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Abstract

The presented work deals with the control of a diesel engine, equipped with a variable

turbocharger coupled with an exhaust gas recirculation valve. In contrast to existing

control approaches in the literature, nonlinear model predictive control (NMPC) is used

to control a diesel engine. The reason for applying NMPC comes from the ability to

consider directly constraints of the control problem and to use a nonlinear model to improve

performace. The performance of NMPC controller is compared with a linear-quadratic

regulator (LQR) and a controller based on the input-output linearization method. With

this in mind, the goal of the diploma thesis is to show that NMPC can be considered as a

benchmark for other control methods.



Abstrakt

Diplomová práca sa zaoberá problémom riadenia vznetového motora vybaveného tur-

bokompresorom s variabilnou geometriou lopatiek a ventilom na recirkuláciou časti spálenej

zmesi metódou nelineárneho predikt́ıvneho riadenia. Nelineárne predikt́ıvne riadenie je

optimálne založený spôsob riadenia, ktorý priamo využ́ıva model vznetového motora a

zároveň umožnuje prihliadať na pracovné obmedzenia. Ciělom diplomovej práce je prezen-

tovať možné optimálne riešenia pre vznetový motor, ktoré možno považovať ako určité

meradlo pre ostatné metódy. S týmto zámerov sa výsledky porovnávajú s optimálnym

kvadraticko-lineárnym riadeńım a metódou založenou na vstupno-výstupnej linearizácii.
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Chapter 1

Introduction

The main objective in control of diesel engines is to provide the required engine torque

with minimal fuel consumption under the constraint of meeting the given exhaust gas and

noise emission laws [22]. While the latter requirement becomes stronger, an emissions

aftertreatment is necessary.

Many strategies have been proposed, see e.g. [21] for a survey, how to deal with this

problem. One solution is to introduce an exhaust gas recirculation (EGR) which allows

to reduce the formation of emissions and a variable geometry turbocharger (VGT) which

is used to provide the demanded engine torque. As this solution results in emissions

decrease, it creates a strongly coupled nonlinear system. Higher performance benefit can

be achieved when the coupled nature between EGR and VGT can be considered in the

controller synthesis, as reported by [36]. One would therefore attempt to consider this

coupling in the control loop.

The main problems involved in designing a suitable control strategy are the nonlinear mul-

tivariable nature of the problem and the presence of constraints on inputs and process vari-

ables [17, 21]. Various methods have been applied to the control diesel engines. Examples

are gain scheduled parameter-varying control [21, 20], robust H∞ control [36], linear model

predictive control [32], backstepping based control [16], nonlinear control Lyapunov func-

tion based control [18, 19], adaptive control approaches [3], and nonlinear passivity based

control [24, 23]. All these approaches share one common property, namely they can not
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directly consider constraints. A possibility to consider constraints in the control problem

is to choose nonlinear model predictive control (NMPC). NMPC is a especially suited for

the control of nonlinear systems subject to input and state constraints [1, 2, 27, 29, 30, 12].

The basic idea of NMPC is to solve at each time instant a finite horizon optimal control

problem for the current state. The first part of the resulting open loop optimal control

input is applied to the system until the next sampling instant, at which the finite horizon

optimal control problem is solved again for the new state. Traditional application areas for

NMPC are limited to control problems with rather slow dynamics, e.g. in process control

[12]. This is due to the computational load which is assigned with solving the nonlinear

and nonconvex optimization problem at each sampling instant.

Therefore, the purpose of this work is twofold. First to study the achievable performance

by applying NMPC for a diesel engine control. This may be considered as a benchmark

for other control methods. Second, to consider diesel engine control also as the benchmark

problem for NMPC itself, motivated by the long term goal to apply NMPC to control

problems with fast dynamics. As it has been shown on gasoline engine in [25], NMPC

strategy applied on the diesel engine may bring expected benefit.

The remainder of the diploma thesis is structured as follows: In Chapter 2 the overall

control problem of a diesel engine is introduced. A model of a diesel engine with exhaust

gas recirculation and variable geometry turbocharger is described in Chapter 3. In Chapter

4 the basic idea of NMPC is given. Firstly, in Chapter 5 NMPC is applied to control a

diesel engine with state feedback and secondly, in Chapter 6 with output feedback. Finally,

conclusions and outlook are given in Chapter 7.



Chapter 2

Control Problem

The structure of a diesel engine is shortly presented in this chapter. In particular, the func-

tions of an exhaust gas recirculation and a variable geometry turbocharger are explained

and consequently the control problem is formulated.

2.1 Principle of EGR and VGT in Diesel Engine

A simplified drawing of the diesel engine is depicted in Figure 2.1. For more details about

the structure of the engine and for further explanations the reader is referenced to [33, 17,

22, 21, 19]. As it can be seen from Figure 2.1 modern diesel engines are equipped with

an exhaust gas recirculation (EGR) valve and a variable geometry turbocharger (VGT).

The EGR valve connects the exhaust manifold with the intake manifold. By this way the

exhaust gas mass flow can be partially recirculated and the resulting mixture of the flows

decreases the combustion temperature and consequently the formation of NOx. Hence the

required enviromental benefit is achieved.

The variable geometry turbocharger (VGT) consists of a compressor and a turbine attached

at the same shaft. Higher compressed air is supplied into the cylinders where this larger

mass of air can be burnt with larger amount of fuel and produces therefore a larger torque.

The turbine with variable geometry vanes uses the energy of exhaust gases to drive the

compressor. Through VGT the transferred power can be controlled.

3



2.2 Control Problem Formulation 4

Figure 2.1: A simplified drawing of the turbocharged diesel engine.

2.2 Control Problem Formulation

The objective is to maintain the desired torque while the generation of emissions is mini-

mized. This can be done with cooperating the EGR valve and VGT such that performance

variables, i.e. burned gas fraction F1 and air-fuel ratio AFR, reach their prespecified set-

points. The reduction of harmful nitrogenoxids is achieved with high dilution of the air

charge that corresponds to large values of F1 in the intake manifold [33] while lean AFR

lowers the smoke generation through transients.

As described in [33], setpoints for these performance variables are determined via static

optimization and their results are stored in static engine maps. Important is, that the

setpoints for the performance variables F1 and AFR can be precalculated into setpoints

for the system state and these values should be tracked with the controller.

According to [22] there are three control loops to be considered: (i) fuel path, (ii) air path

and (iii) the EGR path. The air path can be controlled using the turbocharger while the

EGR path falls into EGR valve governor. The fuel path is not considered in this simulation

study because it is assumed as a known external signal. A scheme of these control loops is
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shown in Figure 2.2.

The motivation to use NMPC to control the airpath of a diesel engine comes from its abil-

ity to consider constraints in the control problem. The physical restrictions posed for this

control problem are actuator limitations, which can vary only between fully open and fully

closed, and operational limits due to safety reasons. Classic control approaches aid the ma-

nipulated signals with saturation blocks and parameters for the controller are selected after

time consuming tuning. Moreover, operational limits cannot be included in these classic

control techniques. Another advantage to apply NMPC is that the EGR/VGT coupling is

supplied via diesel engine model and thus it may improve the control performance.

Therefore the purpose of this work is to explore the achievable performance of NMPC and

to classify it as a benchmark for other control methods. For the comparison two controller

design techniques, namely the LQR design and the IO linearization based controller, are

used.

Figure 2.2: Two main control loops, the airpath (controlled via VGT) and the EGR path.
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2.3 Signal Overview

From the control point of view it is easier to formulate a problem, when the engine is

considered as a system with signal definition. Hence, it is necessary to introduce some

variables. In the considered diesel engine are located two actuators: the EGR valve and

the VGT. The flow of the exhaust gases into the intake manifold can be controlled through

the EGR valve. The valve acts between two borders – fully open and fully closed and

the position is denoted by a variable xegr, which ranges from 0 (completely open) to 100%

(completely closed). Similarly, actuator situated in the VGT has the same range of validity.

It corresponds to the position of a variable noted as xvgt which varies between 0 and 100%.

Figure 2.3: Signal routing in the diesel engine.

External inputs represents the engine speed N and the fuelling rate Wf . As these inputs

can be measured they are treated as measurable disturbances. Furthermore, the measured

outputs of the diesel engines are the pressure in the intake manifold p1 and the mass flow

through the compressor Wc. Variables which specify the engine performance are the burned

gas fraction F1, the air-fuel ratio AFR and the engine torque Tq. The burned gas fraction
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is the ratio between the density of the burned gas to the total density of burned gas and

air in the intake manifold. It can be written as the following flow fraction

F1 =
Wegr

Wegr + Wc
. (2.1)

Consequently, the air-fuel ratio equals

AFR = (1 − F1)
kep1

Wf

. (2.2)

The signals are depicted at Fig. 2.3 and relations between them will be explained in the

next chapter. After short overview of the control problem, the emphasise in the next

chapter will be given specifically to a simplified diesel engine model. This model will be

then used for NMPC design in the sequel.



Chapter 3

Model of a Diesel Engine

In this chapter a simplified version of a diesel engine model is introduced. The model was

proposed by [18] and it is derived from ideal gas law, conservation laws of mass and energy,

and some experimental maps. Furthermore, the model is transformed to a normalized form

which is used in the controller design in the subsequent chapters.

3.1 Physical Model

Applying the mass and energy balances between intake and exhaust manifolds, turbocharger

dynamics, actuator and sensor dynamics, it is possible to derive two models of the diesel

engine. The first one is of the seventh-order, exploited for instance in [4, 33]. The second

one, proposed in [18], is of the third-order. The third order model can be derived from

the seventh-order model by approximating the turbocharger dynamics as a first order lag.

As shown in [21], this simplified model can capture the dynamics of the system at least

in the low and medium speed-load region. Thus, to make the controller design easier, the

third-order model is adopted and working regions will be selected according to its validity.

The model comprises of three state variables, i.e. the intake manifold pressure p1, the

exhaust manifold pressure p2 and the compressor power Pc. Equations are obtained by

differentiating the ideal gas law, while the turbocharger dynamics have been approximated

by the power transfer with time constant τ . Before introducing the equations, some vari-

8



3.1 Physical Model 9

ables are defined: V1, V2 denote the volumes of the intake and exhaust manifolds, T1, T2

the temperatures in the intake and exhaust manifolds, Ta, pa the ambient temperature

and the ambient pressure, Vd the total displacement volume, Pt the turbine power, Wvgt

the turbine mass flow rate, Wegr the EGR mass flow rate, ηc, ηt the compressor and the

turbine isentropic efficiencies, ηm the turbocharger mechanical efficiency, ηv the volumetric

efficiency, cp, cv the specific heats at constant pressure and volume, and R the specific gas

constant. Hence, the model of the diesel engine is given by

dp1

dt
=

RT1

V1
(Wc + Wegr − kep1) (3.1)

dp2

dt
=

RT2

V2
(kep1 − Wegr − Wvgt + Wf) (3.2)

dPc

dt
=

1

τ
(−Pc + ηmPt) (3.3)

with some nonzero initial conditions where the coefficient ke is the engine pumping rate

which can be approximated by

ke =
ηv

120

VDN

T1R
. (3.4)

The mass flow Wc through the compressor depends on the compressor power and pressures

and is given by

Wc =
ηc

cpTa

Pc
(

p1

pa

)µ

− 1
(3.5)

where µ = cp−cv

cp

. To model the mass flow through the EGR valve standard orifice equations

are used, as described in [21]:

Wegr =















Aegr(xegr)
p2√
RT2

√

2p1

p2

(

1 − p1

p2

)

if p2 ≥ p1

−Aegr(xegr)
p2√
RT2

√

2p2

p1

(

1 − p2

p1

)

if p1 < p2.

(3.6)

A this point is important to note that if p1 < p2 the mass flow is reverted. This change

is indicated by sign change and by inverting the pressure ratio. In equation (3.6) Aegr

denotes the effective area of the EGR valve which is a quadratic function of the normalized

position xegr ∈ [0, 100]%, i.e.

Aegr = −1.5 10−8 x2
egr + 3.3 10−6 xegr. (3.7)
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In order to avoid that the function (3.7) enters equations (3.1), (3.2) directly, the variable

Aegr is considered as a manipulated input1. According to [21] the turbine flow Wvgt is given

by

Wvgt = (axvgt + b)
p2

pref

√

Tref

T2

√

2
pa

p2

(

1 − pa

p2

) [

c

(

p2

pa
− 1

)

+ d

]

, (3.8)

where xvgt is the position of VGT actuator, pref the reference pressure, Tref the reference

temperature and a = −13.62 10−4 m2, b = 0.176 m2, c = 0.4 Pa sm−1, d = 0.6 Pa sm−1

are constant parameters. To simplify, the first part of equation (3.8) is replaced by a new

variable noted “effective area of the VGT”, and it is defined by

Avgt = axvgt + b. (3.9)

As in the EGR case, this variable plays the role of a new manipulated input. Assuming

constant turbine efficiency the turbine power is related to its mass flow via the equation

Pt = WvgtcpT2ηt

[

1 −
(

pa

p2

)µ]

. (3.10)

The parameters for the given mathematical model are summarized in Tab. 3.1. In the

model one more situation may occur. As the pressures p1 or p2 will be narrowing the

ambient pressure p1 → pa or p2 → pa the flows in state equations (3.1), (3.2), (3.3) may

become infinite and this is not possible in reality. Therefore, to overcome this obstacle, the

pressures are restricted to move in the intervals

p1 ∈ [102, 155] kPa (3.11)

p2 ∈ [102, 175] kPa, (3.12)

where the upper borders were chosen such that the engine will be protected from overboost2.

Moreover, as shown in [18], it can be shown that the set Ω := {(p1, p2, Pc) : p1 > pa, p2 >

pa, Pc > 0} is invariant, that is, every trajectory starting in Ω stays in Ω for all t. The

1Due to the monotony property of this function, it can be inverted and precalculated directly onto xegr

signal.
2The upper borders were chosen without prior knowledge of the engine, but keeping in mind, that there

exist some upper bound – this is usually specified by the producer.
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parameter value dimension

ηc 0.61 -

ηt 0.76 -

ηv 0.87 -

ηm 0.98 -

τ 0.11 s

T1 313 K

T2 509 K

cp 1.0144 kJ kg−1 K−1

cv 0.7274 kJ kg−1 K−1

Vd 0.002 m3

V1 0.006 m3

V2 0.001 m3

R 0.287 kJ kg−1 K−1

Ta 298 K

Tref 298 K

pa 101.3 kPa

pref 101.3 kPa

Table 3.1: Parameter values.
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bounds imposed on the manipulated inputs are precalculated from the limits of EGR and

VGT valve position and are given by

Aegr ∈ [0, 1.8 10−4] m2 (3.13)

Avgt ∈ [0.04, 0.176] m2. (3.14)

From the practical point of view actuators are always limited with slew rate constraints.

These restrictions pose the constraints

|ẋegr| ≤ [0, 100]%/s (3.15)

|ẋvgt| ≤ [0, 100]%/s (3.16)

to the control problem and are introduced with a purpose to approach the simulation

results closer to practice3. The listed constraints on the states (3.11), (3.12) and inputs

(3.13), (3.14) and slew rate limits (3.15), (3.16) will serve for NMPC formulation problem

in the next chapter.

3.2 Control Model

From the numerical and control point of view, it is suitable, when the variables vary in

some prespecified regions. This property is achieved via change of coordinates, when the

desired steady state is shifted to the origin. In other words, new variables are defined by

x1 =
p1 − ps

1

ps
1

(3.17)

x2 =
p2 − ps

2

ps
2

(3.18)

x3 =
Pc − P s

c

P s
c

(3.19)

u1 =
Aegr − As

egr

As
egr

(3.20)

u2 =
Avgt − As

vgt

As
vgt

(3.21)

3The slew rate limits were choses deliberately slow such that they need to be respected in the control.
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and the model (3.1), (3.2), (3.3) is rewritten into

ẋ1 =
RT1

ps
1V1

ηc

cpTa

P s
c (1 + x3)

(

ps

1

pa

)µ

(1 + x1)µ − 1

+
T1

ps
1V1

√

R

T2
Ψ(x1, x2)A

s
egr(1 + u1) −

ηv

120

Vd

V1
N(1 + x1) (3.22)

ẋ2 =
ηv

120

T2

T1

Vd

V2

ps
1

ps
2

N(1 + x1) −
√

RT2

ps
2V2

Ψ(x1, x2)A
s
egr(1 + u1)

− R

ps
2prefV2

√

2TrefT2

√

pap
s
2(1 + x2) − p2

a

×
(

c
ps

2

pa
(1 + x2) − c + d

)

As
vgt(1 + u2) +

RT2

ps
2V2

Wf (3.23)

ẋ3 = −1 + x3

τ
+

ηmηtcp

τP s
c pref

[

1 −
(

pa

ps
2(1 + x2)

)µ]
√

2TrefT2

×
√

paps
2(1 + x2) − p2

a

(

c
ps

2

pa
(1 + x2) − c + d

)

As
vgt(1 + u2) (3.24)

with zero initial conditions where the function Ψ(x1, x2) is given by

Ψ(x1, x2) =











√

2ps
1p

s
2(1 + x1)(1 + x2) − 2(ps

1)
2(1 + x1)2 if x2 ≥ ps

1
−ps

2
+ps

1
x1

ps

2

−
√

2ps
1p

s
2(1 + x1)(1 + x2) − 2(ps

2)
2(1 + x2)2 otherwise.

(3.25)

Note that the function (3.25) contains two parts for two different regions and in the closed

loop simulation switching between these two terms may cause slight peaks in the transient.

To overcome this problem a sigmoidal function is deployed

f1(σ) =
k1

1 + e−k2σ
− k1

2
(3.26)

with two parameters k1 = 17.7578 kPa and k2 = 0.0435 kPa−2 which will cover the critical

transient. The function argument is given by

σ = 2ps
1p

s
2(1 + x1)(1 + x2) − 2(ps

1)
2(1 + x1)

2. (3.27)

The transient is depicted at the Fig. 3.1 where the borders for the smooth sector were

chosen to be as σ = ±50 kPa2. Such approximation of the EGR mass flow does not

conspicuously affect the simulation results because the engine stays the major time outside
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this critical region. The main reason for the approximation is to avoid possible numerical

problems.

Introduced control model is important to design NMPC. To simplify the notations in the

next content, the model will be used in a condensed form. But before applying NMPC

scheme to a diesel engine, some theoretic background is given in the next chapter.

−80 −50 −25 0 25 50 80
−10

−8

−6

−4

−2

0

2

4

6

8

10

σ  (kPa2)

f 1(σ
) 

(k
P

a)

true flow
approximation

Figure 3.1: Approximation the EGR mass flow with sigmoidal function.



Chapter 4

Nonlinear Model Predictive Control

This chapter presents the NMPC basics and a particular interest is focused on the quasi-

infinite horizon NMPC scheme. The scheme is explained from two theoretical views in

more details. Implementation issues are discussed at the end of the chapter.

4.1 NMPC Setup

Consider the time-invariant nonlinear continuous system

ẋ(t) = f (x(t), u(t)) (4.1)

where the state vector is x ∈ R
n, the input vector is u ∈ R

m, satisfying the condition

f (0, 0) = 0. The input and state vectors are subjected to the constraints

x ∈ X , X := {xmin ≤ x ≤ xmax} (4.2)

u ∈ U , U := {umin ≤ u ≤ umax}. (4.3)

NMPC solves on-line a finite horizon open loop control problem based upon the predictions

of the system dynamics (4.1) whereas the constraints (4.2), (4.3) are taken into account as

boundary conditions. This problem is solved within each sampling interval and only the

first part from the optimized control trajectory is directly applied into the process. Then,

based upon the new measurements, the optimization problem is updated and precalculated

with new initial conditions.

15



4.2 Quasi-Infinite Horizon NMPC Scheme 16

Practically, there is always a difference between the predicted model-based trajectories

and real behaviour of the plant. Thus, to clearly distinguish between these aspects, in

the following the predicted trajectories will be denoted with a bar. Starting from these

notations, the resulting open-loop optimization problem can be formulated as follows:

min
ū(·)

J =

∫ t+Tp

t

F (x̄(τ), ū(τ))dτ + G(x̄(t + Tp)) (4.4)

subject to: ˙̄x = f(x̄(τ), ū(τ)), x̄(t) = x(t)

ū(τ) ∈ U , ∀τ ∈ [t, t + Tc]

ū(τ) = ū(τ + Tc), ∀τ ∈ [t + Tc, t + Tp]

x̄(τ) ∈ X , ∀τ ∈ [t, t + Tp]

x̄(t + Tp) ∈ E

for a piecewise constant control signal ū(·) with control horizon Tc and prediction horizon

Tp. The functions F , G can be specified owing to control performance or arising from other

considerations.

Stated NMPC formulation does not automatically explain the questions of nominal sta-

bility of the closed-loop, robustness and the output feedback. These issues have been

resolved by a popular NMPC strategy which guarantees stability and does not require too

much computational load and it is called the quasi-infinite horizon NMPC. Related theory

background will be briefly reviewed in the next section.

4.2 Quasi-Infinite Horizon NMPC Scheme

The underlying idea of quasi-infinite horizon NMPC scheme is to approximate the infinite

horizon optimal control with a finite one. It is done with two ingredients: a terminal

penalty term G(x̄(t + Tp)) and a terminal region E =
{

x̄ ∈ Rn : x̄T P x̄ ≤ α
}

. In other

words, the terminal penalty gives an upper bound for the infinite control problem (therefore

quasi-infinite horizon) and the terminal region E forces the predicted state to reach that

region at the end of the prediction horizon.
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Mathematicaly said, for given positive-definite weighing matrices Q ∈ R
n×n, R ∈ R

m×m

and terminal penalty symmetric matrix P ∈ R
n×n, the cost function1 to be minimized is

given by

J =

∫ t+Tp

t

(

∥

∥

∥x̄(τ)

∥

∥

∥

2

Q
+

∥

∥

∥ū(τ)

∥

∥

∥

2

R

)

dτ +
∥

∥

∥x̄(t + Tp)

∥

∥

∥

2

P
(4.5)

subject to system dynamics (4.1), input/state constraints (4.2), (4.3) and a terminal in-

equality costraint

x̄(t + Tp)
T P x̄(t + Tp) ≤ α (4.6)

for some α ≥ 0. The combination of Q, R, P , α is determined off-line following the

quasi-infinity pattern, originally described in [7] which ensures stability and feasibility.

This procedure can be summarized into four steps:

Step 1 Linearize the system (4.1) to get the Jacobian matrices A = ∂f

∂x
(0, 0), B =

∂f

∂u
(0, 0), check the controllability and obtain a linear state feedback control law

ϕ(x) = Kx.

Step 2 Choose a constant κ ∈ [0,−λmax(Ak)] for Ak = A+BK and solve the Lyapunov

function

(Ak + κI)T P + P (Ak + κI) = −Q − KT RK (4.7)

which yields a positive definite matrix P .

Step 3 Solve the optimization problem

max
x

α1 = xT Px (4.8)

such that Kx ∈ U , x ∈ X which specifies the region

E1 =
{

x ∈ R
n : xT Px ≤ α1

}

. (4.9)

Step 4 Find the largest possible α ∈ (0, α1], determining the region

E =
{

x ∈ R
n : xT Px ≤ α

}

. (4.10)

1The term
∥

∥

∥w

∥

∥

∥

2

S
= wT Sw denotes a quadratic norm of vector w for given positive definite matrix S.
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and reducing from α1 until the objective function is negative

max
x

{

xT P ξ(x) − κxT Px
}

s.t. xT Px ≤ α (4.11)

where ξ(x) = f (x, Kx)−Akx is the difference between the nonlinear and linearized

model.

The principle of NMPC is shortly presented here. Further discussion about NMPC problem

can be found in [13, 15] and a thorough survey from the past developments with future

needs is given for example in [28]. For a detailed view regarding state feedback, output

feedback, stability, optimality, the reader is referenced to [14, 27], and references therein.

4.3 Computation of the Terminal Region

The size of the terminal region depends strongly on the system nonlinearity. As it di-

rectly affects the feasibility condition, one would therefore attempt to calculate the largest

terminal region. In particular, it is very difficult, if not impossible, to find the largest

terminal region for a given nonlinear system [7]. From the computatioal point of view,

the quasi-infinite pattern leads to a semi-infinite optimization problem which is not easy

to solve. The main unresolved difficulty at this point is the determination of the region E
which appears to require that some global test is satisfied which again may not be trivial

except for academic examples [28].

Another way, proposed in [9], offers the determination of the terminal region by the use of

linear approximation. The basic idea is to approximate the nonlinear system with a linear

differential inclusion (LDI) beyond the prediction horizon. The algorithm results in a LMI

optimization problem. Gained advantages are in including the input/state constraints

into the problem and moreover, the well-defined convex optimization problem yields global

solution. However, as the process is aided with LDI, this may cause some conservativeness.

As this aspect depends on the nonlinearity degree, in the further context the proposed
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approach will be investigated on the diesel engine model to assure that the terminal region

was yielded properly. Consider the nonlinear system (4.1) and define A(t) = ∂f

∂x
, B(t) = ∂f

∂u

for all t ∈ [t + Tp,∞). Consequently for a defined set M ⊂ R
n+m the LDI system is given

by

Θ(M) :=







F (t),





x

u



 ∈ M, t ∈ [t + Tp,∞)







(4.12)

where F (t) = [A(t) B(t)]. State and input constraints are assumed to be symmetric and

the constraint set is specified as

Γ := {x ∈ R
n : (hi + liK)x ≤ 1, i = 1, . . . , r} (4.13)

where hi, li denotes the linear box constraints imposed on the states/inputs and r is the

number of constraints. The LMI procedure is then as follows:

Step 1 Choose the set Γ with symmetric constraints as in (4.13) such that the size of this

region will be considered as the feasible region for the LMI problem2.

Step 2 Approximate the process (4.1) with LDI (4.12) which is subjected to the set Γ.

Step 3 Determine the convex hull CoΘ(Γ), given as

CoΘ(Γ) :=



























F (t) ∈ R
n×(n+m) : F (t) =

Ne
∑

i=1

βiF i =

Ne
∑

i=1

βi [Ai Bi]

βi ≥ 0,
Ne
∑

i=1

βi = 1, t ∈ [t + Tp,∞)



























(4.14)

where F i = [Ai Bi] are the extreme matrices of the linear approximation. Ne is the

number of extreme combinations of F .

Step 4 Solve the LMI optimisation problem

max
α,W1α,W2α

log det(W 1α) (4.15)

s. t. W 1α > 0, α > 0

2If the set is too large, the LMI problem is infeasible, else if it is too small, also the terminal region is

going to be small. Furthermore, this selection indicates the region of validity of LDI approximation.
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with conditions










−F iW
T
α − W αF T

i

[

W 1αQ1/2 W T
2α

]





Q1/2W 1α

W 2α









αI 0

0 αR−1















≥ 0, i = 1, . . . , Ne (4.16)





1 hiW 1α + liW 2α

(hiW 1α + liW 2α)T W 1α



 ≥ 0, i = 1, . . . , r (4.17)

where W α = [W 1α W T
2α].

Step 5 Determine the terminal matrix P from

P = αW−1
1α (4.18)

and the state feedback gain

K = W 2αW−1
1α . (4.19)

while α is yielded directly from the optimization problem.

The LMI approach to quasi-infinite horizon NMPC scheme is presented in this section. For

detailed description the reader is referenced to original papers [8, 9].

4.4 NMPC Implementation

Further discussions emerge about NMPC optimization strategies, see for instance a survey

in [5]. Many of them use direct solution methods using a finite parametrization of control

inputs, states and constraints. In this category falls also called simultaneous strategy

which discretises the control and state variables using polynomials and transforms the

problem into large nonlinear problem (NLP). In this work the DYNOPT optimization

package [10] is employed. The underlying principle of this code is the transformation

using orthogonal collocation on finite elements method and hence total discretisation. The

routine is developed under MATLAB enviroment and uses fmincon function provided by
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Optimization Toolbox to solve a specially tailored dynamic optimization problem. The

DYNOPT code solves the following general optimal control problem for t ∈ [t0, tf ]:

min
u(t)

{G(x(tf ), tf)} (4.20)

subject to

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0

h(t, x(t), u(t)) = 0

g(t, x(t), u(t)) ≤ 0

xlb(t) ≤ x(t) ≤ xub(t)

ulb(t) ≤ u(t) ≤ uub(t)

where h is an equality constraint, g is an inequality constraint, xlb(t), xub(t) are state

constraints, and ulb(t), uub(t) are control contraints.

Furthermore, in order to speed up the optimizer for NMPC implementation, a non-equidistant

partitioning of the prediction horizon is used. The decomposition is based on a geometric

sequence such that the length of first subinterval equals the sampling time and the sum of

all subintervals equals the prediction length.



Chapter 5

State Feedback NMPC applied to a

Diesel Engine

This chapter describes the test scenario for the diesel engine and proceeds into details of

NMPC design. Assuming that all state are available for control purposes, the diesel engine

is controlled firstly without consideration of slew rate constraints and secondly with slew

rate constraints. Results are shown respectively in subsequent sections.

5.1 Test Scenario

To obtain setpoints, the derivatives in (3.1), (3.2) and (3.3) are set equal to zero and solved

using MATLAB function fsolve. The test scenario is considered as a sequence of setpoint

changes. It is expected that the constraints (3.13), (3.14) become active through transients

because the selected setpoints are close to the allowable bounds. The Table 5.1 summarizes

the setpoint values.

The objective of the control design is to drive the system (3.1), (3.2), (3.3) between selected

setpoints (5.1) such that the input and state constraints will be satisfied. In this scenario

is assumed that no noise enters the process and therefore the nominal performance is in-

vestigated. Moreover, the computational delays are neglected. Simulations will be divided

into a serie where the results presentation has the following sequence:

22
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variable setpoint 1 setpoint 2 setpoint 3

xegr [%] 12.87 72.14 3.07

xvgt [%] 70 10 86

Aegr [m2] 0.4 10−4 1.6 10−4 0.1 10−4

Avgt [m2] 0.0807 0.1624 0.0589

Wf [kg h−1] 4 6 5

N [rpm] 1900 2100 2000

p1 [kPa] 123.17 107.44 146.86

p2 [kPa] 131.37 108.97 171.59

Pc [W] 932.0 239.6 2480.8

Table 5.1: Setpoint values.

1. State feedback without considering slew rate limits

2. State feedback with slew rate constraints

3. Output feedback with slew rate constraints.

The engine behaviour will be tested within three synthetise techniques:

1. LQR design

2. IO linearisation

3. NMPC.

In order to present clear results and to overcome the density of the lines due to the fast

dynamics Fig. 5.1 shows the desired trajectories for two measured outputs. These setpoint

lines will be omitted in the figures.

5.2 NMPC Design

To avoid numerical problems with the terminal region calculation and to obtain satisfactory

results, a combination with LMI approach is deployed. The quasi-infinite pattern is used
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Figure 5.1: Test scenario.

until the step three and from that point the LMI procedure is applied such that α = α1

is fixed in the optimization problem (4.15). Fixing α in the LMI optimization problem

reduces the conservativeness of the LDI approximation while α1 ensures the maximum

volume of the terminal region (4.9). Results obtained by this way will be depicted at the

end of this section to check the validity.

5.2.1 NMPC Design without Slew Rate Constraints

The stage cost for NMPC design is chosen to be

Q = diag(1 1 1), R = diag(1 1). (5.1)

For the diesel engine model (3.22), (3.23), (3.24) the quasi-infinite horizon NMPC pattern is

applied until the third step. This procedure is repeated for each setpoint and the following

constants are obtained

α1 = 10.9579, α2 = 0.2699, α3 = 0.0913, (5.2)
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which specify the region E1 in (4.9). Afterwards it is proceeded with the LMI approach.

Firstly, the constraint set (4.13) is selected. For this purpose a symmetric constraints based

upon the nearest border is selected, i.e.

xb = 0.9 min (|xmin|, |xmax|) (5.3)

ub = min (|umin|, |umax|) (5.4)

where xb, ub are the imposed bounds on the states and inputs, respectively. Secondly the

process (3.22), (3.23), (3.24) is transformed into LDI (4.12). The convex hull is determined

with Ne = 2n+m−8 combinations of extremes matrices where the number 8 denotes omitted

cases where p1max > p2min because this is practically not true. For given weighing matrices

(5.1) the LMI problem (4.15) is solved via the YALMIP routine [26] with fixed constants

(5.2) and the following matrices are obtained

P 1 =











485.0356 71.9058 −29.6126

71.9058 282.2638 −12.8852

−29.6126 −12.8852 78.9288











, P 2 =











1191.380 293.252 −24.989

293.252 377.284 −18.302

−24.989 −18.302 89.282











,

P 3 =











36.6920 −0.0002 −0.0000

−0.0002 284.8366 −0.0001

−0.0000 −0.0001 2.5724











. (5.5)

The penalty matrices (5.5) will be used for NMPC problem and as depicted in Figures

5.2, 5.3, 5.4 the volume of such achieved ellipsoids exactly fills the space between the state

borders (5.3). Thus it may be concluded that the regions are calculated properly. In the

online simulation the prediction horizons were chosen

Tp = 0.9 s, Tc = 0.9 s. (5.6)

5.2.2 NMPC Design with Slew Rate Constraints

To be able to include slew rate constraints in NMPC, the control problem needs to be

modified. A common way is to augment the plant with virtual inputs, i.e. to define

v = [u̇1(t) u̇2(t)]
T (5.7)
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Figure 5.2: Terminal region for the setpoint 1.

Figure 5.3: Terminal region for the setpoint 2.
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Figure 5.4: Terminal region for the setpoint 3.

and transform the model (3.22), (3.23), (3.24) into a larger one where the previous state

vector contains now five state variables

z = [x1 x2 x3 u1 u2]
T . (5.8)

The new augmented system becomes

ż = f̃ (z, v), z(0) = 0 (5.9)

which satisfies the condition f̃(0, 0) = 0. In the model (5.9) the slew rate constraints can

be viewed as bounds for the virtual inputs whilst the previous input limits (3.13), (3.14)

are treated as state constraints.

In the next step, new weights are introduced

Q = diag(1 1 1 1 1), R = diag(0.1 0.1) (5.10)

and the quasi-infinite pattern is progressed until the third step. Solving the problem (4.8)

which is subjected to the augmented state (5.8) with respective bounds, following constants
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are obtained

α1 = 0.0405, α2 = 0.0092, α3 = 0.0522. (5.11)

The LMI procedure starts with the constraint set selection

zb = 0.9 min (|zmin|, |zmax|) (5.12)

vb = min (|vmin|, |vmax|) (5.13)

and the convex hull (4.14) is determined (omitting the cases where p1max > p2min). The

LMI optimization problem is solved (4.15) with fixed α and following matrices are obtained

P 1 =























1.7987 −0.1172 0.1026 0.0000 −0.0553

−0.1172 1.0163 −0.0079 0.0000 0.0598

0.1026 −0.0079 0.1132 0.0000 −0.0172

0.0000 0.0000 0.0000 0.3162 −0.0000

−0.0553 0.0598 −0.0172 −0.0000 0.3394























,

P 2 =























4.4854 −0.0753 0.0748 −0.0000 −0.0544

−0.0753 2.7840 0.0017 −0.0000 −0.0011

0.0748 0.0017 0.1599 0.0000 −0.0189

−0.0000 −0.0000 0.0000 0.7290 −0.0000

−0.0544 −0.0011 −0.0189 −0.0000 1.6284























, (5.14)

P 3 =























20.9696 0.0000 −0.0000 −0.0000 0.0000

0.0000 162.7848 0.0000 0.0000 −0.0000

−0.0000 0.0000 1.4701 −0.0000 −0.0000

−0.0000 0.0000 −0.0000 0.0644 0.0000

0.0000 −0.0000 −0.0000 0.0000 0.6135























.

Prediction horizons with respect to slew rate constraints are prolonged to

Tp = 1.5 s, Tc = 1.5 s. (5.15)

Without further discussion the sampling time (with or without slew rate limits considera-

tions) is chosen equal Ts = 0.01 s but for a more detailed view the reader is referenced to

[17].
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5.3 Simulation Results

In this section the performance of NMPC, LQR and IO-based controller are compared. The

LQR controller is designed for every setpoint with same weights as for NMPC controller.

Derivation of the IO-based controller is performed in [6] and only achieved results are

discussed. Adjustment of the IO-based controller is made to be as fast as in the LQR case,

e.g. the similar behaviour is pretuned for every controller. Except for NMPC controller

the control signals are clipped with saturation blocks. Dashed lines on the graphs will be

reserved for the inputs/states bounds.

5.3.1 Simulation Results without Slew Rate Constraints

The trajectory of the exhaust manifold pressure in Fig. 5.6 during the second changeover

clearly confirms that the LQR controller does not respect the upper limit and the diesel

engine suffers overboost. This is not the case in NMPC control and the controller holds

the diesel engine in the safety region and benefits from its strong advantage – to handle

constraints. Comparing the rest between the LQR and NMPC there is no significant dif-

ference. At this point suits the claim from [11]: In many cases the nonlinear receding

horizon controller may represent a more sophisticated alternative to an existing LQ regu-

lator designed on the linearized plant. IO linearisation behaves slower comparing to LQR

or NMPC and the setpoints are touched with some delay. The same can be seen also on

transients in intake manifold pressure (Fig. 5.5) or in Fig. 5.7. This delay appears because

only one IO-based controller is designed for every setpoint and no switching is executed as

in the LQR case.

In Fig. 5.8 there is a significant inverse response in the LQR/NMPC for the first changeover.

An explanation of this peak is a matter of fact that in the control problem no slew rate

constraints are considered. IO-based controller does not manifest this behaviour and per-

forms better. However, when comparing the signals into actuators, namely EGR signals in

Fig. 5.9 and VGT signals in Fig. 5.10, it can be concluded that none from the controllers

suits the practice. Thus, it is necessary to include slew rate limits into the control problem.
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Figure 5.5: Control of the intake manifold pressure (without slew rate constraints).
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Figure 5.6: Control of the exhaust manifold pressure (without slew rate constraints).
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Figure 5.7: Control of the compressor power (without slew rate constraints).
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Figure 5.8: Control of the compressor mass flow (without slew rate constraints).
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Figure 5.9: Signals for the EGR valve (without slew rate constraints).
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Figure 5.10: Signals for the VGT (without slew rate constraints).
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5.3.2 Simulation Results with Slew Rate Constraints

In order to consider slew rate constraints into the control problem also the LQR controller

is precalculated for augmented plant (5.9). The weights are chosen the same as in NMPC

control (5.10) and the controller is designed for every setpoint. The IO-based controller is

adjusted such that the performance is similar to LQR/NMPC. A rate limiter is employed

to limit the rise/fall in the LQR and IO case.

Figure 5.11 depicts the pressure in the intake manifold during the changeovers. Similarly as

in the previous simulation study (without the slew rate contraints), transients of LQR and

NMPC are obviously close to each other. The same behaviour can be seen on transients

in exhaust manifold pressure in Fig. 5.12. In this figure none from the controllers exceeds

the upper bound. This might not happen for LQR or IO controller if they were a bit more

agressively tuned. The transients in compressor power in Fig. 5.13 show that IO-based

controller acts is a bit slower.

Including slew rate contraints brings an expected benefit when looking in Fig. 5.14. The

inverse response for the first changeover is significantly reduced and approaches the simu-

lation closer to practice. Comparing the signals for EGR valve in Fig. 5.15 and for VGT in

Fig. 5.16 there can be seen as the slew rate contraints are active in every setpoint change.

More detailed view offers Fig. 5.17 with EGR control moves and Fig. 5.18 with VGT

control moves.
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Figure 5.11: Control of the intake manifold pressure (with slew rate constraints).
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Figure 5.12: Control of the exhaust manifold pressure (with slew rate constraints).
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Figure 5.13: Control of the compressor power (with slew rate constraints).
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Figure 5.14: Control of the compressor mass flow (with slew rate constraints).
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Figure 5.15: Signals for the EGR valve (with slew rate constraints).
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Figure 5.16: Signals for the VGT (with slew rate constraints).
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Figure 5.17: EGR control moves (with slew rate constraints).

0 2 4 6 8 10 12

−100

−50

0

50

100

 time (s)

 V
G

T
 c

h
an

g
e 

(%
)

LQR
IO
NMPC

Figure 5.18: VGT control moves (with slew rate constraints).



Chapter 6

Output Feedback NMPC applied to a

Diesel Engine

An extended Kalman filter (EKF) serves to recover states for output feedback NMPC in

this chapter. The observer is tested with additional noise and shows saticfactory results.

The controller performance of NMPC control in considering with the EKF is studied and

simulation results are provided.

6.1 EKF Setup

To apply NMPC all current states have to be supplied. However, not all states are direct

measurable and in this case only the measurements of the intake manifold pressure and

the massflow through the compressor can be provided. Thus an observer is needed. The

estimation task here is more challenging than in gasoline engine due to the interaction of

the intake, turbocharger and exhaust manifold dynamics [34]. In this work the diesel engine

is considered as a mean value model and it is not proceeded further into the estimation

problematics. This topic is for instance thoroughly exploited for a diesel engine without

EGR in [34, 35, 17].

An extented Kalman filter with slight modifications is employed, as suggested in [31].

Claiming authors, these modifications have two advantages, namely the degree of stability
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can be prescribed in advance and the nonlinearities can be tackled in a more effective way.

In the following the principle of the EKF will be briefly presented but for the complete

structure of the estimation problem the reader is referenced to the original paper [31]. The

estimated states will be noted with a hat. For the considered system (4.1) the EKF is

given by

˙̂x(t) = f (x̂(t), u(t)) + L(t)(y(t) − ŷ(t)) (6.1)

where y(t) is a vector of measurements, ŷ(t) is a vector of outputs from the system (6.1)

and L(t) is a time variant observer gain, specified as

L(t) = P e(t)C
T (t)R−1

e (6.2)

with C(t) = ∂ŷ

∂x
(x̂(t)). Then for some positive-definite weights Qe, Re and a real number

γ > 0 the update law based on the time-variant Riccati equation

Ṗ e(t) =(A(t) + γI)P e(t) + P e(t)(A
T (t) + γI) (6.3)

− P e(t)C
T (t)R−1

e C(t)P e(t) + Qe,

where A(t) = ∂f

∂x
(x̂(t)). Note that the equation (6.3) requires initial condition for matrix

P e(0). Usually this initial matrix needs to be adjusted large enough such that at observer

startup no visible oscillations occur. The constant γ in the equation (6.3) serves to deter-

mine the observer error convergence (therefore the claim “prescribed degree of stability”).

In the next section the influence of this constant in the observer error dynamics will be

analyzed.

6.2 EKF Design

Although that measurements can provide two states from three1 the observer is synthetised

for the whole state vector

x̂ = [x̂1 x̂2 x̂3]
T . (6.4)

1p1 is directly measured and Pc can be inferred from (3.5)
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It is done because of the presence of pressure fluctuations (detailed view in [34]) which affect

the measurement as some sinusoidal noise and EKF acts as some kind optimal low-pass

filter. The output vector is considered in a normalized coordinates

ŷ =

[

x1
Wc − W s

c

W s
c

]

(6.5)

where W S
c is the steady state for the measured mass flow. For given weights

Qe = diag(1 1 1), Re = diag(1 1) (6.6)

the initial matrix in equation (6.3) is chosen

P e(0) = diag(100 100 100) (6.7)

and the simulation of the observer is performed for a noisy input to watch convergence.

Initial conditions for the observer are (6.8). For a comparison purpose only the third state

(compressor power Pc) is used because it has the slowest dynamics. Moreover, during the

simulation a white noise is added to the outputs with maximum noise amplitude of 10−2.

Figure 6.1 shows true Pc and estimated Pce compressor power simulated with γ = 0. Fig.

6.2 depicts the difference between mentioned powers for rising parameter γ. Clearly, the

speed of error dynamics grows gradually with increasing γ. Though faster convergence,

also the sensitivity of the measurement noise is amplified. This effect is however unwanted

and a compromis is needed. Therefore the EKF with γ = 0 is chosen to recover the state.

6.3 Simulation Results

In this section the results obtained with employing EKF starting from miss-estimated

initial values is presented. No noise is added to the outputs. Initial conditions used in the

EKF regard the whole state vector and are selected to

x̂(0) = (0.1 0.1 0.1)T . (6.8)

Results for IO based controller are omitted from the section because the controller does

not contain an integration property. Otherwise the start point for actuator signals would
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Figure 6.1: Testing the observer for a noisy input.
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be affected by the initial observer error and would differ from the LQR/NMPC case where

the start point is the current signal for actuator which is known as initial condition for

augmented plant (5.9). In this simulation the initial conditions for the EGR/VGT were

selected

u1(0) = 0.1, u2(0) = 0.1. (6.9)

In the results, only the true states are depicted. The estimated ones have been omitted,

to avoid redundancy.

Figure 6.3 shows the effect of the initial observer error (6.8) for the pressure in the intake

manifold. In the first second of the simulation time the pressure moves away from the

desired setpoint and after the observer error disappears, the pressure approaches back to

its setpoint. In Fig. 6.4 for the exhaust manifold pressure the initial observer causes a

bit bigger deviation from the setpoint. This is because the exhaust manifold pressure

posess faster dynamics. A difference between LQR and NMPC can be seen during the

second changeover. Because the upper constraint is very close to this setpoint, NMPC

accounts this limit to the stage cost and avoids closer contact. Further visible differences

between LQR and NMPC are depicted in Fig. 6.7 and Fig. 6.8 where the actuator signals

are plotted. The presence of constraint during the first changeover causes deviations in

NMPC from the actuator setpoints. Detailed view gives Fig. 6.9 for the EGR control

moves and Fig. 6.10 for the VGT control moves.
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Figure 6.3: Control of the intake manifold pressure (with EKF).
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Figure 6.4: Control of the exhaust manifold pressure (with EKF).
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Figure 6.5: Control of the compressor power (with EKF).
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Figure 6.6: Control of the compressor mass flow (with EKF).



6.3 Simulation Results 45

0 2 4 6 8 10 12

0

20

40

60

80

100

 time (s)

 E
G

R
 v

al
ve

 p
o

si
ti

o
n

 (
%

)

LQR
NMPC

Figure 6.7: Signals for the EGR valve (with EKF).
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Figure 6.8: Signals for the VGT (with EKF).
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Figure 6.9: EGR control moves (with EKF).
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Figure 6.10: VGT control moves (with EKF).



Chapter 7

Conclusions

Nonlinear Model Predictive Control offers a big potentionality for controlling the diesel

engine equipped with EGR and VGT. From results obtained in state feedback case or

output feedback case it confirms its suitability for this control problem.

However, from the practical point of view, NMPC is not yet applicable. It is due to the

computational load assigned with solving large nonlinear program. Because the sampling

time is very fast, varying in miliseconds, NMPC can be only be applied in simulations.

Therefore it can be considered as a benchmark for other control methods because the

NMPC approach is a structural way for coping with nonlinearities and furthermore, the

constraints can be treated in a more sophisticated manner.
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Birkhäuser, 2000.
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