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DYNAMIC OPTIMIZATION OF A
HYBRID COUPLED TANKS SYSTEM

Tomáš Hirmajer — Miroslav Fikar
∗

In this paper we present dynamic optimization of a hybrid system — coupled tanks exhibiting hybrid dynamics.
Dynamic optimization of this hybrid system is based on a control vector parameterization (CVP) approach which allows
the computation of the optimal operating policies. The CVP approach transforms the original dynamic optimization into a

non-linear programming (NLP) problem. Calculation of gradients for NLP solver is based on optimal control theory.

Several simulation studies including minimum time problems and quadratic performance criteria are presented and show

usefulness of the proposed approach.
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1 INTRODUCTION

Many units in process industries are described by mul-
tiple sets of differential and algebraic equations. As such
they are difficult to control and optimize in transient
regimes if switching between the sets is to be taken into
account. The switches can involve different regimes of op-
eration (occurrence multiphase phenomena, explosive ar-
eas in mixtures of gasses, etc) or external actions (addi-
tion of second unit when production increases, etc).

There are several approaches to solution of such dy-
namic optimization problems. If the process to be opti-
mized can be described accurately enough by piece-wise
linear and logic formulation, powerful algorithms in the
area of explicit model predictive control exists [2].

If fully nonlinear processes are concerned, the orig-
inal dynamic optimization problem has to be approxi-
mated by some simplified formulation. One approach is
complete discretization of state and control variables —
orthogonal collocation. Such a formulation can be found
in [1,3,6,9]. Another possibility is to leave the states in-
tact and approximate only the control variables as piece-
wise constant, or with some higher order approximations.
This approach is known as control vector parameteriza-
tion. Here different formulations can be found, depending
on how gradients of the resulting nonlinear programming
problem (NLP) are calculated [12]. In [5,15] a system of
sensitivity equations is formed and the gradients are cal-
culated from its solution. The advantage of this method is
easy formulation of the problem and forward integration
of both states and sensitivity equations. The drawback of
this method lies in a large system of differential equations
as each optimized parameter generates a set of differen-
tial equations with the same dimension as the number of
states of the optimized process.

Another possibility that is pursued in this work is to
calculate the gradients of NLP via optimal control theory

using the so-called co-state, or adjoint equations [13,8].
The advantage is that the number of differential equa-
tions is not proportional to the number of optimized pa-
rameters, but to the number of constraints. On the other
side, adjoint equations have to be solved in opposite direc-
tion of time, which makes the implementation more dif-
ficult. When dealing with processes comprised of a large
number of state equations and only a small number of
state-dependent constraints, this approach has favorable
properties compared to calculation of sensitivities.

The main aim of this work is to show a possibility
of solving optimal control problems for hybrid systems
numerically using the adjoint variable approach. This
method will be applied to an example of two tank level
control that exhibits hybrid dynamics.

2 PROBLEM FORMULATION

We consider a process to be optimized described by
sets of differential equations

ẋ = fi(x(t),u, t), ti−1 ≤ t ≤ ti, i = 1, . . . , P (1)

with initial conditions (t0 = t0(u), x+(t0) = x0(t0,u)).
Here, P is the number of different system descriptions.
We consider here the n -dimensional process state vector
x(t) and a constant m -dimensional vector of optimized
parameters u . It is assumed that system states are gov-
erned by state equations fi(·) that are continuously dif-
ferentiable.

The switching instant ti at which one set of equations
is replaced by another is determined by the switching
conditions

gi(x
−
i , ti,u) = 0, i = 1, . . . , P . (2)

We assume that the functions gi(·) are continuously
differentiable with respect to all variables. At switching
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instants, the vector x(t) can have breaks defined by equa-
tions

x+
i = x−

i + ∆i(x
−
i , ti,u), i = 1, . . . , P − 1 (3)

where ∆i(·) are also continuously differentiable vector

functions and x−
i = x(t−i ), x+

i = x(t+i ) are the values
of the vector x(t) before and after the switching instant,
respectively. In (3) we consider additive jumps that are
superimposed on the continuous trajectory at points ti
(eg if ∆i = 0 , then x(t) is continuous at the point ti ).

In the next step we define the cost J to be optimized
(or constraint to be satisfied) in a general Bolza form [4].

J(u) = G(x(tP ),u, tP ) +

∫ tP

t0

F (x(t),u, t)dt (4)

where J is the scalar performance index to be minimized
(functional of the quality of the dynamic system), G de-
fines the final time conditions and F the requirements
along the time axis.

3 GRADIENT OF THE COST FUNCTION

For the purpose of NLP we need to derive the gradient
of the cost function with respect to optimized parameters
— u . These will be obtained from the optimal control
theory by the variational method.

Let us introduce the following simplifications:

f (x(t),u, t) = f (t), F (x(t),u, t) = F (t), (5)

G(x(tP ),u, tP ) = G(·) . (6)

Optimality conditions for our problem differ slightly
from the original approach by [11] and have been derived
by [13]. First, the Hamiltonian H(t) is defined as

H(x,u,λ, t) = F (t) + λ(t)⊤f (t) (7)

where the vector of the Lagrange multipliers λ is defined
by the differential equation

λ̇(t) = −
∂H(t)

∂x
(8)

with the boundary value at point tP and the switching
condition of the Langrange multipliers at switching in-
stants

λ
⊤(tP ) =

∂G(·)
∂x(tP )

, (9)

λ
⊤(t−i ) =

{

λ
⊤(t+i )

[

I +
∂∆i

∂x−
i

+
(∂∆i

∂ti
− fi+1(t

+
i )
)

ai

]

+ (F (t−i ) − F (t+i ))ai

}

(

I − fi(t
−
i )ai

)−1
. (10)

The gradient of the cost function is then defined as

dJ

du
=

∂G(·)
∂u

+
[

λ
⊤(t0)

∂x0(t0,u)

∂t0
− H(t0)

]dt0

du

+

∫ tP

t0

∂H(t)

∂u
dt +

[∂G(·)
∂tP

+ H(tP )
]dtP

du

+ λ
⊤(t0)

∂x0(t0,u0)

∂u
+

P−1
∑

i=1

[

λ
⊤(t+i )

(∂∆i(·)
∂u

)

+
[

H(t−i ) − H(t+i ) + λ
⊤(t+i )

(∂∆i(·)
∂ti

)]

bi

]

(11)

where coefficients ai , bi are defined as

ai = −
(∂gi(x

−
i , ti,u)

∂ti

)−1(∂gi(x
−
i , ti,u)

∂xi(t
−
i )

)

, (12)

bi = −
(∂gi(x

−
i , ti,u)

∂ti

)−1(∂gi(x
−
i , ti,u)

∂u

)

. (13)

If ai = 0 , the switching conditions are simplified con-
siderably (if the value of the jump of state variables of the

object ∆i does not depend on x−
i , then the multipliers

are continuous):

λ
⊤(t−i ) = λ

⊤(t+i )
[

I +
(∂∆i

∂x−
i

)]

, i = 1, . . . , P −1 . (14)

If state variables of the process are continuous at
switching points (∆i = 0), then the integrand function
F of the quality index is continuous, but the Lagrange
multipliers contain discontinuity at the moment of switch

λ
⊤(t−i ) = λ

⊤(t+i )
[

I − fi+1(t
+
i )ai

](

I − fi(t
−
i )ai

)−1
,

i = 1, . . . , P − 1 . (15)

Finally, if the times of switch depend explicitly on

control parameter (ti = ti(u), ai = 0 , and bi = dti

du
),

then the Lagrange multipliers are continuous.

4 PROCEDURE

4.1 Algorithm

We assume that the continuous control trajectory is
piece-wise constant over P intervals. This makes it pos-
sible to convert the original problem of dynamic opti-
mization into a nonlinear programming problem [7]. In
this algorithm we assume that we have the functional J0

and k constraints Jj , where j = 1, . . . , k . We further
separate the optimized variables into times ti and con-
stant controls u . For simplicity assume that the initial
time t0 and state x(t0) are given and constant. Then we
can write the following algorithm:

1. Integrate the system (1) and integral terms Fj to-
gether from t = t0 to t = tP . Restart integration with
switching conditions (2), states can be discontinuous
following equation (3).
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Fig. 1. Coupled tanks system.

2. For j = 0, . . . , k repeat

(a) Initialize adjoint variables λ
⊤
j (tP ), according to

equations (9).

(b) Initialize intermediate variables JD,j as zero. These
represent the integral part of the gradients.

(c) Integrate backwards from t = tP to t = t0 the
adjoint system (8) and intermediate variables. Allow
for discontinuities of the adjoint equations as given
in (14), restart integration at these points, and at the
points of changes of dynamics

λ̇j = −
∂Hj

∂x
, (16)

J̇D,j =
∂Hj

∂u
. (17)

(d) Calculate the gradients of Jj with respect to times
ti and control u , with help of (11).

∂Jj

∂tP
= Hj(tP ) +

∂Gj(·)
∂tP

, (18)

∂Jj

∂ti
=
[

Hj(t
−
i ) − Hj(t

+
i ) + λ

⊤
j (t+i )

(∂∆i(·)
∂ti

)]

bi,

i = 1, . . . , P − 1 , (19)

∂Jj

∂ui

= JD,j(ti−1)−JD,j(ti)+
∂Gj(·)
∂ui

+λ
⊤(t+i )

(∂∆i(·)
∂u

)

,

i = 1, . . . , P . (20)

In this manner, the values of Jj are obtained in step 1
and the values of gradients in step 2d. This is all what is
needed in NLP algorithm.

For numerical reasons, time increments ∆ti will be
optimized, rather than absolute time values ti . Therefore,
the gradients have to be modified correspondingly. The
relations between times and their increments are given as

tP =

P
∑

i=1

∆ti . (21)

Therefore, the following holds for the derivatives

∂Jj

∂∆ti
=

P
∑

r=1

∂Jj

∂tr

∂tr

∂∆ti
. (22)

4.2 Implementation of Algorithm

The algorithm was implemented in FORTRAN 77.

The first part of this program contains a module for

forward and backward integrations LSODAR [10] that is

able to handle state events. The second module of the

program computes gradients and calls the NLP solver

NLPQL [14].

The user specifies initial conditions:

• u0 , x0 , lower and upper control bounds, number of

time intervals,

• cost function, constraints,

• differential equations of the process.

4.3 Integration of Adjoint Equations

When the adjoint equations are integrated backwards

in time, the knowledge of states x(t) is needed. In our

case the program stores at first in the forward pass the

states at a predefined grid points and interpolates them

when adjoint equations are solved.

Two interpolations were implemented into the pro-

gram: linear, and the approximations having continuous

states and continuous first order derivatives across bound-

aries. All examples were simulated with the second one.

5 PROCESS

We assume a non-linear system of two tanks shown

in Fig. 1 that is described by two sets of differential

equations

f1 =

(

u1

F1

− k11

√
x1

F1

u2

F2

+
k11

√
x1

F2

− k22

√
x2

F2

)

, (23)

f2 =





u1

F1

− k11

√
x1−(x2−h)

F1

u2

F2

+
k11

√
x1−(x2−h)

F2

− k22

√
x2

F2



 (24)

where F1, F2 [m2] are the cross-sectional areas of the

tanks; k11, k22 [ l2.5 s−1 ] — flow resistances; x1, x2 —

state values — levels of liquid in the first and the second
tank; u1, u2 [l s−1 ] — control values — flow rates; h [m]

— vertical distance between tanks.

The first dynamics with no interactions between the

tanks takes place if the height h2 in the second tank is

smaller than h . In the opposite case, the tanks interact

and are described by the dynamics f2 .
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Fig. 2. Simulation of the hybrid system with constant control
values.

Fig. 3. Optimal state trajectories with multivariable time optimal
control.

Thus, the height h specifies the switching condition
between dynamics f1 and f2 as

g1 = h − x2 (25)

The concrete values of parameters are defined as: re-
sistances k11 = 1.75 l2.5 s−1 , k22 = 1.50 l2.5 s−1 , sur-
faces F1 = 2.00 m2 , F2 = 4.00 m2 , vertical distance
h = 0.40 m, initial states x1(0) = x2(0) = 0.10 m, de-
sired state xw

2 = 1.00 m.

The initial values of optimized parameters are ui =
1 l s−1 , ∆ti = 1 s with bounds defined as ui ∈ [0, 3] and
∆ti ∈ [0.01, 10.00].

Fig. 2 shows the response of the plant to these initial
optimized parameters with final time of simulation set to
tP = 20.00 s. We can observe the change of dynamics at
the switch time t = 2.19 s.

5.1 Dynamic Optimization Problem Definitions

We consider two possible formulations for a change of
steady-states. In both of them, it is assumed that the ini-
tial steady state is located in the region without interac-
tion and the final one in the region with interaction. The
controlled variable is the height of liquid in the second
tank h2 and control variables are inflows u1, u2 .

5.2 Minimum Time Problem

The aim of the optimal operation is in this case defined
as to reach in a minimum time a new steady-state defined
by a desired height in the second tank. Thus, the cost
functional is defined as

min
tP ,u

J0 = tP (26)

subject to the constraints:

J1 = x2(tP ) − xw
2 = 0 , (27)

J2 =
dx1

dt
= 0 , (28)

J3 =
dx2

dt
= 0 (29)

where xw
2 is the required level of the liquid in the second

tank. Constraints J2 , J3 represent the requirement of the
new steady-state in the final time.

We consider that the control vector u contains incom-
ing flowrates u1 and u2 and that these are piece-wise
constants. Then, we optimize the duration and value of
piece-wise controls u over specified number of time inter-
vals.

2.3 LQ Cost Problem

Consider now a situation with a fixed terminal time
tP and the objective is to optimize a LQ cost functional

min
u

J0 =

∫ tP

t0

(

(x2 − xs
2)

2 + r(u1 − us
1)

2
)

dt (30)

where xs
2 , us

1 are steady states of the values and r is
a positive weight coefficient. Again, to achieve a new
steady-state, constraints (27)–(29) have to be respected.

6 RESULTS AND DISCUSSION

6.1 Minimum Time Problems

6.1.1 Multivariable Time Optimal Control

In order to drive the process to the desired new steady-
state as fast as possible, we consider both inflows to be
optimized and set the number of optimized time intervals
to two.

The optimization and integration tolerances were set
as 10−6 and 10−10 , respectively. The minimum final time
was obtained as tP = 1.47 s after 8 NLP iterations. The
optimal state variables can be found in Fig. 3 and the
corresponding controls in Fig. 4. The control variables
show typical bang-bang behavior that follows from the
desired objective.
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Fig. 4. Optimal control policy with multivariable time optimal control.

Fig. 5. Optimal state trajectories with singlevariable time
optimal control.

Fig. 6. Optimal control policy with singlevariable time op-
timal control.

6.1.2 Singlevariable Time Optimal Control

A more realistic example considers only one control

variable — the inlet flowrate to the first tank. The number
of time intervals was set to 8. Optimization and integra-
tion tolerances were set as 10−4 and 10−12 , respectively.

The optimal minimum time in this case was higher and

was found as tP = 8.623 s. The optimal state variables
can be found in Fig. 5 and the corresponding controls

in Fig. 6. Again, the control variables show a typical
bang-bang behavior. Although 8 optimized intervals were

chosen, only three would be enough — two for optimal
control of the second order dynamics and the last one to
achieve the desired steady-state.

6.2 LQ Cost Problem

In this case, we fix the number of time intervals to

15 and their duration to 1 s and optimize only the first
control variable with the optimization and integration tol-
erances, which were set as 10−5 and 10−12 , respectively.
Steady-state analysis gives the values of the new steady-
state as xs

2 = 1.00 m, us
1 = 2.50 l s−1 .

Various values of the penalization factor r have been
considered, the optimal simulations in Fig. 7 (states) and
Fig. 8 show three of them.

Decreasing the value of r leads to a behavior similar
to that of time optimal control. On the other hand, its
increase smoothes the control variable considerably with
only a small loss of performance.

The optimal value of the cost function was 2.7517 with
7 NLP iterations if the weight coefficient r = 1 was
obtained.

CONCLUSIONS

In this paper we have investigated the problem of dy-
namic optimization of systems described by multiple sets
of differential equations. Control vector parameterization
has been used and gradients for the nonlinear program-
ming have been calculated based on the optimal control
theory. This is in contrast to usual approaches where sen-
sitivity equations are preferred due to simplicity of the
implementation.

On the other hand, the adjoint variable approach has
its advantage for systems described by a larger set dif-
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Fig. 7. Level of the liquid in the second tank for various choices of
the coefficient r .

Fig. 8. Optimal LQ control policy.

ferential equations and it can reduce the computational
time considerably.

Simulations with a simple chemical engineering exam-
ple confirmed attractivity of the proposed approach.
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