
On Automatic Generation of Quizzes using MATLAB and

XML in Control Engineering Education∗

Technical Report fik07xml

M. Fikar

March 23, 2013

Abstract

The main aim of this report is to show how to employ MATLAB as a scripting and
templating engine to generate automatically a large number of identical quizzes with different
numerical values.

Two sources: computational part and templating part are used to construct an output
neutral XML file. Then, MATLAB is employed in the next step using XSLT to generate a
desired output format - either PDF or import format suitable for LMS Moodle.

History:
2013/3/23 – Version 1.2. Added Moodle MA export able to handle subproblems with numer-
ical answers. Changed win1250 to utf8.
2007/8/26 – Version 1.1. Added Moodle MA export able to handle problems with several
subproblems.
2007/4/7 – Version 1.

1 Introduction

In the last two decades computer technology revolutionised the world of computing and teaching.
Tools are continually being developed to explore various ways that improve teaching and solve
challenges that were unsolvable before.

One of the challenges is to deal with a large number of students. If they have the same quiz
or assignment they tend to cheat. However, it is reasonable to give them quizzes of the same
complexity so that some of them are not in advantage.

In this paper, we discuss creation and maintenance of large sets of questions for e-learning
course on Automatic Control Fundamentals. This includes generation of on-line and off-line quizzes
for the course with approximately 250 students. The approach taken includes MATLAB as a
scripting language combined with XML templates to produce input files. These can be further
processed using XSLT to obtain HTML representation, input to LMS system Moodle, or various
versions of PDF files produced by LATEX.

2 Evaluation Module

Examination of the course is divided into written and oral parts.
The written part consists of a series of computational exercises with multiple choice questions

with five choices each and students mark one correct choice. Students can use any printed ref-
erences (books, tables, etc). Preparation of the written examination has been automated in a

∗Department of Information Engineering and Process Control, Faculty of Chemical and Food Technology, STU,

Radlinského 9, 812 37 Bratislava, fax : +421 2 52496469 and e-mail : miroslav.fikar@stuba.sk, web : www.kirp.

chtf.stuba.sk

1

similar way as it is done with assignments. It is using MATLAB as the computational engine,
XML/XSLT as the transformation engine, and LATEX, HTML, and Moodle as formatting tools.

Currently, there is about 50 different problem choices with different levels of difficulty that can
be given to students and that cover the whole range of the course. In the first run, MATLAB
generates a random combination of them so that the required total number of points is achieved.
Also problems with similar topics are grouped together and always only one of them can be in
the quiz. Next, MATLAB generates random values for each problem and outputs them as a XML
file. This is repeated for a given number of groups so that students cannot just copy the results
of their neighbour. Thus each group has the same type of problems but with different values.

Finally, XML file is transformed into a final form. This can include printed version, html
version, or a Moodle quiz.

The whole procedure will now be explained on a simple example.

3 Tutorial

Let us consider this simple example problem together with its solution.

3.1 Problem Definition

The closed loop system consists of a controlled system with transfer function of the form G(s) =
b0

s2+a1s+a0

and a PID controller of the form Gc(s) = P + I/s+Ds. If the setpoint value is changed
at t = 0 from 0 to w, the permanent tracking error is given as:

e(∞) =

{

w
(

1− b0P

a0+b0P

)

if I = 0

0 otherwise
(1)

3.2 Template XML File

Each problem consists of a template file where items that are to be changed are marked with
##ID## where ID identifies name of the particular variable part. The template file tro.tpl for
our problem is as follows

<problem name="tro">

<subproblem score="3" shortans="yes" numerical="yes">

<problemtext>

The closed loop system consists of a controlled system

with transfer function of the form

G_p(s) = \frac{##b0##}{s^2 + ##a1## s + ##a0##}

and a controller of the form

##gr##.

If the setpoint value is changed at t=0

from 0 to ##w##, the permanent tracking error is given as

</problemtext>

<answers>

<choice order="##1##" ans="gooditem">##tross##</choice>

<choice order="##2##" ans="baditem">##VAL2##</choice>

<choice order="##3##" ans="baditem">##VAL3##</choice>

<choice order="##4##" ans="baditem">##VAL4##</choice>

<choice order="##5##" ans="baditem">no other choice is correct</choice>

</answers>

</subproblem>

</problem>

2

3.3 XML File Creation

The first step is to generate some admissible and random data. MATLAB is used for this task.
Each problem has a function associated with it that prepares data that are to be changed each
time. A typical function consists of three parts.

1. Generation of data. This is demonstrated below and closely follows mathematic problem
definition.

function [str,template, valstr] = tro

w=fix(rand(1,1)*10)+1;

num=fix(rand(1,1)*10)+1; b0=num(1,1);

den=fix(rand(1,2)*10)+1;

a1 = den(1,2); a0 = den(1,1);

xx=fix(rand(1,3)*10)+1; pp=xx(1,1);ii=xx(1,2);dd=xx(1,3);

if (randn(1,1)<0)

ii=0;

tros = w*(1 - (b0 * pp)/ (a0+b0*pp));

else

tros = 0;

end

2. Generation of false data, preparation of parameters for the template file. In our example,
we need to be sure that any of other three false answers is not the same as the true one. In
addition, if the permanent tracking error is not zero, we give one of the false answers equal
to zero. Finally, the transfer function of the controller is prepared taking care between PID
and PD cases.

tross = sprintf(’%.2f’,tros);

choic = randn(1,4);

choi = sprintf(’%.2f’,choic);

while sum(findstr(choi,tross))>0

choic = randn(1,4);

choi = sprintf(’%.2f’,choic);

end

ss2 = sprintf(’%.2f’,choic(2));

ss3 = sprintf(’%.2f’,choic(3));

ss4 = sprintf(’%.2f’,choic(4));

if tros ~=0

ss2 = ’0.00’;

end

if ii~=0

[gr,e]=sprintf(’G_R(s) = %.0f %+.0f s %+.0f/s ’,pp,dd,ii);

else

[gr,e]=sprintf(’G_R(s) = %.0f %+.0f s ’,pp,dd);

end

3. Finally, values for the template file have to be specified. These are then substituted to the
template.

valstr= {’b0’, int2str(b0)

3

’a1’, int2str(a1)

’a0’, int2str(a0)

’gr’, gr

’w’, int2str(w)

’tross’, tross

’VAL2’, ss2

’VAL3’, ss3

’VAL4’, ss4};

template = ’tro.tpl’;

str = writetpl(template, valstr);

The result is returned in string str to the calling routine. In our case the result can be as
follows.

<problem name="tro">

<subproblem score="3" shortans="yes" numerical="yes">

<problemtext>

The closed loop system consists of a controlled system

with transfer function of the form

G_p(s) = \frac{5}{s^2 + 3 s + 5}

and a controller of the form

G_R(s) = 7 +10 s .

If the setpoint value is changed at t=0

from 0 to 8, the permanent tracking error is given as

</problemtext>

<answers>

<choice order="4" ans="gooditem">1.00</choice>

<choice order="2" ans="baditem">0.00</choice>

<choice order="5" ans="baditem">0.29</choice>

<choice order="1" ans="baditem">-1.15</choice>

<choice order="3" ans="baditem">no other choice is correct</choice>

</answers>

</subproblem>

</problem>

As we can see, the problem has been transformed into a multiple choice question with one
correct answer. MATLAB has provided suitable random values and results. Mathematics is
typeset using the LATEX notation and closed in classes math or smath.

4 Transformation to Presentation Formats

Further transformation of format independent XML file is performed using either standard XSLT
engines (e.g. Saxon (Kay, 2006), XT (Clark, 2005), etc) or buitin function xslt in MATLAB. In
our case, three output formats have been specified:

• PDF – to be used in written examination. It should exist in versions for teacher and student.

• HTML – to be shown on a usual web page, together with a hint to a correct answer.

• Moodle – to be used in e-learning environment with automatic links to students gradebooks.

These three output formats correspond to different situations: students can access some of the
questions freely at the web pages together with a solution. There, they can test the knowledge
without any stressing conditions. The Moodle output can be used at the beginning of seminars

4

to check the students. And finally, paper output is used in written part of examinations. As
all questions originate from a single source pool, students get familiar with them, and the final
written examination results have been greatly improved.

The paper (PDF) version uses LATEX as it can create high quality PDF files from plain ASCII
input and thus can act as a filter without user intervention. This would be very difficult if not
impossible to achieve with WYSIWYG programs (MS Word, etc).

The formatting engine LATEX is invoked with the modified class exams (Van der Meer, 2002)
that puts all problems together, randomises the order of choices, and can in two runs produce two
PDF files – one for students and one for the evaluator where the correct answers are marked. The
resulting part of the PDF available to teacher is shown in Fig. 1. The same for short-answer type
question available to student is shown in Fig. 2.

One of the major problems with typesetting of output formats is mathematics on the web.
Although the MathML standard exists, it is still not implemented in all web browsers. Therefore,
the LATEX notation is used and transformed either using MimeTeX (creates pictures of mathemati-
cal objects, Forkosh (2006)) or JsMath (uses javascript engine, Cervone (2006)). Both approaches
have some advantages and drawbacks but serve well their purpose.

The purpose of plain HTML format is to produce a free pool of quiz questions that serve for
preparation before the actual exam. These are published on the Internet site of the course. Here,
no evaluation is performed. The questions ane responses are coupled with a javascript so that
student can click on a response to be sure that his/her response is correct.

An example of this solution coupled with JsMath to typeset mathematic expression is shown
in Fig. 3.

The last output format if needed for LMS Moodle. The idea is to prepare a large number of
similar questions that could be used in Moodle quizzes in a random way – so that every student
gets possibly different questions. Quizzes are used in each week to test preparation of students for
the course.

Moodle provides several ways of importing questions from a text file. These include WebCT,
GIFT, etc. As import files are plain ASCII, it is not very difficult to create XSLT template that
transforms the original XML file to the desired format. We have chosen Moodle XML import and
our problem in Moodle is shown in Fig. 4. Here, the standard mathematical tool is MimeTeX.
However, JsMath support can be installed as well.

5 Technical Part of the Conversion

5.1 Function writetpl

This function called from each problem is responsible for several subtasks:

• Randomise the order of answers. This is important as some of the presentation formats
cannot shuffle the answers. However, as template files have correct answer on a fixed place
that cannot be moved, each answer becomes a random number in the attribute order. Then
XSLT routine will be responsible to process the answers in sorting order, thus actually
randomising them.

Placeholders ##n## where n is an integer are reserved for writetpl and cannot be used
elsewhere.

• It tests whether the designer has filled out all templates and that all are necessary - there
must be one-to-one relationship between them.

The code of the function is given below.

function source = writetpl(infile, strings)

% WRITETPL - fill template file with concrete values

% Read from template file INFILE and write to string STR. STRINGS

5

Problem 1. The closed loop system consists of a controlled system with transfer func-

3
tion of the form G(s) = 3

s
2+5s+7

and a controller of the form Gc(s) =
9 + 5s. If the setpoint value is changed at t=0 from 0 to 10, the permanent tracking error
is given as

√
2.06

© -1.15

© 0.13

© 0.29

© no other choice is correct

Figure 1: Example of a LATEX generated PDF file with answer for a teacher

Problem 1.

3The closed loop system consists of a controlled system with transfer function of
the form G(s) = 3

s
2+5s+7

and a controller of the form G
c
(s) = 9 + 5s. If the setpoint

value is changed at t = 0 from 0 to 10, the permanent tracking error is given as

Answer : .

Figure 2: Example of a PDF file generated by LATEX that shows a short-answer type question
without answer for a student

Figure 3: Example of a HTML file with JsMath

Figure 4: Example of Moodle question with MimeTeX

6

% are defined as 2 column cell array of the form ’NAME’, ’VALUE’.

% Functions searches in INFILE for ##NAME## and replaces it with

% VALUE. If the strings do not correspond with INFILE warnings are

% displayed. Reserved names are ##m## (any integer m) that are

% automatically replaced by randperm().

%read file in

fhandle=fopen(infile);

source=fscanf(fhandle,’%c’,Inf);

fclose(fhandle);

n = size(strings,1);

% find how many ##integer## are in template

[start_idx, end_idx, extents, matches] = regexp(source,’##\d+##’);

m = length(matches);

% add strings for permutation of answers

ii = randperm(m);

for i=1:m

% strip ## from numbers and pair them with permutations

strings{n+i,1} = matches{i}(3:length(matches{i})-2); strings{n+i,2} = int2str(ii(i));

end

%replace all strings

for i=1:n+m

searchstr = strcat(’##’,strings{i,1},’##’);

if isempty(findstr(source, searchstr)) & not(regexp(searchstr,’##\d+##’))

res = sprintf(’function writetpl (%s): searchstring %s not found’, infile, searchstr);

disp (res)

end

source=strrep(source, searchstr, strings{i,2});

end

%check what has left unchanged = forgotten

arr = findstr(source, ’##’);

if ~(isempty(arr))

res=sprintf(’function writetpl (%s): missing strings: ’,infile);

for i=1:length(arr)/2

res = sprintf (’%s, %s’, res, source(arr(2*i-1):arr(2*i)+1));

end

disp(res)

end

5.2 XML Structure

The XML structure for one problem is designed in such a way that either multiplechoice or
shortanswer questions can be produced.

The main element is <problem> with attribute name defining the name of the problem. Each
problem can have one or more tags of type <subproblem>. Its attributes define score. Then, there
can be flag shortans that specifies whether it is possible to generate shortanswer type of question.
It can have values yes and no. Finally, there can be flag numerical that specifies whether it is

7

possible to generate numerical type of question – it means that the result is a single number. It
has value yes. Subproblem consists of two parts: <problemtext> and <answer>. Finally, answers
contain five times <choice> where its attributes define whether the choice is correct (gooditem)
and what is its position after XSLT.

Problemtext can contain one image of the form that should exist in the
current directory.

Mathematics can be written in LATEX syntax enclosed in tags with attributes either
class=’math’ or class=’smath’. The second one can be used for formulas that can be typeset
without special engines (for example t=4 versus t = 4).

5.3 XML File

All problem functions return a string that holds the whole problem in XML form. However, all
problems needs to be put together and a valid XML file needs to be produced.

This can again be done within MATLAB. Consider for example a script that produces 20
different questions of type tro shown in Section 3.

n=20;

str=cell(n);

for i=1:n

str{i}=’tro’;

end

writemain(’quiz.xml’, str);

The script uses function writemain and outputs a file quiz.xml.
The source for writemain.m is following

function writemain(filename, strings)

% WRITEMAIN - generate XML file from questions in STRINGS

% Write a XML file into FILENAME that contains questions form cell

% vector STRINGS.

fw=fopen(filename,’w’);

fprintf(fw,’<?xml version="1.0" encoding="utf-8"?>\n’);

fprintf(fw,’<!DOCTYPE quiz SYSTEM "quiz.dtd">\n’);

fprintf(fw,’\n<quiz>\n’);

for i=1:length(strings)

str=eval(strings{i});

fprintf(fw, ’%c’, str);

end

fprintf(fw,’</quiz>’);

fclose(fw);

It includes proper XML header and a root element <quiz>.
The file quiz.xml can then be further processed using XSLT transformations for example in

MATLAB as

XSLT(’quiz.xml’,’moodle.xsl’,’moodle.txt’)

where moodle.txt file will be produced using moodle.xsl transformation rules.

8

5.4 Figures

Note: figure handling is not satisfactory and works well only for LATEX presentation format.
Some of the questions can have one figure. If multiple questions of the same type are to be

generated, each figure needs a unique name. Thus, the MATLAB part can be as follows:

1. Figure generation

step(b0, [1 a0]);

set(1, ’PaperUnits’, ’centimeters’)

set(1, ’PaperPosition’, [3 10 11 8.25])

fileno = fix(rand(1)*100000+1);

filename = sprintf(’file%d.eps’,fileno);

print(’-deps’, filename)

valstr= {’NO’, int2str(fileno) , ...

2. template

<problemtext>

See figure

</problemtext>

We can see that eps file has been produced and XML file holds only filename without extension
eps. This is directly suitable for LATEX output but not for HTML. In the latter case we propose
to either generate not only eps but png files as well, or to use batch conversion tools like convert
from the package ImageMagic that can transform all files. The missing extension in HTML case
can then be added during XSLT operation.

The issue how to store figures with HTML on the server depends much on the exact output
presentation. For example Moodle allows in its XML input format figures to be encoded in base64.
Therefore, after XSLT transformation some more work will be needed to correct the output file
using (for example) some perl scripts. An example of one-liner in perl can be given as

perl -MMIME::Base64 -0777 -ne ’print encode_base64($_)’

< file.jpg > file.jpg.base64

Another possibility is to upload all figures to web and specify only a link to them from quiz
questions.

5.5 XSLT Transformations

Here we give some more comments on XSL transformations to desired output presentation formats.
These transformations in principle define templates that describe what should be done with each
element and attribute. The XSL language contains commands for repetition, branching, sorting,
etc.

5.5.1 LATEX Output

The output for LATEX is specified by two transformations. One (tex-mc.xsl) produces pure
multiplechoice (MC) questions and the other (tex-sa.xsl) mainly shortanswer (SA) questions or
multiplechoice if it makes no sense with SA.

For both of them the output is a LATEX file suitable with modified class exam. The modifications
of the class file were necessary as the original expected each question in one file linked to main
document. We have changed this so that only one file is needed.

9

tex-mc.xsl The desired output is given for one question below.

\documentclass[answers,nosep,scores]{exams1}

%% more definitions ...

\begin{exam}{\today}

\question{}{}{

\begin{problem}[\split]

\score{3}

The closed loop system consists of a controlled system

with transfer function of the form

$G_p(s) = \frac{5}{s^2 + 3 s + 5}$

and a controller of the form

$G_R(s) = 7 +10 s $.

If the setpoint value is changed at $t=0$

from 0 to 8, the permanent tracking error is given as

\begin{choice}

\baditem{-1.15}

\baditem{0.00}

\baditem{no other choice is correct}

\gooditem{1.00}

\baditem{0.29}

\end{choice}

\end{problem}

}

\end{exam}

\end{document}

Here we give some (not complete) parts of the XSL file with explanations.
The element <quiz> inserts at the beginning LATEX preamble, opens exam and then cycles over

all elements of type <problem>. After all problems are processed, exam is closed and document
finishes.

<xsl:template match="quiz">

\documentclass[answers,nosep,scores]{exams1}

%% more definitions ...

\begin{exam}]{\today}

<xsl:for-each select="problem">

\question{}{}{

\begin{problem}[\split]

<xsl:apply-templates/>

\end{problem}

}

</xsl:for-each>

\end{exam}

\end{document}

</xsl:template>

The preceding code calls other elements using the command <xsl:apply-templates/>. As
<problem> contains one or mode elements of type <subproblem>, the corresponding template is
searched. It outputs the score from its attribute and ignores other attribute shortans.

<xsl:template match="subproblem">

<xsl:text>\score{</xsl:text><xsl:value-of select="@score"/>}<xsl:apply-templates/>

</xsl:template>

10

Afterwards it calls other templates: <problemtext> and <answers>. The first one is not defined
and default rule is applied – its contents is read.

The template <answers> cycles over all choices, sorts them according to attribute order and
prints them with correct attribute ans that can either be gooditem or baditem.

<xsl:template match="answers">

<xsl:text>\begin{choice}</xsl:text>

<xsl:for-each select="choice">

<xsl:sort data-type="number" select="@order"/>

<xsl:text>\</xsl:text>

<xsl:value-of select="@ans"/>

<xsl:text>{</xsl:text>

<xsl:apply-templates/>

<xsl:text>}</xsl:text>

</xsl:for-each>

<xsl:text>\end{choice}</xsl:text>

</xsl:template>

If any of preceding contains elements or these will be transformed to environment
minipage or to mathematic mode surrounded by dollars.

<xsl:template match="img">

\begin{minipage}{0.39\textwidth}

\includegraphics[width=\textwidth]{<xsl:value-of select="@src"/>}

\end{minipage}</xsl:template>

<xsl:template match="span">

<xsl:text>$</xsl:text>

<xsl:value-of select="."/>

<xsl:text>$</xsl:text>

</xsl:template>

</xsl:stylesheet>

tex-sa.xsl The desired output is given for one question below.

\documentclass[answers,nosep,scores]{exams1}

\begin{exam}{\today}

\question{}{}{

\begin{problem}[\split]

\score{3}

The closed loop system consists of a controlled system

with transfer function of the form

$G_p(s) = \frac{5}{s^2 + 3 s + 5}$

and a controller of the form

$G_R(s) = 7 +10 s $.

If the setpoint value is changed at $t=0$

from 0 to 8, the permanent tracking error is given as

\shortanswer{1.00}

\end{problem}

}

\end{exam}

\end{document}

It differs from the previous only in the answer part where only good choice is specified. The
XSL file should check whether the question can be of SA type. If not, MC should result.

11

We modify <subproblem> that holds the needed attribute shortans. This is tested against
possible values and appropriate action is taken.

<xsl:template match="subproblem">

<xsl:text>\score{</xsl:text><xsl:value-of select="@score"/>}

<xsl:apply-templates select="problemtext"/>

<xsl:if test="@shortans = ’yes’">

\shortanswer{<xsl:apply-templates select="answers/choice" mode="sa"/>}

</xsl:if>

<xsl:if test="@shortans = ’no’">

\begin{choice}

<xsl:for-each select="answers/choice">

<xsl:sort data-type="number" select="@order"/>

<xsl:text>\</xsl:text>

<xsl:value-of select="@ans"/>

<xsl:text>{</xsl:text>

<xsl:apply-templates/>

<xsl:text>}</xsl:text>

</xsl:for-each>

\end{choice}

</xsl:if>

</xsl:template>

<xsl:template match="choice" mode="sa">

<xsl:if test="@ans = ’gooditem’">

<xsl:apply-templates/>

</xsl:if>

</xsl:template>

moodle.xsl LMS Moodle supports many formats that can be used to import questions.
Moodle supports both MC and SA questions, but SA type is not very interesting as we need the

quiz to be marked automatically. On the other hand, if some questions contain more subproblems,
both MC and SA cannot be used by moodle as one question.

A possible outcome could be the multianswer (MA) type of question that can combine more
subproblems. However in this type of question, answers can only contain pure text. Thus, the
implementation is rather tricky.

Therefore for the MC type, we take only the first subproblem from each problem and transform
it to moodle.

An example of Moodle XML import file for MC questions is shown below.

<?xml version="1.0" encoding="utf-8"?>

<quiz>

<question type="multichoice">

<name>

<text>tro</text>

</name>

<questiontext format="moodle_auto_format">

<text>

The closed loop system consists of a controlled system

with transfer function of the form

$$G_p(s) = \frac{5}{s^2 + 3 s + 5}$$

and a controller of the form

$$G_R(s) = 7 +10 s $$.

12

If the setpoint value is changed at t=0

from 0 to 8, the permanent tracking error is given as

</text>

</questiontext>

<image/>

<image_base64/>

<penalty>0.1</penalty>

<hidden>0</hidden>

<shuffleanswers>1</shuffleanswers>

<single>true</single>

<answer fraction="100">

<text>1.00</text>

<feedback>

<text>Correct Answer!</text>

</feedback>

</answer>

<answer fraction="0">

<text>0.29</text>

<feedback>

<text>Sorry!</text>

</feedback>

</answer>

</question>

</quiz>

We also have implemented MA export that is able to deal with subproblems. These will be
transformed to multiple MC questions internally. The corresponding XSL file is moodle-cloze.xsl
and its output is shown below.

<?xml version="1.0" encoding="utf-8"?>

<quiz>

<question type="cloze">

<name>

<text>tro</text>

</name>

<questiontext>

<text>

The closed loop system consists of a controlled system

with transfer function of the form

$$G_p(s) = \frac{5}{s^2 + 3 s + 5}$$

and a controller of the form

$$G_R(s) = 7 +10 s $$.

If the setpoint value is changed at t=0

from 0 to 8, the permanent tracking error is given as

A: 1

B: 0.29

Choose one answer: {2:MULTICHOICE:=A#Correct Answer!~B#Sorry!}

</text>

</questiontext>

<image/>

<image_base64/>

<penalty>0.1</penalty>

<shuffleanswers>0</shuffleanswers>

</question>

13

</quiz>

We also have implemented MA export that can output MA numerical type of questions in sub-
problems. These will be transformed to multiple MC na numerical questions internally. Numerical
questions are produced from subproblems with flag numerical="yes". The corresponding XSL
file is moodle-cloze-num.xsl and its output is shown below.

<?xml version="1.0" encoding="utf-8"?>

<quiz>

<question type="cloze">

<name>

<text>tro</text>

</name>

<questiontext format="html">

<text><![CDATA[

The closed loop system consists of a controlled system

with transfer function of the form

$$G_p(s) = \frac{5}{s^2 + 3 s + 5}$$

and a controller of the form

$$G_R(s) = 7 +10 s $$.

If the setpoint value is changed at t=0

from 0 to 8, the permanent tracking error is given as

{2:NUMERICAL:~=1:0.001#Correct Answer!}

]]></text>

</questiontext>

<image/>

<image_base64/>

<penalty>0.1</penalty>

<shuffleanswers>0</shuffleanswers>

</question>

</quiz>

It can be noted that class smath is copied verbatim, class math contains double dollars and
will be handled by Mimetex. Element image_base64 can hold encoded figure. However, figure
handling is not implemented for the time being.

6 Conclusions

We have described a procedure of creating quizzes in output neutral XML representation using
MATLAB as a scripting engine. This has advantages of simplified creation of new questions and it
makes possible to generate quizzes in many different ways that correspond to diferent pedagogical
needs.

Acknowledgments

The authors are pleased to acknowledge the financial support of the Scientific Grant Agency of
the Slovak Republic under grant No. 1/3081/06 and support of the Cultural and Education Grant
Agency under the grant No. 3/3121/05.

References

D. Cervone. jsMath: A method of including mathematics in web pages, 2006. http://www.math.
union.edu/~dpvc/jsMath/ (online, 20.01.2006).

14

J. Clark. XT – XSLT processor, 2005. http://jclark.com/xml/xt.html (online, 02.02.2005).

J. Forkosh. MimeTeX: embedded LaTeX equations in html pages, 2006. http://www.forksosh.
com/mimetex.html, (online, 20.1.2006).

M. Kay. Saxon – the XSLT and XQuery processor, 2006. http://saxon.sourceforge.net/

(online, 20.01.2006).

H. Van der Meer. The exams package for LaTeX, 2002. www.ctan.org.

15

