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Abstract

This thesis focuses on the analysis, control, and modeling of a laboratory distillation
column used for the separation of a methanol–water mixture. The main objective was
to design and implement a PI temperature controller to regulate the temperatures
at the top and bottom of the column, ensuring stable operation. The PI controllers
were tuned using the Skogestad method, which involves deriving transfer functions and
calculating suitable control parameters based on the system dynamics. A state-space
model was subsequently derived, which served as the basis for designing advanced
LQR control, more suitable for multi-input multi-output (MIMO) systems.

In addition, the thesis explores the use of simulation software, specifically AVEVA
and gPROMS, for modeling the distillation process. The models were developed to
replicate the behavior of the real column under steady-state conditions. The results
were validated by comparing simulated and experimental temperature profiles, and
simulation parameters were also used to estimate variables that cannot be directly
measured in the laboratory column. The thesis highlights the importance of control
system design and process modeling in the optimization of distillation operations and
provides valuable insights into the integration of experimental data with advanced
simulation tools.

Keywords: distillation column, PI controller, LQR control, AVEVA, gPROMS Process
builder
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Abstrakt

Táto diplomová práca sa zameriava na analýzu, riadenie a modelovanie laboratórnej
destilačnej kolóny na separáciu zmesi metanolu a vody. Hlavným cieľom bolo navrhnúť
a implementovať PI regulátor teploty na riadenie teplôt na vrchu a dne kolóny s cieľom
zabezpečiť stabilnú prevádzku. PI regulátory boli ladené pomocou Skogestadovej
metódy, ktorá zahŕňa odvodenie prenosových funkcií a výpočet vhodných regulačných
parametrov na základe dynamiky systému. Následne bol odvodený stavový model,
na základe ktorého bolo navrhnuté pokročilé LQR riadenie, ktoré je vhodnejšie pre
systémy s viacerými vstupmi a výstupmi.

Okrem toho sa práca zaoberá využitím simulačných softvérov, konkrétne AVEVA
a gPROMS, na modelovanie destilačného procesu. Modely boli vytvorené s cieľom
replikovať správanie skutočnej kolóny za ustálených podmienok. Výsledky boli ov-
erené porovnaním simulovaných a experimentálnych teplotných profilov a parametre
simulácií poslúžili aj na odhad veličín, ktoré nie je možné priamo zmerať na labo-
ratórnej kolóne. Práca zdôrazňuje význam návrhu riadiacich systémov a modelovania
procesov pri optimalizácii destilačných operácií a poskytuje cenné poznatky o integrácii
experimentálnych údajov s pokročilými simulačnými nástrojmi.

Kľúčové slová: destilačná kolóna, PI regulátor, LQR riadenie, , AVEVA, gPROMS
Process builder
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Chapter 1

Introduction

1.1 The Importance of Distillation Columns
Distillation columns have long been among the most important equipment in the chem-
ical and food industries. Information about this process dates back to approximately
the 1st century AD, but distillation was not used on a larger scale until the 11th century
to increase the ethanol content in alcoholic beverages. These devices are essential
tools for separating mixtures into individual components based on differences in their
volatility. Thanks to this process, we can ensure effective isolation of substances, which
is crucial for the production of high-quality and pure products [3], [8], [16].

Today, oil refineries are indispensable without distillation columns. They play a crucial
role in the separation of crude oil into various fractions, such as gasoline, lubricating
oils, diesel fuel, and kerosene. The range of products in industrial facilities is diverse,
from a few kilograms per hour in laboratory columns with a height of about one meter
to hundreds of kilotons per hour, where columns reach a height of several tens of
meters [10].

Another important application of distillation columns is in the pharmaceutical industry.
Here, they are used to remove reaction by-products and obtain pure substances.
Similarly, in the food industry, distillation is used to produce aromas, essential oils,
alcoholic beverages by the separation of ethanol from water and other impurities
and other ingredients that are important for the quality of food products[4].The
distillation process is a major component of investment in chemical processes and
refineries worldwide, and the operating costs of distillation columns are often a major
part of a company’s total costs. [15].

Because this is a very complex device, proper control of distillation units is crucial to
achieve maximum product yield with minimal energy consumption. The control of such
systems presents significant problems and uncertainties due to their multidimensional
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nature, nonlinear behavior, and the presence of non-idealities, such as deviations from
equilibrium, heat loss to the environment, especially if the column is outdoors during
changing seasons or imperfect mixing. Advanced control strategies are needed to solve
these complex problems. Therefore, in my thesis, I would like to dedicate myself to
the design of an advanced control that will ensure the efficient and safe operation of
a laboratory distillation column, which is located at the Institute of Informatics and
Automation of the Slovak University of Technology in Bratislava [10], [3].

1.2 Goals of the Thesis
The primary goal of this thesis is to develop an advanced control strategy for a
laboratory distillation column. To achieve this, the work focuses on:

1. Designing and validating a reliable process model for the distillation column that
integrates both steady-state and dynamic behavior.

2. Exploring optimization techniques to improve the column’s operational efficiency
and ensure robust performance under varying conditions.

3. Implementing and testing advanced control strategies, to achieve enhanced
process stability and product quality.

4. Compare simulation results with experimental data to ensure that the proposed
control strategies are applicable in real-world laboratory settings.

This thesis aims to contribute to the field of process control by demonstrating the
integration of modeling, temperature control, and experimentation in the development
of innovative control solutions.



Chapter 2

Theoretical Background

2.1 Basics of Distillation and Operation of a Distil-
lation Column

Distillation is a thermal separation process. It exploits the differences in the volatility
of the components. The more volatile component has a lower boiling point and the
less volatile component has a higher boiling point. When we bring our mixture to
the boiling point, the vapor that is formed begins to be saturated more with the
more volatile component and rises upward, where it is condensed to obtain a liquid
distillate. Conversely, the less volatile component remains more in the liquid phase,
and its concentration increases downwards with the flow of liquid in the column. This
vapor-liquid system is governed by the principles of phase equilibrium, specifically
vapor-liquid equilibrium (VLE) [4], [16].

In the case of a binary mixture, the relationship between the vapor and liquid compo-
sitions at equilibrium can be described by Raoult’s law:

yiP = xiP
∗
i for i = 1, 2, . . . , n, (2.1)

where yi and xi are the mole fractions of component i in the vapor and liquid phases,
respectively. Here, P represents the total system pressure, and P ∗

i is the vapor pressure
of the pure component i at the system temperature.

The total vapor pressure above a liquid mixture is given by the sum of the partial
pressures of the individual components [7]. The vapor phase is created by raising the
temperature of the liquid mixture until some of the liquid evaporates, forming a vapor-
liquid mixture. The dynamic interaction between the phases drives the separation
process [22].
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Figure 2.1: Scheme of a distillation column
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2.2 Classification of Distillation Column Parameters
Understanding the behavior of a distillation column starts with properly categorizing
the parameters that influence it. These parameters can be divided according to their
characteristics and the context in which they are applied during design or operation.
They generally fall into three main groups: variables that are continuously adjusted
during operation, parameters that are set during the design phase, and output indicators
that reflect the performance of the system. Each of these plays a important role in
shaping the efficiency and dynamics of the column [15].

1. Continuous Degrees of Freedom (Operational Parameters): These
parameters can be adjusted during the operation of the column to influence its
performance:

• Reflux Ratio: This parameter defines the proportion between the liquid
that is recirculated back into the column and the distillate withdrawn
as product. Increasing the reflux ratio typically improves the separation
quality, resulting in higher energy demands [23].

• Heat Supplied to the Reboiler: The thermal energy introduced into
the reboiler governs the amount of vapor generated, which in turn has a
significant impact on the separation performance.

• Heat Removed in the Condenser: This controls the condensation pro-
cess at the top of the column, enabling efficient reflux formation, consistent
collection of distillate and stable column pressure [13].

2. Design Parameters: These parameters are determined during the design stage
of the column and are typically not adjusted during operation:

• Number of Theoretical Stages: The number of equilibrium stages
required for a given separation of mixture, often estimated using graphical
methods such like the McCabe-Thiele method.

• Column Geometry and Internal Design: Includes tray specifications,
column height, and diameter, which directly influence the column’s capacity
and efficiency.

3. Performance Metrics (Output Parameters): These parameters reflect the
overall effectiveness of the column under given operating conditions:

• Efficiency: Includes overall column efficiency and individual stage efficien-
cies. It is influenced by factors such as tray design, packing material, and
operational conditions [2].
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• Product Purity: The molar or mass fraction of key components in the
distillate and bottom products serves as key indicators of column separation
efficiency [13].

2.3 Control Strategies
The control of the distillation columns plays a key role in the operation of these devices.
To achieve the desired product quality and safety, we need to design a controller that
ensures that one or more outputs of the system behave in the desired way. To ensure
this, our controller must correctly handle the manipulated variable or compensate for
disturbances [21].

2.3.1 Discrete PID Controllers
Discrete proportional-integral-derivative (PID) controllers are commonly applied in the
control of distillation columns because they offer straightforward design and reliable
performance. Nowadays, more than 90% control loops are still controlled by these
regulators. In most cases, only a PI regulator is used, where the derivative part is
equal to zero [9]. They play a crucial role in the adjustment of manipulated variables
in distillation, such as the heat input of the reboiler, the reflux flow rate, or the cooling
duty of the condenser, to minimize the error between the set point (the desired value)
and the measured variable [11].

The control law governing discrete PID controller is expressed as:

u[k] = Kp · e[k] + Ki ·
k∑

i=0
e[i] · Ts + Kd · e[k] − e[k − 1]

Ts
(2.2)

where u[k] is the control output at the discrete time step k, e[k] represents the control
error, defined as the difference between the reference value r[k] and the measured
process output y[k]. Kp, Ki, and Kd are the proportional, integral, and derivative
gains, Ts describes the sampling period, which is the time interval between two discrete
steps [15].

2.3.1.1 Pairing Analysis for PID Control

A PID controller is a type of controller that can provide control of systems that are
SISO, or single-input single-output. In a device like a distillation column which is a
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MIMO system, or multiple-input multiple-output, we need to ensure proper pairing of
the variables. In a distillation column, there are many different options for controlling
the temperature in the column, but the most widely used in industry is LV configuration
[5]:

• L (Reflux Flow): The liquid flow that returns to the column regulates the
quality of separation.

• V (Vapor Flow): The boil-up rate, controlled by the reboiler heat input,
adjusts the column energy balance [4].

The theory of automatic control recommends pairing controlled and manipulated
variables based on the Relative Gain Array (RGA) to minimize interactions. Typically,
the temperature on the top is controlled by reflux flow (L), while the temperature of
the bottom product is controlled using the vapor flow (V ) or duty of the reboiler when
we use electric heating [1].

The relative gain array (RGA) matrix, decribed as Λ, is defined as:

Λ = G ◦ (G−1)T

,where G is the steady-state gain matrix and ◦ denotes the Hadamard (element-wise)
product [6].

2.3.2 Advanced Control
Advanced process control (APC) techniques are better suited than traditional PID
controllers by offering more effective solutions for managing the challenges associated
with complex, nonlinear and multivariate distillation systems. Unlike basic PID
approaches, which can struggle with interactions between variables and dynamic
changes, APC strategies are specifically designed to handle these difficulties with
greater precision. By incorporating predictive models and coordinated control actions,
APC methods significantly improve process stability, reduce variability, and optimize
overall plant performance [17].

2.3.2.1 Discrete Linear Quadratic Controller

The discrete linear quadratic regulator (LQR) is an optimal control technique that
determines feedback signals for linear dynamic systems by minimizing a predefined
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quadratic cost function and balancing the performance of the system with the control
effort. The mathematical expression of LQR can be interpreted using the cost function
[20]:

J =
∞∑

k=0

(
x[k]⊤Q x[k] + u[k]⊤R u[k]

)
(2.3)

where x is the state vector in time step k, u is the control input at time step k, Q ⪰ 0
is the state weighting matrix, and R ≻ 0 is the input weighting matrix.

The general state-space representation of a linear discrete system is given by:

x[k + 1] = A x[k] + B u[k] (2.4)
y[k] = C x[k] + D u[k] (2.5)

where y is the output vector at time step k, and A, B, C, D are the system matrices.

For proper functioning of the control system, it is essential to ensure the correct values
of the input vector u, which is defined as:

u[k] = −K · x[k] (2.6)

The matrix K is the state feedback gain matrix, which is designed to place the closed-
loop poles of the system at desired locations, ensuring the stability and desired dynamic
performance. It is calculated as [20]:

K =
(
R + B⊤PB

)−1
B⊤PA (2.7)

where P is the solution to the Discrete Algebraic Riccati Equation (DARE):

P = A⊤PA − A⊤PB
(
R + B⊤PB

)−1
B⊤PA + Q (2.8)

Let us define xi[k] as the integral (in discrete form, a sum) of the output error:

xi[k + 1] = xi[k] + Ts · (r[k] − y[k]) = xi[k] + Ts · r[k] − Ts · Cx[k]
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The extended state vector is constructed in the following form:

xa[k] =
[

x[k]
xi[k]

]

This leads to the following augmented state-space formulation:

xa[k + 1] =
[

A 0
−Ts ∗ C I

]
xa[k] +

[
B

0

]
u[k] +

[
0
I

]
r[k]

Control law
The LQR regulator for the extended system can be written as:

u[k] = −
[
Kx Ki

] [x[k]
xi[k]

]

where Kx is the gain for the original states, and Ki is the gain for the integral state
[18].

Discrete state observer
When not all internal states of a system are directly measurable, it is necessary to
estimate them using a state observer. To estimate the unmeasured states, an observer
is constructed with the following structure:

x̂[k + 1] = Adx̂[k] + Bdu[k] + L(y[k] − ŷ[k]), (2.9)

ŷ[k] = Cdx̂[k] + Ddu[k], (2.10)

where, x̂[k] represents the estimated states, ŷ[k] is the estimated output, and L is the
observer gain matrix. The expression y[k] − ŷ[k] represents the estimation error, which
the observer uses to correct its prediction [18].
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The gain of the observer L has to be chosen such that the eigenvalues of the matrix
Ad − LCd are inside the unit circle in the complex plane to ensure the convergence of
the estimates:

eig(Ad − LCd) ∈ D, (2.11)

where D describes the unit disk.

The pole placement method or optimal estimation, such as the Kalman filter in discrete
time, can be used to determine the appropriate gain matrix L. This estimated state
can then be used in LQR controllers, where full state feedback is necessary [18].

2.3.2.2 Model Predictive Control (MPC):

MPC is one of the most widely used advanced control strategies in distillation. Using
a dynamic process model, it predicts future system behavior and optimizes control
actions within a given time horizon. Taking into account multivariate interactions and
system constraints, MPC effectively manages disturbances and achieves tight control
of product compositions and energy usage. The main difference between the MPC
controller and the LQR controller lies in the constraints and the prediction of the future.
The MPC can work directly with constraints for both inputs and outputs and can also
predict future actions. On the other hand, the MPC needs more computational power
since it performs optimization within itself, and the advantage of the LQR is also that
it can operate in offline mode, so we only need to calculate its parameters in the form
of matrices once. The control objective can be represented as [3], [7]:

min J =
N∑

k=1

(
∥yk − yset∥2 + λ∥∆uk∥2) , (2.12)

where J is the cost function, yk is the predicted output, yset is the setpoint, ∆uk is
the control input change, and λ is a weighting factor [7].

2.4 Theory of Distillation Column Modeling
To ensure effective control and optimization of a distillation column, a clear understand-
ing of its physical and chemical processes is essential. This understanding is achieved
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through modeling, which serves as the foundation for both design and operational
strategies. An accurate process model allows us to design a controller, thanks to
which we can achieve our outputs at the desired values, which can save operating costs
but also improve the safety of the equipment. The equations used in this section are
derived from the gPROMS Process Builder manual [13], reflecting the mathematical
framework used by the software to simulate the dynamics of the distillation column.
These equations provide the necessary tools to predict the performance of the column.

2.4.1 Mass Balance and Energy Balance
The mass and energy balance for component i in the liquid phase is expressed as:

V̂j
dm̄i,j

dt
= Lj−1xi,j−1 + Vj+1yi,j+1 + F L

j xL
i,j + F V

j yV
i,j

− (1 + SL
frac,j)Ljxi,j − (1 + SV

frac,j)Vjyi,j , ∀i ∈ C, j = 1, . . . , N (2.13)
xi,j

Mwi

ϕL
i,j = yi,j

Mwi

ϕV
i,j , ∀i ∈ C, j = 1, . . . , N (2.14)∑

i∈C

xi,j = 1, ∀j = 1, . . . , N (2.15)∑
i∈C

yi,j = 1, ∀j = 1, . . . , N (2.16)

V̂j
dûj

dt
= Lj−1hL

j−1 + Vj+1hV
j+1 + hF

LF L
j + hF

V F V
j

− (1 + SL
frac,j)LjhL

j − (1 + SV
frac,j)VjhV

j , ∀j = 1, . . . , N (2.17)

The material and energy holdups are defined below (note that subscript j has been
omitted for readability):

Mi = MLxi + MV yi, ∀i ∈ C (2.18)
ML

ρL
+ MV

ρV
= V̂ (2.19)

û = m̄T H − 102P (2.20)
m̄T HV̂ = MLhL + MV hV (2.21)∑
∀i∈C

Mi = MT (2.22)
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Murphree efficiency
Murphree efficiency can be used to account for non-ideal equilibrium conditions on
each tray. It is defined as:

EV
M,i,j =

(
ymolar,i,j − ymolar,i,j−1

y∗
molar,i,j − ymolar,i,j−1

)
, ∀i ∈ C, j = 1, . . . , N (2.23)

2.4.2 Phase Equilibrium: NRTL Model
The phase equilibrium in a distillation column is essential for determining the con-
centration of components. The Non-Random Two-Liquid (NRTL) model is used in
gPROMS Process Builder to describe the activity coefficients in non-ideal mixtures.
This model is especially useful for systems that exhibit strong deviations from the
ideal behavior.

The activity coefficient γi for each component i in the liquid phase is given by:

γi = exp
( ∑

j τijxj

1 +
∑

j τijxj

)
(2.24)

where: τij is the binary interaction parameter between components i and j, xj is the
mole fraction of component j in the liquid phase.

The NRTL model provides a more accurate description of the phase behavior in
non-ideal systems compared to models that assume ideal behavior, such as Raoult’s
law. This is particularly essential for the modeling of distillation systems in which
deviations from ideality significantly impact separation performance [19], [14].
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Table 2.1: Definitions of Variables Used in the Distillation Column Model

V̂j Total volume of stage j [m3]
m̄i,j Volumetric mass holdup of component i on stage j [kg/m3]
Lj Mass flow rate of liquid leaving stage j [kg/s]
Vj Mass flow rate of vapour leaving stage j [kg/s]
F L

j Mass flow rate of the liquid feed on stage j [kg/s]
F V

j Mass flow rate of the vapour feed on stage j [kg/s]
SL

frac,j Fraction of the liquid mass flow rate leaving stage j via the liquid side-draw [-]
SV

frac,j Fraction of the vapour mass flow rate leaving stage j via the vapour side-draw [-]
xi,j Mass fraction of component i in the liquid phase leaving stage j [kg/kg]
yi,j Mass fraction of component i in the vapour phase leaving stage j [kg/kg]
xL

i,j Mass fraction of component i in the liquid feed on stage j [kg/kg]
yV

i,j Mass fraction of component i in the vapour feed on stage j [kg/kg]
ϕL

i,j Fugacity coefficient of component i in the liquid phase leaving stage j [-]
ϕV

i,j Fugacity coefficient of component i in the vapour phase leaving stage j [-]
ûj Volumetric energy holdup [kJ/m3]
hL

j Mass specific enthalpy of the liquid leaving stage j [kJ/kg]
hV

j Mass specific enthalpy of the vapour leaving stage j [kJ/kg]
hF

L Mass specific enthalpy of the liquid feed on stage j [kJ/kg]
hF

V Mass specific enthalpy of the vapour feed on stage j [kJ/kg]
Mwi

Molecular weight of component i [kmol/kg]
Mi Total mass of component i [kg]
ML, MV Liquid and vapour phase total masses [kg]
xi, yi Mass fractions in liquid and vapour phases [-]
ρL, ρV Densities of liquid and vapour phases [kg/m3]
V̂ Total volume [m3]
û Volumetric energy holdup [kJ/m3]
m̄ Mass holdup vector [kg/m3]
H Enthalpy vector [kJ/kg]
P Pressure [bar]
hL, hV Specific enthalpies of liquid and vapour phases [kJ/kg]
MT Total mass on tray [kg]
EV

M,i,j Murphree component efficiency per tray [-]
ymolar,i,j Molar fraction of component i in vapour leaving stage j [mol/mol]
y∗

molar,i,j Molar fraction in equilibrium with liquid leaving stage j [mol/mol]
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Chapter 3

Practical part

3.1 Description of the Distillation Column System
The UOP3CC Continuous Distillation Column is a self-contained unit designed for
the continuous separation of binary mixtures. It consist of two main components: a
floor-standing process unit and a bench-mounted control panel. The floor-standing
frame consists of a welded tubular steel structure [12].

The primary separation task in this work for laboratory column is the separation
of a methanol-water binary mixture. This mixture represents a common example
in distillation studies due to its moderate deviation from ideality and its relevance
in industrial applications. The goal is to achieve a methanol-rich distillate and a
water-rich bottoms product, with the separation efficiency dependent on the operating
parameters and column configuration [12].

The distillation column shown in Figure 3.1 itself is made of two glass sections, each
with a diameter of 50 mm, and is configured for counter-current vapor-liquid operation.
These sections are separated by a central feed point, where a liquid stream from
the preheater is introduced and contain a total of eight sieve plates, divided evenly
between the sections. Each plate is supported by a central rod and includes a weir
and downcomer to maintain a liquid seal between stages. At the base of the column is
the reboiler, constructed of stainless steel and equipped with a flame-proof immersion
heater. During continuous operation, the reboiler circulates the product through
a bottom product cooler. Vapor exiting the column is directed to a water-cooled
shell-and-coil condenser. The condenser includes insulation to prevent heat exchange
with the environment and is equipped with a pressure relief valve for safety. The
flow of cooling water is controlled through a diaphragm valve, allowing temperature
regulation.The system also features a glass decanter for the separation of immiscible
liquid phases. In normal operation, the decanter is bypassed, allowing the condensate
to flow directly to the reflux control valve or a product collection vessel [12].
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Temperature monitoring is achieved through fourteen thermocouple sensors installed
at strategic positions along the column, including the sieve plates, reboiler, feed, and
condenser. The total pressure drop across the column is measured using automatic
pressure sensors. [12].

Figure 3.1: UOP3CC Column: 1. Condenser, 2. Column body, 3. Feed pump, 4.
Reboiler, 5. Feed preheater, 6. Automatic valves, 7. Flow meter, 8.
Reflux valve.

[24]

3.2 Feed and Waste Pump Calibration
In order to achieve a steady level in the reboiler, it is necessary to set the flow rate
of the feed pump and the waste pump to the same value. That is why we decided to
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perform a calibration on both pumps. For safety reasons, we only did the calibration
with clean water. In our control simulation, we set a certain % of the flow rate in
the range from 0-100 % and measured the volume that we managed to fill into the
measuring cylinder per minute. The Table 3.1 and Figure 3.2 below summarize the
values that we measured.

Table 3.1: Calibration data for feed pump and bot pump.

Feed Pump (%) Feed Flow (ml/s) Bot Pump (%) Bot Flow (ml/s)
15 1.06 100 1.52
25 1.93 90 1.46
35 2.67 80 1.30
45 3.67 70 1.10
55 4.40 60 0.96
65 5.30
75 6.00
85 7.00
95 8.10

As shown in Table 3.1, the calibration for the bot pump was only performed for values
from 60% to 100%, because below 60%, the flow rate of the bot pump is very small
compared to the feed pump, so it was ineffective and time consuming to measure below
this value. After processing the data, we obtained the following dependencies:

Feed pump: y = 0.09x − 0.28 (3.1)
Bottom pump: y = 0.01x + 0.08 (3.2)

The pump power settings for both pumps were selected to ensure a steady liquid level
in the reboiler. Specifically, the feed pump was set to 21% and the bottom pump
to 78% of their power. A comparison of measured and estimated data is shown in
Figure 3.2, where it is shown that the measured data match the estimated data.
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Figure 3.2: Calibration curve for feed and waste Pump.
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3.3 Modeling of the Distillation Column in AVEVA
In this section, the process of modeling the distillation column for the methanol-water
mixture is described in AVEVA Process Simulation software. The aim of this model
was to replicate the behavior of a real distillation column under steady-state operating
conditions. This approach is useful for comparing the behavior of a real column with
simulations, and also with correct model, we can estimate parameters that we cannot
measure on a real device like reflux flow or duty of condenser, which is necessary for
calculating of flow cooling water.

Figure 3.3: Simulation environment AVEVA.

3.3.1 Model Setup
The drag-and-drop functionality of AVEVA Process Simulation was used to construct
the distillation column model. At the same time, we worked on operating the laboratory
column and tuning the input parameters, which helped us set the input parameters in
such a way as to get as close as possible to the behavior of the real column. The key
parameters for the model were configured as follows:



20 Practical part

Table 3.2: Key Parameters of the Distillation Column Model in AVEVA

Parameter Value Units
Feed Composition Methanol (0.6655), Water (0.3345) mol/mol
Feed Flow Rate 0.1638 kmol/h
Feed Temperature 72 °C
Feed Pressure 101 325 Pa
Number of Stages 8 –
Feed Stage 4th (from top) –
Column Pressure 101 325 Pa
Reboiler Duty 0.8 kW
Tray Height 100 mm
Column Height 800 mm

The distillation column model provided an estimate of the heat duty of the condenser
Qcond. We choose to heat the cooling water approximately by 5 °C. An increase of
approximately 5 °C in the temperature of the cooling water is commonly chosen in
the condenser design as a compromise between the size of the heat exchanger, the
consumption of the cooling water and the efficiency of the heat transfer. Consequently,
it was possible to calculate the required cooling water volume flow rate using the
following energy balance equation:

ṁw = |Qcond|
cp · ∆T

= 742.431
4180 · 5 = 742.431

20, 900 ≈ 0.0332 kg/s (3.3)

where ṁw is the mass flow rate of the cooling water, |Qcond| is the absolute value of
the condenser heat duty, cp is the specific heat capacity of the water and ∆T is the
temperature difference.

Now, the volumetric flow rate can be calculated using the density of water ρ =
1000 kg/m3:

V̇ = ṁw

ρ
= 0.0332

1000 = 0.0000332 m3/s = 0.0332 L/s (3.4)

Converting to liters per minute (L/min):
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0.0332 L/s × 60 = 1.992 L/min (3.5)

Our flow meter measures the flow rate in units of CG/min (centigrams per minute):

0.0332 kg/s × 100, 000 = 3320 CG/min (3.6)

3.4 Modeling of the Distillation Column in gPROMS
Process Builder

The gPROMS Process Builder software was utilized to model the distillation column
for the methanol-water system. This section provides a detailed description of the
modeling process, divided into two subsections. The first subsection describes the
creation of a simplified shortcut model to familiarize ourself with the environment,
and the second subsection focuses on a more complex model.

3.4.1 Shortcut gPROMS Model
As an initial step, a simplified distillation model was implemented in the gPROMS
modeling environment. The purpose of this was not to obtain precise simulation results,
but rather to become familiar with the software interface, modeling workflow, and
result visualization tools offered by gPROMS. At this stage, no detailed thermodynamic
models or column hydraulics were considered.

Table 3.3: Input Feed Parameters

Parameter Value Units
Feed temperature 72 °C
Feed pressure 101,325 Pa
Molar composition (Water) 0.3345 –
Molar composition (Methanol) 0.6655 –
Total feed flow rate 0.1638 kmol/h
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Table 3.4: Column Setup Parameters

Parameter Value Units
Condenser type Total –
Methanol molar fraction in bottom 0.4954 –
Water molar fraction in distillate 0.05 –
Number of stages 8 –
Condenser pressure 101.325 Pa
Reboiler pressure 1.3 kPa
Shortcut method Fenske’s method –

Table 3.5: Model Output Results

Parameter Value Units
Reflux ratio 0.7172 –
Feed stage from the top 2.13994 –
Boilup ratio 0.094 –
Condenser temperature 64.48 °C
Reboiler temperature 79.109 °C
Reboiler duty 0.1305 kJ/s
Condenser duty -0.3283 kJ/s

These output parameters shown in Table 3.5 do not match the laboratory column
parameters and this model does not accurately describe the behavior of a laboratory
distillation column mainly because it is not possible to include the column design
parameters.

3.4.2 Detailed gPROMS Model
In the next stage, a more complex drag-and-drop model was constructed to better
represent the laboratory distillation column. This model includes additional parameters
and features to more accurately simulate the real system. For the column, the model
allowed for a comprehensive input of geometric and operational parameters. We either
found the design parameters in the manual for the column or manually measured then
on the device.

• Column geometry: Specifications for the height, diameter and number of
stages of the column.
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• Reflux drum design: Configuration of the drum to control the reflux flow.

• Reboiler design: Design details for the reboiler, including duty and hydraulics.

• Tray design: include parameters such as tray spacing, active and hole area
fractions, hole diameter, weir height and length

• Pressure profile: Definition of the pressure drop across the column.

• Hydraulics of the condenser and reboiler: Detailed modeling of fluid flow
in these units.

• Initial guess and numerics: Settings for starting values and numerical solvers
to ensure convergence of the simulation.

Figure 3.4: gPROMS environment with detailed model.

This detailed model provided a more accurate and flexible simulation of the laboratory
column than the shortcut model, enabling the analysis of dynamic and steady-state
behavior under various operating conditions. This model was mainly used to compare
the column behavior with the AVEVA model, which is described in the following
subsection.
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Figure 3.5: gPROMS Environment with Shortcut Model.

3.4.3 Detailed gPROMS and AVEVA Model with Laboratory
Column Temperature Profile Comparison

As shown in Figure 3.5 gPROMS simulation and the AVEVA simulation have similar
temperature profiles. There is a 1 °C difference in the fourth and fifth stages, which can
be caused by different input parameters of each model. For example, gPROMS software
has more options for column design than AVEVA. When comparing the temperature
profile of the real column with gPROMS and AVEVA simulation, the temperatures
at the top of the column are closely aligned. However, differences are observed at
the feed stage. The temperature in the laboratory column is lower, which could be
caused by damaged or ineffective isolation, leading to undesired heat transfer around
the feed stage. Also, ambient temperature is not involved in the model. Similarly,
differences are evident at the bottom of the column. These deviations could also be
attributed to a column design, as there is a long part above the first stage, nearly
as long as the entire column itself. The temperature signals are also noisy, and a
representative temperature for each stage had to be chosen as an average value, which
could also cause mismatch. In the laboratory column, the temperature in the eighth
stage should be higher than in the seventh stage, but it was a lower value. Where the
reboiler connects to the column, the foam insulation does not adhere properly due to
the column’s expansion at that point or maintenance of the temperature sensor should
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also be necessary.

3.5 Data-Driven Building of State-Space Model
Before implementing any control strategy for the distillation column, a dynamic model
of the process must be identified to represent how the system responds over time.
In this section, we would like to show how I identified and simulated a state-space
model using data that I experimentally measured on a real device for the design of PI
controller and an advanced LQR control.

To design a discrete PI controller and discrete linear quadratic regulator capable
of transitioning at least between two steady states of the distillation column, an
experiment was performed to identify the system dynamics around selected operating
conditions. In Table 3.6 the following steps summarize the changes in the manipulated
variables during the experiment:

Table 3.6: Summary of the experimental steps for operating point identification

Time [s] Reflux [%] Reboiler Duty [kW] Description
0 90 0.8 Initial steady state

1452 70 0.8 Step decrease in reflux
2424 70 0.85 Step increase in reboiler duty

I then processed the data in the Matlab environment, using the N4SID (Numerical
Subspace State Space System IDentification) function. This method identifies a model
from measured input-output data using singular decomposition. In Figure 3.6 and
matrices below I would like to expres the state-space model.


x1[k + 1]
x2[k + 1]
x3[k + 1]
x4[k + 1]

 =


0.9675 −0.0065 −0.0015 −0.0244
0.0065 0.9297 −0.0216 −0.0532
0.0075 0.0390 −0.6778 0.7106
0.0202 −0.0460 −0.7008 −0.5507




x1[k]
x2[k]
x3[k]
x4[k]

+


−0.0716 0.0003
0.1254 −0.0000
1.0048 0.0051
2.7444 −0.0063

[u1[k]
u2[k]

]
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[
y1[k]
y2[k]

]
=
[
−14.7359 0.4218 −0.6222 −0.4708
−1.7205 −1.7629 −0.1106 0.1150

]
x1[k]
x2[k]
x3[k]
x4[k]

+
[
0 0
0 0

] [
u1[k]
u2[k]

]

Figure 3.6: Output data with identified state-space model.

In Figure 3.6, the identification results are presented that illustrate the ability of the
model to predict the temperature deviations in a distillation column. The prediction
aligns very well with the measured response across the entire time interval, successfully
capturing both the dynamics and steady-state behavior.

To determine the accuracy of the model’s prediction, I used the RMSE metric. which
is described below:
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RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (3.7)

where n is the number of observations, yi is the actual value for the i-th observation
and ŷi is the predicted value for the i-th observation.

Values of RMSE are T1: 0.2685 °C, T8: 0.0977 °C.

Figure 3.7: Input Data.
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Figure 3.8: Scheme of discrete linear model in Simulink.

3.6 PI Temperature Control in the Distillation Col-
umn

In this section, the temperature control strategy for the distillation column is described,
where a closed-loop PI control system was implemented. The step changes were
performed from a steady-state condition, where the temperature T8 was 76.01 °C and
T1 was 65.3 °C."

3.6.1 Temperature Control at the Top of the Column T1

The temperature at the top of the column T1 is controlled by adjusting the reflux flow
rate. The reference for the control system is the setpoint temperature at the column
head, which is 70.3 °C, while the measured temperature from the sensor provides the
feedback. The PI controller adjusts the reflux flow to minimize the difference between
the desired and actual temperature.

3.6.2 Temperature Control at the Bottom Tray T8

For the temperature control in the bottom tray T8, the duty of the reboiler is manipu-
lated. The reference for this control loop is the desired temperature in the bottom
tray, which is 76.81°C, and the measured temperature is a feedback to the controller.
The PI controller adjusts the power input to the reboiler, controlling its duty in kW to
maintain the temperature at the desired setpoint.

I chose a setpoint of 70.3 ° C and 76.81 ° C as the step changes values from steady
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Figure 3.9: LV configuration of distillation column.
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states according to the identification. A larger temperature change could cause the
reboiler to want to deliver a large amount of energy to the system and cause the
column stage to flood, or conversely, at a lower temperature, cause the stage to dry
out. Operating too far from the setpoint can disrupt the steady state of the column,
leading to reduced separation efficiency or process instability.

3.7 Tuning PI Controllers
The PI controllers for the distillation column were tuned using the Skogestad method,
which is a widely used approach for controller tuning based on process transfer functions.
This method allows for efficient calculation of the proportional gain (Kp) and the
integral time (Ti) for the PI controllers.

First, the transfer functions between the controlled variables (temperatures) and the
manipulated variables (reboiler duty and reflux flow rate) were derived. These transfer
functions were obtained by transforming the state space model into a transfer function
using the ss2tf functionality in MATLAB.

For the bottom tray temperature (T8) and the reboiler duty (Q), the transfer function
was obtained as:

G(s) = T8(s)
Q(s) = 5.16

6.123s + 1 (3.8)

G(s) = T1(s)
R(s) = −0.1651

13.53s + 1 (3.9)

3.7.1 Calculation of the PI Controller Parameters and Control
Performace

Once the transfer functions were obtained, the Skogestad method was applied to
calculate the controller parameters, namely the proportional gain (Kp) and the integral
time (Ti) for the temperature control loops of the bottom and top tray.

The proportional gain (Kp) and the integral time (Ti) are given by the following
equations:
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Kp = T

K
· (Tc + d) (3.10)

Ti = min (T, 4 · (Tc + Td)) (3.11)

where T is the process time constant, K is the steady-state gain of the transfer function,
Tc is the closed-loop time constant and Td is the system time delay and d and represents
the apparent or effective delay of the process, accounting for any additional delay or
unmodeled dynamics.

These equations allow for the determination of the PI controller parameters based
on the process dynamics described by the transfer functions. The closed-loop time
constant (Tc) and the time delay (Td) were estimated from the dynamics of the process
[21]. The calculated parameter for the control of the reboiler duty was Kp = 0.006
and Ki = 0.007229 and for the control of reflux was Kp = −9.7295 Ki = −0.0874.

Figure 3.10: Block diagram of PID control in Simulink.

In Figures 3.11 and 3.12 simulated reference tracking of temperature T1 and T8 is
shown. Both temperatures reach the setpoint around the time 400 seconds with a
small overshot in temperature T8. Control action reflux drops by almost 50% almost
immediately and then oscillates for about 200 seconds and reaches a steady value after
600 seconds. In the early part of the response, both control signals show a noticeable
“toothed” pattern. This might be due to interactions between the two PI controllers,
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Figure 3.11: Simulated Temperature of T1 (top of the column) with the setpoint
(top) and the control action (bottom) of the reflux valve.

since the system is MIMO and the control loops can affect each other. Since this
behavior did not appear in the experimental data, it is likely related to the simulation
setup. The control action duty of the reboiler has a smoother response with a small
overshoot around 200 seconds and then stabilizes around 900 seconds. The controller
reached a steady-state consistent with the behavior observed during the identification
phase. After simulation of PI controllers, the controllers were tested in the laboratory
distillation column system to verify their performance.
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Figure 3.12: Simulated Temperature of T8 (bottom tray) with the setpoint (top)
and the control action (bottom) of the reboiler duty.

Figure 3.13: Temperature of T1 (top of the column) with the setpoint (top) and the
control action (bottom) of the reflux valve.
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In figures 3.13 and 3.14 we can see the time dependence of the output variables, the
temperature T1 at the top of the column, and the temperature T8 at the bottom. Below
the graphs are shown the control actions, namely the reboiler duty, which has a greater
influence on the temperature T8 and the percentage of opening the valve for return
flow into the column (reflux) with greater influence on T1. At control of temperature
T1 in the initial increase, the reflux reaches 40% relatively quickly, indicating that the
controller is trying to reach its setpoint as quickly as possible. The temperature T1
reaches its set point around 1200 seconds and then stays around the set point without
overshot. The controller reached a steady state consistent with the behavior observed
during the identification phase.

Figure 3.14: Temperature of T8 (bottom tray) with the setpoint (top) and the
control action (bottom) of the reboiler duty.

At temperature T8, a similar behavior is visible as at temperature T1. When the
controller starts up, we see an overshoot in the control action at the beginning, which
is also visible at temperature T8 at a time of around 1500 seconds. In contrast to
reflux, the duty of the reboiler subsequently stabilizes at a time of around 1800 seconds.
However, what is interesting is that the temperature of T8 oscillates more than T1.
This may be due to the fact that the duty of reboiler has a greater influence on whole
system than reflux, so even a small change in the duty of reboiler can cause larger
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oscillations at temperature T8. The behavior of the temperatures and control actions
in the laboratory column are similar to those in simulation. The differences from
simulation are in the duty of the reboiler, because in the laboratory column we got
around 0.4 kW higher overshoot and reflux in the laboratory column stabilized over
20% higher, but the temperature behavior matches simulation. Overshooting in the
control action duty of a reboiler would cost money in energy in industrial practice,
and fast changes in reflux could damage the valve over time. Therefore, it would be
appropriate to design a more advanced control for such a system.

3.8 Linear Quadratic Regulator Design
While PID control provides satisfactory performance, it lacks the ability to handle
multivariable systems. Therefore, this chapter presents the implementation of a linear
quadratic regulator for improved performance. Firstly we calculated the matrices Kx

and Ki mentioned in the theoretical part using the Matlab environment and especially
the dlqr routine, which requires as input the linear system matrices A, B and the
weighting matrices defined as:

• Qi, penalizing the integral error (temperature tracking),

• Qt, combining the state and integrator weights,

• Qu, the input weight matrix.

In our case, it was necessary to change the input matrix Qu, especially the first row
and the first column with a value of 100,000, because otherwise the control action of
the reboiler would be very aggressive. We also adjusted the reflux weight with a value
of 4 so that there would be no significant undershoot in the control action. I found
these values using simulation by changing them and observing the behavior of the
system [18].

Qi =
[
1 0
0 1

]
(3.12)
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Qt =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(3.13)

Qu =
[
100000 0

0 4

]
(3.14)

The values Kx and Ki are presented below:

Kx =
[

−0.6871 0.1390 −0.0036 0.0025
169.7654 19.2498 1.0612 −2.5730

]

Ki =
[
−0.0007 0.0006
0.1491 0.2002

]

3.8.1 State Observer Design
System identification revealed that a state-space model with four states provides the
best fit for the two-input, two-output system. In addition to the output temperatures,
there are other parameters that affect the behavior of the process. In order to be able
to estimate these parameters well, we decided to design a discrete state observer for
the LQR controller [18].
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Figure 3.15: Scheme of discrete state observer.

In the Matlab environment, I calculated the observer gain matrix using dlqe (Discrete
Linear Quadratic Estimator) which requires as inputs matrices of linear system A, C
and the following weighting matrices:

• G, the identity matrix, assuming full process noise distribution,

• Qe, representing confidence in the model (process noise covariance),

• Re, representing confidence in the measurements (measurement noise covariance).

We did not adjust the values of these matrices, as the state observer was effective even
without adjustment [18].

G =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.15)

Qe =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.16)

Re =
[
1 0
0 1

]
(3.17)
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The Kalman gain LK was first calculated using:

LK = dlqe(A, G, C, Qe, Re)

Then, the observer gain matrix L was computed as:

L = A · LK

This procedure is used to estimate the system states in the presence of noise and
measurement inaccuracies.

L =


−0.0610 −0.0150
0.0467 −0.4030

−0.0349 0.1641
0.0296 0.0021



As a check of the correctness of the calculation of the observer parameters, I simulated
the states and outputs with the observed ones. In Figure 3.16 we can see the
comparison. It is clear from the legend that we are plotting eight states. Since we see
only four dependencies in Figure 3.16, this means that the observer parameters were
calculated correctly and that the observed states and outputs match the simulated
ones.
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Figure 3.16: Comparing of simulated states with observed states.

In Figure 3.17 the observed outputs are shown compared to the simulated, where y1
represents the temperature at the bottom of the column T8 and y2 the temperature
at the top T1. The temperature T8 stabilizes after approximately 300 seconds while
the temperature T1 stabilizes after approximately 500 seconds with a small overshoot.
As in 3.16, we can see that the observed outputs match the system outputs. This
behavior indicates that the observer is able to reconstruct the states of the system
accurately over time. The results validate that the observer dynamics is well tuned,
and the model used is adequate for capturing the system behavior.
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Figure 3.17: Comparing of simulated outputs with observed outputs.

In the next step, I created a Simulink scheme, where I connected my identified process
with the LQR control and state observer. I also implemented anti-windup in the
scheme using the back-calculation method due to saturation and integral part of the
LQR controller. The complete scheme is shown in Figure 3.18.
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Figure 3.18: Control scheme with LQR controller and state observer.

The control loop begins with the reference input, representing the desired change
value of the controlled output. This reference is then processed through block that
incorporates an integrator to ensure accurate tracking and eliminate steady-state error
with integration. The resulting signal is used to compute the control action together
with the estimated states multiplied with feedback gain matrix. The central part of
the scheme is the block labeled Linear Process, which represents the plant model in
discrete-time state-space form. The plant receives the control input and provides the
system output as well as the internal states. To reconstruct the unmeasured states, a
state observer is implemented. It uses the input and output of the plant to estimate
the internal states and outputs of the system. These estimates are then sent back
into the LQR controller, which calculates the control signal. Throughout the model,
data logging blocks are placed at various points to record the time dependence during
simulation. These signals are used for post-processing and evaluation of the controller
performance.

3.8.2 Control performance of LQR Controller
The Figures 3.19 and 3.20 show the performance of the LQR controller in simulation,
where the objective is to regulate the top and bottom temperatures by manipulating
the reflux and reboiler duty.
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Figure 3.19: Simulated reference tracking of temperature on the top of column (top)
with input signal (bot).

The temperature on the top of the column T1 follows the reference trajectory with a
smooth response, reaching the setpoint around 350 seconds with minimal overshoot.
Reflux stabilize around time 900 seconds, while there is a slight undershoot around
150 seconds in the control action, but we got rid of the oscillations that occurred in
the simulations with PI control. Compared to the PI simulated controller, the change
in reflux is smoother and less aggressive, both in terms of rate and amplitude.
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Figure 3.20: Simulated reference tracking of temperature on the bottom of column
(top) with input signal (bot).

The temperature in the bottom controller T8 also successfully follows the reference
with a longer settling time of around 800 seconds. We do not see any overshoot in
the temperature, even though it occurs with the duty of reboiler, which is even larger
than with the PI controller simulation. This could also be caused by the influence of
reflux, since with LQR control the inputs can coordinate together. I had to adjust
the controler using the weight matrix of the inputs Qu, where I had to penalize the
reboiler duty with a value of up to 100,000 and the reflux with only a value of 4. This
penalty was necessary because the reflux ranges from 0 - 1.75 and the reflux ranges
from 0 - 100. If we had not adjusted the weights, the duty of reboiler would have been
more aggressive.
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Figure 3.21: Reference tracking of temperature on the bottom of column (top) with
input signal (bot).

In Figure 3.21 the dependence of the temperature at the bottom of the column and
the control action duty of the reboiler applied to a real laboratory column is shown.
The temperature stabilized after 200 seconds from the step change and oscillated
around the setpoint with a small amplitude. Before the LQR controller was activated,
temperature fluctuations were observed due to external factors such as pressure or
ambient temperature changes, but after applying the control, these oscillations are much
lower, which highlights the regulator’s effectiveness. Compared to LQR simulation we
got smaller overshoot and compared to the PI controller, the control action of duty
of reboiler has a smaller overshoot too by 0.4 kW of energy, so the implementation
of LQR can save us the financial resources needed to run the column. In addition,
the temperature T8 reaches the setpoint in a faster time by 75% than with the PI
controller, demonstrating the interaction between the input variables and the efficiency
of LQR in MIMO systems.
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Figure 3.22: Reference tracking of temperature on the top of column (top) with
input signal (bot).

In Figure 3.22 we can see the dependence of the temperature at the top of the column
and the control action of the reflux applied to a real laboratory column. Similar to the
temperature at the bottom of the column, the temperature at the top becomes stable
after approximately 200 seconds from step change. Compared to LQR simulation
undershoot in reflux is higher but compared to PI control the control action of the
reflux is not so aggressive and does not fall down immediately but decreases more
smoothly which may help avoid valve damage.
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Chapter 4

Conclusions

This work has presented a study of the UOP3CC Continuous Distillation Column,
focusing on its operation, modeling, and control.

The modeling was performed using AVEVA process simulation and gPROMS process
builder. An important benefit of using these softwares is the ability to estimate
internal process parameters or variables that cannot be directly measured on the
laboratory column, such as compositions or vapor/liquid flow rates, reflux flow rates,
or duty of condenser. These simulations not only validated the experimental data but
also highlighted the potential of process modeling as a tool for system analysis and
optimization.

The practical implementation of PI controllers for the regulation of temperature in the
top and bottom trays of the column demonstrated the effectiveness of the Skogestad
tuning method in achieving the desired setpoints. The experimental data validated
the performance of the control system, ensuring stable and efficient operation of the
distillation process.

To improve performance a Linear Quadratic Regulator (LQR) was designed since the
distillation column is a multivariable system with multiple manipulated and controlled
variables, the use of LQR was properly due to its ability to handle MIMO systems in a
coordinated way. For unmeasurable states, it was necessary to design a state observer
which allowed for the estimation of states not directly measurable. Compared to PI,
the LQR controller demonstrated smoother control actions and better coordination
between manipulated variables, resulting in improved temperature tracking with
reduced aggressiveness in reflux control, faster settle time, and energy savings. The
overshoot in the duty of reboiler was reduced by 0.4 kW and the settling time at T8
temperature by 75%.

The successful integration of experimental and simulated data highlight the importance
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of combining physical experimentation with modeling and simulation for process
analysis. The results of this thesis provide a foundation for future advances in the
control and modeling of distillation systems.

Future Work
Although the control using a discrete PI regulator and a discrete LQR regulator
provides promising results, there is still a lot of room for experimentation. It is possible
to experiment with the weights in the LQR controller to achieve a smaller overshoot
in the duty of the reboiler and a smoother control action of the reflux. One possible
extension is the implementation of model predictive control, which could offer improved
performance by explicitly handling constraints and predicting future system behavior
over a defined horizon. Its use could lead to improved tracking performance, constraint
satisfaction, and energy savings.



Appendix A

Resumé

Diplomová práca sa venuje návrhu, implementácii a porovnaniu riadiacich stratégií pre
laboratórnu destilačnú kolónu UOP3CC, pričom hlavným cieľom je zabezpečiť stabilnú
a efektívnu reguláciu teplôt v hornej (T1) a dolnej (T8) časti kolóny prostredníctvom
manipulácie s dvoma vstupmi: výkonom varáka a refluxným pomerom. Vzhľadom
na viacvstupovo-výstupový (MIMO) charakter systému, nelinearity a silné prepojenie
medzi premennými, si návrh regulátora vyžaduje dôslednú analýzu systému a vhodné
modelovanie.

Destilácia patrí medzi najrozšírenejšie separačné metódy v chemickom a potravinárskom
priemysle. Je založená na rozdielnej prchavosti zložiek v kvapalnej zmesi, kde dochádza
k separácii komponentov na základe rozdielnych bodov varu. V rektifikačnej kolóne
prebieha táto separácia v protiprúdnom usporiadaní pár-kvapalina, pričom kvapalina
tečie nadol a para stúpa nahor. V ustálenom stave sa medzi jednotlivými stupňami
kolóny vytvárajú rovnovážne podmienky, ktoré vedú k obohacovaniu jednej zložky v
destiláte a druhej v zvyšku.

Presnosť a stabilita teplotného profilu je kľúčová pre kvalitu separácie, preto je návrh
riadiaceho systému nevyhnutný pre optimálne fungovanie kolóny. V priemyselných
podmienkach tvorí spotreba energie na destiláciu značnú časť celkových nákladov, čo
ďalej zvyšuje význam účinnej regulácie.

Pre návrh riadiaceho systému je nevyhnutné pochopiť dynamické správanie procesu. V
práci bola preto vykonaná experimentálna identifikácia dynamiky reálnej kolóny. Po
krokových zmenách na vstupoch (zmena výkonu varáka a refluxu) boli zaznamenané
výstupné teploty a následne spracované v prostredí MATLAB. Pomocou metódy
subspace identifikácie (N4SID) bol odvodený lineárny stavovo-priestorový model so
štyrmi stavmi, dvoma vstupmi a dvoma výstupmi. Tento model sa neskôr využil
ako základ pre návrh PI a LQR regulátora. Presnosť modelu bola overená výpočtom
metriky RMSE (Root Mean Square Error), ktorá potvrdila, že odvodený model je
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dostatočne presný na návrh regulátora. Model bol tiež implementovaný do Simulinku,
čím sa vytvoril základ pre testovanie riadiacich algoritmov.

Ako prvý bol navrhnutý klasický PI (proporcionálno-integračný) regulátor, ktorý patrí
medzi najrozšírenejšie typy riadenia v priemysle. PI regulátor koriguje chybu medzi
žiadanou a skutočnou hodnotou výstupu kombináciou proporcionálnej a integračnej
akcie. Na rozdiel od PID regulátora neobsahuje deriváciu, čím sa znižuje náchylnosť
na šum v signále.

Ladenie PI regulátorov bolo vykonané pomocou Skogestadovej metódy, ktorá umožňuje
rýchly výpočet PI parametrov na základe prenosovej funkcie systému. V práci boli
získané prenosové funkcie medzi výstupmi (T1), (T8) a vstupmi, ktoré slúžili ako
podklad pre výpočet Kp a Ti. Výsledky simulácií ukázali, že PI regulácia je schopná
stabilizovať systém, avšak vykazuje nadmerné zásahy najmä v oblasti refluxu a prekmyt
vo výkone varáka. Rýchle zmeny riadiacich signálov by mohli v reálnych podmienkach
poškodzovať technické komponenty (napr. regulačné ventily) alebo čo sa týka výkonu
varáka zvyšovať energetické náklady .

Z dôvodu prepojenosti veličín a charakteru systému ako MIMO bola navrhnutá
pokročilejšia riadiaca stratégia typu LQR (Linear Quadratic Regulator). LQR pred-
stavuje optimalizačný prístup ku spätnej väzbe, pri ktorom sa minimalizuje kvadrat-
ická nákladová funkcia. V práci bolo toto riadenie rozšírené o integrálny člen pre
zabezpečenie nulovej trvalej regulačnej odchýlky. Po rozšírení stavového opisu bol
návrh regulátora realizovaný v prostredí MATLAB pomocou funkcie dlqr.

LQR umožňuje koordinované riadenie oboch vstupov súčasne – napríklad v prípade,
že reboiler má príliš silný vplyv, môže LQR automaticky preferovať menej agresívny
zásah cez reflux. Práve táto koordinácia je výhodou oproti nezávislým PI slučkám.

Vzhľadom na to, že nie všetky stavy modelu sú merateľné, bol súčasťou návrhu aj
diskrétny stavový pozorovateľ. Ten umožňuje odhad nepozorovateľných veličín na
základe známeho modelu a meraných výstupov. V práci bol navrhnutý pomocou
funkcie dlqe a jeho výkonnosť bola overená porovnaním skutočných a odhadovaných
stavov. Pozorovateľ zabezpečuje robustnosť voči šumu a modelovým nepresnostiam a
je nevyhnutnou súčasťou stavovej spätnej väzby.

Simulačné výsledky ukazujú, že LQR regulácia poskytuje plynulejšie a efektívnejšie
riadenie ako PI regulátory. Zatiaľ čo PI regulátor spôsoboval oscilácie a skokové
zmeny v riadiacich signáloch, LQR umožňoval hladké prechody s minimálnym prek-
mitom. Významným prínosom bolo zníženie agresivity v oblasti refluxu a efektívnejšia
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spolupráca oboch vstupov, čo spôsobilo aj menší prekmit vo výkone varáka. Správnou
voľbou váhovacích matíc bolo možné reguláciu prispôsobiť požiadavkám na technické
obmedzenia systému.

Táto práca dokazuje, že aj v laboratórnych podmienkach je možné efektívne aplikovať
pokročilé riadiace algoritmy, akými sú stavové regulátory. Okrem klasického PI prístupu
bol úspešne implementovaný a otestovaný LQR regulátor so stavovým pozorovateľom.
Simulácie ukázali, že pri správne navrhnutom modeli možno dosiahnuť výrazné zlepše-
nie regulácie, zníženie energetických nákladov a zvýšenie stability systému. Práca
predstavuje spojenie teoretických poznatkov z oblasti riadenia, modelovania a optimal-
izácie s praktickou aplikáciou v reálnom procese a poskytuje cenné základy pre ďalší
vývoj riadiacich systémov pre separačné procesy.
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