model was derived in Section 1.2.4
and its linear model is given by two transfer functions (Section 2.3.2). To test designed controllers
with the nonlinear simulation model, consider a 20% step change on the manipulated variable.

8.3.1.1 Discuss which model-based methods can be applied to design a PID controller for both
transfer functions.

Dynamic relationships between the input flow q0,1(t) and the levels h1(t) and
h2(t), respectively, are described by the following transfer functions

G1(s) = 1.25
s + 1.32 , (8.24a)

G2(s) = 5.51
s2 + 5.73s + 5.82 . (8.24b)

We can consider the pole placement method (PPM) and the SIMC method. As far
as SIMC method is concerned, we have to reduce the transfer function (8.24b) to a
first order system with a time delay.

8.3.1.2 Design proportional and PI controllers for the first-order transfer function and compare
the control performance using the nonlinear model.

The value of the controller gain for a first-order system is given by (8.12), or
we can derive the relationship between the desired pole and the value P of the
proportional controller as

P = pT − 1
K

, (8.25)

where p stands for desired absolute value of the stable closed-loop pole. For the
choice p = 3 (two to three times faster than the open-loop pole p = 1.32) the
controller gain is evaluated as P = 1.34.

p = 3; % choice of a stable pole
[n, d] = tfdata(G1, 'v');
T = 1/d(end);
K = n(end)/d(end);
P = (p*T-1)/K; Kp = K;

The PI controller is designed according to the formula in (8.18). To solve the set of
equations for the coefficients of the PI controller, we may use the Symbolic toolbox
as follows

syms P I
p1 = 1/T; p2 = 3;
sol = solve( (1+K*P)/T == p1 + p2, K*I/T == p1*p2, P, I );
P = double(sol.P); I = double(sol.I);
Kp = P; Ki = P/I;

One of the desired poles is set the same as the process pole and the other one as
before (p = 3). The coefficients for this PI controller are P = 2.4, and I = 3.16. The
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Figure 8.5: Comparison of P and PI control designed by pole-placement method based on G1(s)
from (8.24a).

comparison of the proportional and PI controllers designed by the pole-placement
method is shown in Figure 8.5. We can see that PI controller is considerable slower
due to chosen poles.

8.3.1.3 Consider the Ziegler-Nichols – step response method for the design of PI and PID
controllers. Perform simulations solely based on the nonlinear model. To generate the
step response consider a step change on the input flow from qs

0,1 → 1.3 · qs
0,1.

To adopt the formulas from the Ziegler-Nichols – step response method, we extract
the static gain K, and the values tu, and tn. We obtain them from an open loop
simulation with the nonlinear model. The step response is depicted in Figure 8.6.
Values of the reported variables are t1 = 0.11 s, t2 = 1.40 s, hence

K = 0.99, tu = 0.11 s, tn = 1.26 s. (8.26)

Coefficients of the PI and PID controllers are given by expressions in Table 8.4; for
this case they have been evaluated as

PI : Kp = 11.77, Ti = 0.36, (8.27a)
PID : Kp = 2.62, Ti = 0.22, Td = 0.63. (8.27b)

The control performance with the nonlinear model is shown in Figure 8.7. As
expected, the response is rather oscillatory.

8.3.1.4 Design a PID controller with the quarter-decay method using the nonlinear model to get
Kp4 and Tc4.

We perform a set of simulations involving a proportional controller and the
nonlinear model of the two-tanks system to obtain oscillatory behaviour with
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Figure 8.6: Extraction of the parameters required by the Ziegler-Nichols – step response method.
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Figure 8.7: Comparison of P and PI controllers designed by the Ziegler-Nichols – step response
method.

at least two peaks. The coordinates of the peaks from the step response can
be extracted using the function findpeaks(). Verify that the Simulink model
contains a saturation block after calculating the control action with the P controller.
The following script depicts a way to extract information about the peaks from
the simulated profiles systematically:

P_pool = [15, 35, 50];
for k = 1:1:length(P_pool)
P = P_pool(k);
simout = sim(sim_model, sim_time);
y = simout.h(:, 3); % variable "h" is set in the Scope block
[peak_val, peak_idx] = findpeaks(y);
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Figure 8.8: Closed-loop step responses with G2(s) from (8.24b), under different proportional
controllers.

end

Hint: set the PID block in the Simulink model to pure P controller and set the
value of the controller to the variable “P”. Depending on the version of the MAT-
LAB/Simulink, it may be required to change the solver options in Simulink.
Suggested value for maximum step time is at 10−3, while relative and absolute
tolerance may be set to 10−4.

We deal with a nonlinear model where a saturation of the control signal plays a
vital role since the inlet flow must be nonnegative. We cannot excite the nonlinear
model sufficiently enough to achieve the quarter decay of the first two subsequent
peaks for any choice of the gain value P of the controller. As an evidence, we offer
an analysis, where we increase the value of the gain and measure the exact peak
ratio. Such analysis is shown in Figure 8.9, which shows that even if we increase
the value of the gain, the peak ratio will never reach the required value of 25%.
We also compare the results if we consider the linearised model given by G2(s)
from (8.24b), without saturations.

We also offer a solution based on the linearised model. However, we note that
experimental methods should be used primarily directly with nonlinear models
and laboratory devices. We remind that the peak ratio is computed with respect
to the steady-state value of the step response. For this case, we consider a set of
proportional controllers with P = [15, 35, 50] for which we evaluate time coordi-
nates of the first two peaks, the absolute values of peaks, the steady-state values
of the step response, and the ratios. Individual values are shown in Figure 8.8.
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Figure 8.9: Peak ratio for the nonlinear model calculated based on system excitation with pro-
portional controller.

Coefficients of PI and PID controllers are given by expressions in Table 8.3, and
for our case are evaluated as follows

PI : Kp = 31.46, Ti = 0.46, (8.28a)
PID : Kp = 42, Ti = 0.28, Td = 0.07. (8.28b)

Control performance under both controllers is compared with the nonlinear model.
Responses of the controllers to changes in setpoints are presented in Figure 8.10.
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Figure 8.10: Comparison of P and PI controllers designed using the quarter-decay method for
G2(s) from (8.24b).
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8.3.2 PID Controller Design for Two Tanks with a Pump

Consider the model of two tanks with a pump from the Section 2.2.3. Recall that two transfer
functions have been derived for this system.

8.3.2.1 Discuss which model-based methods can be used to design a PID controller for both
transfer functions.

Transfer functions explored in this question map changes in the pump suction
force and changes in liquid levels in individual tanks. These transfer functions are

G1(s) = 0.56
0.4s2 + 0.72s

, (8.29a)

G2(s) = −0.5s − 0.56
0.4s2 + 0.72s

. (8.29b)

Figure 1.11 shows a schematic diagram of such a system. From the analysis of
respective step responses (Figure 8.11) and the transfer function poles in (8.29),
which are {0, −1.81}, we conclude that

• Ziegler-Nichols – step response method is not applicable, since we cannot
extract values like tu,

• SIMC method is not applicable, since the transfer functions do not include
time delay TD. However, if a small time delay will be considered, PI or
PID controllers can be designed according to formulae in Table 8.5,

• Pole-placement method is the only feasible approach for the model-based
controller design, since it does not impose any specific restrictions.

Note, that the step response of the transfer function G2(s) (8.29b) has inverse
behaviour, which is caused by the negative gain of this part of the process.

8.3.2.2 Determine if we can design a PID controller for both transfer functions using the quarter-
decay and good-gain methods. Discuss the results.

To apply experimental methods like the quarter-decay method and good-gain
methods, we must first perform a series of closed-loop simulations with a propor-
tional controller. The controller should be tuned in such a way that an oscillatory
response is obtained.

By increasing the gain of the controller, oscillatory response is obtained for the
transfer function G1(s). Therefore, the good-gain method and quarter-decay
methods can be used to design a controller for this system. An illustration for the
good-gain method is shown in Figure 8.12(a). Here, the resulting coefficients of
the PID controller are given as

PID : Kp = 2.4, Ti = 2.57, Td = 0.64. (8.30)

On the other hand, none of the mentioned methods are applicable for controller
design for G2(s). From the step-response analysis in Figure 8.12(b), we conclude
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Figure 8.11: Unit step response corresponding to the dynamic behaviour given in (8.29).

that the oscillatory closed-loop response is not reached even with very high gains.
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Figure 8.12: Closed-loop step responses with G1(s), and G2(s) from (8.29), under different
proportional controllers.

8.3.2.3 Use the function pidTuner() in MATLAB to design a P, PI, and PID controllers. Com-
pare the control performance using the nonlinear model.

The function pidTuner is a built-in MATLAB toolbox enabling interactive design
of different PID controller types. We direct the reader to Figure 8.13, which
provides an example of the interactive controller tuning interface. The behaviour
of the closed-loop is primarily adjusted by two sliders in the top-middle part, and
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by the type of the controller in the top-left part of the pidTuner toolbox. The actual
parameters of the PID controller are displayed in the bottom-right corner. For
convenient variable handling, the tuned controllers can be exported to a specific
variable with the “Export” button in the top-right corner.

Figure 8.13: Tuning of the PID controller via pidTuner().
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Figure 8.15: Tracking performance of the Flexy plant.

8.3.3 Fan-Flex System – Flexy2

We perform an experimental study on a PID controller design and tuning for the Flexy plant
(version 2). Flexy is an open-source hardware device for process control training and education.
It represents a simple dynamic system with one actuator (fan) and one sensor (flex resistor).
The system allows us to measure and control the air flow produced by the fan. The air flows
around an obstacle that is mounted on a flexible strip. The strip bends as a result of the increased
hydrodynamic pressure. The corresponding change in the electric resistance of the flex sensor is
measured. Flexy is equipped with a microcontroller unit that allows us to continuously control
the fan speed and measure the bend of the flex resistor. Dimensions of the device allow us to
use the standard short-format Arduino-type boards (e.g. Uno, Leonardo, 101, Zero, Yun). Flexy
is also equipped with one potentiometer knob as an additional input. Users can define the
functionality of the knob in a program of the microcontroller (e.g. control setpoint, fan control,
manual parameter change).

A good closed-loop performance under the designed controller is represented by the tracking
performance shown in Figure 8.15.

8.3.3.1 Identify the system using the Strejc’s method.

We performed an experiment, where we first set the input to 30% for 10 seconds
and then increased the input to 60%. The resulting output is shown in Figure 8.16.

We can find the necessary parameters using the following code:

% get the value of y(0) and y(inf)
u0 = 30; uinf = 60;
y0 = 26.98; yinf = 57.98;

% interesting time points
t0 = 10;

% get inflection point line and its parameters
TD = 10.1 - t0 = 0.1;
Tuf = 10.1 - TD - t0 = 0;
Tus = TD + Tuf = 0.1;
Tn = 10.4 - Tus - t0 = 0.3;
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Figure 8.16: Step response of the Flexy plant.

% we choose the first-order system
T = Tn * gn = 0.3;
Z = (yinf - y0) / (uinf - u0) = 1.0333;

% the identified transfer function
G = tf(Z, [T 1], 'InputDelay', TD)

8.3.3.2 Design P, PI, and PID controllers using the model-based methods (Ziegler-Nichols and
SIMC). Test the designed controllers. Hint: If necessary, implement an anti-windup method.

MATLAB code to tune controllers using the Ziegler-Nichols and the SIMC meth-
ods is given below and the experimental results are shown in Figure 8.18 (the
simulation model is shown in Figure 8.17).

% parameters of the model
Z = 1 + 0.1 / 3; T = 0.3; TD = 0.1;

% the identified transfer function
G = tf(Z, [T 1], 'InputDelay', TD);

% Ziegler-Nichols - step response
tu = 0; % this is problematic
tu = TD; % practical choice
tn = T;

%% P Controller
% K = tn/tu/Z

%% PI Controller
K = 0.9 / Z * tn / tu; TI = tu * 10 / 3; P = K; I = 1 / TI;

%% PID Controller
% K = 1.2 / Z * tn / tu; TI = 2 * tu; TD = tu / 2

%% Get real-time measurements
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Figure 8.18: Experimental results: SIMC and ZN methods.

%% sim('flexy2_PID_control')
%% save plt_pi_zn.mat ScopeData

figure
load plt_pi_zn.mat ScopeData
t = ScopeData{1}.Values.Time;
yr = ScopeData{1}.Values.Data;
plot(t,yr, 'LineWidth', 2); title(['ZN = ' num2str(P,2) '(1 + '

num2str(I,2) '/s)'] ); xlabel('time [s]'); ylabel('y, r [%]'); grid
on

iam_save_pdf('flexy2_PID_zn.pdf')

% SIMC
% PI Controller %G_S = \dfrac{k}{Ts+1} e^{-T_d s}
K = T / 2 / Z / TD; TI = min(T, 8 * TD); P = K; I = 1 / TI;

%% sim('flexy2_PID_control')
%% save plt_pi_simc.mat ScopeData

figure
load plt_pi_simc.mat ScopeData
t = ScopeData{1}.Values.Time;
yr = ScopeData{1}.Values.Data;
plot(t,yr, 'LineWidth', 2); title(['SIMC = ' num2str(P, 2) '(1 + '

num2str(I, 2) '/s)'] ); xlabel('time [s]'); ylabel('y, r [%]'); grid
on

iam_save_pdf('flexy2_PID_simc.pdf')

8.3.3.3 Tune P, PI, and PID controllers using the experimental methods (the Ziegler-Nichols, the
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quarter-decay method, and the good-gain method. Hint: You can use the knob on the Flexy
plant to provide the controller gain. You may use the range of values for the knob from 0 to 10.

8.3.3.4 (Optional) Design a PI controller using the trial-and-error method.

8.4 Problems

Problem. 8.1: Controller structure for a second-order system with pole placement
design

Consider a process with a second-order transfer function

G(s) = b1s + b0
s2 + a1s + a0

. (8.31)

Using the pole placement design, find which PID controller structures are applicable and
optionally derive the expressions for the controller parameters.

Suitable controller structures are PD and PID.

Problem. 8.2: Process with time delay

Consider a process with a first-order transfer function

G(s) = K

Ts + 1e−TDs. (8.32)

Design a PI controller for the chosen values of K and T without assuming a time delay
TD. Then, increase the value of TD as a multiple of T : TD = (0.1, 0.4, 0.7, 1, 2, 5)T and
observe the closed-loop performance.
In general, processes with time delay can be separated into lag dominant (T > TD) and
time-delay dominant (T < TD). Moreover, for excessive delays (T ≪ TD), standard
feedback configuration cannot be used. Instead, time-delay compensation methods, such
as the Smith predictor, are used.

Problem. 8.3: A PD controller

Consider a process of the form

G(s) = 200
s3 + 11s2 + 10s

. (8.33)

Design a PD controller with a maximum overshoot of 20% and the settling time under 1 s.
What happens to the performance if there is a constraint |u| ≤ 1?

The controller is Gc(s) = 0.53(1 + 1.18s). If there are constraints on u, the closed-loop
system will be overdamped without overshoot and the settling time doubles.
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8.5 MATLAB Snippets

• PID tuner in MATLAB. It can basically tune any PID controller structure, without pro-
portional/derivative kick, and a controller with two degrees of freedom as well. It can
evaluate various control performance criteria: rise and settling times, overshoot, gain and
phase margins, and closed-loop stability.

pidTuner(sys,type)
pidTuner(sys,Cbase)
pidTuner(sys)
pidTuner

It is also available from the PID block in Simulink (click Tune in the Main tab).

• Flexy initialisation script

%% FLEXY2
% 2021-09-29

%% Prerequisities
addpath('RealTime_Pacer') % if not included in the PATH
slCharacterEncoding('UTF-8') % helps avoid warnings

%% Initialization and communication PORT identification
% f = Flexy2 %% windows
f = Flexy2('/dev/ttyACM0') %% Linux

%% Double calibration
f.calibrate;

%% Close CLI connection to enable Simulink communication
f.close

%% Initialize communication
% Sampling time
Ts = 0.01;
% Calibration
calibrate = 1;
% Port = 'COM6';
Port = f.ComPort;

%% Simulink model
%open('flexy2_PI_control_demo.slx');

8.6 Python Snippets

• Flexy script

# this is required module
import Flexy
# this is needed only for sleep function
from time import sleep

# create instance of Flexy2
f = Flexy.Flexy2('/dev/ttyACM0')

# if needed, calibrate Flexy2
print('Calibrating Flexy ...')
f.calibrate()
sleep(10)
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# set the rate of data collecting
f.setInternalSamplingFrequency(20)

# lets turn on the fan on 50%
f.setFanSpeedPerc(50)

# collect and display some data
for i in range(0,50):

print(str(i/10)+"s bend perc: "+str(f.getBendPerc()))
sleep(.1)

f.setFanSpeedPerc(100)

for i in range(51,100):
print(str(i/10)+"s bend perc: "+str(f.getBendPerc()))
sleep(.1)

# turn off the fan
f.off()

# disconnect from the device
f.close()

8.7 Bibliography

The theoretical background for this chapter can be found in Mikleš and Fikar (2007, Chapter 7),
information in Slovak in Bakošová and Fikar (2008, Chapter 6).

For complementary information on control and identification, see for example Marlin (1995,
Chapter 9), Åström and Hägglund (1995), Shinskey (1979), Coughanouwr and Koppel (1965),
Douglas (1972), Seborg, Edgar, Mellichamp, and Doyle (2016), Fikar and Mikleš (1999), and
Shardt (2022).
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