
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Guidelines for Secure Process Control:
Harnessing the Power of Homomorphic
Encryption and State Feedback Control
M. FURKA, M. KALÚZ, M. FIKAR, and M. KLAUČO, (Member, IEEE)
Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia

Corresponding author: M. Furka (e-mail: matus.furka@stuba.sk).

The authors gratefully acknowledge the contribution of the Scientific Grant Agency of the Slovak Republic under the grants 1/0545/20, and
the Slovak Research and Development Agency under the projects APVV-20-0261, APVV-21-0019. This paper is also funded by the
European Union’s Horizon Europe under grant no. 101079342 Fostering Opportunities Towards Slovak Excellence in Advanced Control
for Smart Industries.

ABSTRACT The paper presents applications of homomorphic cryptographic schemes in process control.
Homomorphic encryption is a particular type of encryption that allows performing mathematical operations
over encrypted data. Therefore the user can use third-party services as controllers without revealing any
vulnerable information, like process data. Homomorphic properties make it possible to perform data
aggregation or evaluate control actions without having any knowledge about the process data. Our paper
explores two fully homomorphic cryptographic schemes, namely Brakerski/Fan-Vercauteren (BFV) and
Cheon-Kim-Kim-Song (CKKS) cryptosystems. Each scheme is briefly described with its advantages and
drawbacks, conditions, and applications. We present a case study involving linear-quadratic (LQ) control
strategy implemented in an encrypted setup. This serves for comparison and a step-by-step guide for
implementing encrypted process control.

INDEX TERMS Modern Cryptography Tools, Homomorphic Encryption, State Feedback Control

I. INTRODUCTION
The modern industry heavily relies on information sharing
and network control systems. Hence, the need for data secu-
rity and privacy became increasingly important aspects.

The traditional encryption schemes such as AES [1] or
RSA [2] are dominant in securing the world’s network traffic,
most of computer systems, and software applications. Homo-
morphic encryption (HE) schemes are designed to allow cer-
tain types of operations over encrypted data without the need
for prior decryption. Some of the early HE schemes, com-
monly known as partially homomorphic encryption (PHE)
schemes allow either an unbounded number of modular mul-
tiplications over the ciphertexts (RSA [2], ElGamal [3]) or
an unbounded number of modular additions (Benaloh [4],
Paillier [5]).

Fully homomorphic encryption (FHE) first introduced by
Gentry [6] is an encryption technique that allows one to
evaluate arbitrary functions over the encrypted data without
decryption. Several cryptographic systems and frameworks
have been introduced in recent years that provide extended
FHE properties. The notable ones are BFV [7], BGV [8],

THFE [9], FHEW [10], and HEAAN/CKKS [11].

Homomorphic encryption finds its use in a variety of ap-
plications, mainly in those where the preservation of privacy
is of imminent interest. Many applications of HE have been
proposed or directly implemented in recent years. These tend
to secure privacy in various fields such as transportation [12],
geo-location [13], e-voting [14], to deal with an analysis of
a sensitive medical [15] or biometric data [16], [17]. The
utilization of HE came to a point when it is considered to
become a mandatory standard for certain applications [18].

Several HE-related studies have been conducted in the field
of control systems as show in [19]–[22]. However, it is fair to
say that HE-related control schemes are mostly in the proof-
of-concept state, and we will have to wait for their adoption
in industrial applications. Many of these studies rely on the
utilization of Paillier cryptosystem (PCS), despite the fact
that it does not support fully homomorphic multiplication.
Nevertheless, PCS provides sufficient security, performance,
and homomorphic framework to support applications such
as: linear controllers on dedicated hardware [23]; nonlin-
ear [24] and distributed [25] network control systems; cooper-

VOLUME 11, 2023 1

ative schemes [26]; quadratic optimization [27]; implicit [28]
MPC; and explicit MPC [29] respectively. However, modern
HE schemes have usually, several cryptographic parameters,
which often depend on each other, thus the setup of the HE
scheme is not trivial.

The novelties of this paper are:
• comprehensive guideline of the configuration of param-

eters of homomorphic cryptographic schemes leading
to satisfactory implementation in closed-loop control
applications,

• exhaustive analysis of encoding, encryption, and pre-
processing procedures of BFV and CKKS frameworks
with respect to varying parameters of cryptographic con-
figurations.

We emphasize, that selecting encoding and encryption pa-
rameters in BFV and CKKS is crucial to balance security,
performance, and numerical precision. The cryptographic
parameters of both schemes are highly interdependent, thus
the selection of each parameter is a non-trivial task. Hence,
we provide a step-by-step algorithm, that results in proper
cryptographic configuration regarding the process control
requirements.

The paper is organized as follows: In Section III, we discuss
general terms of homomorphic encryption and its practical
usage in various applications. Next, in Section IV we present
BFV and CKKS cryptographic schemes, along with their
homomorphic properties. Section V is dedicated to the de-
scription of cryptographic parameters in terms of practical
implementation and their impact on encoding, encryption,
and numerical correctness. Section V provides the guideline
for cryptographic parameter setup for each scheme according
to application requirements. In Section VI, we present simu-
lation results of encrypted closed-loop state feedback control,
while in Section VII we conclude the paper with evaluation
of achieved results.

II. RELATED WORK
In recent years, several open-source libraries have been cre-
ated considering different HE schemes for various applica-
tions. However, they generally provide only a few examples
with correct cryptographic parameters, but not the guideline
itself. The setting of cryptographic parameters is a non-trivial
the task, especially for LWE-based encryption frameworks.
Moreover, the cryptosystem configuration in these libraries
is not automated and has to be done manually. So far, only
a few proposals have looked at the construction of guide-
lines for fully homomorphic encryption frameworks [30]–
[32]. Authors in [30] provide a guideline for BGV [33]
cryptosystem implemented with HElib library [34], while
in [31] the authors discuss and construct instructions for
CKKS [11] configuration with Lattigo library [35]. In [32],
the author focuses on BFV [36] guideline considering its
implementation within Microsoft SEAL [37]. Our proposal
provides a guideline involving simple computational steps
resulting in the correct setting of cryptographic parameters for
both BFV and CKKS while utilizing their implementation in

TenSEAL library. The configuration guideline leads the non-
specialists towards correct cryptographic parameter setup for
secured process control applications. Furthermore, the guide-
line respects the required measurement and controller gain
precision, while ensuring the security level at least 128 bits.

III. HOMOMORPHIC ENCRYPTION
A. GENERAL & PRACTICAL ASPECTS
Homomorphic encryption (HE) algorithms allow to perform
mathematical operations on encrypted data without the need
for its decryption. This brings several benefits since we can
utilize third-party services without revealing data.
Before we provide a basic description of cryptographic

schemes, we define three levels of encrypted information as
follows:

• message commonly noted asm and is defined as a ‘‘raw’’
scalar or a vector (positive or negative integer or floating
point numbers) that needs to be processed before it can
be encrypted. Raw numbers are processed via encoding
procedures resulting in the form of messages suitable for
cryptographic schemes since their algorithms are based
on modular (integer) arithmetic.

• plaintext is the form of message, which is acceptable
for cryptographic schemes. Plaintext is usually noted
as p and has a form of positive integer or polynomial
with integer coefficients depending on the cryptographic
scheme. After decryption, plaintexts are decoded to re-
cover the original value of message m or the result from
homomorphic operation over ciphertexts.

• ciphertext often marked as c represents the encrypted
plaintext p hiding the value of the original message in
large integers or polynomials.

These definitions describe the main differences between
messages, plaintexts and ciphertexts. For example, for Paillier
cryptosystem may the values of m, p and c have the form

−0.5917︸ ︷︷ ︸
m

fD
⇆
fE

4177750720︸ ︷︷ ︸
p

D
⇆
E

741304627931510405︸ ︷︷ ︸
c

(1)

where fE denotes encoding procedure, fD is decoding, E stands
for encryption and D for decryption. The rest of further used
notation is listed in Table 1.
The HE algorithms are generally divided into two main

groups, partially (PHE) and fully (FHE) homomorphic en-
cryption algorithms. This classification is obtained regard-
ing the possibility of providing either homomorphic addition
or homomorphic multiplication (PHE) or both (FHE). The
choice of a cryptosystem is generally specified given the
application or user requirements.
In the following lines, we present some of the many appli-

cations where homomorphic algorithms find their use, such
as:

• Voting – One of the simple examples of using HE
schemes is the voting system. It is usually a matter of
counting individual votes, which are anonymous. For

2 VOLUME 11, 2023

TABLE 1. Notation

Symbol Description Symbol Description Symbol Description

m message Z+
n set of positive integers less than n keval evaluation key

p plaintext R set of real numbers kgal galois key
c ciphertext C set of complex numbers R polynomial ring Z[X]/(Xn + 1) with degree n
N modulus degree fE(·) encoding function Rn set of polynomials in R with coefficients in Z+

n
q coefficient modulus fD(·) decoding function ⌊·⌉ round to nearest integer
τ plaintext modulus E(·) encryption function ⌊·⌋ round to nearest smaller integer
∆ scaling factor D(·) decryption function [a]n a mod n
π mapping function kpub public key Θ uniform distribution over integers
Z set of integers kpvt private (secure) key Φ discrete Gaussian distribution over integers

this purpose, cryptographic schemes providing homo-
morphic addition find great use [38].

• Data processing – Nowadays exist a lot of cloud appli-
cations that can process data using their algorithms and
can return results in various forms. However, sharing
personal or vulnerable data in public space is not a good
option. Here, HE algorithms can find their use. The
cloud application works with ciphertexts but is still able
to process the real data thanks to homomorphism. The
outcome remains encrypted and only the data owner can
decrypt the result [39].

• Process Control – Based on the process or requirements,
the partially or fully HE algorithms can be used. There
are three types of scenarios for including encryption
schemes into process control algorithms. One aim can
be to secure only the data and the controller remains
public. On the other hand, sometimes the control algo-
rithms are more valuable than the data itself. Finally, the
fully encrypted closed-loop control can be employed,
where both the data and the controller are encrypted.
The type of HE scheme is chosen for the given control
scenario [29], [40].

In this paper, we focus on the third scenario, the process
control secured via fully homomorphic encryption frame-
works. The majority of current research is focused on secured
data processing, not process control applications. Moreover,
papers oriented towards secured process control consider par-
tially homomorphic encryption frameworks. The main draw-
back of PHE schemes relies on securing only one element of
a closed-loop scheme, thus either the process measurements
or controller parameters remain unencrypted. By involving
fully homomorphic frameworks, we provide cryptographic
security for both, process data and controller.

B. HOMOMORPHIC ENCRYPTION IN PROCESS CONTROL
We consider homomorphic encryption algorithms to secure
the data flow between multiple layers of control systems,
like between the sensor and the controller, or between the
controller and the actuator. Such a feature is heavily needed in
the process industry, where sensors, controllers, and actuators
are rarely tightly coupled in one device but can be connected
via an intranet, wireless networks or they are geographically
separated.

We operate with homomorphic encryption procedures us-
ing the asymmetric key setup. Hence, all messages are en-
crypted with a public key but can be decrypted only with a
private key. In process control, we consider the process as
the holder of both keys, whereas in abstract terms, the sensor
encrypts processmeasurements with the public key, and sends
them to the controller, which has access only to the public key.
The process finally receives encrypted values of manipulated
variables, which are decrypted on the process side with the
private key.
Since the controller has no access to decrypted values of

process measurements, we exploit homomorphic properties
of several cryptographic schemes allowing us to perform
mathematical operations over encrypted values. Note, that the
public key is distributed alongside the encrypted measured
values since the mathematical operations (like addition or
multiplication) cannot be performed without the knowledge
of the public key. Recall, that the encrypted values cannot be
decrypted without the knowledge of the private key, which
remains stored only on the process side.
This paper exploits the possibilities of implementing tradi-

tional control algorithms in a cryptographically secure frame-
work.We offer step-by-step procedures of how the implemen-
tation of LQ controllers is done within two FHE schemes.

IV. HOMOMORPHIC ENCRYPTION ALGORITHMS
This section provides the implementation details of incor-
porating a fully homomorphic framework in closed-loop
control. First, we introduce the specifics of the BFV (Sec-
tion IV-A) and CKKS cryptosystems (Section IV-B). Second,
we introduce the guidelines for setting up individual parame-
ters of BFV and CKKS for this class of applications.
Given the several existing encryption frameworks pro-

viding cryptographical security for various applications, we
emphasize the most important reasons directing our choice
towards the use of BFV and CKKS cryptosystems:
1) Future-proof Security: Both CKKS and BFV are based

on hardness assumption known as Ring Learning With
Errors (RLWE) and are also classified as lattice-based
or post-quantum cryptosystems. Today, there are no
known algorithms that would solve the RLWE in sub-
exponential time complexity. Contrary to RLWE, other
cryptosystems that rely on large integer factorization
(IF) or hardness of discrete logarithm problem (DLP)

VOLUME 11, 2023 3

are proved to be vulnerable to Shor’s quantum algo-
rithm. Some of the most popular homomorphic cryp-
tosystems belong to this category: RSA (IF), Paillier
cryptosystem (IF), Benaloh cryptosystem (IF), and El-
Gamal (DLP).

2) Homomorphic Features: Both BFV and CKKS can per-
form homomorphic addition and multiplication while
respecting the predefined depth of the arithmetic cir-
cuit. Encoding and decoding procedures are imple-
mented in libraries by default.

3) Process Control Features: Encryption libraries provide
additional features built on top of cryptosystems. In the
case of Microsoft SEAL, we can utilize efficient algo-
rithms for polynomial evaluation, matrix/vector addi-
tion, matrix-vector multiplication, and vector rotation.
These operations are often used in control algorithms.

4) Parallelism: CKKS and BFV operate in a Single In-
struction/Multiple Data (SIMD) fashion. Multiple nu-
merical messages can be encoded into the slots of a
single ciphertext, and the subsequent operations are car-
ried out over all the slots. The implementer can utilize
quite a large number of N /2 (CKKS) or N (BFV) slots
with N being the polynomial modulus degree (e.g., N :
1024, 2048, 4096, 8192, etc.). This brings significant
capabilities for parallel data processing.

In the following lines we describe cryptographic schemes and
homomorphic properties of both BFV and CKKS encryption
frameworks.

A. BRAKERSKI/FAN-VERCAUTEREN (BFV) CRYPTOSYSTEM
The BFV [7] scheme is a leveled HE scheme, which allows
performing themodular arithmetic on encrypted integers. The
number of levels is defined as the number of possible multi-
plications over a single ciphertext in one arithmetic circuit.
BFV operates with vector messages encoded and encrypted
into polynomials. The authors relied on the Brakerski-Gentry-
Vaikuntanathan (BGV) [8] scheme, where they changed the
Learning With Errors (LWE) setting to Ring Learning With
Errors (RLWE). Given the RLWE setup, the ciphertexts in
BFV are represented by tuples of two polynomials, i.e.,
c = (c[0], c[1]), thus having the size of 2. The ciphertext in
BFV is a space bounded by integer modulus q including mes-
sage payload and cryptographic noise. These two elements
have to be separated and must not interact during homo-
morphic operations, otherwise, the cryptographic noise will
spoil the original message or result. The payload is limited
by interval (0, τ − 1) with τ being a plaintext modulus and
cryptographic noise can move in the interval (τ, q − 1). The
decryption works correctly while both message payload and
cryptographic noise remain in predefined intervals.

The BFV scheme provides the exact computations, there-
fore, it is the best choice when requiring exact results.

1) Homomorphic Scheme
The BFV scheme provides the following procedures:

• Key generation: Given security parameter λ, the private
key kpvt is sampled from uniform distribution over inte-
gers Θ. By using this private key and integer coefficient
modulus q, the generation algorithm computes the public
key in the form kpub = ([−Xkpvt + e]q,X) with X
sampled from Θ and e sampled from discrete Gaussian
distribution over integers Φ. Also, two important keys
are generated:

– evaluation key keval used to relinearize the ciphertext
obtained from multiplication back to size 2.

– galois key kgal allows to rotate the vectors of en-
crypted values to effectively perform homomorphic
multiplications.

• Encoding: The message vector m in BFV scheme is
encoded into plaintext p having the form of polynomial
whose space is a ring Rτ = Z+

τ [X]/(XN + 1), where
τ is integer plaintext modulus and N is polynomial
modulus degree. The encoding function fE(·) takes as
input plaintext modulus τ and message vector m

p = fE(m, τ), m = [m1,m2, . . . ,mN] ∈ ZN (2)

and returns plaintext polynomial p in form

p = [p0]τX0 + [p1]τX1 + · · · + [pN −1]τXN −1 (3)

where p0, p1, . . . , pN−1 are positive integer coefficients
smaller than τ .

• Encryption: The polynomial space for ciphertexts is
defined as R2

q = Z+
q [X]/(XN + 1), where 2 in upper

subscript stands for tuple of two elements. To encrypt
the plaintext p, the public key kpub and three random
polynomials v0, v1, v2 with coefficients sampled from Φ
are used to get the ciphertext c defined as tuple

c = (c[0], c[1]), (4)

with two coordinates c[0] and c[1] computed as

c[0] = [δ · p+ kpub[0] · v0 + v1]q, (5a)

c[1] = [kpub[1] · v0 + v2]q. (5b)

where δ = ⌊q/τ⌋ and q is integer coefficient modulus
fulfilling 1 < τ < q.

• Decryption: To decrypt ciphertext c, the decryption
function takes as input private key kpvt and solves

p =
[⌊

τ · [c[0] + c[1] · kpvt]q
q

⌉]
τ

. (6)

• Decoding: The original message or resulting vector
from homomorphic operation is recovered from c by
decoding the plaintext p

m = fD(p, τ) (7)

where fD(·) denotes decoding function.

4 VOLUME 11, 2023

2) Homomorphic Properties
The BFV scheme allows us to perform both homomorphic
addition and homomorphic multiplication operations with
ciphertexts. Thus the cryptographic properties of BFV can be
summarized as follows:

• Ciphertext Addition: To add messages m1 and m2 ho-
momorphically, first step is to encode and encrypt them
into ciphertexts c1 and c2 as

c1 = E(fE(m1)) = (c1[0], c1[1]), (8a)

c2 = E(fE(m2)) = (c2[0], c2[1]), (8b)

and then compute

cA = c1 + c2 = (cA[0], cA[1]), (9a)

cA[0] = [c1[0] + c2[0]]q, (9b)

cA[1] = [c1[1] + c2[1]]q, (9c)

which is the encryption of m1 + m2.
• Plaintext Multiplication: The BFV scheme provides

multiplication of ciphertext by plaintext (constant) de-
fined by relation

cP = p · c1 = ([p · cP[0]]q, [p · cP[1]]q), (10)

where p is plaintext or public vector.
• Ciphertext Multiplication: Multiplication of two mes-

sages m1 and m2 encoded and encrypted as c1 and c2
is defined as

cM = c1 · c2 = (cM[0], cM[1], cM[2]), (11a)

cM[0] =
[⌊

τ · c1[0] · c2[0]
q

⌉]
q

, (11b)

cM[1] =
[⌊

τ · (c1[0] · c2[1] + c2[0] · c1[1])
q

⌉]
q

,

(11c)

cM[2] =
[⌊

τ · c1[1] · c2[1]
q

⌉]
q

. (11d)

To take the size of the ciphertext cM back to 2, the
relinearization procedure fR(·) using the evaluation key
keval is carried out in the form

cR = fR(cM, keval) = (cR[0], cR[1]), (12a)

cR[0] = cM[0] +
k∑
i=0

keval[i][0] · cM[2](i), (12b)

cR[1] = cM[1] +
k∑
i=0

keval[i][1] · cM[2](i), (12c)

where cR[0] and cR[1] are coordinates of final relin-
earized ciphertext cR.

B. CHEON-KIM-KIM-SONG (CKKS) CRYPTOSYSTEM
The CKKS [11] is a leveled HE scheme that provides
arithmetic operations with real and complex numbers, and
yields approximated results. Similarly to BFV, the opera-
tions in CKKS are carried out over the polynomial ring

Rq = Z+
q [X]/f (X), where q is coefficient modulus and

f (X) = XN + 1 is a polynomial known as polynomial mod-
ulus, while N is chosen to be a power of two. The elements
ofRq are polynomials with integer coefficients smaller than q
and of degree at most (N −1). The CKKS uses these polyno-
mials as elements of both plaintexts and ciphertexts. Themain
difference in the ciphertext structure betweenBFV andCKKS
is that CKKS adds cryptographic noise to the underlying ci-
phertext payload. To avoid the loss of numerical correctness,
before the encryption, the payload is multiplied by a scaling
factor ∆ that moves the significant bits of the message to the
left. After that, the noise is added to less significant bits of the
message space. By encrypting two numerical vectormessages
m1 and m2, the underlying ciphertext payloads would be
m1 · ∆ and m2 · ∆. It is easy to see that result of ciphertext
multiplication (m1 × m2) · ∆2 grows by a factor of ∆.
To avoid uncontrolled growth of payload inside the message
space, the authors of CKKS implement a technique called
rescaling. During this procedure, the resulting ciphertext is
reduced by ∆, which not only brings the message to the
original scale but also resets the magnitude of cryptographic
noise in the payload. The downside is that the coefficient
modulus of ciphertext polynomials is also rescaled to q/∆.
To cope with this issue, the authors introduced a concept
of levels. The fresh ciphertext uses coefficient modulus q at
the highest level L that represents the maximum number of
consecutive multiplications. After every multiplication, the
modulus is reduced by ∆. The ciphertext modulus at the
highest level q = q0 · q1 · . . . · qL consists of distinct
primes, defined by their bit sizes, where special prime q0
is the base modulus, and the number of primes q1, · · · , qL
defines the maximum multiplicative depth of the arithmetic
circuit. Additionally, the public key, relinearization key, and
rotation key are defined at level L+1 and use another special
prime qL+1. The bit size of these primes is defined during the
setup of the CKKS scheme in the form of an array (sec. V-A,
eq. 24).

1) Homomorphic Scheme
The functionality of the CKKS scheme is based on the fol-
lowing procedures:

• Key generation: Secret key kpvt is an N -degree poly-
nomial sampled from R2 with coefficient in {−1, 0, 1}
chosen from distribution described in [11, Sec. 3.4]. The
public key is then generated as a tuple of two polynomi-
als kpub = (kpub[0], kpub[1]) = ([−a · kpvt + e]q, a),
where a is polynomial uniformly sampled from Rq,
and e is a random error polynomial with coefficients
sampled from discrete Gaussian distribution Φ, defined
by Homomorphic Encryption Security Standard [41].
Similar to BFV, the CKKS also works with:

– evaluation key keval used to reduce the number of
ciphertext elements (polynomials) from three back
to two after every homomorphic multiplication,

– Galois key kgal used to perform encrypted vector

VOLUME 11, 2023 5

rotation on ciphertexts.
• Encoding: During this procedure, the message payload

in the form of a complex vector

m = [m1, . . . ,mN /2] ∈ CN /2 (13)

is encoded into plaintext polynomial p ∈ Rq. Both
encoding and decoding are done via mapping function
π(·) that performs complex canonical embedding (see.
[11, Sec. 2.2]). The transformation of message m into
plaintext p is then performed via encoding function fE(·)
such that

p = fE(m, ∆) =
⌊
∆ · π−1(m)

⌉
. (14)

• Encryption: The ciphertext c = (c[0], c[1]), formed by
a tuple of two polynomials, is obtained by the encryption
function

c = E(p, kpub), (15)

calculated element-wise as

c[0] = [kpub[0] · u+ e0 + p]q, (16a)

c[1] = [kpub[1] · u+ e1]q, (16b)

where u ∈ R2 is a random polynomial with signed
binary coefficients, and e0, e1 ∈ Φ are random error
polynomials.

• Decryption: The decryption of ciphertext c on the pri-
vate key kpvt is done by evaluating

p̃ = D(c, kpvt) = [c[0] + c[1] · kpvt]q = p+ e. (17)

It is obvious, that the decryption p̃ is not exactly p, but
p+e. If the noise e is small enough, the original plaintext
message p and decrypted p̃ should be very close.

• Decoding: When decoding, the decrypted plaintext is
divided by the scale and mapped back to CN /2 using
a decoding function

m̃ = fD(p̃, ∆) = π

(
1
∆ · p̃

)
. (18)

2) Homomorphic Properties
The CKKS scheme provides the following homomorphic
properties:

• Ciphertext Addition: Assume we have two vector mes-
sages m1 and m2 encoded and encrypted as c1 and c2,
where

c1 = E(fE(m1)) = (c1[0], c1[1]), (19a)

c2 = E(fE(m2)) = (c2[0], c2[1]). (19b)

The homomorphic addition is computed as

cA = c1 + c2 = (cA[0], cA[1]) (20a)

cA[0] = [c1[0] + c2[0]]q, (20b)

cA[1] = [c1[1] + c2[1]]q, (20c)

which after decryption and decoding results in
m1 + m2 + e ≈ m1 + m2.

• Plaintext Multiplication: Multiplication of ciphertext c
by plaintext p is computationally simpler and is per-
formed as

cP = p · c = ([p · c[0]]q, [p · c[1]]q). (21)

• Ciphertext Multiplication: The CKKS scheme also pro-
vides homomorphic multiplication of two ciphertexts c1
and c2 defined as

cM = c1 · c2 = (cM[0], cM[1], cM[2]), (22a)

cM[0] = [c1[0] · c2[1]]q , (22b)

cM[1] = [c1[0] · c2[1] + c2[0] · c1[1]]q , (22c)

cM[2] = [c1[1] · c2[1]]q . (22d)

Since the size of the ciphertext grows, the resulting
ciphertext cM requires the relinearization procedure fR(·)
in order to ensure that the ciphertext has 2 elements.
Ciphertext cM is relinearized as

cR = fR(cM, keval) = (cR[0], cR[1]) (23a)

cR[0] = cM[0] + [⌊γ−1 · cM[2] · keval⌉]q (23b)

cR[1] = cM[1] + [⌊γ−1 · cM[2] · keval⌉]q (23c)

where fR(·) is relinearization function, cR is relinearized
ciphertext, γ is a big integer and keval is evaluation key
described in [11].

V. EXPERIMENTAL SETUP
In our case, the simulation experiments were performed using
Python language. All the results presented in this paper were
obtained on a computer with 3.4 GHz processor, 128 GB of
RAMand 64-bit operating system. In order to use abovemen-
tioned cryptographic schemes we use the TenSEAL python
library [42] built on the Microsoft SEAL [37]. This section
presents in detail, the effects and importance of individual
parameters for successful implementation of homomorphic
encryption in process control.

A. CRYPTOGRAPHIC PARAMETERS
Library TenSEAL includes all the homomorphic properties
and key generation algorithms for BFV and CKKS cryp-
tosystems defined in Microsoft SEAL library. The very first
step when using TenSEAL is to define variable context, which
contains the basic initialization parameters such as

• Polynomial Modulus Degree – denoted as N defining
the degree of plaintext and ciphertext polynomials, as
given in (2) and in (3). The value of N has to be a
power of 2, for example N ∈ (1024, 2048, . . . , 32768).
When choosing N we often face the speed vs. security
compromise problem. The security level grows with
increasing N , but also the computational complexity of
operations over ciphertexts. Thus the choice of N is not
trivial and depends on the application use case.

• Coefficient Moduli Chain – is a vector of bit lengths of
primes used to handle the size of ciphertext coefficients

6 VOLUME 11, 2023

TABLE 2. Bit-security bounds on coefficient modulus bit-sizes in SEAL

N λ Qmax N λ Qmax

1024
128 bit 27 bits

8192
128 bit 218 bits

192 bit 19 bits 192 bit 152 bits
256 bit 14 bits 256 bit 118 bits

2048
128 bit 54 bits

16384
128 bit 438 bits

192 bit 37 bits 192 bit 305 bits
256 bit 29 bits 256 bit 237 bits

4096
128 bit 109 bits

32768
128 bit 881 bits

192 bit 75 bits 192 bit 611 bits
256 bit 58 bits 256 bit 476 bits

(from Eq. (20)). These primes are in cryptographic defi-
nitions often noted as q. The vector consisting of q sizes
has the form of

QQQ = [QS, QM, . . . , QM︸ ︷︷ ︸
L

, QS] (24)

where QS are called special primes and middle primes
QM are used to handle the ciphertext coefficient size
with L defining the number of QM. In SEAL imple-
mentation, each prime has to respect the restriction
QM, QS ≤ 60 bit. Finally, the sum of QQQ elements is
bounded by security level for defined N (Table 2).

• Plaintext modulus – noted as τ in BFV description. It
represents the largest possible number or result to be
sufficiently decrypted. The value of τ has to be chosen
for the given N as

mod (2N , τ) = 1. (25)

with respect to condition q > τ .
• Scale – the scaling factor ∆ defines the space for

messages in CKKS cryptographic scheme, as in (14).
In TenSEAL the ∆ is defined in bit length, i.e.,
∆ = (15, 20, 25, . . .).

ParametersN and τ aremandatory to choose for BFV scheme
and N and ∆ are mandatory parameters for CKKS con-
figuration. Parameter QQQ is optional and can be set for both
schemes. If the vector QQQ is not defined, TenSEAL library
chooses default values of prime sizes to ensure the maximal
possible level for given N with respect to security level λ.
By keeping default values, the TenSEAL sets QQQ, such that
a maximum number of homomorphic operations is allowed,
which leads to unnecessary increased time for evaluation of
homomorphic operations. From the perspective of control
applications, where keeping all operations within one sample
instant is of paramount importance, we aim to set the QQQ as
small as possible.

B. CKKS ENCODING & ENCRYPTION
This section presents and elaborates on inaccuracies caused
by the encoding and encryption procedures in the CKKS ap-
proximate arithmetic. Specifically, we consider the following
indicators:

• absolute error between the chosen testing vector V
and its encoded-decoded result Vecd computed as∑

|V − Vecd|,
• absolute error between V and its encrypted-decrypted

version Vecd defined by relation
∑

|V − Vecd|.
where V = [2.5, 4, −5.6, 9.4, 18.9, −3.5]. The testing proce-
dure consisted of fixing one or two values of CKKS initial-
ization parameters and increasing or decreasing the third one.
The results are presented graphically at Figure 1 for encoding
procedure and at Figure 2 for encryption.
The bar charts depicted in Figure 1 show the sums of

absolute deviations between V and Vecd with changing setup
parameters. The left chart at Figure 1 shows that with increas-
ing polynomial modulus degree N the errors increase, but
remain relatively small. In this case, we fixed the value of
scale ∆ and coefficient modulus sizes in Q. Next, the middle
graph of Figure 1 shows how the scale ∆ affects the precision
of encoding in CKKS for fixed values ofN andQQQ. The higher
the∆, themore precise the encoding procedure is. By increas-
ing the scale parameter, we also increase the space between
signal and noise, thus the encoding procedure provides more
precise results. Finally, when values of coefficient modulus
primes in QQQ are getting larger along with the scale ∆, the
error between V and Vecd indistinctly decreases, which is
confirmed by the right bar chart at Figure 1.

Next, we discuss errors introduced by encryption in CKKS.
The results obtained from the testing procedure for encryption
are graphically presented in Figure 2. Since encryption is the
next step after encoding, there already will be a loss of accu-
racy from the encoding procedure. As depicted in Figure 2,
the encryption procedure adds more inaccuracy to encrypted
values. However, this amount of imprecision is negligible
compared to the encoded messages. The high impact of scale
on the precision of the original vector remains the same.

C. BFV WITH FLOATING POINT NUMBERS
The BFV scheme operates with integers. Thus, to modify or
transform the floating point number into an integer we can
simply multiply the number by powers of 10 as

I = ⌊F · 10θ⌋, (26)

where I is integer, F is floating point number and θ is preci-
sion degree, usually equal to 1, 2, 3 or higher. Note, that the
final value of the I can be both positive and negative. There
are limits on θ due to parametersN and τ , as shown later. One
such parameter that bounds the value of θ is plaintext modulus
τ , which defines the maximum value of an integer that can be
encoded. The correct choice of θ is important mainly with
respect to the plaintext modulus τ .

Consider an example of two floating point numbers
F1 = 0.1587 and F2 = 2.9879. The aim is to homomorphi-
cally multiply F1 by F2. First, we transform F1 and F2 into
integer form with (26) and the required precision degree θ as

I1 = ⌊F1 · 10θ⌋, (27a)

I2 = ⌊F2 · 10θ⌋. (27b)

VOLUME 11, 2023 7

2048 4096 8192 16384 32768

0.3

0.95

1.56

2.2

·10−2

N

∑
n k
=
1
|V

−
V
e
c
d
|

∆ = 15, Q = [21, 21]

5 10 15 20 25

10−5

10−3

10−1

101

∆

N = 4096, Q = [30, 30]

15
[20, 20]

20
[25, 25]

25
[30, 30]

30
[35, 35]

35
[40, 40]

10−8

10−6

10−4

10−2

∆,Q

N = 4096

FIGURE 1. Bar charts of absolute deviations between vector V and its encoded-decoded version Vecd resulting from testing procedure for encoding. Left:
fixed ∆ and QQQ, middle: fixed N and QQQ, right: fixed N .

2048 4096 8192 16384 32768

0.07

0.22

0.37

0.52

N

∑
n k
=
1
|V

−
V
e
n
c
|

∆ = 15, Q = [21, 21]

5 10 15 20 25

10−4

10−2

100

102

∆

N = 4096, Q = [30, 30]

15
[20, 20]

20
[25, 25]

25
[30, 30]

30
[35, 35]

35
[40, 40]

10−8

10−6

10−4

10−2

∆,Q

N = 4096

FIGURE 2. Bar charts of absolute deviations between vector V and its encrypted-decrypted form Venc resulting from testing procedure for encryption. Left:
fixed ∆ and QQQ, middle: fixed N and QQQ, right: fixed N .

Next, we encrypt I1 and I2 and homomorphically multiply
them. Since the result from homomorphic multiplication, thus
the precision degree θ is limited by plaintext modulus τ as

τ > I1I2, (28)

we performed several experiments with several combinations
of θ and τ to demonstrate their interdependence.

TABLE 3. Table of plaintext modulus and precision degrees for BFV

τ θ D(E(I1I2)) |F1F2 − D(E(I1I2))|

65537 1 0.29 1.842 · 10−1

2 0.447 2.718 · 10−2

1032193 3 0.4719 2.234 · 10−3

100073473 4 0.4742 1.587 · 10−5

10000039937 5 0.4742 5.551 · 10−17

The results presented in Table 3 show that precision degree
is dependent on plaintext modulus τ . From the final column, it
is clear that with rising plaintext modulus τ we are able to get

more precise results. However, the value of τ has to be chosen
according to the BFV scheme polynomial modulus (25). In
our case, we considered polynomial modulus N = 8192 and
used the defaultQQQ for given N provided by TenSEAL library.

D. BFV & CKKS LEVELS
Before HE schemes will be included to control algorithms,
we performed several settings and computational experiments
to find the suitable scheme setup for the process control.
Both BFV and CKKS are presented as leveled cryptographic
schemes, where the number of levels is defined by a num-
ber of possible homomorphic multiplications over a single
ciphertext until the relinearization procedure is able to recover
the original message. This property is also referred to as mul-
tiplicative depth. The testing procedure for the acquisition of
themultiplicative depth for each schemewas performed using
the Algorithm 1, where a = 1, ae = E(1), be = E(1) and
the value of M represents the multiplicative depth. We define
various combinations of parameters (N ,QQQ,∆) for CKKS and
(N ,QQQ,τ) for BFV and use the testing algorithm to define the
maximal level of both schemes for different cryptographic

8 VOLUME 11, 2023

Algorithm 1: Multiplicative Depth Test
M = 0
while a = D(ae) do

ae = aebe
M = M + 1

end

settings. The numerical results are presented in Table 4.

TABLE 4. Table of BFV and CKKS multiplicative benchmarks

Scheme N τ ∆ L QS QM M

BFV

4096 40961 - 1 30 20 1
8192 65537 - 3 35 25 3
16384 163841 - 5 40 30 5
32768 786433 - 7 60 30 7

CKKS

4096 - 20 1 25 20 1
8192 - 25 3 30 25 3
16384 - 30 5 40 30 5
32768 - 40 7 60 40 7

Based on the results listed in Table 4 we conclude that the
number of middle primes L defines the multiplicative depth
M for given initialization parameters. Thus, we introduce the
following steps leading to the correct setting of cryptographic
parameters with respect to definitions in SectionV-A, Table 4,
and user requirements.

E. GUIDELINE FOR CONFIGURATION SETUP
For CKKS, we recommend the following procedure for se-
lecting the moduli chain QQQ, scaling factor ∆, and corre-
sponding polynomial modulus degreeN . Recall that sizes are
expressed in a number of bits, and the guideline is as follows:

1) Select the desired binary precisions of messages’
integer part ηI = QS − QM and decimal part
ηD ≈ 2QM − QS.

2) Calculate the sizes of QS and QM, such that QM ≥ 20,
QS ≥ QM + 10, and QM, QS ≤ 60.

3) Set scaling factor ∆ = QM.
4) Select a maximum multiplicative depth M of an arith-

metic circuit to be the longest consecutive chain of ho-
momorphic multiplications of a ciphertext propagating
through the algorithm.

5) Calculate
∑

QQQ = 2QS + MQM.
6) For desired security level λ, find N in Table 2 such that∑

QQQ ≤ Qmax.
7) IfN is too high, and therefore the setup is too computa-

tionally complex, the implementer can iterate through
the procedure and select lower precision requirements.

8) On the other hand, if the computational burden is of
little concern, and the difference between

∑
QQQ and

Qmax is considerable, the implementer can increase the
precision of messages.

Example: Consider the required precision for integer part
ηI = 14 bits and decimal part ηI ≈ 17 bits. Solving the equa-
tions in the first point yields QS = 45 bits and QM = 31 bits.

The scale ∆ would be set to be the length of 31 bits. If the im-
plementer needs to perform three consecutivemultiplications,
the multiplicative depth is M = 3, which results in the sum
of the moduli chain to be

∑
QQQ = 2×45+3×31 = 183 bits.

Table 2 shows that for 128-bit security level, the polynomial
modulus degree isN = 8192. Since the maximum sum of the
moduli chain is 218 bits, the implementer still has 35 bits to
allocate for setup. These can be used to increase the precision
or extend multiplicative depth by another operation.

For selecting the moduli chainQQQ, plaintext modulus τ , and
polynomial modulus N for BFV, we recommend the follow
this procedure.

1) Select the desired precision degree θ to obtain integer
form as in (26).

2) Define maximum multiplicative depth M given the
application or user requirements.

3) For given M, compute τ0 = 10(M+1)θ

4) Calculate the sizes of QS and QM, such that
QM ≥ log2(τ0103),QS ≥ QM+10, andQM, QS ≤ 60.

5) Calculate
∑

QQQ = 2QS + MQM

6) For desired security level λ, find N in Table 2 such that∑
QQQ ≤ Qmax.

7) Regarding N , calculate plaintext modulus τ using the
algorithm 2 initialized with τ0.

8) IfN is too high, and therefore the setup is too computa-
tionally complex, the implementer can iterate through
the procedure and select lower precision requirements.

9) On the other hand, if the computational burden is of
little concern, and the difference between

∑
QQQ and

Qmax is considerable, the implementer can increase the
precision of messages.

Algorithm 2: Plaintext Modulus Generation
τ = τ0
while mod (2N , τ) ̸= 1 do

τ = nextPrime(τ)
end

Note, that the function nextPrime() gives the nearest
greater prime number to τ .
Example: Consider the required precision degree θ = 2

and multiplicative depth M = 2. Solving the equations in
the third point yields τ0 = 106. According to limitations in
point four, we get QM = 30 and QS = 40. If the implementer
needs to perform two consecutive multiplications, the sum of
themoduli chain is

∑
QQQ = 2×40+2×30 = 140 bits. Table 2

shows that for 128-bit security level, the polynomial modulus
degree is N = 8192. For given N , the algorithm 2 generates
τ = 1032193. Since the maximum sum of the moduli chain
is 218 bits, the implementer still has 78 bits to allocate for
setup. These can be used to increase the precision degree or
extend multiplicative depth by another operation.

Recall that the bit length 60 comes from the TenSEAL li-
brary, as presented in Sec. V-A. Note that the definition of QQQ
is optional and not trivial. The user can omit the setting of

VOLUME 11, 2023 9

QQQ manually, and TenSEAL library will provide the default QQQ
ensuring the maximal possible level of the scheme for given
N with regard to the security level. However, we recommend
manually setting the QQQ for direct control of the number of
homomorphic multiplications and sizes of all primes.

VI. ENCRYPTED PROCESS CONTROL
This section presents the implementation of homomorphic
crypto schemes in connection with a state-feedback control
algorithm. We utilize the setup guideline from the previous
section to define the cryptographic parameters for each cryp-
tosystem regarding the encrypted control scenario. Here, the
simulated measurement data are fully encrypted between the
sensor of the process, the controller, and the actuator. More-
over, we also present a scenario where the state-feedback gain
is also encrypted. From the technical point of view, the private
key is stored only at the side of the process; hence no other
elements of the closed-loop have access to the actual values
of the simulated measurements.

A. LQR CONTROL
For this case study we worked with the model of the inverted
pendulum. This process was chosen mainly because of its
fast dynamics, thus to test the efficiency of the homomorphic
crypto schemes with different setup parameters. The behavior
of the inverted pendulum is described by discrete time state
space model derived from nonlinear model [43] for the sam-
pling period Ts = 0.05 s and defined as

xk+1 = Axk + Buk (29)

where matrices A and B are

A =

1 0.0498 0.0034 0.0001
0 0.9909 0.1348 0.0034
0 −0.0006 1.0392 0.0507
0 −0.0229 1.5779 1.0392

 (30a)

B =
[
0.0023 0.0908 0.0057 0.2292

]⊤
(30b)

and uk is scalar control input at current step k . State vector
xk contains 4 states representing the physical quantities as
follows:

x1 − pendulum angle,

x2 − pendulum angular velocity,

x3 − cart position,

x4 − cart linear velocity,

and uk represents pendulum cart acceleration.
We present control strategy with the LQR controller using

the homomorphic encryption properties to compute the state
feedback control action respecting the control law

uk = −Kxk (31)

where the controller K was acquired by solving problem

min
∞∑
k=0

(x⊤
k Qxk + u⊤

k Ruk), (32a)

s.t. xk+1 = Axk + Buk (32b)

for system matrices (30) and tuning factors

Q = diag
([

1 0 1 0
])

, (33a)

R = 1. (33b)

The feedback gain was of the following form

K =
[
−0.7277 −1.2529 15.7967 2.9145

]⊤
(34)

Next step was to include BFV and CKKS cryptographic
schemes in the state feedback control algorithm for two sce-
narios.
In the first scenario S1, the controller K was considered

a public constant and only states xk were encrypted. For
the second scenario S2, both the states and the controller
parameters were encrypted, thus we exploit the ciphertext-
ciphertext multiplication property. We performed several ex-
periments with various setups listed in Table 5 to demonstrate
the impact of cryptographic parameters on the control quality
and computational complexity for both scenarios. We also
measured the storage sizes V(·) of all keys. Configurations of
HE schemes were defined according to guidelines described
at the end of Section V-E.

The experiments were performed using algorithm 3, which
represents the closed-loop encrypted state feedback control
including presented HE schemes. Here, symbols pxk and puk
represent state and control input plaintexts, cxk and c

u
k denote

state and control input ciphertexts and cK marks controller
ciphertext.

For each experiment, we computed the sum of control input
errors U =

∑
|u − uenc|, average (̄t) and maximum (̂t)

evaluation times of control law over ciphertexts, and cipher-
text binary size V(c). The graphical results are depicted at
Figure 3 and Figure 4 and the corresponding numerical results
are listed in Table 6.

The set of graphs in Figure 3 represent the results of
encrypted control for scenario S1 with three setups for each
scheme listed in Table 5. The associated numerical results are
presented in Table 6. Setup B1 for BFV provides the highest
sum of control input errors U = 16.19 comparing to B2 and
B3. This result is a consequence of low precision degree θ.
On the other hand, setup B1 offers the fastest computations
over ciphertexts (̄t = 1.5 ms, t̂ = 2.9 ms) due to lowest
modulus degree N . The opposite to B1 is setup B3 providing
the lowestU = 0.15 but for the price of highest computational
times (̄t = 6.8 ms, t̂ = 8.2 ms). The more precise results
are obtained thanks to higher θ, thus larger τ . However, the
computations over ciphertexts are slower due to the higher
value of N . The setupB2 is somewhere betweenB1 and B2 in
terms of computational times and also numerical results. For
the CKKS, the results have similar characters when switching
between setups C1, C2, and C3. Here, the results are more

10 VOLUME 11, 2023

TABLE 5. Table of various parameter setups and corresponding key sizes

Scheme Setup N Q τ θ ∆ V(kpub) V(kpvt) V(kgal) V(keval)

BFV
B1 4096 [30, 20, 30] 40961 2 − 104 kB 51 kB 5 MB 208 kB
B2 8192 [40, 30, 40] 10027009 3 − 270 kB 130 kB 13 MB 540 kB
B3 16384 [50, 40, 50] 1000210433 4 − 654 kB 326 kB 34 MB 2 MB

CKKS
C1 4096 [30, 16, 30] − − 16 96 kB 47 kB 5 MB 192 kB
C2 8192 [40, 20, 40] − − 20 251 kB 125 kB 12 MB 504 kB
C2 16384 [50, 30, 50] − − 30 603 kB 300 kB 31 MB 2 MB

Algorithm 3: Encrypted State Feedback Control

Process:
Measure states: xk

Encode states: pxk = fE(xk)
Encrypt states: cxk = E(pxk)

Controller:
if Scenario S1 then

Evaluate control law: cuk = −Kcxk
else if Scenario S2 then

Evaluate control law: cuk = cKcxk
end

Process:
Decrypt control input: puk = D(cuk)
Decode control input: uk = fD(puk)
Apply control input: uk

return

precise for higher values of ∆, but the computations get
slower with increasing N . The ciphertext sizes V(c) are for
the BFV twice as big as for CKKS, since BFV encodes and
encrypts N slots, while CKKS only N /2 slots.

The graphical results depicted in a group of charts at
Figure 4 were obtained for scenario S2. The corresponding
numerical results are listed in Table 6. For BFV setups B1,
B2 and B3 the values of U remain the same due to similar
precision degrees θ and plaintext modulus τ . What differs
the scenario S1 from S2 are the computational times t̄ and t̂ .
Since for S2 we utilize the homomorphic multiplication over
ciphertext, both t̄ and t̂ are more than two times higher due to
the relinearization procedure that needs to be evaluated after
each homomorphic multiplication. For the CKKS setups C1,
C2 and C3 we observe an increase of sum of control input
errors U . This growth is a consequence of errors emerging
from encoding procedures based on approximate arithmetic.
With increasing of scaling factor ∆ the sum of control input
errors U decreases since higher ∆ provides more space for
messages and the rounding error affects less the original
message. Similar to BFV, the computational times t̄ and t̂ have
grown due to the presence of relinearization procedure after
homomorphic multiplication. However, both times remained
almost two times smaller compared to BFV setups as in
scenario S1. The ciphertext sizes V(c) remained at the same
level as for scenario S1.

Overall, we conclude that from a computational complex-
ity point of view, all of the presented setups were sufficient,
thus their average and maximum computational times re-
mained within the sampling period Ts = 50 ms. However,
regarding the computed sumof control input errors and graph-
ical results, we conclude that setups B2 and B3 for BFV or
C2 and C3 for CKKS provide sufficient results in encrypted
control of such a fast and unstable process like the inverted
pendulum.
The presented results confirm that with increasing polyno-

mial modulus degree N grows the computational complexity.
However, higher N defines larger ring R providing more
space for numerical precision (higher τ or ∆) and giving the
possibility to perform several homomorphic multiplications
(more middle primes in QQQ).

TABLE 6. Table of experimental results for both control scenarios

Scenario Scheme Setup U t̄ [ms] t̂ [ms] V(c)

S1

BFV
B1 16.19 1.5 2.9 67 kB
B2 1.56 3.1 6.1 171 kB
B3 0.15 6.8 8.2 424 kB

CKKS
C1 27.54 0.9 1.5 35 kB
C2 7.68 1.9 3.0 92 kB
C3 0.02 3.9 5.0 230 kB

S2

BFV
B1 16.19 3.8 5.0 66 kB
B2 1.56 8.0 9.5 171 kB
B3 0.15 17.1 18.3 422 kB

CKKS
C1 99.68 1.3 2.5 35 kB
C2 14.53 2.6 4.0 92 kB
C3 0.03 5.5 6.5 230 kB

VII. CONCLUSION
Homomorphic encryption is a promising technique for en-
suring data security in the process control domain. We pre-
sented fully homomorphic encryption (FHE) methods that
allow deploying controllers in any cloud services without
revealing sensitive process data. We explored two principal
FHE frameworks, BFV and CKKS, built above the RLWE
approach. This paper provides a detailed guideline for imple-
menting a state-feedback controller in the process control and
the mechatronics domain. The overall success of closed-loop
implementation with FHE depends on the proper selection of
parameters. Therefore, we suggest following the guidelines in
this paper for setting parameters to ensure that the encryption
scheme provides the desired level of security, computational

VOLUME 11, 2023 11

0 2 4 6 8 10

−1.6

−1.1

−0.6

−0.1

0.4

x
(t

)

BFV

0 2 4 6 8 10

−2.0

−1.4

−0.8

−0.1

0.5

CKKS

0 2 4 6 8 10

−1.5

−0.9

−0.3

0.4

1.0

t [s]

u
(t

)

0 2 4 6 8 10

−1.5

−0.8

0.0

0.8

1.5

t [s]

FIGURE 3. Control performances and inputs of encrypted control for the scenario S1 with public controller K and encrypted states xE
k . Two upper graphs

represent state behavior obtained by control inputs depicted at two lower graphs for each scheme. The subsequent lines represent encrypted control with
the following setups from Table 5: Dotted line - B1 and C1, dashed line - B2 and C2, solid line - B3 and C3.

0 2 4 6 8 10

−1.6

−1.1

−0.6

−0.1

0.4

x
(t

)

BFV

0 2 4 6 8 10

−7.0

−4.8

−2.5

−0.3

2.0

CKKS

0 2 4 6 8 10

−1.5

−0.9

−0.3

0.4

1.0

t [s]

u
(t

)

0 2 4 6 8 10

−4.0

−1.0

2.0

5.0

8.0

t [s]

FIGURE 4. Control performances and inputs of encrypted control for the scenario S2 with encrypted controller KE and encrypted states xE
k . Two upper

graphs represent state behavior obtained by control inputs depicted at two lower graphs for each scheme. The subsequent lines represent encrypted
control with the following setups from Table 5: Dotted line - B1 and C1, dashed line - B2 and C2, solid line - B3 and C3.

12 VOLUME 11, 2023

efficiency, and satisfactory control performance.

REFERENCES
[1] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback, and

J. Dray. Advanced encryption standard (AES), 2001.
[2] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital

signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126,
1978.

[3] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

[4] J. Benaloh. Dense probabilistic encryption. InProceedings of the workshop
on selected areas of cryptography, pages 120–128, 1994.

[5] P. Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In J Stern, editor, Advances in Cryptology - EUROCRYPT’99,
volume 1592 of Lecture Notes in Computer Science, pages 223–238, 1999.

[6] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceed-
ings of the Forty-First Annual ACM Symposium on Theory of Computing,
pages 169–178, New York, NY, USA, 2009. Association for Computing
Machinery.

[7] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryp-
tion. Cryptology ePrint Archive, Report 2012/144, 2012.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomor-
phic encryption without bootstrapping. ACM Trans. Comput. Theory, 6(3),
2014.

[9] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. FHE: Fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33:34–91,
2020.

[10] L. Ducas and D.Micciancio. FHEW: Bootstrapping homomorphic encryp-
tion in less than a second. Cryptology ePrint Archive, Report 2014/816,
2014.

[11] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption
for arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas
Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 409–
437. Springer International Publishing, 2017.

[12] H. Karim and D. B. Rawat. Tollsonly please – homomorphic encryption
for toll transponder privacy in internet of vehicles. IEEE Internet of Things
Journal, pages 1–1, 2021.

[13] H. Yu, L. Yin, H. Zhang, D. Zhan, J. Qu, and G. Zhang. Road distance
computation using homomorphic encryption in road networks. Computers,
Materials & Continua, 69(3):3445–3458, 2021.

[14] X. Yang, X. Yi, S. Nepal, A. Kelarev, and F. Han. A secure verifiable
ranked choice online voting system based on homomorphic encryption.
IEEE Access, 6:20506–20519, 2018.

[15] A. Wood, V. Shpilrain, K. Najarian, and D. Kahrobaei. Private naive
bayes classification of personal biomedical data: Application in cancer data
analysis. Computers in Biology and Medicine, 105:144–150, 2019.

[16] G. S. Çetin, H. Chen, K. Laine, K. Lauter, P. Rindal, and Y. Xia. Private
queries on encrypted genomic data. BMCMedical Genomics, 10(2):45, Jul
2017.

[17] H. Huang and L. Wang. Efficient privacy-preserving face verification
scheme. Journal of Information Security and Applications, 63:103055,
2021.

[18] Institute of Electrical and Electronics Engineers. IEEE standard for bio-
metric privacy. Standard, Institute of Electrical and Electronics Engineers,
2021.

[19] M. S. Darup, A. B. Alexandru, D. E. Quevedo, and G. J. Pappas. Encrypted
control for networked systems: An illustrative introduction and current
challenges. IEEE Control Systems Magazine, 41(3):58–78, 2021.

[20] Longjie Zhang, Yong Chen, and Meng Li. ADP-based remote secure
control for networked control systems under unknown nonlinear attacks
in sensors and actuators. IEEE Transactions on Industrial Informatics,
18(9):6003–6014, 2022.

[21] S. Zhou, Z. Yu, E. S. A. Nasr, H. A. Mahmoud, E. M. Awwad, and N. Wu.
Homomorphic encryption of supervisory control systems using automata.
IEEE Access, 8:147185–147198, 2020.

[22] Masaki Miyamoto, Kaoru Teranishi, Keita Emura, and Kiminao Ko-
giso. Cybersecurity-enhanced encrypted control system using keyed-
homomorphic public key encryption. IEEE Access, 11:45749–45760,
2023.

[23] J. Tran, F. Farokhi, M. Cantoni, and I. Shames. Implementing homo-
morphic encryption based secure feedback control. Control Engineering
Practice, 97:104350, 2020.

[24] Y. Lin, F. Farokhi, I. Shames, and D. Nešić. Secure control of nonlinear
systems using semi-homomorphic encryption. In 2018 IEEE Conference
on Decision and Control (CDC), pages 5002–5007, 2018.

[25] M. Ruan, H. Gao, and Y. Wang. Secure and privacy-preserving consensus.
IEEE Transactions on Automatic Control, 64(10):4035–4049, 2019.

[26] M. S. Darup, A. Redder, and D. E. Quevedo. Encrypted cooperative control
based on structured feedback. IEEE Control Systems Letters, 3(1):37–42,
2019.

[27] A. B. Alexandru, K. Gatsis, Y. Shoukry, S. A. Seshia, P. Tabuada, and G. J.
Pappas. Cloud-based quadratic optimization with partially homomorphic
encryption. IEEE Transactions on Automatic Control, 66(5):2357–2364,
2021.

[28] A. B. Alexandru, M. Morari, and G. J. Pappas. Cloud-based MPC with
encrypted data. In 2018 IEEE Conference on Decision and Control (CDC),
pages 5014–5019, 2018.

[29] M. S. Darup, A. Redder, I. Shames, F. Farokhi, and D. Quevedo. Towards
encrypted MPC for linear constrained systems. IEEE Control Systems
Letters, 2(2):195–200, 2018.

[30] Charles Gouert, Rishi Khan, and Nektarios Georgios Tsoutsos. Optimizing
homomorphic encryption parameters for arbitrary applications. Cryptology
ePrint Archive, 2022.

[31] José Cabrero-Holgueras and Sergio Pastrana. Towards automated ho-
momorphic encryption parameter selection with fuzzy logic and linear
programming. Expert Systems with Applications, 229:120460, 2023.

[32] Vincent HERBERT. Automatize parameter tuning in ring-learning-with-
errors-based leveled homomorphic cryptosystem implementations. Cryp-
tology ePrint Archive, Paper 2019/1402, 2019. https://eprint.iacr.org/2019/
1402.

[33] M. Yagisawa. Fully homomorphic encryption without bootstrapping. IACR
Cryptol. EPrint Arch., 2015:474, 2015.

[34] Helib v2.2.1. Online: https://github.com/homenc/HElib, May 2013.
[35] Lattigo v4. Online: https://github.com/tuneinsight/lattigo, August 2022.

EPFL-LDS, Tune Insight SA.
[36] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryp-

tion. IACR Cryptol. ePrint Arch., 2012:144, 2012.
[37] Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL,

November 2020. Microsoft Research, Redmond, WA.
[38] S. M. Anggriane, S. M. Nasution, and F. Azmi. Advanced e-voting system

using paillier homomorphic encryption algorithm. In 2016 International
Conference on Informatics and Computing (ICIC), pages 338–342, 2016.

[39] W. Ding, Z. Yan, and R. H. Deng. Encrypted data processing with
homomorphic re-encryption. Information Sciences, 409-410:35–55, 2017.

[40] M. Furka, K. Kiš, M. Klaučo, and M. Kvasnica. Usage of homomorphic
encryption algorithms in process control. In R. Paulen and M. Fikar,
editors, Proceedings of the 23rd International Conference on Process
Control, pages 43–48, Slovak University of Technology, June 1-4, 2021
2021. Slovak University of Technology in Bratislava, IEEE.

[41] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan. Homomorphic
encryption security standard. Technical report, HomomorphicEncryp-
tion.org, Toronto, Canada, November 2018.

[42] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal. Tenseal: A library
for encrypted tensor operations using homomorphic encryption, 2021.

[43] P. Bakaráč, M. Kalúz, and L. Čirka. Design and development of a low-
cost inverted pendulum for control education. In 2017 21st International
Conference on Process Control (PC), pages 398–403, 2017.

M. FURKA is a PhD. student at the Department
of Information Engineering and Process Control at
Slovak University of Technology in Bratislava. He
received hisMaster degree from Process Control at
Slovak University of Technology in Bratislava. His
research activities are directed towards implemen-
tation of homomorphic encryption frameworks in
secured process control strategies.

VOLUME 11, 2023 13

M. KALÚZ received the M.Sc. and Ph.D. degrees
in the process control from the Slovak University
of Technology in Bratislava (STU) in 2010 and
2014, respectively. Currently, he is the postdoctoral
researcher and assistant professor at the STU. His
areas of research are control education, informa-
tion technologies and process control security.

M. FIKAR received his ME and Ph.D. degrees in
chemical engineering from the Slovak University
of Technology in Bratislava in 1989 and 1994,
respectively. He has stayed with the Faculty of
Chemical and Food Technology STUBA where he
is currently professor and institute director. He was
Postdoc Fellow in Nancy, France, Alexander von
Humboldt Fellow in Bochum, Germany and has
spent several stays in Denmark, Germany, France,
and Switzerland. His current research interests in-

clude optimal control, MPC, and chemical process control. He is co-author of
2 international monographs, 80 journal papers, more than 200 peer-reviewed
conference publications.

M. KLAUČO received his MS.c. degree at Den-
mark Technical University from Automation and
a second master degree from Process Control at
the Slovak University of Technology in Bratislava.
M. Klaučo is a summa cum laude Ph.D. graduate
from Process Control at SlovakUniversity of Tech-
nology in Bratislava. He currently holds a position
of an associate professor in Cybernetics and is the
head of the Department of Information Engineer-
ing and Process Control at Slovak University of

Technology in Bratislava. His current research interest include applications
of optimal control and machine learning in connection with secure control.

14 VOLUME 11, 2023

