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Abstract

This thesis focuses on the design of data-driven linear soft sensors for real-world
case studies in the petrochemical industry. Soft sensors are essential for monitor-
ing important process variables by leveraging measurements from related variables
like temperatures, pressures, and flow rates. The design procedure involves seven
consecutive steps, including data inspection, historical data selection, preprocessing,
input structure and model selection, model training, model validation, and sensor
maintenance. Our primary objective is to use this procedure to design soft sensors
specifically for industrial distillation columns. We employ various multivariate data
treatment approaches to mitigate outliers and systematic errors in the dataset. The
training of the soft sensors encompasses ordinary least squares as well as advanced
variance-covariance methods and approaches focusing on achieving the desired sparsity
in the model structure. We evaluate the performance of the designed soft sensors
against reference sensors currently implemented in the refinery or developed based
on expert knowledge. Additionally, we compare the performance of single-model and
multi-model soft sensors, with the latter incorporating clustering and classification
approaches. We propose novel approaches to address the limitations of existing meth-
ods in the design of multi-model soft sensors. Our research highlights the practical
applicability of soft sensors, initially designed for prediction purposes, such as esti-
mating the product concentration in two industrial distillation columns. Furthermore,
we utilise the soft sensors for fault detection, specifically for detecting flooding in a
third industrial distillation column using a data-driven indicator based on soft sensor
principles.

Keywords: Classification, Data Treatment, Fault Detection, Key Process Variables,
Petrochemical Industry, Soft (Inferential) Sensors
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Abstrakt

Táto dizertačná práca sa zameriava na návrh lineárnych softvérových senzorov založený
na dátach pre prípadové štúdie z petrochemického priemyslu. Softvérové senzory
majú zásadný význam pri monitorovaní dôležitých procesných veličín využitím meraní
korelovaných veličín, ako sú teploty, tlaky a prietoky. Návrhový postup softvérových
senzorov pozostáva zo siedmich po sebe nasledujúcich krokov, vrátane počiatočnej
analýzy dát, výberu historických dát, pred-spracovania dát, výberu vstupnej štruk-
túry a modelu, trénovania modelu, validácie modelu a údržby softvérových senzorov.
Naším hlavným cieľom je aplikovať tento postup na návrh softvérových senzorov
pre konkrétne priemyselné destilačné kolóny. Využívame rôzne prístupy spracovania
viacrozmerných dát na zníženie počtu outlierov a systematických chýb v meraných
dátach. Trénovanie softvérových senzorov zahŕňa bežnú metódu najmenších štvorcov,
ako aj pokročilejšie metódy založené na variancii-kovariancii a prístupy, ktoré kladú
dôraz na dosiahnutie požadovanej riedkosti štruktúry modelu. Efektívnosť navrhnutých
softvérových senzorov porovnávame s referenčnými senzormi, ktoré sú momentálne
implementované v rafinérii alebo sú vyvinuté na základe odborných poznatkov z praxe.
Okrem toho porovnávame výkon jedno-modelových a viac-modelových softvérových
senzorov, pričom viac-modelové senzory zahŕňajú prístupy zhlukovania a klasifikácie.
Navrhujeme nové prístupy na odstránenie obmedzení existujúcich metód pri návrhu
viac-modelových softvérových senzorov. Naša výskumná práca zdôrazňuje praktickú
použiteľnosť softvérových senzorov, pričom ich najprv navrhujeme pre účely predik-
cie, ako napríklad odhad koncentrácie produktov v dvoch priemyselných destilačných
kolónach. Okrem toho využívame softvérové senzory na detekciu porúch, konkrétne
na detekciu zaplavovania v tretej priemyselnej destilačnej kolóne pomocou indikátora
založeného na dátach a navrhnutého na základe princípov softvérových senzorov.

Kľúčové slová: Klasifikácia, Spracovanie údajov, Detekcia porúch, Kľúčové procesné
veličiny, Petrochemický priemysel, Softvérové (inferenčné) senzory
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Chapter 1

Introduction

“If you can’t measure it, you can’t improve it.”
William Thomson Kelvin (1824–1907)

The continuous growth of technology in the industrial sector and the need to meet
specific requirements, such as improved profitability and safety, motivate researchers
to implement innovative solutions and ideas. One crucial element in achieving these
requirements is gaining a comprehensive understanding of process dynamics through
online sensors or analysers. Soft sensors, also known as inferential sensors or virtual
sensors, have emerged as widely recognised and frequently used analysers designed
to estimate hard-to-measure process variables or aspects using related variables that
are easier to measure. The soft sensors are represented by mathematical structures
and provide a cost-effective alternative to physical sensing devices, potentially offering
more precise and frequent indications of the desired variables (Mejdell and Skogestad,
1991; Kordon et al., 2003; Curreri et al., 2020).

In general, the production processes represent complex systems with many variables
and interactions between these variables (Santander et al., 2022). They usually exhibit
nonlinear behaviour resulting from the rich interactions of the involved physical phe-
nomena. One would conjecture that a nonlinear soft sensor design (Zheng et al., 2022)
is necessary. However, a typical industrial process is usually operated in some operating
regime (steady state) to achieve the desired product specifications. Therefore, the
nonlinear behaviour of the process variable can be often neglected, and the linear soft
sensor can provide an accurate estimate of the desired variable. The advantages of
a linear soft sensor over its nonlinear counterpart lie foremost in lower maintenance
expenses, higher transparency, the possibility of physical insight, and lower computa-
tional effort for sensor training, validation, online evaluation, and further calculations
(e.g., for optimisation and control). The latter aspect can be significant mainly when
the estimated variable is an input for an advanced process controller (Botha and Craig,
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2021) or is involved in a complex plant-wide optimization (Ge, 2017).

Linear soft sensors can be classified into two main categories: model-based (or mechanis-
tic) (Doraiswami and Cheded, 2014; Torgashov and Skogestad, 2019) and data-driven
soft sensors (King, 2011; Mojto et al., 2021; Sun and Braatz, 2021). Model-based soft
sensors leverage knowledge about the process derived from first-principles models based
on fundamental physical and chemical laws. These models can be directly employed
in soft sensor design (Torgashov and Skogestad, 2019) or indirectly used through
an observer (Doraiswami and Cheded, 2014). However, the complexity and scale of
industrial processes often restrict the application of model-based soft sensors. On the
other hand, data-driven soft sensors yield results that are less interpretable compared to
model-based ones since they require less domain knowledge of the process. This makes
the data-driven soft sensors preferable in industrial practise over the model-based
soft sensors. Consequently, the popularity of data-driven soft sensors is increasing
alongside advancements in sensor technology and plant digitalization. Nevertheless,
the performance of data-driven soft sensors is closely tied to the quality of the data.

The bridge between model-based and data-driven soft sensors is established through
hybrid soft sensors (Pan et al., 2013; Pla et al., 2018). These soft sensors combine
data-driven models with complementary mechanistic correlation models to leverage
available domain knowledge (Tahir et al., 2019; Zhuang et al., 2022). The mechanistic
correlation models are typically derived from first-principles models and calibrated
using process data.

The effectiveness and reliability of linear data-driven soft sensors heavily depend on
the quality of the data used in their design. This is particularly significant due to the
utilisation of linear regression, also known as ordinary least squares (OLS) regression,
which is a fundamental and commonly used approach for training the model parameters
in the linear soft-sensor structure. OLS regression aims to minimise the sum of squared
error (SSE) criterion, which tends to amplify the negative impact of outliers and devi-
ated measurements on the accuracy of the model. Moreover, the multivariate dataset
employed for the design of linear soft sensors typically comprises signals from various
online sensors. Therefore, it is crucial to subject the dataset to an effective multivariate
data treatment analysis that can detect both systematic and random errors (Su et al.,
2009). In industrial settings, several methods have been developed to address data
pre-treatment. Among these methods, Hotelling’s T 2 distribution (Hotelling, 1931),
k-means clustering (Forgy, 1965), and minimum covariance determinant (Rousseeuw,
1984) are well-known and widely used for multivariate data treatment. These methods
have been successfully applied in various industrial contexts (Alameddine et al., 2010;
Xu et al., 2017; Frumosu and Kulahci, 2019; Azzaoui et al., 2019; Fontes et al., 2021).
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As mentioned earlier, the available dataset for linear data-driven soft-sensor design
typically consists of multiple input variables, originating from various online sensors
(referred to as a multivariate input dataset). This complexity adds a layer of challenge
to the soft-sensor design process, as it requires not only finding the most accurate
model using OLS regression, but also determining the desired complexity of the model
structure. Currently, the most widely used techniques for linear data-driven soft-
sensor design are principal component analysis (PCA) regression and partial least
squares (PLS) regression (Pearson, 1901; Wold et al., 1984, 2001). PCA regression
employs unsupervised learning to reduce the dimensions of the input-variable space
and performs regression on the reduced space. This approach has a long and successful
history of industrial applications (Kadlec et al., 2009; Yuan et al., 2015; Yu et al.,
2020). On the other hand, PLS regression considers both the input and output spaces,
making it a supervised learning approach. The choice between PCA and PLS depends
on the availability and quality of infrequently measured output variables.

Both PCA and PLS offer partial solutions to address overfitting in soft sensors by
performing regression in reduced dimensions. However, the resulting sensor structures
are generally not sparse, which may not be desirable or feasible, especially when using
the designed soft sensor for advanced process control. To address this limitation,
data-driven approaches that promote sparsity in soft-sensor design have been devel-
oped. One such approach is the Least Absolute Shrinkage and Selection Operator
(LASSO) (Santosa and Symes, 1986; Tibshirani, 2011), which applies a 1-norm penalty
to balance the accuracy and complexity of the soft sensor. The concept of sparse
soft-sensor design is further advanced through subset selection (SS) methods, which
aim to identify the best subset of explanatory variables from the multivariate input
space. The original subset selection methodology proposed various stepwise approaches
(backward, forward, and bi-directional) to select suitable input variables from a pool
of candidates (Efroymson, 1960; Smith, 2018). Further studies (Miyashiro and Takano,
2015; Mencarelli et al., 2020) have shown that SS can be enhanced by incorporating
model overfitting criteria such as adjusted R2 (R2

adj), corrected Akaike Information
Criterion (AICc), or Bayesian Information Criterion (BIC). Additionally, the perfor-
mance of SS can be improved by emulating the cross-validation process (Takano and
Miyashiro, 2020).

As mentioned earlier, linear data-driven soft sensors in industrial practise often involve
a trade-off between estimation accuracy and model complexity. While designing
nonlinear soft sensors (Zheng et al., 2022) may seem like a straightforward solution to
improve performance, it would require significant effort to determine an appropriate
model structure. Additionally, the resulting structure would likely be more complex
and less transparent compared to a linear model structure. An alternative approach
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to enhancing the performance of linear data-driven soft sensors is to use a multi-
model soft-sensor design (MMS) instead of the traditional single-model soft-sensor
(SMS) design. MMS offers the potential to mitigate the negative impact of nonlinear
process behaviour on prediction accuracy while maintaining a relatively simple model
structure. Each model within the MMS structure can explain a particular operating
regime. Therefore, these sensors find applications in complex industrial processes with
a multitude of operating modes (Khatibisepehr et al., 2012; Jin et al., 2015; Wang
et al., 2021).

The state-of-the-art MMS design consists of three sequential steps: (1) a priori labelling,
(2) data classification, and (3) individual training of the soft sensor models. In the
first step, a modeller searches for an appropriate number of models and assigns tags to
available data to distinguish the models (classes) discovered. The popular approach for
a priori labelling is k-means clustering (Forgy, 1965). A comparison of several other
techniques for a priori labelling is shown in (Lü and Yang, 2014). The classification
step employs an appropriate data-driven (machine-learning) approach to draw model-
validity regions, i.e., the boundaries between the classes (models) that would later serve
as switching conditions for using predictions from a particular model. A frequently
used and well-known classification learner is Support Vector Machine (SVM) (Boser
et al., 1992). The method designs classification hyperplanes in the context studied
in this work. Lastly, the constituent models of MMS are individually trained for
each class by using a suitable regression technique (Mojto et al., 2021). One of the
recent examples of learning MMS is given in (Bemporad, 2022), where piecewise linear
regression is considered together with classification based on softmax regression and
labelling by the k-means algorithm. While the state-of-the-art approaches train MMS
effectively, there are still a few drawbacks hindering the overall potential of MMS.
The first drawback is that the continuity of the switching between the different MMS
models is not guaranteed. This can have a negative impact on plant production. For
example, a common issue that might arise is that advanced process controllers with
MMS implemented might face stability issues because of soft sensor discontinuity. The
second drawback originates from the a priori labelling that is unaware — like any
other unsupervised learning approach — of its impact on MMS prediction accuracy. It
is, therefore, not likely that the optimal allocation of the model-validity regions will
be achieved.

The earlier description emphasizes the wide range of applications for both single-model
soft sensors (SMS) and multi-model soft sensors (MMS) in monitoring key process
variables. However, soft sensors have the potential to find applications in various other
fields as well. One area experiencing increasing industrial demand for soft sensors is
fault detection (Joe Qin, 2003; Serpas et al., 2013). A fault is defined as a deviation
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from the intended characteristic that renders it unable to fulfill its purpose. While
some research has been published in this area (Serpas et al., 2013; Lemos et al., 2021),
it is still relatively new in terms of real-world industrial applications.

Fault detection can be employed to identify potential anomalies in the desired variables.
In the industry, fault detection plays a significant role in detecting flooding within
distillation columns (Pihlaja and Miller, 2012). Flooding is an undesirable phenomenon
that occurs when the liquid level rises above a tray due to foaming or excessive
downcomer fill-up (King, 2011). This condition leads to a significant loss in tray
separation efficiency and, consequently, plant profitability. Early detection or prediction
of flooding through fault detection is therefore crucial for maintaining a profitable and
sustainable plant. Numerous studies have addressed the issue of flooding detection,
focusing on the correlation between flooding and internal process variables, particularly
the pressure difference (drop) across the column (Peiravan et al., 2020) and the time
derivative of the pressure drop (Pihlaja and Miller, 2012). Industrial experts often
leverage these findings and combine them with their understanding of the primary
causes of flooding to develop tailored solutions for each column. However, the use of
machine learning (ML) approaches (Mojto et al., 2021; Oeing et al., 2021; Fuentes-
Cortés et al., 2022) could potentially streamline the process of creating customized
solutions, saving time and effort. ML approaches encompass both unsupervised
techniques (e.g., k-means clustering and PCA) that do not rely on prior knowledge
of the model outcome and supervised techniques (e.g., SS and SVM) that utilize
knowledge about the desired outcome for training.

In this work, we focus on designing SMS using various data-driven techniques. The
methods examined include variance-covariance approaches (i.e., PCA and PLS), as
well as more recent techniques that enforce model sparsity (i.e., LASSO and SS).
The primary contribution of this research is the comparison of these methods in
the specific context of industrial soft-sensor design. To evaluate the effectiveness of
these techniques, we analyse their performance in two industrial distillation columns:
the depropranizer column in the Fluid Catalytic Cracking (FCC) unit and the main
fractionator in the Vacuum Gasoil Hydrogenation (VGH) unit, both provided by the
oil refinery Slovnaft, a.s. in Bratislava, Slovakia. Although these distillation columns
differ in complexity, their common objective is to monitor the product composition
using the soft sensors we develop.

In our research, we build upon the SMS design by exploring the natural progression to
the MMS design. To address the drawbacks associated with MMS, we propose novel
approaches that mitigate these limitations. Firstly, our proposed approaches enable
continuous switching between the MMS models by merging classification and model
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training into a single decision problem. This is achieved by training an SVM separation
hyperplane, which acts as a switching boundary between the MMS models. Secondly,
we introduce an optimisation-based labelling approach that simultaneously conducts
all sequential steps of the state-of-the-art MMS design procedure. We evaluate the
performance of these approaches using both a synthetic dataset based on a pressure
compensated temperature (PCT) model (King, 2011) and an industrial dataset from
the main fractionator at the VGH unit in the oil refinery Slovnaft, a.s. in Bratislava,
Slovakia. We compare the performance of MMS with (a) the reference SMS currently
used in the refinery and (b) SMS designed using various techniques (i.e., OLS, PCA,
PLS, LASSO, and SS). Our conclusions are based on standard indicators, including
prediction accuracy (root-mean-square error, RMSE) and complexity (number of model
input variables or principal components). Additionally, we perform a comprehensive
analysis of the life cycle of the designed soft sensors by conducting a bias correction
analysis (Quelhas, 2009).

We leverage the knowledge acquired from both SMS and MMS designs to tackle the
problem of fault detection in a real-world industrial setting. Specifically, we focus on
designing data-driven flooding indicators for an industrial debutanizer column located
at the FCC unit in the oil refinery Slovnaft a.s. in Bratislava, Slovakia. To assess
the performance of these indicators, we compare them against a reference indicator,
which is considered the ground truth. The reference indicator is designed based on
industry specifications and the expertise surrounding flooding detection. We employ
data-driven approaches, including both unsupervised and supervised machine learning
(ML) techniques, to develop the flooding indicators and evaluate their effectiveness.

This work is structured as follows. The first part provides an introduction to the
methodology of soft-sensor design, covering the theoretical foundations and algorithms
utilised in this field. It is then followed by a discussion of the state-of-the-art approaches
that are employed in the overall soft-sensor design procedure. The second part of this
work builds upon the methodology and presents the main findings and contributions
of the research.

Motivation
In the current era of advanced technology and increased computational power, there is
a tremendous opportunity to enhance industrial processes by implementing innovative
ideas and technological advancements. These advancements have a profound impact
on the overall profitability and sustainability of industrial operations. Soft sensors play
a crucial role in monitoring hard-to-measure variables and other important controlled
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variables (CVs) in industrial settings, making them a prime example of such technology.

While real-time sensing devices can provide measurements for hard-to-measure variables,
they often have limitations in terms of accuracy and frequency. Moreover, the cost of
these devices is typically significantly higher compared to soft sensors. By contrast,
designing soft sensors can offer a cost-effective alternative, albeit requiring historical
data for their development. While soft sensors may require periodic maintenance for
model updates, this maintenance is generally more affordable compared to maintaining
real sensing devices.

The motivation for studying data-driven approaches to soft-sensor design stems from
the increased availability of inexpensive and relatively accurate online sensors, which
provide the desired variables and sufficient measurements for research purposes. This
flexibility implies that such research holds promise for the future, enabling increased
process safety and improved process economics with the addition of each new measured
variable.

At the heart of soft sensors lies their mathematical structure, which allows for the
incorporation of a wide range of input variables. This design flexibility empowers
us to leverage modern ML techniques to optimise the performance of soft sensors.
Furthermore, the process of designing soft sensors enables the combination of various
approaches and facilitates a comprehensive analysis of the obtained results.

However, a significant drawback of data-driven soft sensors is their individual perfor-
mance in different industrial plants. To address this, we compare the performance of
soft sensors designed using various data-driven methods, with the aim of developing a
novel method that combines the favourable characteristics of the studied methods.

Lastly, the signals from soft sensors are often used as additional inputs to advanced
process controllers. Given that soft sensors typically monitor key process variables,
they play a vital role in the overall performance of advanced process controllers. As
technology continues to evolve and enhance the performance of advanced process
controllers, the demand for soft sensors is expected to increase in the future.

General Objectives
The primary objective of this work is to analyse the applicability of different recent
data-driven approaches for linear single-model soft sensor (SMS) design. This analysis
aims to provide insights into potential future research directions in the field of soft
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sensor design. Subsequently, the scope of the research will be expanded to include the
design of a multiple model soft sensor (MMS). For the MMS, effective methods for
improving state-of-the-art methodologies will be explored, followed by an analysis of
the performance of the proposed approaches using real industrial datasets.

To evaluate the performance of the studied approaches for SMS and MMS designs,
two different case studies will be considered: the depropanizer column in the FCC
unit and the main fractionator in the VGH unit at the oil refinery Slovnaft, a.s. in
Bratislava, Slovakia. The objectives for each case study can be summarised as follows:

• Conduct data treatment analysis using various multivariate analyses, such as
Hotelling’s T 2 distribution, k-means clustering, and MCD.

• Determine the input structure and model selection for SMS and MMS.

• Train the selected model structure using the training dataset and validate it
using the testing dataset.

• Compare the quality of the designed sensors not only based on accuracy (RMSE)
but also taking into account the complexity of the soft sensor structure (number
of resulting model parameters).

• Compare the designed soft sensors against the reference soft sensor, which
represents the current performance in the refinery.

• Analyse the sustainability and performance of the soft sensor in the future,
including bias correction and evaluating its effort.

Another objective is to analyse the effectiveness of soft sensors in the area of fault
detection. Specifically, a data-driven indicator will be designed for detecting flooding
within the industrial debutanizer column located at the FCC unit in the oil refinery
Slovnaft, a.s. in Bratislava, Slovakia. The knowledge obtained from the SMS and MMS
designs will be applied to develop the desired flooding indicators. Additionally, various
unsupervised and supervised machine learning approaches will be used to design the
indicators, and their performance will be compared against the ground truth provided
by expert knowledge.

Publications
Content of this thesis is primarily based on the following publications:
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Chapter 2

Soft-sensor Theory Foundations

2.1 Introduction to Soft Sensors
The soft sensor is a mathematical structure that estimates the output variable y based
on a vector of input variables x (x ∈ Rnp), where np represents the number of selected
input variables. Two types of soft sensors can be distinguished: static (Kadlec et al.,
2009; King, 2011) and dynamic (Cao et al., 2020) soft sensors. This thesis focuses on
the design of soft sensors with static mathematical structures, which can be represented
as follows:

ŷ = f (x,β) , (2.1)

where ŷ denotes the estimated output variable, β is the vector of model parameters,
and f is a mathematical function (linear or nonlinear) that establishes the relationship
between the input and output variables.

The specific focus of this thesis is on the design of linear soft sensors, chosen for their
higher transparency and lower complexity compared to nonlinear soft sensors. The
multivariate model structure of linear soft sensors (considering one data point) can be
expressed as:

ŷ = x1β1 + x2β2 + . . .+ xnpβnp + β0,

= (x1, x2, . . . , xnp)(β1, β2, . . . , βnp)ᵀ + β0 = xᵀβ + β0,
(2.2)

where β ∈ Rnp , and β0 represents a constant (bias) term.

In order to analyse the multivariate model structure represented in (2.2), more data
points should be considered. These data points come from either a sample of the
population or the entire population. The sample is a subgroup selected from the
population that is representative of it, while the population refers to the complete
collection of elements or objects that share specific characteristics. Consequently, the
sample size (n) is expected to be smaller than the population size (N,N ≥ n).
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For a sample of data points, the vector of input variables x should be expanded into a
sample matrix of input variables X (X ∈ Rn×np) as shown below:

x→X = (x1,x2, . . . ,xn)ᵀ. (2.3)

To simplify the notation and indicate the variables (columns) in X more explicitly,
the following notation is used:

X =
(
x{1},x{2}, . . . ,x{np}

)
, (2.4)

where x{i} (x{i} ∈ Rn) represents the ith variable (column) of X.

For the entire population, the vector of input variables x should be expanded into a
population matrix of input variables Xp (Xp ∈ RN×np) as follows:

x→Xp = (x1,x2, . . . ,xN )ᵀ. (2.5)

Based on the input matrices X and Xp, the linear multivariate input structure in
equation (2.2) can be generalised to handle more data points as follows:

ŷ = Xβ + β0, (2.6)
ŷp = Xpβ + β0, (2.7)

where ŷ (ŷ ∈ Rn) is the sample vector of the estimated output variable, and ŷp
(ŷp ∈ Rn) is the population vector of the estimated output variable.

2.1.1 Training, Validation, and Testing Datasets
The standard procedure for designing a soft-sensor typically involves three datasets:
training, validation, and testing. The training dataset is used for the training phase,
while the testing dataset is used to evaluate the performance of the soft-sensor. The
validation dataset is occasionally employed in specific approaches.

To differentiate between these datasets, corresponding index sets are created. Let I
(I := {1, 2, . . . , n}) be an index set representation of the entire dataset, which includes
both input and output variables. The training index set IT is defined as follows:

IT ⊂ I, card(IT) = nT, nT < n, (2.8)

where nT is the size of the training dataset.

The validation index set IV is a subset of the training index set, given by:

IV ⊂ IT, card(IV) = nV, nV < nT, (2.9)
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where nV is the size of the validation dataset.

Finally, the testing index set IS is formulated as:

IS := I \ IT, card(IS) = nS, nS < n, (2.10)

where nS is the size of the testing dataset.

These index sets enable the division of the dataset into distinct training, validation, and
testing subsets. The training dataset consists of elements selected using the training
index set (X(IT),y(IT)), the validation dataset consists of elements selected using
the validation index set (X(IV),y(IV)), and the testing dataset consists of elements
selected using the testing index set (X(IS),y(IS)).

The training dataset (X(IT),y(IT)) is used during the training phase of the soft sensor
design procedure. It is typically larger than the testing dataset to provide sufficient
information for the model to learn. It is important to ensure that the training dataset
is representative of the overall population to enable the model to learn meaningful
patterns.

The validation dataset (X(IV),y(IV)) is primarily used in cross-validation (see Sec-
tions 3.3.1 and 3.3.3). It helps mitigate overfitting (i.e., fitting the noise), facilitates
reliable input structure selection, and supports the ongoing operation of the soft sensor.

The testing dataset (X(IS),y(IS)), also known as an unseen dataset, is not used
during the validation phase of the soft-sensor design procedure. Its purpose is to
assess how well the trained model generalises to new data. The testing data should be
independent of the training dataset and accurately represent the normal operation or
future operation of the process.

2.1.2 Soft-sensor Implementation
The life cycle, or implementation, of a soft sensor is illustrated in Figure 2.1. The
process involves obtaining frequent measurements (solid line) of the input variables x
and infrequent or irregular measurements (dashed line) of the output variable y. The
frequent measurements are typically obtained from online sensors, while the infrequent
measurements come from laboratory (or lab) analysis. These measurements are then
stored in the industrial database, and the historical data from this database can be used
for further designing or updating the soft sensor. Furthermore, real-time measurements
from the input variables x are fed into the soft sensor to provide an online estimation
of the output variable ŷ. At the same time, the process monitoring and control system



16 Soft-sensor Theory Foundations

Figure 2.1: Soft sensor life cycle (implementation) in an industrial plant.

receives information from the process and the soft sensor. It ensures that optimal
control actions are taken to maintain the desired operation of the process.

The most common application of soft sensors is for monitoring key process variables in
various industries. These versatile sensors play a crucial role in obtaining estimates of
hard-to-measure output variables (ŷ) by utilising measurements from easily measurable
variables obtained from online sensors (x). These easily measurable variables can
include temperatures, pressures, flow rates, and other relevant parameters that provide
valuable insights into the process. The hard-to-measure variables that soft sensors
aim to estimate can vary depending on the specific application, ranging from the
concentration of products to equipment ageing or the steady state of the process. By
leveraging the relationships between easily measurable and hard-to-measure variables,
soft sensors enable real-time monitoring and control of critical process variables,
facilitating efficient and optimised operations.

In addition to their role in monitoring key process variables, soft sensors also find
widespread application in fault detection systems. Faults in industrial processes
typically indicate abnormal or undesirable operating conditions that can lead to
inefficiencies, safety risks, or product quality issues. Soft sensors, with their ability
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to accurately classify measurements as normal or abnormal, offer a valuable tool for
detecting and diagnosing faults. These classification-based soft sensors utilise advanced
algorithms and techniques to analyse the collected data and identify deviations from
normal operation. By detecting anomalies in process variables, such as unexpected
fluctuations or patterns, soft sensors can provide early warnings of potential issues and
facilitate proactive maintenance or intervention. For example, in the petrochemical
industry, soft sensors can be employed to detect flooding in industrial distillation
columns, which can have severe consequences for process efficiency and product
quality. Similarly, in industrial chemical reactors, soft sensors can identify dangerous
operations or deviations from safe operating conditions, allowing operators to take
prompt corrective actions and prevent accidents or costly disruptions. Overall, the
integration of soft sensors in fault detection systems enhances process monitoring
capabilities and contributes to improved operational performance and safety in various
industries.

2.2 Statistics for Soft-sensor Design
This section provides an overview of the essential statistical concepts necessary for
designing linear data-driven soft sensors. This includes the description of the normal
distribution, introducing key statistical terms. Additionally, we delve into the statistics
of multivariate systems, including the covariance and correlation matrices, as well as
Hotelling’s T2 distribution.

2.2.1 Normal Distribution
The normal (Gaussian) distribution is a fundamental probability distribution widely
used in statistical analysis. It is characterised by its symmetrical bell-shaped curve.
The probability density function (PDF) of the normal distribution is defined by the
following equation (Hastie et al., 2017):

f(x) = 1√
2πσ2

x

exp
(
− (x− µx)2

2σ2
x

)
, (2.11)

where x represents a random variable following the normal distribution, µx corresponds
to the mean value (centre of the distribution), and σx denotes the standard deviation
(measure of variability).

The normal distribution is of great importance in statistics and probability theory,
as evidenced by the central limit theorem. This fundamental concept states that the
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distribution of the sum or average of a large number of independent and identically
distributed random variables tends to approximate a normal distribution, regardless of
the shape of the original distribution. In simpler terms, when we take a large number
of random samples (with a sample size greater than 30) from any population and
compute the sum or average of those samples, the resulting distribution will closely
resemble a normal distribution, irrespective of the shape of the original population.

The normal distribution serves as a foundational assumption in statistical analysis,
providing the basis for various statistical techniques and models employed in this thesis.
Moreover, it is a valuable tool for understanding and analysing data in a wide range
of fields, including the social sciences, economics, engineering, and natural sciences.
It enables researchers to apply statistical methods that rely on the assumption of
normality and facilitates inference, hypothesis testing, and estimation of confidence
intervals.

Mean Value The mean value is a measure of central tendency that represents the
typical or average value of a set of numbers (Hastie et al., 2017). For the sample of
data points, the sample mean value (x̄) is given in the following form:

x̄ = 1
n

n∑
k=1

xk. (2.12)

The mean value for the whole population (µx) has following form:

µx = 1
N

N∑
k=1

xk. (2.13)

Standard Deviation It is a measure that represents the amount of variation or
dispersion within the studied set of data points (Hastie et al., 2017). The standard
deviation for the sample from the population is as follows:

sx =

√√√√ 1
n− 1

n∑
k=1

(xk − x̄)2, (2.14)

where sx is the sample standard deviation.

With the respect to the whole population, the standard deviation achieves following
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form:

σx =

√√√√ 1
N

N∑
k=1

(xk − µx)2, (2.15)

where σx is the population standard deviation.

2.2.2 Covariance and Correlation Matrices
To understand the relationships between the input variables in X, we can calculate
the (sample) covariance matrix Σ (Σ ∈ Rnp×np) using the following formula (Hastie
et al., 2017):

Σi,j = 1
n− 1

n∑
k=1

(Xk,i − x̄{i})(Xk,j − x̄{j}), ∀i,∀j ∈ {1, 2, . . . , np}, (2.16)

where Σi,j is a covariance coefficient of Σ, and x̄{i} and x̄{j} are mean values for the
ith and jth input variables of X computed by (2.12).

For the matrix with the population of the input variablesXp, the population covariance
matrix Σp (Σp ∈ Rnp×np) can be derived as:

Σp,i,j = 1
N

N∑
k=1

(
Xk,i − µx{i})(Xk,j − µx{j}

)
, ∀i,∀j ∈ {1, 2, . . . , np}, (2.17)

where Σp,i,j is a covariance coefficient of Σp, and µx{i} and µx{j} are mean values for
the ith and jth input variables of Xp computed by (2.13).

The covariance matrix Σ provides information about the covariance between pairs of
input variables. It indicates the direction in which the variables move together. A
positive covariance coefficient Σi,j suggests that the corresponding input variables have
a positive covariance and move in the same direction. Conversely, a negative covariance
coefficient indicates the opposite. Furthermore, the magnitude of the covariance reflects
the strength of the relationship between the variables.

Based on the sample covariance matrix Σ, it is possible to derive the sample correlation
matrix R (R ∈ Rnp×np) as follows:

ri,j = Σi,j
sx{i}sx{j}

, ∀i,∀j ∈ {1, 2, . . . , np}, (2.18)

where ri,j is a correlation coefficient of R, and sx{i} and sx{j} are standard deviations
for the ith and jth input variables of X calculated using (2.14).
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The correlation coefficient ri,j shares similar characteristics with the covariance co-
efficient Σi,j , but it is not affected by differences in the scale of the input variables.
All covariance coefficients within R are normalised within the interval [−1, 1], where
−1 indicates a perfect negative linear correlation, 1 indicates a perfect positive linear
correlation, and 0 indicates no linear correlation.

2.2.3 Hotelling’s Distribution
The Hotelling’s T2 distribution (Hotelling, 1931) is a generalisation of the Student’s
t-distribution (Student, 1908). It originates from multivariate hypothesis testing, where
Hotelling’s T 2 statistic is defined as:

T 2 = n(x̄− µx)ᵀΣ−1(x̄− µx), (2.19)

where T 2 represents the Hotelling’s T 2 statistic, x̄ (x̄ ∈ Rnp) is the sample mean
vector computed by (2.12) for X, and µx (µx ∈ Rnp) is the population mean vector
computed by (2.13) for Xp.

The Hotelling’s T 2 distribution follows the F -distribution, which is given by:

T 2 ∼ T 2
np,n−1 = np(n− 1)

n− np
Fnp,n−np , (2.20)

where Fnp,n−np represents the F -distribution.

The value of T 2 is proportional to the distance between the sample mean and population
mean. The Hotelling’s T 2 distance (T 2 distance) of each point from µx can be evaluated
as:

T 2
i = dT 2,i = n(xi − µx)ᵀΣ−1(xi − µx), ∀i = {1, 2, . . . , n}, (2.21)

where dT 2,i represents ith element of dT 2 (dT 2 ∈ Rn), and xi represents the ith row
(data point) of X.

Expanding the Hotelling’s T 2 statistic stated in (2.19), we can derive the vector of
Mahalanobis distances dM (dM ∈ Rn) using the following expression:

dM,i =
√

(xi − µx)ᵀΣ−1(xi − µx), ∀i = {1, 2, . . . , n}. (2.22)

The Mahalanobis distance dM quantifies how different or similar a data point is from
a distribution or a reference set of data points.

From the perspective of data-driven soft-sensor design, both distances (dT 2 and dM)
can be utilised for data treatment analysis to detect outliers and systematic errors
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within the industrial dataset. If the dataset is centred (with a zero mean, µx = 0), the
distance represented by dT 2 or dM can identify measurements that deviate the most
from the centre, commonly known as outliers. An increasing value of this distance
indicates a higher probability that the measurement is an outlier. The condition to
differentiate between acceptable and unacceptable measurements is typically established
using the empirical 3σ rule of thumb (which includes 99.7% of the measurements) or
the χ2 test. However, some adjustments may be necessary depending on the ideality
(normality) of the data. In practise, industrial datasets are often highly non-ideal with
a significant presence of noise, requiring manual tuning of this condition.

2.3 Regression, Clustering, and Classification
The three fundamental tasks essential for soft-sensor design are regression, classifi-
cation, and clustering. This section provides a brief description and mathematical
representation of each of these tasks.

2.3.1 Regression
Regression, specifically linear regression (which is the focus of this thesis), is a supervised
learning task that aims to predict the output variable y based on input variables x. The
basic mathematical formulation of a regression problem can be expressed as follows:

Given a set of input variables X and their corresponding output values y, the goal is
to find a function f that maps X to y using the equation:

y = f(X,β, β0) + ε, (2.23)

where ε (ε ∈ Rn) represents a vector of random error terms.

In this work, we focus on the linear structure of the designed soft sensors. Therefore,
the term f(X,β, β0) in (2.23) can be replaced with the vector of estimated output
variables ŷ obtained from (2.6). The goal of regression is to minimise the difference
between the measured (y) and estimated (ŷ) values of the output variable by finding
the optimal estimates of the model parameters ({β, β0} → {β∗, β∗0}, where β∗ ∈ Rn

∗
p).

The resulting model (β∗, β∗0) may not include all the original input variables (n∗p ≤ np).
This is because some input variables may be eliminated during the regression process
due to their low correlation with the output variable.
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2.3.2 Regression Performance Indices
The quality of regression models is evaluated based on their accuracy and complexity.
Accuracy refers to how closely the estimated values (ŷ) of the output variable match
the measured values (y). Several criteria are commonly used to assess the accuracy of
regression models:

• Sum of squares error (SSE): It quantifies the total sum of the squared differences
between each measured value (yk) and its corresponding estimated value (ŷk),
given by:

SSE =
n∑
k=1

(yk − ŷk)2. (2.24)

• Sum of absolute errors (SAE): It measures the mean of the absolute differences
between each measured value (yk) and its corresponding estimated value (ŷk),
given by:

SAE = 1
n

n∑
k=1
|yk − ŷk|. (2.25)

• Root-mean-square error (RMSE): It represents the square root of the mean of the
squared differences between the measured values (yk) and their corresponding
estimated values (ŷk), calculated as:

RMSE =

√√√√ 1
n

n∑
k=1

(yk − ŷk)2. (2.26)

• Coefficient of determination R2: It measures the proportion of the variance in the
output (dependent) variable that can be explained by the input (independent)
variables in a regression model, calculated as:

R2 = 1−
∑n
k=1(yk − ŷk)2∑n
k=1(yk − ȳ)2 , (2.27)

where ȳ is the mean value of the output variable.

The aforementioned performance indices provide measures of accuracy for regression
models. Higher values of SSE, SAE, and RMSE indicate lower accuracy. SSE and
RMSE penalise larger errors more heavily, while SAE treats all errors equally. The
coefficient of determination, denoted by R2, represents the proportion of the variance
of the output variable explained by the input variables. A higher value of R2 suggests
a better fit of the model to the data.
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The complexity of a regression model can be assessed by the number of parameters n∗p
within the resulting model structure. It is important to note that certain approaches,
such as PCA regression (see Section 3.2.1) or PLS (see Section 3.2.2), may result in
models composed of principal components that require the complete set of original
input variables. When evaluating the overall performance of a regression model, it
is desirable to minimise the complexity of the model structure. However, reducing
complexity without control can lead to a significant decrease in accuracy. Therefore,
finding the right balance between accuracy and complexity is crucial.

On an industrial scale, the performance of a regression model is closely related to the
quality of the available dataset. Noise is an inevitable part of industrial data and is
present to varying degrees in both input and output variables. As the complexity
of the model structure increases, there is a higher tendency for the soft sensor to
follow the noise rather than accurately capture the behaviour of the output variable.
This phenomenon is known as model overfitting, which is an undesirable aspect of
data-driven models. To avoid or reduce model overfitting, the following criteria can be
considered:

• Corrected Akaike Information Criterion (AICc): A modification of the Akaike
information criterion (AIC) that addresses the issue of small sample sizes. It
adjusts the penalty term for model complexity to provide a more reliable estimate
of model performance. The AICc can be formulated as follows:

AICc = AIC +
2n∗p(n∗p + 1)
n− n∗p − 1 = n ln

(
SSE
n

)
+

2n∗p(n∗p + 1)
n− n∗p − 1 , (2.28)

where n is the number of data points, n∗p is the number of parameters in the
model, and SSE is the sum of squares error. A lower AICc value represents a
better trade-off between model accuracy and complexity.

• Bayesian Information Criterion (BIC): Another criterion for model selection
that penalises model complexity. It is derived from a Bayesian perspective and
provides a balance between model fit and complexity. The BIC is mathematically
represented as:

BIC = n ln
(
SSE
n

)
+ ln(n)n∗p. (2.29)

• Adjusted Coefficient of Determination R2
adj: An appropriate modification of the

coefficient of determination R2 that takes into account the model complexity. It
is computed as:

R2
adj = 1− (1−R2)(n− 1)

n− n∗p − 1 = 1− SSE
n− n∗p − 1 . (2.30)
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These criteria provide valuable insights into the balance between model accuracy and
complexity, allowing for better decision-making in the selection and evaluation of
regression models in industrial settings.

2.3.3 Clustering
Clustering is an unsupervised learning task that aims to group similar data points
together based on their inherent characteristics or patterns. The basic mathematical
formulation of a clustering problem can be described as follows:

Given a set of data points D ∈ Rnp , the objective is to partition the data into ncl
clusters, where each cluster represents a group of similar data points. This can be
represented as:

C = {C1, C2, . . . , Cncl}, D =
⋃
i

Ci, ∀i ∈ {1, 2, . . . , ncl}, (2.31)

where C represents the set of clusters, and Ci represents the ith cluster.

2.3.4 Clustering Performance Indices
Clustering performance indices are quantitative measures utilised to assess the quality of
clustering outcomes. They offer valuable insights into the compactness and separation
of clusters, enabling a comprehensive evaluation of clustering algorithms. Three widely
recognised and frequently used clustering performance indices are following (Gan et al.,
2020):

• Silhouette Coefficient: It evaluates clustering solutions by considering the com-
pactness of data points within their clusters and the separation between different
clusters. Ranging from -1 to 1, a higher value signifies superior clustering results.
It takes into account the average distance between a data point and all other
points within its cluster (intra-cluster distance) as well as the average distance
to the nearest neighbouring cluster (inter-cluster distance).

• Dunn Index: It assesses clustering quality based on cluster compactness and
separation. It computes the ratio of the minimum inter-cluster distance to the
maximum intra-cluster distance. A higher Dunn Index value indicates improved
clustering results, characterized by more compact and well-separated clusters.
The Dunn Index provides a global measure of clustering quality.
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• Calinski-Harabasz Index: It measures the ratio of between-cluster dispersion to
within-cluster dispersion. It quantifies cluster compactness and separation. A
higher Calinski-Harabasz Index value suggests better clustering outcomes, with
more distinct and well-separated clusters.

2.3.5 Classification
Classification is a supervised learning task where the goal is to assign input data
points to predefined classes or categories. The basic mathematical formulation of a
classification problem can be stated as follows:

Given dataset of input variables X and a set of predefined classes C, the task is to
find a function f that maps the inputs to the corresponding classes. Mathematically,
this can be represented as:

f : Rnp → {C1, C2, . . . , Cncl}. (2.32)

2.3.6 Classification Performance Indices
In this section, we derive performance indices for a system consisting of two classes:
positive and negative. It is important to note that these indices can also be derived
for multi-class problems with more than two classes. The outcomes of clustering and
classification can fall into four categories:

• True positive (TP): instances that are truly positive and correctly classified as
positive.

• True negative (TN): instances that are truly negative and correctly classified as
negative.

• False positive (FP): instances that are actually negative but incorrectly classified
as positive.

• False negative (FN): instances that are actually positive but incorrectly classified
as negative.

Based on the aforementioned four categories, several well-known normalised perfor-
mance criteria can be evaluated:
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• Accuracy (AC): It measures the overall correctness of the classifier as follows:

AC = TP + TN
TP + FP + TN + FN . (2.33)

• Precision (PR): It quantifies the precision or correctness of the true positive
predictions as follows:

PR = TP
TP + FP . (2.34)

• Recall (RC): It measures how well the classifier predicts actual positive observa-
tions as follows:

RC = TP
TP + FN . (2.35)

• F1-Score (F1): It is the harmonic mean between precision and recall as follows:

F1 = 2× PR× RC
PR + RC . (2.36)

These performance indices, namely accuracy (AC), precision (PR), recall (RC), and F1-
Score (F1), provide valuable insights into the effectiveness of clustering and classification
models. They help assess the correctness and predictive power of the models.



Chapter 3

Soft-sensor Algorithm Foundations

The design of data-driven soft sensors is typically tailored to a specific application.
This is because the performance of a data-driven soft sensor can be greatly influenced
by the behaviour of the output variable being inferred or the quality of the available
data for the soft sensor design. Therefore, it is important to have at least an intuitive
knowledge of various potential algorithms that can be applied in different situations
and circumstances. The following sections of this thesis describe fundamental and
widely used approaches that are frequently employed in the design of linear data-driven
soft sensors.

3.1 Ordinary Least Squares Regression
Ordinary least squares (OLS) regression is a commonly used statistical method for
estimating the relationship between input (independent) variables and one or more
output (dependent) variables. OLS regression aims to find the optimal parameters
within the linear model (β0 and β from (2.2)) while minimising the sum of squared
errors (SSE) between the observed (y) and predicted (ŷ) output variables.

The vector of predicted output variables ŷ is given by (2.6). With respect to ŷ, the
objective of OLS regression is represented by the following expression:

min
β,β0

(y −Xβ − β0)ᵀ(y −Xβ − β0) = min
β,β0

SSE, (3.1)

where y (y ∈ Rn) is a vector of the observed output variable.

The objective function represents the sum of squared errors (SSE) between the observed
and predicted values. By minimising this function with respect to the parameters β
and β0, we obtain the optimal estimates ({β, β0} → {β∗, β∗0}) that provide the best
fit to the data.
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3.2 Variance-covariance Algorithms
3.2.1 Principal Component Analysis
Principal component analysis (PCA) (Pearson, 1901) is one of the most important
representatives of the unsupervised machine learning family of approaches. This
statistical approach focuses on effective dimensionality reduction. PCA searches for a
lower-dimensional representation of a high-dimensional dataset while preserving the
most important information. This is achieved by identifying orthogonal vectors called
principal components (PC) that explain the maximum variance in the data.

The visualisation of PCA, considering a two-dimensional example, is depicted in
Figure 3.1. Since PCA is an unsupervised learning method, both dimensions are
considered inputs. The dataset under study is represented by red dots and involves
two principal components, namely PC1 (indicated by the blue double arrow) and PC2
(indicated by the black double arrow). The orientation and width of these principal
components explain the covariance present in the dataset, which is represented by the
variance-covariance matrix (depicted as a green ellipse).

The PCA procedure begins by computing the covariance matrix Σ (as shown in
Equation (2.16)) from the available input dataset X. In Equation (2.16), the mean
value of each input variable within X is subtracted. This ensures that the resulting
principal components are not influenced by the overall shift or centre of the input
dataset.

Subsequently, singular value decomposition (SVD) is performed to factorise Σ as
follows:

Σ = UMV ᵀ, (3.2)

where U (U ∈ Rn×n) is an orthogonal matrix containing the left singular vectors
(eigenvectors), M (M ∈ Rn×npc) is a diagonal matrix containing the singular values
(eigenvalues), and V (V ∈ Rnpc×npc) is an orthogonal matrix containing the right
singular vectors (eigenvectors), npc is the number of principal components.

After performing SVD, the original input dataset X can be projected into a lower-
dimensional representation Xlow (Xlow ∈ Rn×n

∗
pc) considering n∗pc (n∗pc ≤ npc) dimen-

sions (principal components) as follows:

Xlow = Uᵀ
low[X − (1x̄ᵀ)ᵀ], (3.3)

where Ulow (Ulow ∈ Rn×n
∗
pc) is lower-dimensional matrix considering only first n∗pc

columns of U .



3.2 Variance-covariance Algorithms 29

Figure 3.1: The visualization of principal components (PC1, PC2) of the input
variable with another input variable (PCA) or the output variable (PLS).

Each eigenvector (within U or V ) represents one principal component that explains
a certain amount of the data variance. The desired amount of total variance can be
captured by selecting several (n∗pc) principal components within the eigenvectors with
the maximum explained variance. Regression can then be carried out over the selected
principal component subspace by solving Equation (3.1) (OLS regression), considering
n∗pc parameters. This interconnection of PCA and OLS approaches is called PCA
regression.

The use of PCA regression represents an advantage, mainly in cases where there is an
insufficient amount of output data. This is often the situation in the industry, where
measuring the desired output variable is either expensive or rare. Such a situation can
lead to the performance deterioration of many data-driven methods for soft sensor
design, as they usually require a large number of measurements. The popularity of
PCA regression has grown due to its ability to learn from measurements of online
sensors, enabling it to outperform other data-driven methods in certain cases.
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3.2.2 Partial Least Squares
Partial least squares (PLS) regression (Wold et al., 1984) is a supervised machine
learning method that aims to create a linear regression model for predicting the output
variable based on the input variables. PLS regression is similar to principal component
analysis (PCA) in that both methods reduce the dimensionality of the problem.

In general, the PLS approach repeats the following steps multiple times to obtain the
desired number of principal components, denoted as n∗pc:

1. Identifying the directions of maximum covariance between the input dataset (X)
and the output dataset (y).

2. Applying OLS regression on the input scores, which are the projections of X
onto the identified directions.

3. Deflating (subtracting the estimated component) the input and output datasets
based on the obtained component.

There are variations in the specific details of this procedure, and two commonly used
approaches are nonlinear iterative partial least squares (NIPALS) and simple partial
least squares (SIMPLS) (de Jong, 1993). Both NIPALS and SIMPLS iteratively
calculate the principal components.

To determine the maximum covariance between the input and output datasets, the
cross-covariance matrix ΣXY (ΣXY ∈ Rnp×1) is evaluated using the following formula:

ΣXY = 1
n− 1(Xᵀ − 1x̄ᵀ)(y − ȳ). (3.4)

The desired number of principal components is then selected using a similar approach
as in PCA. These principal components are subsequently utilised in designing the soft
sensor, similar to the application of PCA. Figure 3.1 provides a visualisation of the
performance of PCA with PLS. The key distinction between these approaches is that
PCA considers only the input variables, while PLS incorporates both the input and
output variables.

3.3 Sparsity-based Algorithms
During the training of the model structure, there is a tendency for overfitting (as
discussed in Section 2.3.2) due to the presence of noise. Therefore, it is essential to
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find an appropriate balance between prediction accuracy and model complexity. The
following approaches focus on achieving this balance by determining an effective input
structure with the desired sparsity based on specific criteria.

3.3.1 Cross-Validation
Cross-validation (CV) is a commonly employed technique for assessing model perfor-
mance and mitigating the issue of overfitting. It involves dividing the available training
dataset into training and validation subsets, allowing the model to be trained on one
subset and evaluated on the other.

The most widely used CV approach is k-fold cross-validation, where the dataset is
divided into k equally sized folds (subsets). The model is trained on k − 1 folds and
evaluated on the remaining fold. This process is repeated k times, with each fold
serving as the validation set once. Performance metrics (as discussed in Section 2.3.2),
such as SSE, SAE, RMSE, or R2, are computed in each iteration, and the average
performance across all iterations is determined.

By utilising CV, the risk of overfitting is significantly reduced, as it provides a more
reliable assessment of the behaviour of the model within the available dataset. The
consistency of performance across different folds helps identify input model structures
that exhibit high stability and robustness. An ideal input structure should consistently
yield good performance, even when applied to unseen or testing datasets.

3.3.2 Least Absolute Shrinkage and Selection Operator
The least absolute shrinkage and selection operator (LASSO) method (Santosa and

Symes, 1986; Tibshirani, 1996) is a regularisation technique that addresses the problems
of model selection and parameter estimation. It solves the following optimisation
problem:

min
β,β0

1
2n‖y −Xβ − β0‖2

2 + λ‖β‖1, (3.5)

where λ is a weight that controls the trade-off between model accuracy and model
complexity.

The objective function consists of two terms: the least squares term, which measures
the discrepancy between the predicted values and the actual output values, and the
penalization term, which is the sum of the absolute values of the coefficients multiplied
by λ. The use of the `1-norm penalization encourages sparsity in the model, leading
to some coefficients being exactly zero.
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Figure 3.2: The impact of different values of λ on LASSO performance.

The tuning of the LASSO parameter λ is crucial in achieving an optimal balance
between model complexity and goodness of fit. Smaller values of λ result in higher
accuracy but may lead to overfitting, while larger values of λ promote sparsity at
the expense of accuracy. To determine an appropriate value for λ, model-overfitting
criteria (see Section 2.3.2) or cross-validation techniques (see Section 3.3.1) can be
employed.

The LASSO method belongs to the family of regularised regression techniques. Other
important methods in this family include ridge regression (Hoerl and Kennard, 1970)
and elastic net (Zou and Hastie, 2005). Ridge regression uses the `2-norm penalization
to shrink the values of all parameters and is particularly useful when the input variables
are highly correlated. Elastic net, on the other hand, combines the `1-norm and `2-norm
penalties to strike a balance between sparsity and parameter shrinkage.

The performance of LASSO is illustrated in Figure 3.2. The penalty term in the LASSO
objective function, as shown in equation (3.5), promotes sparsity in the solution. It
is evident from the plot that the resulting parameters obtained from ordinary least
squares (OLS) (β∗OLS) are non-zero, whereas one of the resulting parameters obtained
from LASSO (β∗LASSO) is zero. Furthermore, it is apparent that increasing the value of
λ enhances the sparsity of the LASSO model. The magenta β∗LASSO corresponding to
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λ2 is closer to zero compared to the green β∗LASSO corresponding to λ1, where λ2 > λ1.

3.3.3 Subset Selection
Subset selection (SS) is a class of methods that aim to find the simplest input structure
for the soft sensor based on specific criteria or objectives. It addresses two tasks
simultaneously: (a) determining the simplest input structure and (b) estimating the
model parameters. To quantify the complexity and facilitate mathematical calculations,
a binary variable vector zss (zss ∈ Rnp) is introduced. This allows us to formulate the
following bi-level optimisation problem (Berger et al., 2016):

min
β,β0,zss∈{0,1}np

J(y,β, β0, zss), (3.6a)

s.t. {β, β0} ∈ arg min
β̃,β̃0

1
2‖y −Xβ̃ − β̃0‖2

2, (3.6b)

s.t. − β̄zss,j ≤ β̃j ≤ β̄zss,j , ∀j ∈ {1, 2, . . . , np}, (3.6c)

where β̄ represents an upper bound on ‖β‖∞ that needs to be tuned, and J(y,β, β0, zss)
is the objective function in for of SSE for the ordinary subset selection approach.

The bi-level optimization problem (3.6) consists of the upper-level objective (3.6a) and
the lower-level objective (3.6b). The upper-level objective seeks the optimal input
structure (z∗ss), while the lower-level optimisation estimates the model parameters (β
and β0). The resulting complexity of the model structure can be expressed as:

n∗p = 1ᵀz∗ss, (3.7)

where n∗p (where n∗p ≤ np) is the resulting number of the input variables that achieves
the desired objectives.

The bi-level optimization problem (3.6) can be effectively solved using standard MIQP
solvers with big-M reformulation, as demonstrated in (Takano and Miyashiro, 2020).
In this thesis, SS is combined with the model-overfitting criterion (SS-MOC) presented
in Section 2.3.2 and with cross-validation (SS-CV) as discussed in Section 3.3.1.

Subset Selection with Model-overfitting Criterion The SS optimisation prob-
lem presented in (3.6) offers flexibility in adapting its performance to specific situations.
One natural modification is to set the objective function J(·) in (3.6a) to be one of
the MOC criteria discussed in Section 2.3.2 (e.g., AICc, BIC, or R2

adj). By considering
these criteria, the resulting input structure provided by SS should be less complex
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and less affected by model overfitting compared to the ordinary SS approach based on
the SSE criterion. This reduced complexity in the input structure can lead to lower
implementation and maintenance costs. The resulting optimisation problem of SS
with the model-overfitting criterion (SS-MOC) can be effectively solved using the same
solvers as the standard SS approach mentioned in Section 3.3.3.

Subset Selection with Cross-validation Subset selection with cross-validation
(SS-CV) (Smith, 2018; Takano and Miyashiro, 2020) addresses the same tasks as
SS-MOC, but it employs standard cross-validation (see Section 3.3.1) instead of the
MOC criteria. At the beginning, the available training dataset represented by IT index
set (see Section 2.1.1) is divided into K smaller subsets Is,k, defined as follows:

IT =
⋃
k∈K

Is,k, Is,k ∩ Is,k′ = ∅, ∀k 6= k′, K ≥ 2. (3.8)

The data is distributed into training (IT,k) and validation (IV,k) index sets as follows:

IV,k := Is,k, IT,k := IT \ Is,k, card(IT,k) ≥ np, ∀k ∈ K. (3.9)

The different index sets IV,k in (3.9) contain unique indices, while the IT,k sets involve
recurring indices from the original training index set IT. The optimal approach for
SS-CV is formulated as (Takano and Miyashiro, 2020):

min
β(k),β

(k)
0 ,∀k∈K

zss∈{0,1}np

1
2

K∑
k=1
‖y(IV,k)−X(IV,k)β(k) − β(k)

0 ‖2
2, (3.10a)

s.t. ∀k ∈ K : {β(k), β
(k)
0 } ∈ arg min

β̃,β̃0

1
2‖y(IT,k)−X(IT,k)β̃ − β̃0‖2

2, (3.10b)

s.t. − β̄zss,j ≤ β̃ ≤ β̄zss,j , ∀j ∈ {1, . . . , np}. (3.10c)

The problem (3.10) can be solved for various values ofK, taking into account constraints
on parameter identifiability, such as the cardinality condition in (3.9). Additionally, dif-
ferent randomly generated data distributions into IT,k and IV,k sets can be considered.
The resulting structure of the soft sensor is determined by the most frequently selected
inputs from the calculated sensors. Once the optimal sensor structure is obtained,
a least-squares fitting of the model is performed using the entire training dataset
to determine the parameters of the designed soft sensor. Similar to problem (3.6),
problem (3.10) can be effectively solved using standard MIQP solvers.
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3.4 Clustering Algorithms
Clustering is one of the fundamental tasks in machine learning that involves organising
the data into meaningful clusters (see Section 2.3.3) with respect to various criteria
(see Section 2.3.4). The following section represents the well-known and frequently
used clustering algorithms.

3.4.1 k-means Clustering
k-means clustering (Forgy, 1965) is an unsupervised learning approach used for data
clustering and segmentation. The goal is to assign each data point to one of the
predefined classes or sets C = {C1, C2, . . . , Cncl} based on similarity or proximity. The
procedure for k-means clustering includes the following steps:

1. Randomly select ncl initial centroids (ncl ≤ n).

2. Assign each data point to the closest centroid using a chosen distance metric
(e.g., squared Euclidean distance, absolute differences).

3. Update the centroids by calculating the mean of the data points assigned to each
cluster.

4. Repeat steps 2 and 3 until the convergence condition is satisfied.

The second step of the aforementioned procedure of the k-means clustering assigns the
data point to the closest centroid according to the selected distance metric (dCL). The
most popular one is squared Euclidean, as follows:

dCL,i = (xi − x̄j)ᵀ(xi − x̄j), xi ∈ Cj ,
∀i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . , ncl},

(3.11)

where dCL,i is ith distance within the vector of squared Euclidean distances dCL
(dCL ∈ Rn) evaluated for each considered data point, and x̄j represents the mean
(centroid) of points within the jth cluster given as follows:

x̄j = 1
card(Cj)

∑
x∈Cj

x. (3.12)

The objective of k-means clustering is to minimise the within-cluster sum of squared
distances for the set of data points D ∈ Rnp as follows:

min
C

ncl∑
j=1

∑
x∈Cj

‖x− x̄j‖2, C = {C1, C2, . . . , Cncl}, D =
ncl⋃
j=1
Cj . (3.13)
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By iteratively solving equation (3.13), k-means clustering aims to generate a desired
number of clusters (ncl) with minimal area, while ensuring that data points within
different clusters are as distant from each other as possible. The initialization of
k-means clustering involves randomly guessing the initial locations of the cluster
centres. Therefore, multiple runs of the algorithm with different initial guesses should
be performed to obtain more reliable and statistically supported results.

k-means clustering can be effectively used for data treatment. It is observed that
clusters primarily composed of outlier measurements and systematic errors contain a
smaller amount of data compared to other clusters.

The selection of the desired number of clusters (ncl) is closely related to the data
quality. In straightforward cases, the value of ncl can be determined through visual
inspection, where data points form visible groups representing different operating
conditions of the unit. In more complex cases, the value of ncl can be determined using
methods such as the elbow method or various goodness-of-fit criteria (Kodinariya and
Makwana, 2013).

3.4.2 Density-based Spatial Clustering of Applications with
Noise

The density-based spatial clustering of applications with noise (DBSCAN) algorithm
is a clustering approach that can find clusters of arbitrary shapes and sizes, unlike
traditional clustering algorithms that assume spherical clusters of similar sizes.

The DBSCAN procedure involves the following steps:

1. Initialization with an arbitrary data point.

2. Expansion of the cluster by connecting neighbouring core points.

3. Repeat the clustering process with unvisited data points until no more points
can be added to the cluster.

4. Repeat the previous steps until only noise points remain.

DBSCAN is advantageous because it does not require the number of clusters to be
specified beforehand (compared to k-means clustering) and can handle datasets with
varying densities. It is particularly effective for identifying clusters in complex and
noisy datasets, where traditional methods may struggle.
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3.4.3 Minimum Covariance Determinant
The minimum covariance determinant (MCD) method (Rousseeuw, 1984) is one of
the first tools for the outliers detection with high robustness. The distance metric
used in MCD (dMCD) is represented by the so-called Mahalanobis distance (dM) given
by (2.22). As it is shown in Section 2.2.3, dM is closely related to Hotteling’s T 2

distance dT 2 . Despite the similarity of the distance metrics of these methods, the
principle of MCD is different from Hotteling’s T 2 method. MCD looks for the subset of
measurements with the minimum determinant of the corresponding covariance matrix.
In other words, the resulting subset of measurements should occupy the smallest
volume possible (determinant of the covariance matrix). The algorithm can be viewed
as an enhancement of Hotteling’s T 2 distance method.

The iterative algorithm of MCD starts with a random guess of the initial subset.
Subsequently, the sample mean vector x̄ and sample covariance matrix Σ of the
initial subset are calculated. According to the calculated x̄ and Σ, it is possible to
evaluate dMCD from (2.22) for each measurement (not only for the selected subset).
Subsequently, the new subset of h measurements with the smallest distances dMCD
is selected from the whole set. If the covariance determinant of the new subset is
decreased compared to the covariance determinant of the previous subset, the new
subset is used in the next iteration of the MCD algorithm. Otherwise, the sought
subset has been found (as the previously selected subset) and the MCD algorithm is
terminated. The tuning parameter of this scheme is represented by the least number
of the retained measurements h from the treated dataset. This parameter is usually
adjusted according to the interval n+np+1

2 ≤ h ≤ n (Hubert and Debruyne, 2010) or it
can be adjusted by the user e.g., based on the visual inspection of the time series of
some crucial variables.

Due to the random character of the MCD method, it is desired to perform several
runs with different initial guesses to avoid local minima. According to the results from
different runs of the MCD method, it is possible to derive a final subset. The vector of
distances dMCD is evaluated in each iteration. The measurements with the smallest
distances create a new subset for the next iteration of MCD. This process is terminated
when the determinant of the covariance matrix does not decrease anymore.

The sample mean vector x̄ and the sample covariance matrix Σ of the final subset
are subsequently used to evaluate dMCD from (2.22) for the whole set. According
to the values of dMCD, it is possible to determine the most deviated measurements
(outliers) from the centre. The condition to separate admissible and inadmissible
measurements by MCD is established by appropriate distribution (Hardin and Rocke,
2005) considering the desired confidence level.
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3.5 Classification Algorithms
Classification aims to model a function that maps a dataset to specific classes. There
are numerous classification algorithms available, and the choice of the appropriate
approach should be based on the specific needs and characteristics of the application.
In the following sections, two well-known approaches, support vector machine (SVM)
and logistic regression, will be described. In this thesis, the SVM approach is utilised
in the design of linear soft sensors because it directly designs a linear separation
hyperplane.

3.5.1 Support Vector Machine
Support vector machines (SVM) (Boser et al., 1992) belong to the supervised learning
family. SVM searches for a linear hyperplane (classifier) that separates data into
different classes. The hyperplane can be represented as:

xᵀw + w0 = 0, (3.14)

where w is the vector of model parameters and w0 is the constant (bias) term of the
hyperplane.

The assignment of each data point to a class is determined by the sign of the expression
wᵀx+w0. To simplify the mathematics, a binary variable vector z (z ∈ Rn) is defined
as:

zi =
{

1, if xᵀ
iw + w0 > 0,

0, if xᵀ
iw + w0 < 0,

∀i ∈ {1, 2, . . . , n}. (3.15)

The optimization problem solved by SVM can be formulated as:

min
w,w0

1
2‖w‖

2
2, (3.16a)

s.t. (2zi − 1)(xᵀ
iw + w0) ≥ 1, ∀i ∈ {1, 2, . . . , n}. (3.16b)

By solving the optimisation problem (3.16), SVM attempts to find the best hyperplane
that maximises the margin and accurately separates different classes. The objective
of minimising w in (3.16) is to ensure that the separation hyperplane is positioned
between the two farthest measurements with distinct labels. This process allows SVM
to effectively distinguish between different classes by creating a well-defined boundary
in the feature space.

The SVM design presented by (3.16) can be extended about the vector of slack variables
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e (e ∈ Rn) as follows:

min
w,w0,e≥0

1
2‖w‖

2
2 + γ‖e‖1, (3.17a)

s.t. (2zi − 1)(xᵀ
iw + w0) ≥ 1− ei, ∀i ∈ {1, 2, . . . , n}, (3.17b)

where γ is weighting (penalty) parameter for slack variables.

By incorporating e in (3.17), it becomes possible to design a linear classification
hyperplane even when dealing with a linearly inseparable dataset. To achieve this, it
is necessary to penalise e in the objective function (3.17a) by γ. This penalty term
encourages the SVM model to minimise errors or misclassification, thus finding a
balance between achieving a wider margin and correctly classifying data points that
may fall within or near the margin.

3.5.2 Logistic Regression
Logistic regression is statistical approach that aims to model the relationship between
the input (independent) variables and the probability of a particular outcome or class.
The algorithm uses the logistic function, also known as the sigmoid function. It can
be used for predicting binary outcomes or performing multiclass classification by using
multiple logistic regression models.

Logistic regression is a computationally efficient algorithm, particularly when dealing
with large datasets. It offers a level of interpretability, as the coefficients can be
interpreted as the impact of each feature on the predicted probability. Additionally,
logistic regression can handle both categorical and continuous features. However, it
is sensitive to outliers and multicollinearity among the features, which can affect its
performance.

Overall, logistic regression is a widely used algorithm for classification tasks, providing
a balance between computational efficiency and interpretability.
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Chapter 4

Soft-Sensor Design

The overall procedure for the soft-sensor design consists of seven consequent steps (Kadlec
et al., 2009; Khatibisepehr et al., 2013; Botha and Craig, 2021; Mojto et al., 2021).
These steps are as follows:

1. Initial data inspection: This step involves gaining an overview of the data
structure and identifying any obvious problems, such as constant variables, NaN
values, missing data, and linear dependencies.

2. Selection of historical data: Here, the data to be used for the soft-sensor design
is selected.

3. Data pre-processing: In this step, the data is transformed to make it suit-
able for processing by the model. This may involve incorporating nonlinear
transformations, and data treatment.

4. Model and input structure selection: The optimal input structure (i.e., feature
selection) and type of model for the soft sensor are determined.

5. Model training: The model parameters are determined by minimising a specific
criterion (see Section 2.3.2).

6. Model validation: The performance of the designed soft sensor is evaluated on a
testing dataset that was not used during training.

7. Soft-sensor maintenance: The model parameters are retrained regularly to account
for drifts and other changes in the data.

The procedure of the soft-sensor design is visualised in Figure 4.1. In the following
sections, the selected parts of this procedure will be described in detail, focusing on
their relevance to the objectives of the thesis.
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Figure 4.1: The procedure of the soft-sensor design.

4.1 Initial Data Inspection
The main purpose of this stage in soft-sensor development is to gain an overview of
the data structure. It is crucial to address any obvious problems that could hinder
further analysis if left unattended. These problems may include constant variables
with no contribution, NaN values within the measurements causing numerical issues,
missing data primarily due to sensor failures, and linear dependencies that increase the
computational burden for many algorithms. Although these issues typically arise from
the input variables, it is important to examine the output variables as well, particularly
assessing whether they exhibit sufficient variance for subsequent soft-sensor design.

Another objective of this stage is to assess the requirements for model complexity, such
as determining whether a linear or nonlinear model structure is necessary based on
the demands of the particular application. However, it is recommended to compare
the performance of the designed model (based on the selection made at this stage)
against other models developed in later stages of the development process. There are
cases when the industry directly specify the desired complexity the soft-sensor model
structure.
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4.2 Selection of Historical Data
At this stage, it is necessary to select data from the entire historical dataset for the
subsequent stages of soft-sensor design. The selected data will serve as the basis for
the training and testing datasets that will be used later.

Soft-sensor design often involves uneven sampling of input and output variables. The
output (desired) variable is typically measured less frequently compared to the input
variables. This is mainly due to the increased costs associated with measuring the
output variable, which is precisely the motivation behind soft-sensor design. Therefore,
in this development stage of soft-sensor design, it is necessary (especially for supervised
learning approaches) to perform time pairing of the input and output variables.

In most cases, this stage involves identifying and selecting the stationary parts of the
dataset. The selection of stationary measurements is typically done through manual
analysis of the data. Alternatively, an automatic approach could involve filtering and
variance analysis of the variables within the dataset. However, there are situations
where it may not be desirable or possible to perform a steady-state indication, even
when designing a steady-state soft sensor. This can occur when the available data size
is small, which is often the case when designing a soft sensor for a hard-to-measure
variable.

4.3 Data Pre-processing
The design of the soft sensor is significantly influenced by the suitability of the available
dataset. To ensure the desired dataset properties, it is necessary to properly preprocess
the data before further analysis. The data preprocessing phase can vary depending
on the specific application objectives. For this thesis, the data preprocessing involves
the following analyses: (a) identification of linear correlations; (b) incorporation of
nonlinear transformations; and (c) data treatment.

These analyses form the core of the data preprocessing stage. Initially, several basic
transformations of the dataset may be applied. One such transformation is data
centring, which can be performed as follows:

Xcen = X − (1x̄ᵀ)ᵀ, ycen = y − ȳ, (4.1)

whereXcen (Xcen ∈ Rn×np) represents a matrix of centred input variables, x̄ (x̄ ∈ Rnp)
is sample mean vector, ycen (ycen ∈ Rn) represents a vector of centred output variable,
and ȳ is a sample mean value of the output variable y.
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Centring the data makes it less susceptible to variations in the scales of the input
and output variables compared to the original dataset. Additionally, if the dataset is
centred around zero, the linear models (relevant to the thesis) can be simplified by
omitting the constant (bias) term β0 in (2.2). Furthermore, the centred dataset can
be standardised as follows:

xstd{i} =
xcen{i}

sx{i}
, ystd = ycen

sy
, ∀i ∈ {1, 2, . . . , np}, (4.2)

where xstd{i} (xstd{i} ∈ Rn) represents vector of ith standardized input variable, and
ystd (ystd ∈ Rn) represents a vector of standardized output variable.

The standardised dataset has a mean of zero and a standard deviation of one, making
it even less affected by variations in scales and fluctuations of the input and output
variables compared to the centred dataset. Moreover, the covariance and correlation
matrices of the standardised dataset are the same, eliminating the need for further
re-calculations in-between these matrix forms. An alternative transformation to
standardisation is normalisation, which can be expressed as follows:

xnor{i} =
x{i} −min

(
x{i}

)
max

(
x{i}

)
−min

(
x{i}

) , ∀i ∈ {1, 2, . . . , np},

ynor = y −min(y)
max(y)−min(y) ,

(4.3)

where xnor{i} (xnor{i} ∈ Rn) represents vector of ith normalized input variable, and
ynor (ynor ∈ Rn) represents a vector of normalised output variable measurements.

By using (4.3), the resulting normalised input and output variables are within the
interval [0, 1]. Normalisation ensures additional properties, such as the non-negativity
of measurements, without losing the information content within the dataset. The choice
of an appropriate scaler for normalisation should be based on the specific application
requirements.

The data preprocessing phase in data-driven soft sensor design typically involves
dividing the available dataset into the training dataset (IT) and testing dataset (IS).
This division helps mitigate the risk of model overfitting, thereby enhancing the
robustness and reliability of the soft sensors (see Section 2.1.1).

4.3.1 Identification of Linear Correlations
The effectiveness and sustainability of the linear data-driven soft sensor are greatly
influenced by the selection of appropriate input variables. To identify the optimal set
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of input variables, it is important to address and eliminate highly correlated variables.
Multivariate datasets containing linearly correlated variables can lead to various issues,
including increased computational burden, overfitting, incorrect model parameters,
and inappropriate input structure.

There are several approaches to identifying linear correlations in multivariate datasets.
One straightforward method is as follows:

1. Calculate the correlation matrix (Σ) of the input dataset X using (2.18).

2. Identify pairs of input variables with a linear correlation exceeding a certain cri-
terion (crt) for correlation coefficients (e.g., |Σi,j | > crt, crt ∈ [0, 1]), considering
the off-diagonal elements of Σ.

3. Remove redundant input variables based on their relevance to the output variable
or expert knowledge.

4.3.2 Incorporation of Nonlinear Transformations
The original (industrial) input dataset comprises input variables obtained directly
from online sensors. However, the information content provided by these variables,
which can explain the output variable behaviour, is often limited by noise and external
disturbances. To enhance the information content of the input dataset, it is possible
to expand it by incorporating appropriate nonlinear transformations of the original
input variables. The selected nonlinear transformations subsequently represent the
indirectly measured input variables for the soft-sensor design.

Incorporating effective nonlinear transformations is particularly relevant for linear
soft-sensor design, as they enable the linear models to account for the nonlinear
behaviour of the output variable, which is strongly present in the industry. However,
when extending the input dataset with additional variables (degrees of freedom), there
is a higher risk of overfitting, especially in the case of nonlinear soft sensors.

Identifying effective nonlinear transformations can be achieved through brute force
analysis, where the impact of a selected set of structures (e.g., logarithms, expo-
nentials, powers, power roots, and inverses) on the output variable is sequentially
evaluated. Another approach to exploring nonlinear transformations is through the
feature selection methods described in Section 4.4.2. Additionally, an advanced method
for identifying effective nonlinear transformations is automated learning of algebraic
models (ALAMO) (Wilson and Sahinidis, 2017). ALAMO is specifically designed to
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identify linear combinations of considered nonlinear transformations that enable a
linear model to better approximate the complex behaviour observed in real processes.

4.3.3 Data Treatment
Industrial data often contains both systematic and random errors (Su et al., 2009).
Systematic errors can arise from non-standard or infrequent situations in the industrial
unit, which may be expected (e.g., maintenance) or unexpected (shutdown or plant
tripping). Sensor failures and inaccuracies can also contribute to systematic errors.

The detection of certain types of systematic errors can be done through visual inspection
of time series plots (Alves and Nascimento, 2007). If a consistent interval of significantly
deviated measurements is observed across all variables, it indicates a potential source
of systematic errors that needs to be addressed before designing the soft sensor. This
type of error is relatively easy to detect with the naked eye.

However, there are situations where the sudden failure or malfunction of one or more
online sensors can introduce systematic errors that are difficult or impossible to identify
through visual inspection. In such cases, several multivariate data treatment methods
can be employed to reduce the number of systematic errors remaining after visual
detection. The representative of these approaches are as follows:

• T 2 distance (see Section 2.2.3) represents the metric of each measurement or data
point from the centre (µx = 0) of studied dataset. High values of T 2 distance
indicate measurements that deviate significantly from the centre, making them
likely outliers. The T 2 distance considers the covariance matrix Σ of the treated
dataset, allowing it to handle multivariate datasets. The covariance matrix Σ
remains constant throughout the data treatment analysis.

• k-means clustering (see Section 3.4.1) can be applied for the data treatment
analysis. This method involves clustering the measurements into ncl clusters,
aiming to include all measurements from the dataset. Outliers can be identified
by examining the clusters with the smallest sizes. The initialization of k-means
clustering involves randomly selecting the ncl cluster centres, so it is recommended
to perform multiple runs and average the results for increased credibility.

• DBSCAN (see Section 3.4.2) is another suitable algorithm for outlier detection.
Unlike k-means clustering, DBSCAN does not require a predetermined number
of clusters. Instead, it operates based on the neighbourhood of each data point.
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Points that do not belong to any cluster are considered outliers. DBSCAN is
particularly useful for noisy datasets.

• MCD (see Section 3.4.3) can also be employed for data treatment analysis.
Similar to the T 2 distance, MCD considers a single centre for the dataset and
computes the covariance matrix Σ. However, the advantage of MCD is its
iterative approach, aiming to minimise the covariance matrix Σ and find the
subset of the predefined size h that has the smallest possible volume.

Considering the nature of these data treatment methods, one can expect the per-
formance of MCD to be at least as good as that of the T 2 distance method. The
performance of k-means clustering and DBSCAN can surpass that of the other methods
if the measurements exhibit clear distinctions between operating points (steady states)
in a specific unit.

4.4 Model and Input Structure Selection
This phase of the soft-sensor design is critical as it determines the input structure
and model of the soft sensor, which form the core of the design. In this research, the
emphasis is on the selection of the input structure (or feature selection) for linear
data-driven soft-sensor design, with relatively less focus on model selection. However,
we will provide a brief description of the model selection before delving into the details
of the input structure selection.

4.4.1 Model Selection
The model selection process for soft-sensor design is often influenced by the past
experiences of the developer, which can compromise the quality of the solution for a
specific application. Relying on personal preferences for selecting the soft sensor model
structure is not recommended, and a more sophisticated approach should be adopted.

An intuitive approach to model selection is to start with the simplest possible model
and gradually increase its complexity until a significant improvement in performance
is observed. However, it is important to evaluate the performance of the model on a
testing dataset (unseen data) to avoid overfitting. Overfitting occurs when the model
becomes too complex and starts to fit the noise in the data.

In certain situations, especially in industrial settings, it can be challenging to obtain a
sufficient amount of historical data, often due to the expensive measurement of the
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output variable. In such cases, the cross-validation approach (see Section 3.3.1) can
be employed to effectively utilise the available data by creating validation datasets
(X(IV),y(IV)).

4.4.2 Input Structure Selection
The industrial dataset may consist of hundreds of online measured variables (inputs)
that can be used in the soft-sensor structure. Handling such a large dataset can impose
a significant computational burden on the soft-sensor design, particularly during the
model training stage. Therefore, the purpose of input structure selection is to determine
which input variables should be included in further analysis. This step is also known as
feature selection. The main focus of input structure selection is to assess the correlation
between the input variables and the output variables.

As mentioned earlier, the task is to select a subset of input variables (n∗p) from the
available dataset (np) in order to reduce the dimensionality (complexity) of the problem
being solved (n∗p ≤ np). This task involves monitoring criteria to ensure that the
selected subset retains sufficient information compared to the original dataset. Another
criterion is to search for the subset of input variables with the highest potential to
explain the desired variable. These criteria are considered in the approaches suitable
for input structure selection presented later.

Before applying any approach, initial structure selection should be based on expert
knowledge from the industry. Engineers and operators are usually able to narrow down
the entire dataset to a smaller set (“shortlist”) of input variables that they believe are
related to the output variable. This step in the input structure selection process can
help address issues related to the linear correlations between input variables.

The fundamental approach for input structure selection is OLS regression (see Sec-
tion 3.1). However, this approach primarily focuses on minimising the SSE (model
accuracy) and can eliminate inputs that are not correlated with the output variable.
OLS, however, does not effectively balance model accuracy and complexity.

More advanced methods for input structure selection include PCA (see Section 3.2.1)
and PLS (see Section 3.2.2). Both methods are based on variance-covariance analysis.
The main difference is that PCA is an unsupervised learning approach, while PLS
is supervised. PCA is preferable when a large input dataset is available or when
the measurements of the output variable are unreliable. On the other hand, PLS is
suggested when the output variable is accurately measured. Both methods consider
principal components sorted in decreasing order of explained variance and aim to
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select a subset of these components without significant loss of explained variance.
Various approaches can be used for selection, such as the elbow method, specifying a
desired amount of explained variance, or selecting only the first principal component.
It is important to note that when considering the principal components within the
soft-sensor structure, all original variables are required to evaluate each principal
component. Therefore, the signals from all online sensors involved are required, even
if only one principal component is considered.

Another approach to input structure selection is sparsity-based methods, presented in
Section 3.3. The LASSO approach (see Section 3.3.2) balances between model accuracy
and complexity using the weighting parameter λ. This parameter can be tuned using
model-overfitting criteria presented in Section 2.3.2 or through cross-validation (see
Section 3.3.1). Additionally, the `1-norm penalization element within the objective
function of LASSO can be replaced by the `2-norm in ridge regression. The elastic net
approach provides a way to balance between the `1-norm and `2-norm.

The group of sparsity-based methods suitable for input structure selection includes the
family of subset selection approaches (see Section 3.3.3). The ordinary subset selection,
as represented by equation (3.6), aims to find the input structure with the highest
accuracy. However, this approach can potentially lead to model overfitting, especially
when dealing with non-ideal industrial datasets. Therefore, it is recommended to
combine subset selection with a model overfitting criterion (see Section 3.3.3), which
takes into account criteria such as AICc, BIC, or R2

adj in the upper-level objective
defined in equation (3.6a). In cases where the dataset size is small, subset selection
can be combined with cross-validation (see Section 3.3.3). Cross-validation allows
for a more effective use of the training dataset compared to other subset selection
approaches, as it considers validation subsets extracted from the training dataset.

4.5 Model Training
This stage of the soft-sensor design is dedicated to finding the optimal values of the
model parameters based on specific objectives. These objectives are specific to each
approach utilised in this stage of the soft-sensor design. The dataset used for model
training is referred to as the training dataset.

In this thesis, soft-sensor training is divided into two categories based on the number
of trained models. The first category focuses on the design of single-model soft sensors
(SMS). This type of soft-sensor design is well-established and commonly used in the
industry to estimate key process variables. The second category involves the design of
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multi-model soft sensors (MMS). This type of soft-sensor design is suitable for processes
with multiple operating regimes or when a linear soft-sensor is needed to estimate
a nonlinear process variable. By considering these two categories, we can explore
different approaches to soft-sensor design and provide insights into their application in
various scenarios.

4.5.1 Single-model Soft Sensor
The single-model soft sensor (SMS) is a standard and frequently used sensing technique
in the industry for estimating or inferring key or hard-to-measure variables using
measurements from other related easy-to-measure variables (Khatibisepehr et al., 2013;
Doraiswami and Cheded, 2014; de Morais et al., 2019; Botha and Craig, 2021). As the
name implies, this group of soft sensors considers only one model within the soft-sensor
structure.

In this thesis, the objective of model training is to determine the optimal values of
the model parameters (β∗ and β∗) for the linear multivariable soft-sensor structure
represented by Equation (2.6). The desired model parameters are determined based
on the chosen training approach. The representative approaches for training SMS are
as follows:

• OLS (or SMSOLS): The basic design of SMS involves using OLS regression (see
Section 3.1) to train the model parameters. The trade-off for this relatively
simple model training approach is the potential for model overfitting.

• PCA (or SMSPCA): The SMS design alone cannot be performed using the PCA
approach (see Section 3.2.1) due to its unsupervised nature. However, PCA
can be effectively combined with another approach that utilises the principal
components to fit the output measurements. The most common combination is
PCA with OLS, resulting in PCA regression.

• PLS (or SMSPLS): Another approach suitable (and frequently used) for SMS
training is PLS (see Section 3.2.2). This approach is based on the same principle
of variance-covariance analysis as PCA but considers the output measurements
during model training. Therefore, it is a supervised learning-based approach,
unlike PCA.

• LASSO (or SMSLAS): The SMS training can also be provided by the LASSO
approach (see Section 3.3.2). It balances between model accuracy and complexity
through the λ parameter. The complexity of the model structure is penalised by
the `1-norm.
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Figure 4.2: The design and prediction phases of MMS.

• SS (or SMSSS): The family of SS approaches (see Section 3.3.3) can also be
utilised in the SMS design. Due to the flexible structure of the ordinary SS
optimisation problem (3.6), it is possible to consider various modifications of
the standard SS approach as well. In the case of noisy data, it is possible to
combine SS with a model overfitting criterion (see Section 3.3.3). Moreover, SS
can effectively work in combination with cross-validation as well. This can be
considered in the case of a dataset with a small size.

4.5.2 Multi-model Soft Sensor
Prediction capability of a linear soft sensor can be improved when considering a
multi-model soft-sensor (MMS) structure. The MMS formulation with two models can
be written as follows (Mojto et al., 2022):

ŷi =
{
xᵀ
i β1 + β0,1, if xi ∈ R1,

xᵀ
i β2 + β0,2, if xi ∈ R2,

∀i ∈ {1, 2, . . . , nT}, (4.4)

where regions of individual model validity denoted as R represent convex polyhedra
such that R1

⋂
R2 = ∅. Consideration of more than two models is possible in a similar

setup.

The design (offline) and prediction (online) phases of MMS are illustrated in Figure 4.2.
The design phase begins with the clustering of the available training dataset (X(IT),
y(IT)). The training dataset, along with the assigned data labels, is then used
for classifier design. The designed classifier defines different regions (R1, R2) that
can be considered for the designed models. In the prediction phase, these regions
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are utilised for classification. Simultaneously or after classifier design, the MMS
models are constructed in the model training block (refer to Figure 4.2). The model
parameters determined during this process are subsequently employed for inference in
the prediction phase. Once the inference is complete, the MMS provides predictions,
and the estimated output variable ŷ becomes available.

State-of-the-Art Approach The workflow of the state-of-the-art approach for
MMS design consists of the following three steps:

1. A priori labelling of the training dataset: The labelling is based on the charac-
teristics of the dataset, such as the distinction between operating points. An
appropriate clustering approach, such as k-means clustering, can be used.

2. Classifier design based on the labelled training dataset: The classifier determines
the corresponding model class of a measurement point. In this paper, we consider
the support vector machines (SVM) approach using linear separators (Boser
et al., 1992) to describe the model-validity regions.

3. Training of the individual soft-sensor models: The individual MMS models for
each class can be fitted using one of the SMS training methods (see Section 4.5.1).

In the following, we abbreviate the sensor designed by this procedure as MMSSotA
and refer to it as a state-of-the-art approach, although the presented procedure is
our contribution. This is because, to the best of the authors’ knowledge, there is no
consistent (agreed-upon) technique for MMS design.

Illustrative example. We consider a problem of designing a soft sensor for the
pressure compensated temperature (PCT) model to provide the visual comparison
of the SMS and MMS designs. The PCT model is frequently used in low-pressure
petrochemical distillation columns (Pan et al., 2019). A combination of the Antoine and
Clausius-Clapeyron equations forms the following mathematical representation (King,
2011):

1
PCT

= R

Hv
ln
(

p

pref

)
+ 1
T
, (4.5)

where PCT is pressure compensated temperature, Hv is the heat of vaporization, R
is the universal gas constant, pref is the reference pressure, p is the absolute pressure,
and T is the absolute temperature.
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(a) One cluster (RMSE (IT)=0.028). (b) Two clusters (RMSE (IT)=0.064).

Figure 4.3: The ground truth PCT model with SMS designed on different datasets.

The ground truth model of the PCT is considered with R = 8.3 J/mol/K, Hv =
55, 940.6 J/mol and pref = 145.3Pa over the operating region:

523.2K ≤ T ≤ 573.2K,
0.4Pa ≤ p ≤ 15Pa,

635.3K ≤ PCT ≤ 1151.4K.
(4.6)

For sensor training and evaluation, all input variables (p, T , PCT ) are scaled (normal-
ized) to the interval [0, 1].

The SMS performance is shown in Figure 4.3 on two training datasets, which simulates
the process working in one (one data cluster in Figure 4.3a) and two distinct operating
regimes (two data clusters in Figure 4.3b), respectively. Noise is added to the input
and output data to represent typical industrial datasets. The SMS accuracy, measured
by the root mean squared error (RMSE) and tested on fresh data within the training
regions, is significantly reduced (more than 2-fold deterioration) when the process runs
in two operating regimes. This stems from inappropriateness of a single linear model
to describe a nonlinear behaviour of PCT .

The usage of the MMSSotA on the PCT dataset is shown in Figure 4.4a. The designed
models are presented with a yellow surface (Model 1) and a dark green surface (Model
2). The example considers a priori labelling by k-means clustering.

The advantage of using MMS is obvious, as its accuracy (RMSE (IT) = 0.032)
significantly outperforms the best SMS (Figure 4.3b, RMSE (IT) = 0.064). This
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(a) MMSSotA (RMSE (IT) = 0.032). (b) MMScon (RMSE (IT) = 0.079).

Figure 4.4: The ground truth model of PCT with MMSSotA and MMScon designed
on the dataset with two distinct clusters.

confirms that the MMS models can better explain the nonlinear behaviour of PCT
compared to SMS. Furthermore, the structure of MMS is flexible as it can involve
more models. There are two primary limitations (challenges) of MMSSotA: (a) the
designed models are not necessarily continuous, and (b) a priori labelling is unaware
of its impact on the accuracy of the resulting soft sensor. The first drawback can be
seen in Figure 4.4a. There is a visible discrepancy between the designed models of
MMSSotA at the intersection of the surfaces. This behaviour can cause issues with the
stability of the control strategy if the MMS is involved.

A glimpse of the proposed solution in Figure 4.4b (approach MMScon will be introduced
in detail in Section 6.2.1) reveals that it is possible to achieve continuous switching
between the MMS models, yet potentially, at the expense of model accuracy. In the
studied example, the discrepancy between ground truth and the designed models
originates from the rotation of Model 1 (the yellow surface in Figure 4.4b) to achieve
the desired continuity with Model 2 (the dark green surface). The rotation can be
reduced by putting more weight on accuracy and relaxing the continuity constraint
when designing a continuous MMS (as discussed in Section 6.2.1) or optimizing a priori
labelling (as discussed in Section 6.2.2).
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4.6 Model Validation
After the model training phase, it is crucial to assess the performance of the model
on a separate testing dataset that was not used for training. This evaluation aims to
determine how well the trained models can generalise beyond the training data, which
is essential for assessing their robustness and future performance. Various performance
indices presented in Section 2.3.2, such as SSE, SAE, RMSE, and R2, can be utilised
to evaluate the performance of the model.

In addition to performance indices, the quality of the model structure can also be
assessed through visual examination. One approach is to create a parity plot that
compares the measured and estimated values of the output variable. Another useful
visualisation is a time series chart that displays the measured and estimated values
of the output variable over time. This chart can reveal temporal patterns or effects,
such as different behaviours during the day and night. It is important to note that
visual inspection requires the input of the model developer, and therefore, the final
judgement is subjective and relies on the expertise of the model developer.

4.7 Soft-sensor Maintenance
The final stage of soft-sensor development is maintenance, which should be performed
regularly. This is necessary because the data from the process may experience drifts
and other changes over time. To ensure the continued performance of the soft sensor,
it is important to compensate for these changes by adapting or redeveloping the model.
Failure to do so may result in performance deterioration of the soft sensor. Regular
maintenance helps keep the soft sensor updated and aligned with evolving process
conditions.

Automated mechanisms for soft-sensor maintenance are not widely implemented, and
there is generally limited interest in them. As a result, most soft-sensor applications
in the industry rely on manual quality control and maintenance, which can be a
significant cost factor. Soft-sensor adaptation is often based on the judgement of the
model operator and is performed through visual inspection of the deviation between
the measured and estimated values of the output variable.

4.7.1 Recursive Estimation
The basic approach for redeveloping the soft-sensor model is known as recursive
estimation, also referred to as recursive or online estimation. This approach enables
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the estimation of model parameters in real-time as new data becomes available. Unlike
batch estimation, which requires all the data to be present for estimation, recursive
estimation updates the parameter estimates incrementally as each new data point is
observed.

One commonly used method for recursive estimation is the recursive least squares
(RLS) method. The RLS method aims to minimise the sum of squared errors between
the measured and estimated output variables. It achieves this by assigning weights to
the current estimate and the new data, allowing for weighted updates of the parameters.

Recursive estimation finds application in various fields, including control systems,
signal processing, and machine learning. It is particularly valuable in situations where
data is continuously streaming or evolving, as it enables real-time adjustments and
monitoring of system or model parameters.

4.7.2 Bias Correction
The performance of industrial soft sensors can be adjusted during operation through
adaptive bias correction, also known as bias update (Quelhas, 2009). Many industrial
software solutions offer this form of soft sensor maintenance to account for changes
in operating conditions. The purpose of bias correction is to enhance the accuracy
of subsequent predictions by adjusting the constant (bias) term β0 in the soft sensor
structure (2.6) using the following equation:

β0,i+1 = β0,i + ∆β0,i, (4.7)

where i is the measurement index, β0,i+1 is the adjusted (biased) constant term for
the next prediction, and ∆β0,i is the increment of the bias term.

The value of ∆β0,i is calculated using the following equation:

∆β0,i = KBC(yi − xᵀ
i β − β0,i), (4.8)

where KBC is the gain or multiplier for the bias correction.

It is recommended to select the value of KBC from the interval [0, 1] (for normalised
or standardised datasets), but this can vary depending on the specific application. To
prevent deterioration of the β0 term caused by incorrect or inaccurate measurements of
the desired variable in lab analysis, the value of yi must be within the desired interval
[ymin, ymax]. Otherwise, the value of ∆β0,i is set to zero.
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There are additional constraints on ∆β0,i, as shown in equations (4.9):

∆β0,i = 0, if |∆β0,i| < ∆β0,min, (4.9a)
∆β0,i = sgn(∆β0,i)∆β0,max, if |∆β0,i| > ∆β0,max, (4.9b)

where ∆β0,min represents the minimum accessible increment (bias increment dead-band)
and ∆β0,max represents the maximum accessible increment.

The complete procedure of bias correction for ith measurement, including the individual
steps, is outlined in Algorithm 1. The inputs are three variables (i.e., yi, xi, and β0,i)
and six parameters (i.e., β, ymin, ymax, ∆β0,min, ∆β0,max, and KBC). The output is
biased constant term β0,i+1 for the proceeding estimate.

Algorithm 1 The algorithm of the bias correction for ith measurement
Input: yi, xi, β0,i, β, ymin, ymax, ∆β0,min, ∆β0,max, KBC
Output: β0,i+1

1: ∆β0,i = 0
2: if yi ∈ [ymin, ymax] then
3: ∆β0,i = KBC(yi − xᵀ

i β − β0,i)
4: if |∆β0,i| < ∆β0,min then
5: ∆β0,i = 0
6: end if
7: if |∆β0,i| > ∆β0,max then
8: ∆β0,i = sgn(∆β0,i)∆β0,max
9: end if

10: end if
11: β0,i+1 = β0,i + ∆β0,i

The performance of bias correction can be evaluated using two criteria: the accuracy of
the biased estimates from the soft sensor (RMSEBC) and the effort or frequency of bias
correction (EBC). The accuracy of the biased estimates represents the effectiveness
of combining a specific soft sensor with bias correction. While RMSE is commonly
used for evaluating accuracy, other performance criteria such as SSE, SAE, and R2

(see Section 2.3.2) can also be applied. It is desirable to increase the accuracy of the
soft sensor through bias correction, but this improvement should be considered in
relation to the credibility or reliability of the measured output variable. The effort
or frequency of bias correction, EBC, is determined as the percentage of cases where
condition (4.9a) is not satisfied out of all the cases. In other words, EBC quantifies the
amount of effort required for bias correction within the analysed dataset. The effort of
bias correction serves as a measure of how frequently the plant operating conditions
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change and the ability of the sensor to adapt to these changes. The plant operators
tend to prefer an soft sensor with less frequent bias updates.



Part II

Contributions





Chapter 5

Data-driven Design of Soft Sensors for
Petrochemical Industry

The main focus of this contribution is to design soft sensors using industrial datasets,
incorporating different approaches for multivariate data treatment and model training.
The findings and outcomes of this research have been previously published in (Mojto
et al., 2021).

5.1 Problem Definition
The objective of this study is to design linear multivariate soft sensors, as defined by
Equation (2.6). These sensors are specifically tailored for real-world case studies. To
achieve this, data from two industrial distillation columns at the oil refinery Slovnaft,
a.s. in Bratislava, Slovakia, has been collected and used for analysis. The first column
under consideration is the depropanizer column, which is part of the Fluid Catalytic
Cracking (FCC) unit. The second column is the product fractionator located in the
Vacuum Gasoil Hydrogenation (VGH) unit. Detailed specifications of the case studies
are presented in the subsequent sections.

5.1.1 FCC unit
This unit serves to convert heavy hydrocarbon fractions (vacuum distillates) of the
crude oil incoming from the entire refinery to more valuable products, such as gasoline
or olefins. The FCC unit is separated into several individual sections (sub-units). One of
these sub-units includes several interconnected distillation columns (e.g., debutanizer
or depropanizer) to process light hydrocarbons C2–C6. The measured (observed)
output variable (y) to be inferred by the soft sensor is the composition (main impurity)
of the bottom product xB of the depropanizer column shown in Figure 5.1.
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Figure 5.1: A schematic diagram of the depropanizer column.

The studied depropanizer column processes the feed mixture of nine hydrocarbons C3–
C5. The purpose of this column is to separate the feed into C3-fraction-rich distillate
product xD and to C4/C5-fraction-rich bottom product xB. The available operational
degrees of freedom are feed flowrate F , bottom product flowrate B, distillate flowrate
D, reflux flowrate R, heat duty in the reboiler QB, and heat duty in the condenser
QD. Most of these variables are available as historical data. These are marked
correspondingly in Figure 5.1. The plant measurements, also available from historical
data, are pressure at the top of the column pD, pressure at the bottom of the column
pB, and temperatures of distillate TD, of bottoms TB, at the top of the distillation
column TC,D and at the bottom of the distillation column TC,B. The vector of eleven
available input variables is given as:

x =
(
F,R,QB, pD, pB, TD, TB, TC,D, TC,B,

R

F
,
QB

F

)ᵀ

. (5.1)

The use of the thermodynamic properties model to monitor top/bottom stream com-
positions is prohibitive in this case, even under any appropriate ideality assumptions.
This is because there are too many degrees of freedom for the treated multi-component
mixture that cannot be inferred from plant data. The considered nonlinear transforma-
tions (see Section 4.3.2) within the vector of input variables x (i.e., R/F , QB/F ) are
selected according to expert knowledge from refinery and literature (King, 2011). The
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Figure 5.2: A schematic diagram of the VGH unit.

current soft sensor (denoted as Ref), applied in the refinery, uses three out of eleven
variables and is designed according to King (2011) as follows:

xB = β1pB + β2TC,B + β3
QB

F
+ β0. (5.2)

This problem represents a rather standard and well-studied case study of designing a
soft sensor.

5.1.2 VGH Unit
The purpose of this unit is to process the vacuum distillates by hydrotreating. This
unit is separated into a high-pressure reaction section and a low-pressure fractionation
section (see scheme in Figure 5.2). The main part of the reaction section is represented
by the main reactor that hydrogenates the feed. This operation refines the feed
from impurities, e.g., nitrogen and sulfur. The reaction section feeds the downstream
fractionation section. Here the products are separated into a gasoline fraction (GF), a
hydrogenated gasoil (HGO) and other (secondary) products.

Beside the main reactor, the VGH unit involves dozens of low-/high-pressure tanks, heat
exchangers, coolers, and several distillation columns and furnaces. Furthermore, the
unit contains many sensors, control devices (mostly PI controllers), and instrumentation
to provide desired operating conditions and products. Overall, there are approximately
1,000 online measured variables available. Therefore, the soft sensor design for the
VGH unit represents a much more challenging problem compared to the case of the
FCC unit (11 variables measured at one distillation column).

The variable to be inferred by the soft sensor is HGO product purity expressed in
terms of 95% point of distillation curve T95%,HGO. The design of a soft sensor is
performed on the subset of the input variables selected from the whole available
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dataset. The candidate inputs are selected based on consultation with operators and
plant management. The resulting set of 30 candidate inputs is following:

x = (PCTHGO, PCTGF, Tex,1, Tex,2, Tex,3, Tex,4,

Twabt,1, Twabt,2, Twabt,3, Twabt,4, Twabt,5,

RX1, RX2, RX3, RX4, RX5, RX6, RX7, (5.3)
xH2, Tfrac,1, Tfrac,2, Ffrac,heat, pfrac,

Ff,rec, Ff, xf,N2, xf,S, Tf,5p, Tf,50p, Tf,95p)ᵀ ,

with pressure-compensated temperature PCT (see Eq. (4.5)), exotherms for the
reactors Tex, weighted average bed temperatures in the reactors Twabt, ratios of
gas/liquid phases in different sections RX, content of the hydrogen in the reaction
section xH2 , temperatures in the main fractionator Tfrac, flow rate of heat medium
for main fractionator Ffrac,heat, pressure in the main fractionator pfrac, feed flowrate
reconciled Ff, rec, feed flowrate Ffeed and content of impurities in the feed xf,N2, xf,S,
Tf.

Current soft sensor (Ref) used in the refinery is of the following linear structure:

T95%,HGO = β1PCTHGO + β0. (5.4)

The operators in the refinery have a good past experience with its performance.
However, some recent operating conditions and changes to feedstock in the VGH unit
caused significant deviations between estimated values from the reference soft sensor
and the values obtained by the lab analysis. The plant management is unsure about
the cause and so this study looks at the whole unit and its operation within up- and
down-stream sections.

5.2 Solution Approach
This contribution focuses on the analysis of data treatment and model training in the
overall soft-sensor design procedure (refer to Figure 4.1). The data treatment analysis
aims to identify systematic errors and outliers present in the industrial datasets. Since
these datasets involve multiple variables, three multivariate data treatment approaches
are considered: T 2 distance, MCD, and k-means clustering (refer to Section 4.3.3 for
details).

After the multivariate data treatment analysis, the retained data is utilised for soft-
sensor design. The model training phase employs popular approaches such as OLS
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regression (refer to Section 3.1), PCA regression (refer to Section 3.2.1), PLS (refer
to Section 3.2.2), LASSO (refer to Section 3.3.2), as well as SS-MOC and SS-CV
approaches from the family of SS (refer to Section 3.3.3). The performance of the
designed soft sensors is compared with that of the reference (Ref) soft sensor currently
implemented in the studied processes.

The design of the soft sensors is performed using datasets from both industrial case
studies, specifically the depropanizer column from the FCC unit and the product
fractionator from the VGH unit. To ensure a comprehensive analysis, the data
is distributed to training (IT) and testing (IS) datasets in both chronological and
random manners. The effectiveness of the designed soft sensors is evaluated based on
appropriate performance indices (refer to Section 2.3.2).

5.3 Results
We present the results for both the presented use cases. We compare the performance
of the presented data treatment methods and methods for soft-sensor design. Due to
data confidentiality, the graphical representations of the results use the normalization
of variables in the interval [0, 1].

5.3.1 Implementation details
The implementation of all the presented methods is performed in MATLAB. For the
initial data treatment, we use the Hotelling’s T 2 distance considering χ2-distribution
with the probability of including 99.7% measurements. For the MCD method, we
select the value of parameter h as a midpoint of the interval n+np+1

2 ≤ h ≤ n [1]. The
outliers are determined by MCD considering an approximation of F -distribution [2]
with the same probability as in the T 2 distance method. As a preliminary analysis
suggested, the industrial data seem to be not normally distributed. Therefore the T 2

distance method considering χ2-distribution tends to remove larger portions of data
than MCD with F -distribution. The number of the desired clusters for the k-means
clustering is determined using the elbow method. The results of the MCD method
and the k-means clustering are gathered and averaged over 100 different runs of the
respective algorithms. This is because of the inherent randomness of these methods,
as mentioned above.

For the soft-sensor design, we set the variance-covariance methods (PCA and PLS) to
select the amount of the variance explained by the principal components to at least 98%.
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The PLS method uses SIMPLS approach from MATLAB. We use Yalmip (Löfberg,
2004) and Gurobi (Gurobi Optimization, LLC, 2023) to solve various instances of the
problems (3.1), (3.5), (3.6), and (3.10).

We will examine two different scenarios of soft-sensor design for each use case, focusing
on the division of data into training and testing subsets, each comprising 50% of the
data. In both scenarios, the training set is utilized for designing the reference as well
as the other soft sensors under study. In the first scenario, the available dataset is
split into subsets based on the time series. The data from an earlier time period is
used for training, while the data from a later time period is allocated for testing. This
setup simulates soft-sensor design at a specific point in time using historical training
data. The testing phase serves as a simulation of future sensor performance, where
the sensor is deployed without any modification to its structure, even in the face of
potential variations in plant operating conditions.

The second scenario groups the available data among training/testing subsets randomly.
The results thus reveal the potential of the studied sensor-design methods for adaptation
of the sensor structure to the changing operating conditions. In this scenario, the final
results are gathered from 50 runs with different training/testing dataset distributions.

In order to tune the value of λ in (3.5) we use the goodness-of-fit criteria (2.28)–(2.30)
and cross-validation (see Section 3.3.1) on the training set (IT). We first obtain the
candidate values of λ that minimize one of the goodness-of-fit criteria by training
the sensors on the whole training set. Subsequently, we generate twenty different
distributions of the training data into two subsets (similar to the SS-CV method). The
candidate values of λ are used for regression and cross-validation on the generated
subsets and the best performing value is used for the final sensor training.

When determining the final design of the soft sensor according to SS-CV, we take
a median of 1ᵀz∗ss from the results of the different runs (different validation data
distribution and different values of K: K ≤ 6 for the FCC unit, K ≤ 4 for the VGH
unit) to obtain the n∗p ≤ np, i.e., the number of inputs of the final sensor. Subsequently,
we select the n∗p most frequent inputs from the results of the different runs to finalize
the sensor structure.

The complexity of each designed soft-sensor structure is determined according to the
number of input variables n∗p. We measure the impact of a particular input on the
soft-sensor performance by the value of |βi|. If the impact of a particular term is
less than 0.1% of the maximum value of the desired inferred variable, we neglect the
corresponding part of the soft sensor.
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The accuracy of the soft sensors is evaluated and compared by the root mean square
error (RMSE) of the sensor prediction on the testing dataset. The performance of
the industrial soft sensors can be adjusted during the operation by an adaptive bias
correction (see in Section 4.7.2), also called bias update. Therefore, in addition to the
soft-sensor complexity (n∗p) and accuracy (RMSE), we evaluate the effort of the bias
correction (EBC) by simulating a bias correction procedure in parallel, i.e., without
affecting the prediction error of the sensor evaluated by RMSE. The measure of the
bias-correction effort is expressed as the percentage of measurement-based sensor
corrections occurrences in the testing dataset.

5.3.2 Soft Sensors for the FCC Unit
The available historical data involving 32,061 measurement points from online sensors
(candidate input variables) represents more than two years of production in the period
2016–2019. This time span contains 181 lab measurements of the bottom product
concentration xB (output variable).

We first perform the data treatment to reduce the amount of systematic and gross
errors. Figure 5.3a shows visualization of the data treatment results on the normalized
temperature of the bottom product TB. The visual inspection of the time series of the
available data (data pre-treatment) reveals the initial set of systematic errors with
significantly deviated data, which corresponds to the shutdown period of the unit.
This is marked as a thick gray bar in Figure 5.3a. The unit operators confirmed in
consultation the correctness of omission of the corresponding 1,207 data points from
the further processing.

Subsequently, we applied the T 2 distance, MCD, and k-means clustering methods
to detect outliers in the dataset. The performance of these methods is individually
visualized and compared in Figures 5.3b, 5.3c and 5.3d for lucidity. Each figure shows
a histogram of data points of bottom product temperature vs. reboiler heat duty.
All the methods clearly identify the most distinct outliers. The results further show
that k-means clustering (Figure 5.3d) might be overly conservative as it selected
significantly fewer outliers than the other two methods. The low performance of this
method is caused by the complex tuning (e.g., number of clusters). The k-means
clustering method detects only five data clusters, which results in the low number
of indicated outliers by this method. The number of outliers indicated by the MCD
method (Figure 5.3c) is almost twice higher compared to the T 2 distance method
(Figure 5.3b). The MCD method thus appears as a reasonable choice here as it removes
a significant amount of outliers, yet retains reasonable number of data points, of which
it guarantees better quality than the T 2 distance approach.
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(a) Data pre-treatment by visual inspection
detecting plant shutdowns.

(b) Data treatment by the T 2 distance
method.

(c) Data treatment by the MCD method.
(d) Data treatment by the k-means clustering

method.

Figure 5.3: (a) Normalized bottom product temperature of the FCC unit vs. measure-
ment index. (b), (c), (d) Histogram of the bottom product temperature
vs. reboiler heat duty of the FCC unit and retained measurement vs. out-
liers as detected by data treatment methods.
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Figure 5.4: The retained online measurements (by the MCD method) of the bottom
product temperature and reboiler heat duty of the FCC unit.

It is obvious that the majority of identified outliers (blue points in Figure 5.3c) by the
MCD method deviates from the area with the highest density of the online measure-
ments. On the same line, the approved measurements (green points in Figure 5.3c) are
located inside or are very close to this area. This also indicates the good performance
of the MCD method. The final set of the retained measurements by this method for
the soft-sensor design is shown in Figure 5.4. It is evident that the MCD method
provides well-poised data set, which appears to be close to normal distribution. We can
conclude that the available industrial data are of good quality and that the conducted
data treatment was able to reveal the high-quality data.

5.3.3 Design of Soft Sensors for the FCC Unit using Time
Series Data

We first study a scenario where the (chronologically) first 50% of the available data is
assigned to the training set and the last 50% of data is assigned to the testing set.

Soft-sensors designed by PCA and PLS require six and seven principal components,
respectively, to explain 98% of the variance in the data. This relatively high number
of principal components suggests, on the one hand, to use a more complex structure
of soft sensor than the reference soft sensor. On the other hand, sensors designed by
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Table 5.1: Comparison of the number of inputs n∗p (n∗pc for PCA and PLS shown in
brackets), sensor accuracy (RMSE) and bias correction relative effort or
frequency (EBC) using time series data for the FCC unit.

OLS PCA PLS LASSO SS-MOC SS-CV Ref

n∗p 11 11 (6) 11 (7) 5 4 4 3
RMSE 0.120 0.096 0.104 0.099 0.099 0.099 0.117
EBC [%] 29.7 21.6 24.3 20.3 23.0 23.0 28.4

these methods might be overfitted.

When designing a soft sensor by the SS methods, we compared the performance of the
presented overfitting criteria (R2

adj, AICc, BIC). We used the principle of parsimony.
The simplest sensor yet the best performing one is designed by SS with R2

adj criterion.
This sensor is the same as suggested by SS with cross-validation in this case and it is
selected for further performance analysis.

A comparison of the designed sensors in terms of their complexity (n∗p), accuracy
(RMSE), and the effort of the bias correction (EBC) is shown in Table 5.1. The results
clearly suggest to enrich the structure of reference soft sensor to include at least one
extra variable in order to improve its performance (see n∗p in Table 5.1). The least
complex sensors are suggested by the LASSO and SS methods. These methods suggest
replacing bottom pressure pB by temperatures TC,D and TC,B (LASSO selected also
the ratio R/F ). These sensors (including PCA) exhibit a reduced amount of bias
correction compared to all others.

Overall, the accuracy of the reference soft sensor (see RMSE in Table 5.1) shows almost
the worst performance. Only the (most likely overfitted) soft sensor designed by OLSR
is worse in this comparison, despite using all the possible eleven inputs. The overfitting
by OLSR can be documented by worsened accuracy and also by a high effort of the
bias correction.

The highest sensor accuracy is achieved for the PCA-based soft sensor. The improve-
ment compared to the reference soft sensor is approximately 18%. Other proposed
advanced sensors show similar performance (improvements of at least 15%).

Looking at the amount of bias correction, we can see that the most frequently corrected
soft sensor is designed by OLSR, while the soft sensor designed by LASSO requires
the bias correction less frequently than others. The best sensor would be selected as
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a compromise between accuracy, complexity, and maintenance (EBC) effort. In this
respect, all the advanced designed soft sensors represent good candidates.

In order to provide a more comprehensive comparison of the soft sensors, Figure 5.5
visualizes their predictive performance on the output variable. The lab-analysis
data is shown as black squares (training dataset) and black stars (testing dataset),
respectively. The data show significant variability indicating several changes of the
operating conditions within the studied time window, in both training and testing
datasets. This means that the trained sensors face a rich portfolio of situations and
thus a trained sensor can be expectedly valid for a long time after its commissioning.
This is confirmed by the aforementioned good performance of the designed sensors and
by the relatively low effort of the bias-update mechanism.

Figure 5.5 further presents the training and testing (predictions) performance of the
designed advanced soft sensors, by PCA and PLS (Figure 5.5a; green solid line and
red dashed line, respectively) and by LASSO and SS-CV (Figure 5.5b; magenta solid
line and green dashed line, respectively), compared in both figures to the reference
soft sensor (blue dotted line).

When looking at the performance of the reference sensor in both plots, one can
clearly identify several points, where the reference sensor is not able to explain
the measurements yet the advanced sensors are. This is present throughout the
whole studied time window but it is most evident in the testing phase (around the
measurements 80–120).

We can see that despite the behavior of the soft sensors designed by PCA and by PLS
being similar in the training phase, the evolution of the predictions of these sensors
on the testing data is quite different. This also explains differences in the accuracy
and frequency of the bias correction. It also further supports our earlier conjecture
of possible overfitting present in these sensors. This observation is in contrast with
the bottom plot (LASSO and SS-CV), where the outputs of the visualized advanced
sensors are almost identical.

A noticeable part of the testing phase is the last period (around the measurements 130–
148), where it seems that the operating conditions in the FCC unit change considerably.
There exist corresponding significant discrepancies between the measurements and
values inferred by all the advanced soft sensors. The reference soft sensor, however,
performs well here, which suggests good robustness properties of this sensor. All the
advanced sensors exhibit a slower or faster drift from the measurements. This situation
calls for sensor maintenance or complete structural change. It appears that a practical
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(a) Training and prediction performance of the sensors designed by PCA and PLS methods
and of the reference sensor.

(b) Training and prediction performance of the sensors designed by LASSO and SS-CV
methods and of the reference sensor.

Figure 5.5: Comparison of the soft sensors for the FCC unit designed using time
series data.
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Table 5.2: Comparison of the number of inputs n∗p (n∗pc for PCA and PLS shown in
brackets), sensor accuracy (RMSE) and bias correction relative effort or
frequency (EBC) over 50 random training/testing data distributions for
the FCC unit.

OLS PCA PLS LASSO SS-MOC SS-CV Ref

n∗p 11 11 (7) 11 (8) 7 6 5 3
RMSE 0.105 0.104 0.106 0.106 0.106 0.110 0.121
EBC [%] 23.0 24.3 23.0 24.3 27.0 24.3 28.4

solution of performing bias update would be sufficient. We will revisit and analyze
this issue in the following section in order to confirm whether the operating conditions
change so dramatically that one would need to change the soft sensor structure.

5.3.4 Design of Soft Sensors for the FCC Unit using Randomly
Distributed Data

We randomly distribute 50% of the available data to the training set and the remaining
data to the testing set. We generate 50 such distributions to increase the interpretabilily
of the results. We then use the same workflow to design the soft sensors as outlined
above.

We report averages of n∗p, RMSE and EBC for each soft sensor over the 50 data
distributions in Table 5.2. According to the sensor complexity criterion (n∗p), we
can see that the designed soft sensors suggest more complex structure (at least two
extra input variables) compared to the reference structure and also compared to the
previous scenario with chronological training/testing data assignment. This suggests
that varying operating conditions in the plant would require frequent revision of the
sensor structure for better performance. The performance of the designed advanced
sensors does not improve compared to the designs using chronological training/testing
data distribution, which is a consequence of the overfitting implied by the increased
complexity of the sensor. For example, LASSO and both SS methods commonly
suggest including TD and QB on top of the inputs suggested in the previous section.
However, none of these variables seem to be significantly useful for the sensor overall.
While, unlike for distillate temperature TD, inclusion of QB would make sense from
process viewpoint, its effect is already present in the input QB/F . Only the soft
sensor designed by OLS exhibits improved accuracy compared to the design with
chronologically distributed training/testing data. This is a consequence of providing
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Figure 5.6: Comparison of accuracy of the designed soft sensors over 50 different
random training/testing data distributions for the FCC unit.

better training data (more similar to testing ones) to the sensors, which reduces the
overfitting effect. Designed advanced soft sensor (including PCA) shows the increased
frequency of the bias correction, which can be attributed to the large noise magnitude
in the lab data and overfitting.

The performance features of the particular sensors remain practically the same as in
the case of chronological training/testing data distribution. The soft sensor designed
by PCA is slightly more accurate than other soft sensors and it improves the accuracy
of the reference soft sensor by about 14%. Yet the drop in this improvement confirms
the overfitting. The structure of the soft sensor designed by SS-CV is less complicated
than the structures of other designed soft sensors. As expected, the least complex
sensor designed by SS-CV is again followed in terms of performance by design using
the SS-MOC and LASSO methods, respectively.

Figure 5.6 visualizes the accuracy statistics of each soft sensor from the 50 randomly
generated training/testing datasets using box plots. The central horizontal-line marker
indicates the median, the bottom and top edges of the box indicate the 25th and 75th
percentiles, respectively, the whiskers extend to the most extreme data points not
considered outliers, and the outliers are plotted individually using the ’+’ symbol. We
can see that the median performance mostly copies the average performance of the
designed soft sensors outlined in Table 5.2.

The accuracy variance seems to be considerable for all sensors, which confirms the
aforementioned large noise in the samples the possible sensor overfitting. The least
variance is present in the reference sensor, which is due to the aforementioned robustness
properties.
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(a) Training and prediction performance of the reference sensor and of the sensors designed
by PCA and PLS methods.

(b) Training and prediction performance of the reference sensor and of the sensors designed
by LASSO and SS-CV methods.

Figure 5.7: Comparison of the soft sensors using randomly distributed train-
ing/testing data for the FCC unit.
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As in the previous section, we visualize the training and prediction performance of the
designed soft sensors in Figure 5.7 for one representative random training/testing data
distribution. We again show results obtained for the reference soft sensor (both plots;
blue dotted line), the soft sensors designed by PCA and PLS (Figure 5.7a; green solid
line and red dashed line, respectively), and the soft sensors designed by LASSO and
SS-CV (Figure 5.7b; magenta solid line and green dashed lines, respectively).

As can be expected, the performance of the soft sensors is similar to the performance
of the soft sensors designed by using time series data. The previously discussed
discrepancy between the sensors and the measurements (around the measurements 130–
148) is decreased. This, together with the increased complexity of the sensors designed
using randomly distributed data, leads us to the conclusion that the performance of
an advanced sensor can only be maintained if the sensor structure changes frequently
or if the sensor parameters are frequently updated. Of course, in this particular case,
the problem would be practically resolved by bias update.

5.3.5 Soft Sensors for the VGH Unit
The available historical data encompasses almost two years of production in the period
2018–2019 with 34,845 time points of online measurements. This is a comparable
amount of data as in the previous case study. The desired output variable T95%,HGO,
which, similarly to the previous use case, indicates the purity of the distillation product,
is determined by the lab analysis. The mentioned time span involves 689 measurements
of the output variable as it is measured more frequently than in the case of FCC.

We first perform the pre-treatment of the available data. Based on the visual inspection
of the time series of a temperature in the main fractionator (Figure 5.8a), we eliminated
two intervals with obviously deviated measurements (see gray intervals in Figure 5.8a).
The unit operators confirmed that the omitted 4,928 measurement points (black points
in Figure 5.8a) correspond to the unit shutdowns.

Subsequently, the remaining data is processed using the T 2 distance, MCD, and k-
means clustering methods. Although the visualized temperature data does not seem
to be much qualitatively different in nature than the case of the FCC unit, there are
more distinct variations and steady states. This feature causes that the T 2 distance
method suggests removing more outliers than MCD and k-means clustering.

For the case of the T 2 distance method, 13,874 outliers is indicated, which represents
almost half of the available pre-treated data. This behavior can be attributed to the
previously observed distinct variations and steady states, which bias the statistics
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(a) Data pre-treatment by visual inspection detecting plant shutdowns.

(b) Data treatment by the MCD method.

Figure 5.8: (a) Normalized temperature in the main fractionator of the VGH unit vs. measurement
index. (b) Histogram of the temperature vs. pressure in the main fractionator of the
VGH unit and retained measurements vs. outliers after data treatment.
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used in the T 2 distance method. In fact, if we wanted to tune this method to the
similar performance as the MCD method, we would require increasing the probability
of measurements acceptance from 99.7% to 99.9%. This seemingly small alteration
represents a significant increase in the acceptance, by one half of a standard deviation.

The MCD method indicates slightly more outliers (10,023 measurements) as in the
case of the FCC unit (6,917 measurements), which may be caused by the worse quality
of the data from the VGH unit. The k-means clustering method indicates much more
outliers (11,229 measurements) than in the FCC unit (265 measurements). It uses
21 clusters (compared to five clusters detected for the FCC unit), which seems to
be a consequence of the distinct variations and steady states. Nonetheless, the data
distribution among the clusters exhibits certain uniformity, which further demonstrates
the sensitivity of the k-means clustering method to tuning (e.g., number of clusters).

As in the case of the FCC unit, we again choose to remove the outliers labeled by
the MCD method as it retains reasonable amount of data points. Even though the
data quality (e.g., number of shutdowns, variations of the operating conditions) of the
VGH unit is worse than the FCC unit, we can see more minor differences among the
applied data-treatment methods. Therefore, only the performance of the MCD method
is further shown via the histogram of data points of temperature vs. pressure in the
main fractionator in Figure 5.8b. The blue points represent indicated outliers and the
rest of the data (green points) is retained for the design of soft sensors (Figure 5.9).
We can conclude that the marked outliers are mostly measurements deviated from the
area with the highest density of the measurements. This proves the effectiveness of
the MCD method to indicate deviated and undesirable measurements.

5.3.6 Design of Soft Sensors for the VGH Unit using Time
Series Data

We design soft sensors in the same way as in Section 5.3.3. Therefore, we distribute
(chronologically) first 50% of the available time series data to training set and last
50% of available time series data to the testing set.

Soft-sensors designed by PCA and PLS require thirteen and fifteen principal com-
ponents, respectively, to explain 98% of the variance in the data. This, on the one
hand, suggests possible overfitting yet, on the other hand, there seems to be a good
agreement between the advanced design methods on the number of important variables
(or their combinations), i.e., 13–15. When designing a soft sensor by the SS methods,
similar to the previous use case, we found that the combination with the R2

adj criterion
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Figure 5.9: The retained online measurements (by the MCD method) of the temper-
ature and pressure in the main factionator of the VGH unit.

Table 5.3: Comparison of the number of inputs n∗p (n∗pc for PCA and PLS shown in
brackets), sensor accuracy (RMSE) and bias correction relative effort or
frequency (EBC) using time series data for the VGH unit.

OLS PCA PLS LASSO SS-MOC SS-CV Ref

n∗p 19 24 (13) 22 (15) 14 15 12 1
RMSE 0.184 0.103 0.158 0.145 0.190 0.182 0.114
EBC [%] 82.8 85.3 80.2 74.6 82.3 79.3 75.4

gave the best results. Unlike in the case of the FCC unit, the SS-CV method proposes
different sensor structure as the SS method (with R2

adj criterion).

A comparison of the designed sensors in terms of their complexity (n∗p), accuracy
(RMSE), and the amount of bias correction (EBC) is shown in Table 5.3. As we can
see, the suggested structure (n∗p) of the designed soft sensors is much more complicated
than the structure of the reference soft sensor. Out of 30 candidate inputs, the designed
sensors suggest to include at least eleven more inputs. All the design methods (even
OLS) are able to sparsify to a certain extent the structure of the full sensor (5.3). Beside
PCTHGO included in the reference sensor, LASSO suggests involving Tfrac,2, Tfrac,1,
Tf,50p and xH2 among the most influential variables. On contrary, the SS methods
suggest including Tfrac,2, Tfrac,1, PCTGF and Twabt,1. Despite the disagreement on
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the added variables, it appears that certain variables from the reaction section of the
plant could play a role in explaining the bad performance of the reference sensor when
qualitatively different feedstock is used.

Overall, the accuracy of the designed soft sensors (see RMSE in Table 5.3) shows the
best performance for the soft sensor designed by PCA, good performance of the soft
sensors designed by the PLS and LASSO methods and the worst performance of the
soft sensors designed by OLS and SS methods. Apparently, the reference sensor shows
high robustness. The poor accuracy of the soft sensor designed by SS methods can be
explained by the highly varying operating conditions of the plant. This can also be
documented by the much increased amount of bias correction compared to the case of
the FCC unit (see in Table 5.1).

We can see that the soft sensor designed by OLS is much more complicated, less
accurate and more frequently corrected than the reference soft sensor. The results
show that PCA and PLS methods are not able to reduce the dimensionality of the
soft sensor compared to OLS. The high number of principal components of these
methods also suggests that a complex structure is required to express the behavior of
the desired variable. The soft sensors designed by PCA, PLS and LASSO are more
accurate than other designed soft sensors. Nevertheless, only the PCA sensor is more
accurate (by about 10%) than the reference soft sensor. According to the values of
the EBC criterion in Table 5.3, the soft sensor designed by PLS is more appropriate
than the PCA soft sensor, although both sensors are more frequently corrected than
the reference soft sensor. The further values of EBC indicate that soft sensors designed
by LASSO and SS-CV are corrected less frequently than other designed soft sensors,
which results from their simple structure (and implied robustness).

In order to provide more comprehensive comparison of the soft sensors, we visualize
their predictive performance on the output variable in Figure 5.10 using the same color
coding as in the previous case study. The data shows high variability indicating several
changes of the operating conditions within the studied time window, in both training
and testing datasets. Nonetheless, the variability within the testing set appears to be
higher. This might explain the poor performance of the designed advanced sensors
and it is confirmed by the high effort of bias correction.

Figure 5.10a further presents the training and testing (predictions) performance of the
designed advanced soft sensors, by PCA and PLS (Figure 5.10a) and by LASSO and
SS-CV (Figure 5.5b), compared to the reference soft sensor. We can directly see the
training performance of the designed advanced soft sensors being much better than
the reference soft sensor. However, there are several sections in the testing dataset,
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(a) Training and prediction performance of the sensors designed by PCA and PLS methods
and reference (Ref) sensor.

(b) Training and prediction performance of the sensors designed by LASSO and SS-CV
methods and reference (Ref) sensor.

Figure 5.10: Comparison of the soft sensors for the VGH unit designed using time
series data.
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Table 5.4: Comparison of the number of inputs n∗p (n∗pc for PCA and PLS shown in
brackets), sensor accuracy (RMSE) and bias correction relative effort or
frequency (EBC) over 50 random training/testing data distributions for
the VGH unit.

OLS PCA PLS LASSO SS-MOC SS-CV Ref

n∗p 24 25 (15) 25 (17) 15 16 12 1
RMSE 0.086 0.087 0.085 0.086 0.086 0.087 0.105
EBC [%] 88.8 86.6 86.6 90.1 89.7 87.1 91.0

where these soft sensors are not able to explain the behavior of the output variable.
This is most prominent around the measurements 260–320 and 420–464. Interestingly,
PCA-based soft-sensor performs relatively well in both the designated periods, which
suggests that some process features were successfully caught in the sensor. On the other
hand, it exhibits a relatively poor performance around measurement index 350, where
it is outperformed by other sensors (even the reference sensor). These observations
suggest that the training set is poor and should be expanded.

It appears that a practical solution of performing bias update would be sufficient in
this situation. We will revisit and analyze this situation in the following section in
order to confirm whether the operating conditions change so dramatically that one
would need to vary the soft-sensor structure often.

5.3.7 Design of Soft Sensors for the VGH Unit using Randomly
Distributed Data

Next, we design soft sensors using randomly distributed data. We assign 50% of the
available randomly distributed data to the training set and the remaining data to the
testing set. We generate 50 such distributions and we use the same training/testing
workflow as above. We finally present the average performance measures from the
different runs of the corresponding soft-sensor design.

The comparison of soft sensors in Table 5.4 involves the same criteria (n∗p, RMSE, EBC)
as in the previous section. In terms of complexity of the designed sensors, we see similar
trend as in the FCC use case. The overall complexity of the designed soft sensors is
mostly higher compared to the soft sensors designed on chronologically distributed
data (see Table 5.3). This is a recurring observation (from the first case study) and
points at the need of enriching the number of explaining variables to adapt for varying
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Figure 5.11: Comparison of the designed soft-sensor accuracy (RMSE) over 50 dif-
ferent randomly generated training/testing data distributions for the
VGH unit.

plant operating conditions. Only the soft sensor designed by SS-CV is an exception
and it even maintains exactly the same sensor structure. These observations reveal that
despite SS-CV found good sensor structure in case of chronologically distributed data,
the variation in the operating conditions would require to adapt sensor parameters.
This also definitely proves high variation of operating conditions and its strong influence
on the sensor performance. Similar to SS-CV, also for the rest of the designed sensors
the most influential inputs selected by the design methods remain unchanged compared
to the case of chronological training/testing data distribution. Each designed soft
sensor shows the increased frequency of the bias correction, which can be attributed
to the large noise magnitude in the lab data and to the need for adapting the sensor
frequently due to operating conditions.

The accuracy of the designed soft sensors is essentially the same and each sensor is
more accurate than the reference sensor. The most accurate sensor is designed by
PLS and it improves the accuracy of reference sensor by about 19%. A drop in this
performance by PCA-based sensor can be attributed to significant changes in the
operating conditions in combination with changes in the sensitivity of the output
variable to different inputs (online measurements). The latter claim is supported by
the comparatively better performance of the sensor designed by PLS.

Figure 5.11 visualizes the accuracy statistics using box plots of each soft sensor from the
50 randomly distributed training/testing datasets. We can see that the performance
statistics of all the designed soft sensors mostly copies the conclusions reached in
the discussion on the average performance (see Table 5.4). The results show similar
accuracy variance of each soft sensor, which means that the variance is caused mainly
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by the particular noise realizations in the data. The smallest variance is though
achieved for the sensors found by SS methods.

As in the previous section, Figure 5.12 visualizes the training and prediction perfor-
mance of the designed soft sensors for one representative random training/testing data
distribution. Results are shown for the reference soft sensor (both plots), the soft
sensors designed by PCA and PLS (Figure 5.12a), and the soft sensors designed by
LASSO and SS-CV (Figure 5.12b). The performance improvement of the soft-sensors
with randomly distributed data compared to chronological data is evident. We can
observe this on previously mismatched measurements around markers 420–464. Yet,
we can clearly identify the period of measurements 260–320 that still exhibits unsat-
isfactory sensor performance. This calls for another investigation at the plant and
revision of the set of candidate sensor inputs.

In conclusion, the advanced design methods show great potential for improving the
sensor accuracy beside the good robustness properties of the reference sensor. Yet due
to the complexity of the use case, the price to pay for the improved performance is paid
in terms of higher sensor complexity. Moreover, due to varying operating conditions,
the advanced sensors would need to be often updated or trained on a carefully selected
training set.

5.4 Discussion
Overall, we can say that each studied data treatment method is able to a certain
extent indicate outliers in the multivariate data. The advantage of the T 2 distance
method lies in its simplicity. However, this method is strongly affected by the number
of treated variables and by the data distribution. The T 2 distance method selects fewer
outliers in the FCC unit data (3,567 outliers) than the VGH unit (13,874 outliers). The
best results were achieved using the MCD method, which guarantees higher quality
of the retained data than the T 2 distance method. The performance of this method
seems to be consistent in both case studies. The MCD method indicates 6,917 outliers
in the FCC unit and 10,023 outliers in the case of the VGH unit. The higher number
of indicated outliers in the case of the VGH unit is caused mainly by the worse quality
of the data. The treatment of the industrial data pointed out that k-means clustering
is quite sensitive to tuning (e.g., number of clusters) that might lead to inferior-quality
data treatment. We can see an even more significant discrepancy between the number
of indicated outliers in the FCC unit and VGH unit (265 outliers and 11,229 outliers,
respectively) by k-means clustering as in the T 2 distance method. It seems that the
performance of this method should be adjusted to select more outliers in measurements
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(a) Training and prediction performance of the sensors designed by PCA and PLS methods
and reference (Ref) sensor.

(b) Training and prediction performance of the sensors designed by LASSO and SS-CV
methods and reference (Ref) sensor.

Figure 5.12: Comparison of the soft sensors using randomly generated train-
ing/testing data distribution for the VGH unit.
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in the case study on the FCC unit.

The performance of the soft sensors designed by the studied data-driven method (OLS,
PCA, PLS, LASSO, SS-MOC and SS-CV) is compared against the reference (current)
sensor in both case studies. The reference sensor has a relatively simple structure
(three input variables) in the FCC unit and a simple structure (one input variable) in
the VGH unit. The low structural complexity provides higher robustness of the soft
sensors. We could see this robustness when the soft sensors were designed according to
the chronological training/testing dataset of the VGH unit. In this case, the designed
advanced soft sensors are more complex yet less accurate than the reference sensor in
the final section of the testing dataset. It is most likely that the process deviates from
the operating conditions present during the training phase and the advanced sensors
would require frequent parameter adaptation to maintain the designed performance.

The results from chronological distribution of training/testing dataset indicate that
the soft sensor designed by PCA achieved the highest accuracy. It outperforms the
reference sensor by about 18% in the FCC unit and by about 10% in the VGH unit.
Such sensor could be used for plant monitoring. On the other hand, if we also consider
the sensor complexity, then the SS-CV method outperforms the rest of the approaches.
A low-complexity sensor would be more suitable for optimization or advanced control.

The design of soft sensors considering both chronologically and randomly distributed
training/testing datasets seems to be an effective way to determine the impact of
changing operating conditions in the process. The results suggest that the soft sensors
designed over the chronologically distributed training/testing dataset are less sensitive
to overfitting than the randomly distributed training/testing dataset. This phenomenon
supports the hypothesis of the occurrence of varying operating conditions since the
trained sensors tend to involve more inputs to model the changing conditions.

Our investigation has also found that soft sensors commonly used in the petrochemical
industry show high robustness and can give solid performance even long after their
commissioning. On the other hand, the relative simplicity of the structure can be easily
enhanced in simple cases (the FCC unit use case) by extension of the structure without
much maintenance effort. Such sensors can also improve the trust of the operators
in the sensors and the automation technology. For this purpose, advanced methods
of soft-sensor design (LASSO and SS-MOC methods) show a good promise and even
the associated computational burden is justified. In more complex cases, the studied
design methods can be a promising technology for root-cause analysis.



Chapter 6

Data-driven Design of Multi-model Soft
Sensors

This section of the thesis presents the second contribution, which focuses on extending
the ordinary soft-sensor design from single-model (SMS) to incorporate multi-model
soft-sensor (MMS) design. Novel approaches are proposed to enhance the current
state-of-the-art MMS design. Currently, this contribution is undergoing the review
process (Mojto et al., 2023a).

6.1 Problem Definition
We aim to design soft sensors that can predict a hard-to-measure process variable (y)
using the available dataset of easy-to-measure variables (X). To compare the perfor-
mance of single-model soft sensors (SMS) and multi-model soft sensors (MMS), we
utilise datasets generated from the PCT model (see Section 4.5.2), as well as an indus-
trial dataset from the VGH unit in the oil refinery Slovnaft, a.s. in Bratislava, Slovakia.
The SMS design and its corresponding methodology are described in Section 4.5.1,
while the state-of-the-art design of MMS is presented in Section 4.5.2.

6.2 Solution Approach
We propose a novel approach for the design of multi-model soft sensors (MMS),
which addresses the limitations of the existing state-of-the-art MMSSotA approach
(see Section 4.5.2). Our proposed approach consists of two separate developments.
The first part focuses on the design of MMS with continuous switching, referred to as
MMScon. This part aims to overcome the limitations of the MMSSotA approach by
introducing a continuous switching mechanism between different models within the
MMS. The second part extends the MMS design further by incorporating optimised
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data labelling, resulting in a MMScon,lab approach. This part addresses the challenge
of effectively labelling the data used for training and switching between models within
the MMS, aiming to improve the overall performance and accuracy of the soft sensor.
Together, these two developments present a comprehensive and enhanced approach for
the design of multi-model soft sensors, offering improved capabilities and addressing
the limitations of the existing approaches.

6.2.1 Design of MMS with Continuous Switching
To deal with the limitation of discontinuity of MMS models, we propose a combination
of the SVM-based classification of the data with the individual sensor training in the
following optimization problem:

min
w,w0,e≥0

β1,β0,1,β2,β0,2

SSE1 + SSE2 + α‖w‖2
2 + γ‖e‖1 (6.1a)

s.t. (2zi − 1) (xᵀ
iw + w0) ≥ 1− ei, ∀i ∈ {1, 2, . . . , n}, (6.1b)

SSE1 =
n∑
i=1

zi (yi − xᵀ
i β1 − β0,1)2

, (6.1c)

SSE2 =
n∑
i=1

(1− zi) (yi − xᵀ
i β2 − β0,2)2

, (6.1d)

β1 − β2 −w = 0, β0,1 − β0,2 − w0 = 0, (6.1e)

where w is a normal vector and w0 constant off-set of the separation hyperplane,
respectively, e is a vector of the slack variables, z is a vector of binary parameters that
results from the data labelling procedure with zi = 1 if xi ∈ R1 and zi = 0 if xi ∈ R2,
SSE is the sum of squared errors, α is a weighting parameter for normal vector of the
separation plane and γ is a weighting parameter for vector of the slack variables.

The combination of the SVM-based classification of the data with the individual
sensor training is represented by (6.1a)–(6.1d). The resulting optimization problem is
extended with constraints (6.1e) which ensure the continuity at the switch between
the two models. This is achieved by establishing the intersection of model surfaces
to coincide with the determined switching hyperplane. Note that, we present the
formulation of MMScon in the simplest form (two MMS models, OLS setup), for brevity,
yet it is possible to extend easily this formulation to multiple models and other training
approaches (see Chapter 3).

As the a priori data labelling can be inappropriate for the design of a MMS with
continuous switching, we allow small violations of the labelling using the slack variables
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e in (6.1b). We also consider that the user can aim at giving up some portion of model
(training) accuracy for the better separation by widening the separation band. The
latter feature is established by minimizing ‖w‖2

2 in (6.1a). The described features can
be enforced/weakened by tuning the positive weights α and β.

Illustrative example The visualization of MMScon on the PCT dataset can be seen
in Figure 4.4b. Unlike the MMSSotA approach (Figure 4.4a), there is no discrepancy
at the intercept between the designed models (yellow and dark green surfaces) of
MMScon. This confirms that the proposed approach ensures continuous switching
between designed models. The accuracy of MMScon (RMSE (IT)=0.079) is significantly
decreased compared to MMSSotA (RMSE (IT)=0.032). This is a price to pay for MMS
continuity and a design trade-off.

Naturally, the continuity constraints (6.1e) can be relaxed and introduced as soft
constraints should one be willing to make the trade-off explicit for the MMS design.
The accuracy and continuity of the MMScon model can then be effectively tuned by
varying the weights α and β according to the fidelity of a priori labelling and a desired
level of discontinuity. The other way to improve the performance of the MMScon
approach represents an implementation of the optimization of a priori labelling into
the MMS design, which is further explored in the following text.

6.2.2 Design of MMS with Optimized Data Labelling
In order to mitigate the inaccuracies caused by the a priori labelling of the training
dataset, we propose the approach to design MMS with optimized data labelling
(MMScon,lab). This approach searches directly for the optimal data labelling by adding
z among the optimized variables in (6.1a). The resulting optimization problem is
following:

min
z∈{0,1}n,w,w0,e≥0
β1,β0,1,β2,β0,2

SAE1 + SAE2 + α‖w‖1 + γ‖e‖1 (6.2a)

s.t. (2zi − 1) (xᵀ
iw + w0) ≥ 1− ei, ∀i ∈ {1, 2, . . . , n}, (6.2b)

SAE1 =
n∑
i=1

zi |yi − xᵀ
i β1 − β0,1| , (6.2c)

SAE2 =
n∑
i=1

(1− zi) |yi − xᵀ
i β2 − β0,2| , (6.2d)

β1 − β2 −w = 0, β0,1 − β0,2 − w0 = 0, (6.2e)
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where SAE is a sum of absolute errors.

Although a formulation similar to (6.1) with SSE-based objective can be reused here,
we adopt the SAE criterion to reduce the complexity. In a similar fashion, 2-norm is
replaced for 1-norm to regularize the normal vector of the separating hyperplane. This
is a standard approach (Song et al., 2002). The optimization problem (6.2) can thus
be transformed to a mixed-integer linear program (MILP). The transformation uses:
(a) the epigraph reformulation (Milano, 2012) of the absolute value, (b) the big-M
method (Griva et al., 2008) to linearize the bilinear constraints. As the variables z
are binary, the big-M method does not require any new integer variables. If SSE was
used in the objective function, the optimization problem would turn into mixed-integer
nonlinear program (MINLP), which might be challenging especially when n is high.

The problem (6.2) is primarily used to determine the data labels, which refer to how the
training data is distributed and how the validity regions of the model are established.
Once the values of z (data labels) are fixed, the final training of MMS models is
performed by solving (6.1) using the SSE criterion. This ensures a fair comparison
with other SMS and MMS approaches.

This two-step approach does not require a priori labelling of the training set and can
provide an optimal MMS at the expense of increased computational burden. The
optimization problem for the MMScon,lab design increases by one binary optimized
variable per training data point. Therefore, the proposed approach is limited to
relatively small-scale problems (tens to hundreds of measurements). However, this
is typically sufficient for the design of soft sensors, where only a limited number of
measurements is available for the desired (hard-to-measure) variable. Additionally,
if a large dataset is available, a smaller size of the training dataset can be selected
based on appropriate information criteria, similar to optimal design of experiments or
sampling for surrogate model building Kamath (2022).

Illustrative example Figure 6.1 shows the design of MMScon,lab on the different
PCT datasets. The results in Figure 6.1a show that the designed MMScon,lab has
a high degree of flexibility and precision on the PCT dataset with two distinct
clusters. The accuracy of this sensor (RMSE (IT) = 0.026) outperforms MMSSotA
(RMSE (IT) = 0.032) and MMScon (RMSE (IT) = 0.079) shown in Figure 4.4. The
accuracy improvement of MMScon,lab is ensured by optimizing a priori labeling instead
of using k-means clustering. This can be indicated by comparing classification in
Figure 6.1a against Figure 4.4. The results from Figure 6.1b indicate that the sensor
returned by the MMScon,lab approach is designed effectively even when the considered
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(a) MMScon,lab (RMSE (IT) = 0.023) de-
signed on the P CT dataset with two dis-
tinct clusters.

(b) MMScon,lab (RMSE (IT) = 0.043) de-
signed on the P CT dataset with indis-
tinguishable clusters.

Figure 6.1: The ground truth model of PCT with MMScon,lab designed on different
datasets.

dataset has no distinguishable clusters. This is typical for industrial datasets due to
the presence of the significant level of noise and multitude of similar operating points.

6.3 Results
The design of single-model soft sensors (SMS) and multi-model soft sensors (MMS) is
elaborated on two case studies. Both case studies have an industrial character and
practical relevance. The first case study features a pressure compensated temperature
PCT , which is briefly explored in Chapter 3. The purpose of this case study is to
analyse the impact of data quality on the MMS design in multitude of simulations.
The second case study involves an industrial dataset from the VGH unit, which is a
part of the oil refinery Slovnaft, a.s. in Bratislava, Slovakia. This case study validates
the applicability of the proposed MMS design approaches in practice.

6.3.1 Implementation Details
The presented design methods are implemented in MATLAB R2022a. To solve the
involved optimization problems, we use the Yalmip package (Löfberg, 2004) and Gurobi
solver (Gurobi Optimization, LLC, 2023). All the numerical results and graphical
representations consider the normalization of variables within the interval [0, 1] in both
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case studies. The normalization (scaling) parameters are not disclosed for the dataset
from the VGH unit due to data confidentiality.

Prior to the soft-sensor design, the entire available dataset is divided into the training
and testing (unseen) datasets. The information contained within the training and
testing datasets is one of the decisive factors directly affecting the performance of the
designed soft sensors. Therefore, the effect of various ways of dividing the data into
training and testing datasets on the SMS and MMS performances is further investigated
on the PCT dataset in Section 6.3.2. The soft-sensor design on the industrial dataset
from the VGH unit is based on the random distribution of measurements in the training
and testing datasets.

The design of MMSSotA performs the a priori labelling by using k-means clustering.
Subsequently, the linear classifier of MMSSotA is designed by SVM. Finally, the model
parameters within MMSSotA models are calculated by OLS. The MMScon design is
performed according to (6.1). In order to reduce the computational effort, MMScon
is initialized by the results from (6.1) considering SAE instead of SSE within the
objective function (6.1a). Subsequently, the MMScon,lab design from (6.2) is initialized
by the results from MMScon.

6.3.2 Design of Soft Sensors for Pressure-Compensated Tem-
perature

We use the datasets generated by simulating the nonlinear model of PCT represented
by (4.5) with respect to the parameters and specifications introduced in Chapter 3. We
use this ideal case study to examine the impact of various factors on the performance
of the soft sensor. Specifically, in this section, we analyze the impact of two factors on
the SMS and MMS designs: (1) the method of data distribution into the training and
testing datasets and (2) the noise variance in the output variable.

The considered case study involves two input variables (p and T ) and one output
variable (PCT ), and therefore, it is unnecessary to consider the SMS approaches with
advanced input structure selection (i.e., SMSPCA, SMSPLS, SMSLAS, and SMSSS).
The set of compared soft sensors in this section involves SMSOLS, MMSSotA, MMScon,
and MMScon,lab. Overall, the studied PCT datasets involve 620 measurements, which
are equally distributed between the training and testing datasets.

To analyse the impact of the data distribution into the training and testing datasets, we
generate datasets from the PCT model according to two different scenarios. The first
scenario, or desirable scenario, considers that the PCT model operates in two different
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(a) The desirable scenario. (b) The undesirable scenario.

Figure 6.2: The comparison of studied distributions of the PCT data into training
and testing datasets.

operating regimes and measurements from both operating regimes are available in
the training dataset, as illustrated in Figure 6.2a. This scenario occurs relatively
frequently in the industry, and it assumes that the process operates only within known
operating regimes, which is desired for the soft-sensor design. The second scenario, or
undesirable scenario, assumes the same operating regimes within the PCT model as
the first scenario, but the training dataset involves measurements from one operating
regime only, and the testing dataset involves measurements from the other operating
regime, as shown in Figure 6.2a. This scenario represents an undesirable, yet not
unlikely, situation in the industry, when the process operates within a new operating
state after the soft-sensor design.

The comparison in Figure 6.3 shows a statistical evaluation of the results obtained
over 100 different datasets for each studied scenario. The datasets consider two
classes of measurements, as shown in Figure 6.2, with different random distributions of
measurements. The noise considered within the output variable is a random variable
from N (µnoise, σ2

noise) = N (0, 52), where the value of the standard deviation σnoise
represents 0.67% (σnoise/µPCT · 100 %) of an averaged value from the original (prior
to the normalization) output variable. The boxes in Figure 6.3 represent the 25th
and 75th percentiles of the RMSE reached on the testing test. The red line within
the box represents the median value of the considered set of results. The red crosses
represent the statistical outliers. For each designed soft sensor (i.e., SMSOLS, MMSSotA,
MMScon, and MMScon,lab), there are four pairs of orange (desirable scenario) and
violet (undesirable scenario) boxes in Figure 6.3.
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Figure 6.3: The statistical comparison of RMSE (IS) of designed soft sensors
(SMSOLS, MMSSotA, MMScon and MMScon,lab) involving 100 different
datasets for each studied scenario.

The results presented in Figure 6.3 demonstrate that the designed soft sensors exhibit
better performance on datasets from the desirable scenario (represented by the orange
boxes) compared to those from the undesirable scenario (represented by the violet
boxes). These findings support our initial assumption regarding the impact of these
scenarios on the performance of soft sensors.

The results from the desirable scenario further indicate a high degree of robustness
(or low variance) in the SMSOLS accuracy, as seen by the small height of the corre-
sponding orange box in Figure 6.3. On the other hand, the accuracy of SMSOLS is
significantly outperformed by MMSSotA. Furthermore, the performance of MMSSotA is
even smaller compared to that of SMSOLS. The outstanding performance of MMSSotA
can be attributed to the nature of the datasets in the desirable scenario (as shown
in Figure 6.2a) with distinguishable classes. One class involves measurements that
precisely explain the behaviour of PCT in the (almost) linear section, while the other
class involves mostly measurements from the highly nonlinear section of the PCT
model range. Therefore, a priori labelling within the MMSSotA approach (k-means
clustering) provides appropriate data labels for the subsequent design of soft sensors.
The results of MMScon in the desirable scenario (as shown in the corresponding orange
box in Figure 6.3) indicate a small variance in accuracy comparable to that of SMSOLS.
However, MMScon achieves the lowest accuracy compared to other designed soft sensors
on the datasets from the desirable scenario. This suggest that the a priori labelling is
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not optimal w.r.t. design of a continuous multi-model sensor. Further analysis of the
results reveals that the MMScon accuracy (considering the desirable scenario) can be
significantly improved by the MMScon,lab. The results in the desirable scenario exhibit
higher variability in the performance compared to all other designed soft sensors. The
main reason for this is the complexity of the optimization problem that needs to be
solved, which can lead to numerical inaccuracies. This assumption is supported by the
increased occurrence of outliers in the MMScon,lab results in Figure 6.3 (represented by
the red crosses). Despite the increased variance of the accuracy, MMScon,lab achieves
comparable accuracy to MMSSotA in the majority of the cases. This is notable given
the similar values of the median (represented by the red lines) of these MMSs.

The results from the undesirable scenario (violet boxes) suggest that SMSOLS and
MMSSotA perform similarly. Both soft sensors exhibit the lowest variance of accuracy
(as indicated by the height of the corresponding violet boxes, similar to what we
observed in the desirable scenario. The accuracy of MMSSotA appears only slightly
higher than that of SMSOLS, unlike the observations from the desirable scenario. All
the sensors pay the price for making extrapolated predictions. We can indicate very
high variability in the MMScon accuracy for the undesirable scenario. This stems
from the requirement to design models with continuous switching, which determines
the rotation and angle between the models. The nature of the undesirable scenario,
where the testing dataset is completely unseen during training, gives MMScon a chance
(through the randomness of noise and k-means clustering) to fit the testing dataset
significantly better or worse than other studied soft sensors. The results suggest
that the variance and accuracy of MMScon can be improved by using the MMScon,lab
approach in the undesirable scenario. This improvement is achieved by optimizing
the data labelling within the MMScon,lab approach, with a focus on explaining the
nonlinear behaviour of the PCT model. However, the possibilities of MMScon,lab
are limited due to the nature of the training dataset in this scenario. As a result,
we observe similar accuracy of MMScon,lab compared to SMSOLS and MMSSotA, as
indicated by the median values (red lines) within the corresponding violet boxes in
Figure 6.3. We also note the occurrence of low-accuracy outliers within the MMScon,lab
results, similar to the desirable scenario.

The previous analysis shows that the random distribution of data into the training
and testing datasets should provide sufficient informative content for the training
dataset. Therefore, we use this distribution in the following analysis focused on the
impact of noise (of the output variable) on the performance of the designed soft sensors.
The set of noise variances (σnoise ∈ {0.1, 0.25, 2.5, 5, 10, 25, 50}) is selected based on
the noise variances observed in the industrial dataset. The minimum, respectively
maximum, considered noise variance (σnoise = 0.1, respectively σnoise = 50) represent
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Figure 6.4: The averaged RMSE (IS) value for designed soft sensors (SMSOLS,
MMSSotA, MMScon, and MMScon,lab) from 100 different realizations of
the noise for each studied σnoise within the output variable.

approximately 0.1%, respectively 6.7%, of the mean value of the output variable from
the considered datasets. To provide more representative results, we present the average
RMSE (IS) value from 100 different realizations of noise for each studied σnoise.

The impact of the noise variance (within the output variable) on the accuracy
(RMSE (IS)) of the designed soft sensors is illustrated in Figure 6.4. In general,
an increase in σnoise leads expectedly to an increase in RMSE (IS). The performance
of SMSOLS (orange points) appears to be relatively robust for smaller values of the
noise variances (σnoise < 10), confirming conclusions from the previous analysis (see
Figure 6.3). Moreover, the slope of SMSOLS accuracy decrease within the interval
σnoise = (10, 50) is the smallest among the studied approaches, which further confirms
good robustness properties of SMSOLS.

SMSOLS is outperformed by MMSSotA (magenta points in Figure 6.4) over the entire
range of studied noise variances. The superior performance of MMSSotA is expected
due to the nature of the considered datasets (see Figure 6.2a) and nonlinearity of the
ground-truth model, as discussed above.

The accuracy of MMScon (represented by pale blue points) is lower compared to the
other designed soft sensors, and this can be attributed to two main aspects. The first
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aspect is the constraint to design models with continuous switching. The second aspect
is that the objective function of the MMScon approach (as shown in Equation (6.1a))
takes into account not only the model accuracy, represented by the sum of squared
errors (SSE) of the designed models, but also the penalization of the separation
hyperplane width and the penalization of the separation hyperplane violations.

The results of MMScon,lab (blue points) indicate that the accuracy of MMScon can
be significantly improved by optimizing the data labelling. MMScon,lab outperforms
SMSOLS when σnoise < 29. The accuracy of MMScon,lab decreases steeper compared to
other approaches when σnoise > 29. The increased flexibility of MMScon,lab leads to an
increased tendency for this approach to explain the noise within the training dataset,
especially for significant noise variances. In other words, the MMScon,lab approach has
an increased tendency for overfitting.

6.3.3 Design of Soft Sensors for Vacuum Gasoil Hydrogenation
Unit

The details and description of the VGH unit is stated in Section 5.1.2. The available
industrial dataset involves measurements for 24 months of the VGH unit operation.
The output (desired) variable to be estimated by soft sensors is the purity of the
HGO product, represented by 95% point of the distillation curve T95 %,HGO. The lab
analysis of the HGO product is executed approximately once per day, and therefore,
there are 621 measurements of the output variable available for the soft-sensor design.
The input variables are measured every minute by online sensors. In order to reduce
the impact of the measurement noise, the minute measurements are replaced by the
averaged measurements from 30-minute intervals. The resulting input dataset involves
27,324 measurements available for the soft-sensor design.

The set of input candidates involves the following 35 variables:

x = (PCTHGO, PCTGF, Tex,1, Tex,2, Tex,3, Tex,4,

Twabt,1, Twabt,2, Twabt,3, Twabt,4, Twabt,5,

RX1, RX2, RX3, RX4, RX5, RX6, RX7,

xH2, Tfrac,1, Tfrac,2, Ffrac,heat, pfrac,

Ff,rec, Ff, xf,N2, xf,S, Tf,5p, Tf,50p, Tf,95p,

Fr, Lreb, vor, voreb,heat,1, voreb,heat,2 )ᵀ ,

(6.3)

where Fr is a flowrate of the reflux stream Lreb is a liquid level in the reboiler, vor is
a valve opening of the reflux stream, voreb,heat,1–2 is a valve opening of the heating
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medium for the reboiler (1 – input, 2 – output). The aforementioned five input variables
were added to the original VGH dataset, as described in Section 5.1.2. This extension
was proposed by our industrial partner as a means to enhance the performance of the
soft sensors for the VGH unit. Furthermore, all five variables are directly associated
with the product fractionator depicted in Figure 5.2, which is where the soft sensor
design is conducted.

The supervised learning methods used for soft-sensor design require a paired input-
output dataset, where the inputs and outputs correspond to the same measurement
time. In this case, the input and output datasets consist of 621 measurements, which
are subsequently divided randomly into training (311 measurements) and testing (310
measurements) sets. It is worth noting that this dataset is comparable in size to the
PCT sets of data (620 measurements) used in the previous case study (Section 6.3.2).
This allows us to explore any similarities between the results and conclusions of these
case studies.

Currently, the refinery has implemented an SMS with the structure represented by (5.4).
This structure is based on the expert knowledge of the operators and engineers in the
refinery and is used as a reference in the comparison of designed soft sensors in this
study. Therefore, we refer to this sensor as SMSRef. The OLS approach is used to
evaluate the parameters in (5.4).

The set of approaches considered for SMS design (see Chapter 3) includes OLS
(SMSOLS), PCA (SMSPCA), PLS (SMSPLS), LASSO (SMSLAS), and SS (SMSSS).
These approaches consider the entire set of input candidates (np = 35) and search for
the optimal input structure (n∗p) based on their specific objectives. The set of compared
approaches for MMS design consists of MMSSotA, MMScon, and MMScon,lab. The MMS
approaches consider two candidate input structures: (1) the reference input structure
(denoted as Ref) given by (5.4) with np = 1 (PCTHGO) and (2) the input structure
determined by the brute force approach (denoted as BF) with np = 2 (PCTHGO
and voh,2). The brute force approach solves the MMScon approach for each studied
input structure, and the best input structure is determined based on the RMSE (IT)
criterion. This approach explores all possible combinations of available candidate
input variables within a linear structure with one or two variables. However, we do
not explore more complex input structures using the brute force approach for three
reasons. First, expert knowledge from the refinery suggests to consider the simple
input structures (see reference structure in (5.4)). Second, the MMScon,lab approach
tends to overfit, as indicated in Section 6.3.2. Third, the refinery demands that soft
sensors have as simple an input structure as possible because each variable in the input
structure requires measurements from a corresponding online sensor in the refinery.
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Table 6.1: Comparison of the resulting number of input variables n∗p / principal
components n∗pc (for PCA and PLS), accuracy (RMSE), accuracy with bias
correction (RMSEBC) and effort of the bias correction (EBC) of designed
single-model soft sensors (SMS) on the training (IT) and testing (IS)
industrial datasets.

SMSOLS SMSPCA SMSPLS SMSLAS SMSSS SMSRef SMSBF
n∗p/n∗pc 31/- 35/6 33/6 13/- 17/- 1/- 2/-

RMSE (IT) 0.077 0.109 0.084 0.083 0.08 0.111 0.104
RMSE (IS) 0.145 0.105 0.097 0.097 0.211 0.1 0.095

RMSEBC (IS) 0.135 0.085 0.081 0.083 0.198 0.081 0.079
EBC (IS) [%] 50 48.71 47.1 48.39 50.32 48.06 48.71

To provide a fair comparison, the SMS set of approaches is extended to SMSRef and
SMSBF, considering the same input structures as the MMS approaches.

Over its life cycle, the performance of the designed soft sensor can be further improved
by using a well-known bias correction (or bias update) approach (see Section 4.7.2).
The bias correction aims to improve the accuracy of the succeeding prediction of the
soft sensor by adjusting the constant (bias) term β0. The bias term change is evaluated
when a new measurement from lab analysis is available. Taking into account the
normalized values of the output variable, the considered value of the multiplier KBC is
0.2, and the value of minimum accessible increment ∆β0,min is 0.01.

The resulting performance criteria of the studied single-model soft sensors (i.e., SMSOLS,
SMSPCA, SMSPLS, SMSLAS, SMSSS, SMSRef, and SMSBF) designed on the VGH
dataset are shown in Table 6.1. The complexity of the soft sensors is represented by
the resulting number of input variables n∗p and the number of principal components
n∗pc (for SMSPCA and SMSPLS). The results also involve the accuracy of soft sensors
corrected by the bias correction (RMSEBC (IS)) and the effort of the bias correction
EBC (IS) evaluated on the testing dataset.

The results presented in Table 6.1 indicate that SMSOLS achieves the lowest RMSE (IT)
value among all studied SMSs, but it produces a relatively high RMSE (IS) value and a
complex input structure (n∗p = 31), which suggests overfitting. The variance-covariance
approaches, SMSPCA and SMSPLS, indicate the same input structure complexity
(n∗pc = 6) but SMSPLS performs better than SMSPCA due to its supervised-learning
nature. SMSLAS shows accuracy similar to SMSPLS, but with a lower complexity
(n∗p = 13) than SMSPLS (n∗p = 33). SMSSS achieves the highest RMSE (IS) value
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Table 6.2: Comparison of the resulting number of input variables n∗p, accuracy
(RMSE), accuracy with bias correction (RMSEBC) and effort of the bias
correction EBC of designed multi-model soft sensors (MMS) on the train-
ing (IT) and testing (IS) industrial datasets.

MMSSotA MMScon MMScon,lab
n∗p 1 (Ref) 2 (BF) 1 (Ref) 2 (BF) 1 (Ref) 2 (BF)

RMSE (IT) 0.098 0.097 0.109 0.130 0.108 0.1
RMSE (IS) 0.094 0.092 0.113 0.133 0.105 0.098

RMSEBC (IS) 0.082 0.078 0.092 0.090 0.087 0.081
EBC (IS) [%] 50.00 45.81 54.52 55.81 50.32 49.36

among all studied SMSs, and it exhibits the same signs of overfitting as SMSOLS.
SMSRef (n∗p = 1) and SMSBF (n∗p = 2) have significantly lower complexities compared
to other designed SMSs. Based on the results, it is possible to improve the performance
of SMSRef (currently implemented in the refinery) by about 5% using SMSBF. However,
it would be required to maintain one extra online sensor (compared to SMSRef), which
is already installed in the refinery, to ensure the accuracy and reliability of SMSBF.

The results presented in Table 6.1 suggest that bias correction has the potential to
improve the accuracy of the studied SMSs (RMSE (IS) → RMSEBC (IS)), at the
cost of increased bias correction effort (EBC (IS)). However, the bias correction is not
effective in improving the accuracy of SMSOLS compared to other SMSs, despite the
high effort involved. This is likely due to the overfitted structure of SMSOLS. The
results show that bias correction with SMSPCA achieves similar performance to that
of SMSPLS and SMSLAS. Each of these soft sensors achieves lower RMSEBC (IS) and
EBC (IS) than SMSOLS. It seems that SMSPLS achieves the lowest EBC (IS) from
all studied SMSs. The bias correction of SMSSS suffers from overfitting, as SMSOLS,
leading to the poorest accuracy after the bias correction, despite the highest effort
required among all studied SMSs. The results also indicate that SMSRef and SMSBF
perform similarly to SMSPCA, SMSPLS, and SMSLAS under bias correction. The
highest accuracy of a bias-corrected soft sensor is achieved in the case of SMSBF.

Table 6.2 presents a comparison of the performance of MMSs (MMSSotA, MMScon,
and MMScon,lab) designed for the VGH dataset. Each of these approaches shows the
resulting quality of the designed soft sensors using both input structures (Ref and BF),
and their accuracy is evaluated according to the same criteria as in the case of SMSs
(Table 6.1). This enables a direct comparison of the results from the studied SMS and
MMS approaches.
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Table 6.2 suggests that MMSSotA achieves the highest accuracy (RMSE (IS)) compared
to other designed MMSs and SMSs, taking into account both input structures. These
results confirm the excellent accuracy of the MMSSotA approach on the PCT datasets
(Section 6.3.2). Moreover, the accuracy of MMSSotA is higher with the BF input
structure than with the Ref input structure, suggesting that the BF input structure is
more appropriate for the MMS design. The MMS with the Ref input outperforms the
currently implemented soft sensor in the refinery (see SMSRef in Table 6.1) by about
6% and with the BF input structure by about 8%.

The accuracy of MMScon appears worse compared to MMSSotA for both input structures.
This aligns with observations made on the PCT datasets (Section 6.3.2). The poor
accuracy of MMScon is primarily caused by the requirement to design models with
continuous switching. The table suggests that the accuracy of MMScon is decreased
with the BF input structure compared to its performance with the Ref input structure.
The additional variable within the BF input structure appears to be unhelpful for
MMScon accuracy, and it further increases the negative impact of the model continuity
constraint on the MMScon performance.

The results further indicate that the optimized data labeling within the MMScon,lab
approach significantly improves its accuracy, considering both input structures. The
accuracy of MMScon,lab is not as high as that of MMSSotA but is comparable to that
of SMSRef and SMSBF in Table 6.1. Moreover, the MMScon,lab approach ensures con-
tinuous switching of the designed models, which can be crucial in specific applications,
particularly if the soft sensor is part of a process control strategy. MMScon,lab achieves
higher accuracy with the BF input structure than with the Ref input structure. Unlike
the MMScon approach, the optimized data labelling enables the MMScon,lab approach
to effectively use the additional variable within the BF input structure with respect to
the resulting accuracy of MMScon,lab.

The results of the bias correction analysis suggest that the accuracy of the studied
MMSs on the testing datasets can be further improved (RMSE (IS) → RMSEBC (IS)).
When comparing the bias-corrected MMSs with the SMSs (see Table 6.1), we can
observe that the accuracy of the soft sensors is similar (RMSEBC (IS) falls in the range
0.078–0.087). However, it seems that the bias correction effort (EBC (IS)) required
for MMSs is generally higher than that for SMSs. This increased effort is likely due
to the multiple models within the MMS structure, especially if there is a significant
discrepancy (discontinuity) between the MMS models. The bias correction of MMSSotA
with the Ref input structure supports this observation, as it achieves a slightly higher
RMSEBC (IS) and a higher EBC (IS) compared to SMSRef (see Table 6.1). On the
other hand, we can see that MMSSotA with the BF input structure achieves a lower
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RMSEBC (IS) and a lower EBC (IS) than SMSBF (see Table 6.1). This highlights that
the choice of input structure for MMS can also significantly impact the effectiveness of
the bias correction process.

The previous discussion indicates that MMScon exhibits lower accuracy (RMSE (IS))
than the other MMS approaches due to the need to design models with continuous
switching. The results in Table 6.2 indicate that bias correction is intended to improve
the accuracy of MMScon at the cost of higher EBC (IS) than other MMS designs.
However, despite these efforts, the bias-corrected accuracy (RMSEBC (IS)) of MMScon
remains lower than that of other MMS approaches.

Based on the results presented in Table 6.2, it appears that the bias correction
of MMScon,lab sensors is comparable to that of MMSSotA. However, after the bias
correction, the accuracy of MMScon,lab is slightly worse than that of MMSSotA for
both input structures. This is consistent with the accuracy of these soft sensors
without bias correction, as shown in RMSE (IS) in Table 6.2. It is worth noting
that the bias correction of the MMScon,lab sensors requires more effort compared to
the MMSSotA. This effort originates from the need to mitigates the impact of the
additional requirement (to design models with continuous switching) on the accuracy
of MMScon,lab. Consequently, the corrected accuracy of MMScon,lab can compete with
that of the most accurate soft sensors (i.e., MMSSotA, SMSBF, SMSPLS, and SMSRef).

The designed MMSs considering the BF input structure (n∗p = 2) are illustrated in
Figure 6.5. The yellow and dark green surfaces represent the designed models within
the MMS structure, and the gray vertical surface is the separation hyperplane. The
circles represent the training dataset, and the triangles form the testing dataset. The
pink colour of circles or triangles represents measurements from the first class, and the
blue colour of circles or triangles indicates measurements from the second class.

The models of MMSSotA are shown in Figure 6.5a. The model surfaces exhibit
an obvious discontinuity at the interface (separation plane) between models. The
discontinuity appears to be beneficial for model accuracy. The MMScon models are
shown in Figure 6.5b. We can see that the designed models have continuous switching,
which does not allow the arbitrary rotation of the MMScon model surfaces. Therefore,
the models of MMScon deviate more from the measurements more than the models of
MMSSotA, resulting in lower accuracy of the MMScon model compared to MMSSotA.
The designed models of MMScon,lab are shown in Figure 6.5c. We can observe the
continuity at the switch between the MMScon,lab models. We can also see that one
data class involves the majority of the measurements, while the remaining points are
assigned to another, smaller class. This occurs when there are no discernible classes of
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(a) MMSSotA: model 1 (RMSE = [0.091(IT), 0.091(IS)]),
iiiiiiiiiiiiiiii model 2 (RMSE = [0.102(IT), 0.094(IS)]).

(b) MMScon: model 1 (RMSE = [0.136(IT), 0.134(IS)]),
iiiiiiiiiiiiii model 2 (RMSE = [0.125(IT), 0.133(IS)]).

(c) MMScon,lab: model 1 (RMSE = [0.130(IT), 0.211(IS)]),
iiiiiiiiiiiiiiii model 2 (RMSE = [0.099(IT), 0.095(IS)]).

Figure 6.5: The comparison of designed MMSs on the industrial dataset from the
VGH unit.
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measurements in the provided dataset (as seen in Figures 6.1b and 6.5c), although
this is not always the case (as seen in Figures 6.1a). In the case of indistinct classes of
measurements in the available dataset, MMScon,lab attempts to improve the accuracy
of the model designed on the majority of measurements by assigning the most deviated
measurements to the smaller class. As shown in Figure 6.1b, the measurements from
the smaller class can explain the nonlinear nature of the estimated variable.

6.4 Discussion
The MMS design on the industrial dataset (see in Section 6.3.3) considered only the
reference input structure given by (5.4) and the enhanced input structure determined
by the brute force approach exploring all possible linear structures with one or two
input variables (i.e., 630 structures). In the case of the VGH unit, the simple input
structure seems to be desired, which is confirmed by the excellent performance of
SMSRef considering only one input variable. However, the used brute force approach
would cause significant computational load if a more complex input structure were
demanded. In such a situation, it is possible to extend the objective function of MMS by
adding an appropriate penalization element. The purpose of this penalization element
is to reduce the value of the model parameters. This kind of penalization element is
considered, for example, in the LASSO (`1-norm) or ridge (`2-norm) approaches. This
enhanced form of the MMS design would directly provide the optimal input structure
for the designed models and separation planes. Another possible approach to finding a
suitable input structure for the MMS design is to combine cross-validation with some
feature selection approach taking into account the objectives of the MMS design.

In this contribution, we assume that the MMS structure consists of two models. From
an industrial perspective, this seems to be a reasonable assumption considering that
most of the processes work within a specific operating regime. Therefore, it is expected
that even a single model (SMS) should be efficient enough in such situations. The
soft sensor consisting of two models should provide at least the same accuracy as the
SMS, but additionally, it has the potential to reduce the number of input variables
(i.e., required online sensors for the operation of the soft sensor). The presented
methodology for the MMS design can be easily extended to involve more than two
models in the soft-sensor structure. We have already designed MMS, considering more
than two models for several simulation cases. It seems that the increasing number of
designed models can further increase the accuracy of MMS. On the other hand, this
type of MMS has higher requirements for the quantity and quality of data compared
to the MMS with two models.
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The presented case studies of the soft-sensor design provide several important insights
about how to choose the appropriate MMS approach in a particular situation. The
design of MMSSotA should be performed if the studied process requires a soft sensor
with high accuracy, reliable knowledge about different operating regimes is provided,
and discontinuous switching between the models cannot cause any (e.g., stability)
issues within the considered process. If all previous specifications remain the same but
continuous switching between the designed models is necessary, then MMScon should
be designed. The results indicated that the continuous switching of the models is
provided at the expense of the soft-sensor accuracy. In the case that reliable knowledge
about different operating regimes within the process is not provided, then MMScon,lab
represents the best option. In the case that the previous specification remains but
the continuous switching between the models is not necessary, it is possible to solve
problem (6.2) with a relaxation of continuity constrains (6.2e).

We showcased bias correction methodology as a part of the analysis of the soft-sensor
design on the industrial dataset. The bias correction can significantly increase the
accuracy of the soft-sensor estimates, especially when sudden changes in the process
operation conditions occur. We expected that the MMS structure with two models
would require more effort for the bias correction EBC compared to the SMS structure.
Nevertheless, the comparison of the results in Tables 6.1 and 6.2 suggests only a slightly
increased effort for MMSs (except MMSSotA) compared to SMSs, taking into account
that SMSOLS and SMSSS are overfitted. It appears that the simplicity of the model
structure is a key aspect of obtaining an effective combination of MMS with bias
correction because both of them are sensitive to overfitting. The comparison of the bias
correction for designed MMS (see in Table 6.2) indicates the highest accuracy yet lowest
effort in the case of MMSSotA. Although the performance of MMSSotA seems excellent,
we believe that any (relatively) accurate SMS or MMS with continuous switching
between models (MMScon and MMScon,lab) should achieve less frequent occurrence
of the bias correction compared to MMSSotA. In our case, there is a relatively small
discrepancy between the models of MMSSotA (see in Figure 6.5a) on the interface,
which can be the reason for the low value of EBC.
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Chapter 7

Data-Driven Indication of Flooding in
an Industrial Debutanizer Column

This chapter presents the results of the third contribution of the thesis, which focuses
on the application of soft sensors in the area of fault detection. The objective is
to design an effective indication system for detecting flooding within an industrial
distillation column. These results have undergone review and have been accepted for
publication (Mojto et al., 2023b).

7.1 Problem Definition
The problem of flooding indication (area of fault detection) can be framed as a binary
classification task (see Section 2.3.5). Our objective is to design an indicator I that
assigns a categorical label ŷ based on the output of the classification model (classifier)
f(xsel), defined as follows:

ŷ =
{

+1 (flooding), if f(xsel) ≥ 0,
−1 (normal operation), if f(xsel) < 0,

(7.1)

where xsel ∈ Rn
∗
p represents a subset (sparse representation, np ≥ n∗p) of online plant

measurements x ∈ Rnp at a specific time instant.

In this contribution, we focus on a linear classifier represented by the mathematical
form given in Equation (2.2).

7.1.1 Industrial Debutanizer Column
We study a debutanizer (distillation) column that is a part of the FCC unit of the
refinery Slovnaft, a.s. in Bratislava, Slovakia. The column separates the C4/C5 fraction
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into the C4-fraction-rich distillate product and the C5-fraction-rich bottom product.
The column contains 40 trays.

The available dataset involves the measurements from January 2019 to April 2021 (28
months). The input variables are recorded every minute by online sensors, yet their
30-minute moving average values are considered in this study. Overall, the dataset
involves 34,297 measurements. The measurements from two plant shutdowns (May –
July 2019 and December 2020) are excluded.

The following 41 input variables are directly measured (by online sensors) at the
column:

x = (voB, voD,1–3, voR, voreb,h, Tcol,1–5, TB,1–2, TD,1–3, TF, Treb,h,1–2, Qcon,

pcol, pD,1–4, pdf,col, pcon, FR, FB, FD,1–4, FF, Freb,h,1–2, Lreb,1–2, Lcon,1–3 ) ,
(7.2)

where vo, T , Q, p, and F stand for a valve opening, temperature, heat input, pressure,
and flow rate, respectively. Indices B, D, F, R, col, con, reb, and df represent a bottom
section, distillate section, feed section, reflux section, column section, condenser section,
reboiler section, and cross-column difference, respectively. Note that exact location of
sensors cannot be disclosed due to the confidentiality reasons. The input set of directly
measured variables is extended with important ratios (FR/FF, FB/FF, Qcon/FF) and
pressure compensated temperatures (PCTB, PCTD) represented by (4.5).

7.1.2 Flooding in the Industrial Debutanizer Column
The studied debutanizer column usually operates within the desired operating regime.
At times, however, the operating conditions within the unit induce flooding. The
envisioned low-cost solution to the flooding problem is to design a reliable indicator.
The key aspect of this approach is that the designed indicator is not only used for
monitoring the plant condition, but it can communicate directly with the advanced
process controller that can provide a fast response.

The dataset does not contain any direct indication of flooding that could be used to
label the data. However, it is possible to attribute flooding occurrence to the increased
values of pdf,col, FR, Freb,h,2, and Tcol,4 and decreased values of Treb,h,1. We use this
knowledge to design the reference indicator to provide the ground truth of the flooding
indicator for our study.
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7.2 Solution Approach
Data-driven indicators are designed using unsupervised (IUns) and supervised (ISup)
ML approaches. For training (ISup-type indicator) and testing, the ground truth is
provided by the aforementioned reference indicator resulting from industrial knowledge
about debutanizer flooding.

The design procedure of the data-driven indicator consists of three sequential steps:

1. Data processing (data filtering, data treatment, distribution to training/testing
dataset).

2. A priori labelling of the training dataset (only applied for IUns-type indicators).
3. Training of a classifier (calculation of the f(x) parameters on the labelled training

dataset).

After the standardization of the data set (removing the mean and scaling all the
variables to unit variance), the aim of the data treatment (the 1st step) is to reduce the
number of outliers. Due to the non-ideal (yet close normal) noise distribution within the
industrial dataset, the minimum covariance determinant (MCD) approach is applied
(see in Section 4.3.3). The outlier detection is performed using the F -distribution,
retaining data with 99.9999% probability. The high probability value follows from the
need to eliminate only the most deviated measurements while maintaining the data
representing the flooding, which can be otherwise seen as outliers.

It is optional to smoothen the dataset by filtering out the high-frequency noise that
does not represent slower effects of flooding. Subsequently, as flooding is characterized
by the changes of the process variables, we extend the dataset (here, 46 variables) by
time differences of each variable:

∆xi(k) = xi(k)− xi(k − 1), ∀i = {1, 2, . . . , np}, (7.3)

where k is a time instant. The resulting dataset considers both, the original dataset
and time differences, i.e., 92 variables in this study. Effectively, we assign x← (x, ∆x)
in this step.

The 2nd step, applied to label the data for IUns-type approaches, is performed by
k-means clustering (Forgy, 1965) with the elbow method to determine the optimal
number of clusters. The clusters with a low cardinality but large distance between
the cluster centre and the dataset mean are considered to represent the debutanizer
flooding.
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The training phase needs to choose an appropriate indicator input space (Rn∗p) among
all the process variables and their time differences. The methods used in this study
are:

1. Industrial patent by (Pihlaja and Miller, 2012), which exploits ∆pdf, col only
(referred to as Ipat).

2. Industrial experience (specific to the studied debutanizer) using ∆pdf,col, ∆FR,
∆Freb,h,2, ∆Tcol,4, and ∆Treb,h,1 (referred to as Iref).

3. PCA approach (Pearson, 1901) presented in Section 3.2.1 (referred to as IPCA).
4. SS-CV approach presented in Section 3.3.3, which determines the best subset of

input variables via cross-validation and comparison of different input structures
with n∗p = {1, 2, . . . , 5} (referred to as ISS).

The finalization of the training phase designs a linear classifier (see Eq. (3.14)) based on
the chosen input structure (xsel ∈ Rn

∗
p). To this end, we use support vector machines

(SVM) presented in Section 3.5.1.

The quality of designed indicators is evaluated according to the basic classification
performance indices presented in Section 2.3.6. In industrial conditions, it is much
more important to warn about the potential of flooding and thus low value of FN
(high RC) is preferred.

7.3 Results
7.3.1 Data Treatment using MCD
The results of data treatment using the MCD method are shown in Figure 7.1. The data
values are anonymized for confidentiality reasons. As desired, only the most deviated
measurements (0.75%) are considered as outliers, and the rest of the measurements
(99.25%) is retained for further analysis. The dataset is further smoothened by filtering
using a 10th-order low-pass Butterworth filter with a cut-off frequency of 0.028 mHz
(with zero-phase distortion).

To guarantee fairness of indicator assessment, we distribute the retained data chrono-
logically on an alternating monthly basis into the training and testing datasets (see
Figure 7.2). From the entire dataset (25,775 measurement points), 12,781 and 12,994
points are assigned to the training and testing dataset, respectively. Figure 7.2 illus-
trates the training-testing data division together with (ground truth) labels assigned
based on industrial experience with the reference indicator.
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Figure 7.1: Histogram of two variables from the debutanizer dataset treated by the
MCD method.

Figure 7.2: Visualization of training and testing datasets and ground truth labels.
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Table 7.1: The comparison of the true positives (TP), false positives (FP), true
negatives (TN), false negatives (FN), accuracy (AC), precision (PR),
recall (RC), and complexity (no. of input variables n∗p, no. of principal
components n∗pc) of the designed data-driven indicators on the testing
dataset.

ML method Unsupervised learning Supervised learning

Structure IUnspat IUnsref IUnsPCA ISuppat ISupref ISupPCA ISupSS

TP 1784 1704 618 1192 2031 1720 2029
FP 3828 2823 3147 1358 4 168 0
TN 7097 8102 7778 9567 10 921 10 757 10 925
FN 285 365 1451 877 38 349 40

AC 68.3 75.5 64.6 82.8 99.7 96 99.7
PR 31.8 37.6 16.4 46.7 99.8 91.1 100
RC 86.2 82.4 29.9 57.6 98.2 83.1 98.1
F1 46.5 51.7 21.2 51.6 99 86.9 99

n∗p/n
∗
pc 1 5 17 1 5 17 2

7.3.2 Training of Data-Driven Indicators
Design of the data-driven flooding indicators for the debutanizer column is conducted
via MATLAB based on the methods from Section 7.2. MATLAB built-in routines
for k-means clustering, PCA, and SVM are exploited. We design indicators based on
unsupervised ML (IUnspat , IUnsref , IUnsPCA, IUnsSS ) and supervised ML (ISuppat , ISupref , ISupPCA, ISupSS ).
A main difference between these approaches is the use of the k-means algorithm to
classify the data (used for IUns indicators).

A key success factor of unsupervised ML is an appropriate data labelling. The results
indicate that, unsurprisingly, the best results are obtained when the k-means clustering
is performed on a dataset with reduced dimensionality (e.g., one variable for IUnspat
indicator or seventeen principal components determined for IUnsPCA), with appropriate
input structure. The clustering method reveals 4–5 clusters out of which 1–2 clusters
are selected to represent flooding. This result suggest that merging of steps 1 and 2
mentioned in Section 7.2 is a sensible approach to successful indicator design. For
this reason, we can expect PCA-based approaches to give inferior performance overall.
Also, we exclude IUnsSS from further assessment as its performance would suffer from the
inappropriate data labelling. A much more complicated design method (iterating over
design steps 1–3 from Section 7.2) would be needed to construct a useful indicator.
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The performance assessment of the designed indicators on the testing dataset is shown
in Tab. 7.1, taking into account the so-called confusion matrix elements (i.e., TP, FP,
TN, and FN) and performance criteria (i.e., AC, PR, RC, and F1). The complexity
of designed indicators is represented by the number of principal components npc for
PCA-based approach and by the number of input variables np for the rest of approaches.
We can directly see that the supervised ML approaches outperform the unsupervised
ones when we compare similar structures. The only exception appear to be the RC
criterion when evaluated for Ipat indicator. There are two reasons for this performance
drop: 1. RC is given up in training for the AC and precision as the dataset is more
populated with data points of normal operation; 2. the industrial data labels indicate
flooding based on other variables than pressure (the sole input to Ipat indicator) and
thus Ipat indicator falls short in terms of model (input) adequacy (some extra input
variables would explain flooding better). Note that, the first reason can be remedied by
a modification to SVM objective and some proper tuning, which, however, is beyond
the scope of this study.

Among the IUns-type approaches, it is interesting that, although the structure of the
reference indicator is optimal, the highest RC criterion (low number of FN) is achieved
by IUnspat . Of course, this is paid off by worse accuracy as the classifier indicates flooding
wrongly (high FP) more often overall. The PCA-based indicator appears to be the least
effective (worst in all criteria). This is attributed to the aforementioned inappropriate
labelling in high dimensions.

Unlike for the unsupervised learning approaches, the performance of the ISupPCA indicator
is sufficient. It also appears that the ISupPCA is more efficient compared to the ISupPat
indicator viewed by each performance criterion. The highest efficacy among supervised
learning approaches is achieved for ISupref and ISupSS indicators. These approaches already
consider or can find the best possible input structure. It is noteworthy that ISupSS
achieves the best performance (almost 100% in all performance criteria) using a very
simple structure. This effectively tells that the reference structure is overly complicated
(some inputs are redundant) and that it is possible to indicate flooding with data
from just two sensors. It is also a very interesting result as it allows the industrial
practitioners to concentrate efforts regarding sensor maintenance towards smaller
subset of online sensors. Surprisingly, pressure is not among the inputs selected for the
best indicator. The input structure involves reflux flow ∆FR and the time difference
of heating medium flowin the reboiler ∆Freb,h,2, which are both part of the reference
indicator structure. It is possible that the two selected flow rates are measured with
better precision and that they do not involve high-frequency fluctuations as pressure
measurements do. These results need, of course, further validation in an industrial
setup as the reference indicator (ground truth) involves the the same input variables
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as the best indicators found.

7.4 Discussion
The distribution of the data in Figure 7.1 indicates that the dataset from the industrial
debutanizer column exhibits strong non-ideality. The extent of non-ideality can be
assessed by comparing the distribution to a normal distribution. By removing the
outliers (0.75%) identified using the MCD method, the resulting dataset (99.25%)
shows a closer resemblance to a normal distribution. This implies that the use of MCD
has improved the quality of the industrial dataset. However, it is worth exploring
alternative approaches such as k-means clustering (see Section 3.4.1) or T 2 distance
(see Section 2.2.3), as they may offer better data treatment and lead to further
improvements in the design of the flooding indicator I.

The results presented in Table 7.1 indicate relatively low efficiency (i.e., AC, PR,
RC, and F1) but high complexity for both IPCA. This suggests that PCA, with its
unsupervised learning nature, is not focused on explaining flooding specifically, but
rather aims to reduce the complexity of the input dataset. Therefore, it may be
beneficial to consider using PLS (see Section 3.2.2) instead of PCA.
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Conclusions and Future Research

The focus of this thesis was on designing linear soft (inferential) sensors to monitor
hard-to-measure or completely unmeasurable variables in the petrochemical industry.
Given the complexity of the studied processes, our research primarily centred around
data-driven soft sensor design. The findings presented in this thesis validate its
applicability and significance and can be summarised into three main contributions.

The first contribution (Mojto et al., 2021) presented the fundamental design of soft
sensors for two case studies in the petrochemical industry: the depropanizer distillation
column for the Fluid Catalytic Cracking (FCC) unit and the product fractionator
from the Vacuum Gasoil Hydrogenation (VGH) unit at Slovnaft, a.s. in Bratislava,
Slovakia. We examined the performance of basic data treatment methods and simple
approaches in the design of linear data-driven soft sensors. This contribution offered
a comprehensive design of data-driven soft sensors for specific case studies, shedding
light on the potential challenges in the field of soft-sensor design.

In the second contribution (Mojto et al., 2023a), our research shifted towards designing
multi-model soft sensors (MMS) for industrial case studies. We proposed innovative
approaches that enable continuous switching between soft-sensor models and optimise
data labelling in the training dataset. We compared the performance of the studied
MMSs with single-model soft sensors (SMS) based on the approaches outlined in
the first contribution. The case studies in this contribution involved the model of
pressure-compensated temperature and the main fractionator from the VGH unit
(identical to the first contribution). The results confirmed the superior potential of
MMSs over SMSs.

The third contribution (Mojto et al., 2023b) of this thesis focused on designing a flooding
indicator for the industrial debutanizer distillation column at Slovnaft, a.s. in Bratislava,
a part of the FCC unit. We compared the performance of various unsupervised and
supervised learning approaches against a ground-truth model designed based on expert
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knowledge from the industry. As expected, the supervised learning approaches exhibited
higher accuracy compared to the unsupervised methods. Additionally, the results
identified the most relevant variables associated with the studied flooding phenomenon.

Overall, these contributions advance the understanding and practical implementation
of soft sensors in the petrochemical industry, addressing the challenges of monitoring
hard-to-measure variables and providing valuable insights for future research and
application in this field.

This research has the potential for future extensions. The performance of the linear data-
driven approaches studied here is strongly influenced by the quality of the data. While
we have focused on basic data treatment methods with limited effectiveness, exploring
more advanced techniques would be advantageous. These advanced approaches can
further improve the quality of the available dataset, resulting in more reliable and
accurate designs of linear soft sensors. Furthermore, our analysis has demonstrated
that incorporating nonlinear transformations of the input variables can significantly
enhance the performance of linear soft sensors. Therefore, it would be valuable to
incorporate a suitable method for identifying appropriate nonlinear transformations, as
this would greatly enhance the quality of our research. The ALAMO approach (Wilson
and Sahinidis, 2017) shows promise as a foundation for addressing this challenge. In
addition, we recognize the potential of multi-fidelity modelling (Perdikaris et al., 2017),
which not only addresses the search for nonlinear transformations but also enhances
the performance and sustainability of soft sensors by effectively combining information
from various sources. This approach holds great potential for advancing the field of
soft sensing.
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Appendix C

Resumé

Táto dizertačná práca sa zaoberá návrhom lineárnych softvérových (inferenčných)
senzorov založených na dátach. Softvérový senzor je matematický model, ktorý
využíva dostupné údaje z kontinuálne meraných veličín, ako sú teploty, tlaky, prietoky
a iné, na odhad ťažko merateľných veličín, napríklad zloženia alebo koncentrácie
produktov. Motiváciou návrhu inferenčných senzorov sú vysoké náklady spojené s
kúpou a prevádzkovaním fyzických zariadení (senzorov) na indikáciu týchto ťažko
merateľných veličín. V súčasnosti je zaznamenaný vzostup dopytu po lacnom a presnom
spôsobe merania týchto veličín, pretože sú neodmysliteľnou súčasťou pokročilých
procesných regulátorov. Tieto regulátory dokážu dosiahnuť optimálne prevádzkové
podmienky, čo prispieva k zvýšeniu celkového zisku a udržateľnosti procesu.

V tejto práci je návrh softvérových senzorov založený na reálnych dátach z priemy-
selnej databázy. Takéto merania zvyčajne obsahujú veľké množstvo systematických
chýb, ktoré môžu znížiť efektivitu návrhu softvérových senzorov. Preto sa v tejto
práci zaoberáme rôznymi metódami na identifikáciu systematických chýb a štatisticky
odchýlených meraní vo viacrozmernej dátovej množine. Prvou skúmanou metódou je
Hotellingovo T 2 rozdelenie (T 2 vzdialenosť), ktoré indikuje systematické chyby na zák-
lade vzdialenosti meraní od stredu (µx = 0) mnohorozmernej dátovej množiny. Ďalšou
metódou, ktorou sa zaoberáme, je metóda minimálneho determinantu kovariančnej
matice (MCD), ktorá rovnako ako T 2 vzdialenosť berie do úvahy jedno stredovú hod-
notu mnohorozmernej dátovej množiny. MCD metóda je sofistikovanejším prístupom k
identifikácii odchýlených meraní v porovnaní s T 2 vzdialenosťou. Poslednou metódou,
ktorou sa zaoberáme, je k-means klastrovanie, ktoré voči predchádzajúcim metódam
uvažuje viacero (v závislosti od voľby) stredových hodnôt mnohorozmernej dátovej
množiny pri identifikácii systematických chýb.

Návrh inferenčných senzorov možno rozdeliť na základe počtu uvažovaných modelov na
jedno-modelové lineárne softvérové senzory (SMS) na viac-modelové lineárne softvérové
senzory (MMS). SMS predstavujú štandardný a často využívaný spôsob monitorovania
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ťažko merateľných veličín v priemyselnej praxi. Ich výhodou je jednoduchá a intuitívna
štruktúra modelu. Operátori a inžinieri v priemyselnej praxi vedia pristúpiť k modelu
SMS a vykonať validáciu jednotlivých parametrov na základe ich znalosti o správaní
sa samotného procesu.

V tejto práci sa zaoberáme viacerými metódami trénovania jedno-modelových soft-
vérových senzorov (SMS). Do množiny skúmaných metód patrí základná lineárna
regresia (OLS), ktorá sa snaží nájsť model s najväčšou presnosťou vzhľadom na poskyt-
nutú trénovaciu množinu údajov. Ďalšími skúmanými metódami sú analýza hlavných
komponentov (PCA) a regresná analýza parciálnych najmenších štvorcov (PLS). Obe
metódy sa zaoberajú koreláciami medzi veličinami v trénovacej množine údajov. Tieto
metódy sa líšia v tom, že PCA uvažuje vo svojej analýze len vstupné dáta (kontinuálne
merané veličiny), zatiaľ čo PLS regresia uvažuje aj výstupné dáta (ťažko merateľná
veličina). Na základe tohto porovnania možno konštatovať, že použitie PCA je prefer-
ované vtedy, keď je dostupná veľká množina vstupný dát, zatiaľ čo PLS by sa mala
použiť vtedy ak meranie výstupnej veličiny možno považovať za dôveryhodné. Ďalšou
skúmanou metódou je LASSO, ktorá súčasne navrhuje štruktúru a parametre SMS.
Táto metóda obsahuje vo svojej účelovej funkcii penalizačný element (`1-norm), ktorý
odstraňuje (vynuluje) vstupné veličiny so zanedbateľným vplyvom na odhadovanú
výstupnú veličinu. Na ladenie tohto parametra sa môžu využiť rôzne kritéria pretréno-
vania modelu (AICc, BIC, R2

adj) alebo krížová validácia. Poslednou metódou je výber
podmnožiny (angl. subset selection, SS), ktorá sa zaoberá výberom vhodnej podm-
nožiny veličín na návrh softvérového senzora. V tejto práci používame modifikovanú
formu SS metódy, ktorá využíva kritéria pretrénovania modelu spomenuté vyššie a
krížovú validáciu ako to bolo uvedené pri metóde LASSO.

Následne sa v tejto práci realizuje návrh viac-modelových lineárnych softvérových
senzorov (MMS), ktoré môžu byť použité pre procesy s viacerými operačnými bodmi a
pre odhad veličín s výraznejším nelineárnym správaním, kde jedno-modelové lineárne
softvérové senzory (SMS) nedosahujú požadovanú presnosť odhadu. Štandardný návrh
MMS (MMSSotA) sa skladá z troch krokov: (1) počiatočné označkovanie trénovacej
množiny údajov, (2) návrh klasifikátora na základe získaných značiek z predchádza-
júceho bodu návrhu MMSSotA a (3) trénovanie individuálnych modelov v štruktúre
MMSSotA. V tejto práci používame metódu k-means klastrovania na počiatočné oz-
načkovanie trénovacej množiny údajov (prvý krok návrhu MMSSotA). Táto metóda
nám umožňuje rozdeliť údaje do klastrov a každý klastr je označený konkrétnym
identifikátorom (preto sa tento krok nazýva počiatočné označkovanie). V druhom
kroku návrhu MMSSotA využívame metódu support vector machines (SVM), ktorá
nám zabezpečuje návrh lineárnych separačných klasifikátorov. Lineárna štruktúra
klasifikátorov je dôležitá, pretože aj modely v MMSSotA majú byť lineárne. V treťom
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kroku návrhu MMSSotA, ktorý sa zaoberá trénovaním lineárnych modelov v MMSSotA,
môžeme využiť niektorý z prístupov na trénovanie SMS, ktoré sme spomínali vyššie. V
tejto práci sme sa rozhodli využiť metódu OLS na trénovanie modelov MMSSotA pre
jednoduchosť výpočtu. Možné využitie iných prístupov na trénovanie SMS v tomto
kroku návrhu MMSSotA by mohlo predstavovať potenciálne zlepšenie celkového výkonu
MMS.

Skúmané metódy sú porovnávané na základe návrhu softvérových senzorov pre tri
priemyselné prípadové štúdie z ropnej rafinérie Slovnaft, a.s. v Bratislave. Prvá
štúdia sa zaoberá destilačnou kolónou depropanizérom, ktorá je súčasťou prevádzky
fluidného katalytického krakovania (FCC). Táto kolóna spracováva ľahké uhľovodíky
(C3-C5) a delí ich na destilát obohatený o C3 frakciu a zvyšok, obohatený o C4/C5
frakciu. Druhá priemyselná destilačná kolóna je debutanizér, ktorý sa tiež nachádza v
prevádzke FCC. Tento debutanizér spracováva C4/C5 frakciu z depropanizéru a delí ju
na destilát obohatený o C4 frakciu a zvyšok obohatený o C5 frakciu. Tretia priemyselná
destilačná kolóna je hlavný frakcionátor na jednotke hydrogenácie vákuových destilátov
(VGH). Hlavným cieľom prevádzky VGH je odstránenie nečistôt, ako je dusík a síra, z
vákuových destilátov. Hlavný frakcionátor produkuje niekoľko produktov, pričom jeden
z produktov je nástrek (surovina) pre prevádzku FCC. V prípade VGH prevádzky je
odhadovanou veličinou čistota plynového oleja, ktorý je jeden z produktov hlavného
frakcionátora. Návrh softvérových senzorov pre hlavný frakcionátor na prevádzke
VGH zahŕňa oveľa viac procesov a zariadení v porovnaní s návrhom softvérových
senzorov pre depropanizér a debutanizér v prevádzke FCC. Na druhej strane, hlavný
frakcionátor VGH disponuje väčším počtom meraní odhadovanej veličiny z laboratórnej
analýzy v porovnaní s depropanizérom na prevádzke FCC. Obidva tieto prístupy majú
rovnaký typ návrhu softvérového senzora na indikáciu alebo odhad ťažko merateľnej
veličiny. Návrh softvérového senzora pre debutanizér sa odlišuje tým, že má detekovať
poruchy, ako je napríklad zaplavovanie, na danom zariadení, čo predstavuje odlišnú
oblasť výskumu.

Táto dizertačná práca prezentuje výsledky troch hlavných príspevkov, ktoré boli
publikované, akceptované alebo odoslané do časopisu počas štúdia. Prvý príspevok sa
zameriaval na návrh jedno-modelových lineárnych softvérových senzorov (SMS) pre
dve priemyselné prípadové štúdie: FCC (depropanizér) a VGH prevádzka (hlavná
frakcionačná rektifikačná kolóna). Tento návrh sa zameral na hĺbkovú analýzu a
porovnanie viacerých metód spracovania údajov, ako je T 2 vzdialenosť, MCD a k-means
klastrovanie. Tieto metódy boli použité na odstránenie outlierov a systematických chýb
a následne boli očistené údaje použité na trénovanie SMS na základe rôznych prístupov
založených na dátach (OLS, PCA, PLS, LASSO a SS). Výsledky ukázali, že MCD
prístup k spracovaniu údajov je viac prispôsobivý v porovnaní s T 2 vzdialenosťou alebo
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k-means klastrovaním. V oboch prípadových štúdiách tento prístup indikoval relatívne
rozumné množstvo údajov ako odchýlené merania, zatiaľ čo iné prístupy bolo treba
doladiť, aby sa znížila ich agresivita pri detekcii odchýlených meraní. Výsledky z návrhu
softvérových senzorov naznačujú, že metóda SS s krížovou validáciou dosiahla dobrý
kompromis medzi zložitosťou a presnosťou modelu. Okrem spomenutých numerických
výsledkov, význam tohto príspevku spočíva aj v tom, že poukázal na možné výzvy a
potenciálne smerovanie výskumu v oblasti návrhu priemyselných softvérových senzorov.

Ďalší príspevok dizertačnej práce je zameraný na návrh viac-modelových lineárnych soft-
vérových senzorov (MMS) a ich porovnanie s jedno-modelovými lineárnymi softvérovými
senzormi (SMS). Pri návrhu MMS sme vylepšili štandardný MMSSotA vlastnými metó-
dami, ktoré odstraňujú nedostatky MMSSotA. Prvá nami navrhnutá metóda zohľadňuje
spojité prepínanie jednotlivých modelov v štruktúre MMS, preto sme tento prístup
nazvali spojitý MMS (MMScon). Spojité prepínanie modelov v MMS predstavuje
výrazný prínos, najmä v prípade implementácie MMS v pokročilých priemyselných
regulátoroch, kde nespojité prepínanie modelov MMS by mohlo viesť k nestabilite
riadenia procesu. Druhá nami navrhnutá metóda rieši druhý nedostatok MMSSotA,
ktorý vyplýva z toho, že počiatočné označkovanie údajov (prvý bod návrhu MMSSotA)
nemá informácie o jeho vplyve na presnosť trénovaných modelov MMS (tretí bod
návrhu MMSSotA). Nami navrhnutá metóda efektívne spája všetky tri body MMSSotA
do jedného optimalizačného problému, kde sa všetky problémy návrhu MMS riešia
súčasne. Preto je tento spôsob návrhu považovaný za MMS návrh s optimálnym
počiatočným označkovaním údajov (MMScon,lab). Okrem návrhu nových prístupov
na návrh MMS sa tento príspevok dizertačnej práce zameriava na porovnanie SMS a
MMS pomocou množiny údajov z priemyselnej jednotky VGH. Výsledky naznačujú, že
uvažovanie MMS pri indikácii ťažko merateľnej veličiny na VGH jednotke môže viesť k
zvýšeniu presnosti odhadu v porovnaní s prístupmi SMS.

Posledný príspevok dizertačnej práce sa zaoberá návrhom indikátora pre zaplavovanie
debutanizéra na prevádzke FCC. Návrh tohto indikátora je založený na princípoch
softvérových senzorov. Pri návrhu sa zvažujú metódy strojového učenia bez učiteľa
(unsupervised learning) a s učiteľom (supervised learning). Efektívnosť navrhnutých
prístupov je porovnávaná so skutočnými indikáciami zaplavovania v kolóne debu-
tanizéra. Skutočné indikácie sú získané na základe vedomostí operátorov v rafinérii o
tomto jave. Výsledky naznačujú, že indikátory zaplavovania vytvorené pomocou metód
strojového učenia s učiteľom dosahujú presnejšie výsledky v porovnaní s metódami
strojového učenia bez učiteľa. Toto pozorovanie bolo očakávané vzhľadom na to, že
metódy strojového učenia s učiteľom majú priamy kontakt so skutočnými indikáciami
zaplavovania pri návrhu indikátora. Výsledky tiež poukázali na veličiny, ktoré sa zdajú
byť najrelevantnejšie pre vysvetlenie zaplavovania v kolóne debutanizéra.
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Na základe uvedených výsledkov možno konštatovať, že ciele dizertačnej práce boli
splnené. Prvotným cieľom bolo spracovanie údajov s využitím viacerých prístupov na
spracovanie mnohorozmernej dátovej množiny. Za týmto účelom sme použili metódy,
ako je T 2 vzdialenosť, MCD a k-means klastrovanie. Hlavným cieľom bolo porovnanie
efektívnosti návrhu jedno-modelových softvérových senzorov (SMS) a viac-modelových
softvérových senzorov (MMS). Na vykonanie vernej analýzy kvality SMS sme uvažovali
viaceré metódy dátovo orientovaného návrhu, ako je OLS, PCA, PLS, LASSO a SS.
Pri MMS sme tiež zvážili rôzne prístupy. Prvým je štandardný návrh (MMSSotA),
ktorý sme porovnali s našimi vlastnými modifikáciami štandardného prístupu: (1)
prístup so spojitým prepínaním modelov (MMScon) a (2) prístup s optimalizovaným
označkovaním údajov (MMScon,lab). Posledným cieľom dizertačnej práce bolo navrhnúť
softvérový senzor pre problém zaplavovania priemyselnej rektifikačnej kolóny (detekcia
poruchy). Tento cieľ sme dosiahli prostredníctvom rôznych prístupov strojového učenia
s učiteľom aj bez učiteľa.
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