
SLOVAK TECHNICAL UNIVERSITY IN BRATISLAVA

Faculty of Chemical and Food Technology

Institute of Information Engineering, Automation and Mathematics

Radlinského 9, 812 37 Bratislava

Bc. Marián Podmajerský

PARAMETER ESTIMATION IN PROCESSES
FROM EXPERIMENTAL DATA

Master Thesis

Supervisors

doc. Dr. Ing. Miroslav Fikar, STU Bratislava

prof. M.A. Latifi, ENSIC Nancy

Consultant

Ing. Michal Čižniar, STU Bratislava

2007

First of all, I want to express my sincere gratitude to my thesis super-

visor and head of the Institute of Information Engineering, Automation

and Mathematics at Faculty of Chemical and Food Technology of the

Slovak Technical University in Bratislava, doc. Dr. Ing. Miroslav Fikar,

for offered opportunity be a Socrates student at foreign university and

his patient guidance throughout my studies.

My big gratification and appreciation goes to my thesis supervisor in

Nancy, professor M. Abderazzak Latifi from ENSIC-INPL, that in-

structs me on research journey and giving me support I need.

Also I would like to express my thank to Ing. Michal Čižniar, for his

guidance, comments, tireless support, and debates that inspired me.

Lastly, I would like to thank my family for standing behind me and

support my studies in many ways. I am deeply indebted to them and

grateful for what they have given me.

Bratislava, Nancy, 2007

Marián Podmajerský

Abstrakt

Táto práca sa zaoberá dynamickou a globálnou optimalizáciou problémov určovania parame-

trov systémov oṕısaných sústavou diferenciálno-algebraických rovnic. Určovanie parametrov

semi-empirických modelov je dôležité vo vel’kej oblasti inžinierstva a aplikovaných vied.

Metóda chýb na premenných bola značne študovaná z pohl’adu riešenia. Zahŕňa mini-

malizáciu vážených súm štvorcov odchýliek vzhl’adom na rovnice modelu. Bola vyvinutá

metóda ortogonálnej kolokácie na konečných prvkoch, pomocou ktorej sa differenciálne

rovnice opisujúce správanie sa dynamického systému konvertujú na systém algebraických

rovńıc. Táto bola implementovaná do MATLABu ako programový baĺık DYNOPT. Táto

je porovnávaná s integračnou metódou implementovanou vo FORTRANe ako programový

baĺık GDOC.

Abstract

This work deals with dynamic and global optimization for parameter estimation of dif-

ferential algebraic systems. The estimation of parameters in semi-empirical models is

essential in numerous areas of engineering and applied science. The error-in-variables

method has been studied from a computational standpoint. This method involves the

minimization of a weighted sum of squared errors subject to the model equations. In

this work, a method converting the dynamic system of equations into a set of algebraic

constraints through the use of orthogonal collocation on finite elements is implemented

within MATLAB code DYNOPT. It is compared to a integration method implemented

within FORTRAN code GDOC.

Contents

1 Introduction 6

2 Problem Definition 9

2.1 Cost Functional . 9

2.1.1 Maximum-Likelihood Estimation 9

2.2 Process Model Equations . 12

2.3 Constraints . 12

3 Numerical Methods 14

3.1 Sequential Approach . 14

3.2 Simultaneous Approach . 15

4 Global Optimization 18

4.1 Multistart Method . 18

4.2 αBB Method . 19

4.2.1 The αBB Algorithm . 19

4.2.2 Convex Relaxations . 20

4.2.3 Equality Constraints . 24

4.2.4 Rigorous Calculation of α . 25

4.2.5 Branching Strategies . 27

4.2.6 Variable Bound Updates . 29

5 Computational Studies 31

5.1 Example 1 . 31

i

CONTENTS

5.1.1 Problem Formulation . 31

5.1.2 Results . 32

5.2 Example 2 . 34

5.2.1 Problem formulation . 34

5.2.2 Results . 34

5.3 Example 3 . 37

5.3.1 Problem formulation . 37

5.3.2 Results . 37

5.4 Example 4 . 40

5.4.1 Problem formulation . 40

5.4.2 Results . 40

6 Conclusions 42

Bibliography 44

Appendices 48

A Dynopt GUI and Symdynopt 48

A.1 Example definition . 49

A.2 Symdynopt . 49

A.3 Dynopt GUI . 55

A.3.1 Step 1: Create or Load a Problem 55

A.3.2 Step 2: Optimization Options . 55

A.3.3 Step 3: Initialisation Values for Optimization 56

A.3.4 Step 4: Cost and Process . 56

A.3.5 Steps 5-7: Constraints . 57

A.3.6 Step 8: Save and Solve Problem 57

ii

List of Figures

3.1 Collocation method on finite elements. 15

4.1 Branch-and-Bound Procedure . 20

5.1 Example 1: DYNOPT . 33

5.2 Example 1: GDOC . 33

5.3 Example 2: DYNOPT . 36

5.4 Example 2: GDOC . 36

5.5 Example 3: DYNOPT . 38

5.6 Example 3: GDOC . 38

5.7 Example 4: DYNOPT . 41

A.1 Optimization type selection . 56

A.2 Bundle of initial optimization settings . 57

A.3 Form for definition of initials and bounds depends on preliminary selections 58

A.4 Error message report for incorrect inputs 58

A.5 Form for cost function and process model 59

A.6 Equation input dialog . 59

A.7 Form for equality and inequality constraints at initial time 60

A.8 Form for equality and inequality constraints between initial and final time 61

A.9 Form for equality and inequality constraints at final time 62

A.10 Form to save and solve problem . 63

A.11 Save dynamic optimization problem dialog 63

iii

List of Tables

5.1 Example 1 – Experimental Data . 32

5.2 Example 1 – αBB method performed by GDOC 32

5.3 Example 1 – Multistart method with 100 runs performed by DYNOPT

(some picked values of objective function) 33

5.4 Example 1 – Multistart method with 100 runs performed by GDOC (some

picked values of objective function) . 33

5.5 Example 2 – Experimental Data . 35

5.6 Example 2 – Multistart method with 100 runs performed by DYNOPT

(some picked values of objective function) 35

5.7 Example 2 – Multistart method with 100 runs performed by GDOC (some

picked values of objective function) . 36

5.8 Example 2 – αBB method performed by GDOC 36

5.9 Example 3 – Experimental Data . 38

5.10 Example 3 – Multistart method with 100 runs performed by DYNOPT . . 38

5.11 Example 3 – Multistart method with 100 runs performed by GDOC (some

picked values of objective function) . 39

5.12 Example 3 – αBB method performed by GDOC 39

5.13 Example 4 – Multistart method with 100 runs performed by DYNOPT

(some picked values of objective function) 41

iv

Abbreviations

α BB — α Branch and Bounds

CVP — Control Vector Parametrization

DAE — Differential-Algebraic Equations

DYNOPT — DYNamic OPTimization tollbox for Matlab

GDOC — Routine for Global Optimization of problems with ODE

LB — Lower Bound

NLP — Non-Linear Problem

ODE — Ordinary Differential Equations

SQP — Sequential Quadratic Programming

TP — Total Parametrization

UB — Upper Bound

v

CHAPTER 1

Introduction

In last years, a noticeable improvement in most of scientific disciplines can be observed,

especially rising computing power patches a missing part between possible implementa-

tion of algorithms and theoretical basement. That allows to solve more advanced technical

problems where parameter estimation belongs with certain. Nowadays, chemical indus-

try include variety of processes, nonlinear in nature. Their dynamic behaviour may be

described either by a set of ordinary differential equations (ODE) or by a set of differential-

algebraic equations (DAE) comming from the kinetic expressions, with or without qualita-

tive constraints to be taken into account. Frequently, these models contain a big number

of unknown parameters e.g., kinetic rate constants, activation energies, growthrates, etc.

Firstly we have the kinetic model with several unknown adjustable parameters, which

vary with conditions e.g., temperature, pressure, catalyzation, etc. Secondly, we have ex-

perimental measurements obtained by a laboratory. Then, the objective is to find as good

as possible values of model uknowns, by comparing them. The comparison is defined

as the minimization of error between data produced by experiment and data provided

by mathematical description. The early methods for parameter estimation were formu-

lated by Bard and Lapidus (1968) with gradient based approach and successfully solved

the kinetic constants in different examples. Southwell (1969) demonstrated a calculation

method derived from gradient based approach for models with linear combination of two

parameters. He calculated through the use of iterative matrix calculation. Schwetlick and

Tiller (1985) exploited the structure of the Jacobian matrix and developed new correc-

tion methods, that extended approach of Bard and Lapidus (1968) for models with more

6

than two variables and highly nonlinear in parameters. Britt and Luecke (1973) defined

additional equality constraints and used Lagrange multipliers and achieved constraint lin-

earization. Anderson et al. (1975) also present successive linearization approach in the

determination of model parameters. Bellman et al. (1967) presented sequential algorithm

for solving differential system using quasi-linearization. Algorithm which uses sensitivities

to predict states with respect to the parameters proposed by Hwang and Seinfeld (1972).

They also introduced problem of many local minima and defined new objective function

weight, that should rise the chance in the global optimum searching manner. Kalogerakis

and Luus (1983) introduced algorithm for direct search method to improve initial guess

for a quasi-linearization or Gauss-Newton type minimization. Luus (1998) modified direct

search for problem with larger count of local minima in Lotka-Volterra problem. Many

researchers refer to approach that converse the dynamic system into a set of algebraic

equations. Wide range of polynomial approximations to solve differential problems was

offered by Villadsen and Michelsen (1978). Van Den Brosch and Hellinckx (1974) used

collocation techniques combined with linearization. Tjoa and Biegler (1991) present algo-

rithm based on orthogonal collocation on finite elements. Liebman et al. (1992) used same

discretization method and added a general SQP approach to estimate parameters. Espos-

ito and Floudas (2000) presented the use of αBB global optimization searching method

with total parametrization and control vector parametrization algorithms to solve param-

eter estimation problems.

In particular, one method, maximum likelihood (first published in Bard (1974)), has

been presented extensively in the the literature. It seems to be an effective way to locate

solution for unknown parameters in dynamic nonlinear models. There are several for-

mulation of this method. One, popular, called also error-in-variables approach, assumes

that error is normally distributed over time horizon with a zero mean and existing co-

variance matrix is diagonal. Said by another words, the squared difference between the

observations and the predictions is minimized along time. The difficulty, which is often

discused and has been more important subject of research, is type of numerical method

and its quality. We know several techniques how to find solution for the unconstrained

and constrained nonlinear differential algebraic equations. The first technique uses in-

tegration routines as well as sensitivities to determine states of dynamic model. This

technique is sequential, since minimization of the criteria and solving of differential alge-

braic system are done by sequential manner. The method was presented by Chen and

Hwang (1990); Goh and Teo (1988a) and it is called as Control Vector Parametrization

(CVP) method. The second technique is simultaneous and was introduced by Cuthrell

7

and Biegler (1987, 1989); Logsdon and Biegler (1989). It is called Total Parametrization

(TP) method, because both control and state vector is discretized and approximated by

a set of polynomials. Orthogonal collocation is simultaneous method and approximates

differential system by Lagrange polynomial with Legendre roots. This technique converts

dynamic system into a set of algebraic equations resulting in a non-linear programming

(NLP) problem. For NLP problems, there are standard and specially designed solvers.

Dynamic optimization solvers increase the precision of model prediction, what is in

case of squared error noticable improvement. The cost function based on difference, at

appropriate times, between model and measurements, can produce more than one locally

optimal solution. How many they are, depends on influence the error to true value. Sev-

eral approaches were developed for determination of the best possible fits. Each is very

costly in matter of computational effort. There are two logical ways how to achieve a

better solution: the first one is to run optimization with different initial guesses through

investigated interval for each parameter that is called multistart method. Every solution

for that problems can achieve only the closest optimum to initial guess. So, enough ini-

tial guesses can locate all minima in range. On the other side, this approach provides

no guarantee that the lowest value is the global solution for parameters. The second

way is to search through range within algorithm not based on statistics but with strict

rules. The branch-and-bound algorithm searches within redundand branching of intervals

and at the end locates ε-global solution. The guarantee secures an underestimating of

terms. The linear terms do not need to underestimate, and any other need to. There

are underestimators for bilinear, trilinear, fractional terms, and also general non-convex

underestimators based on coefficient α. This method is named αBB global optimization

method and insures the guarantee of the global solution within ε precision. When differ-

ence between underestimated and original term is within ε range, this interval is ε-global

solution. Both methods will be closely described in Chapter 4.

Various examples of parameter estimation will be presented in Chapter 5. Above

mentioned methods were verified using multistart implemented in both GDOC (uses CVP

method) and DYNOPT (uses TP), and using GDOC with αBB approach. αBB approach

was also implemented as a part of DYNOPT bundle, but only for statical problems.

Results reported in Chapter 5 are comparison of two techniques: TP (implemented within

DYNOPT) and CVP (implemented within GDOC), but only in case of multistart. In case

of GDOC, it is not exact αBB approach, however the determinanion of proper α values

depends on Hessian of the optimization problem. When the sequential approach is used,

Hessian matrix is unavailable in explicit form.

8

CHAPTER 2

Problem Definition

The aim of this chapter is to define dynamic optimization problem (DOP) for parameter

estimation for differential-algebraic systems.

2.1 Cost Functional

Singer et al. (2006) used error-in-variables formulation to estimate the parameters of the

given ODE/DAE model described by equation (2.14). The objective is to minimize the

weighted squared error between the observed values x and those predicted by the model

x̂. All of the measured variables are included in the objective function as follows:

min
x̂,p

nm∑
i=1

(x̂(ti) − x(ti))
T (x̂(ti) − x(ti)) (2.1)

where ti is the time associated with the ith data point from the set of nm measurements

taken over the time horizon t ∈ [t0, tf].

2.1.1 Maximum-Likelihood Estimation

As it was denoted, the objective is to minimize weighted squared error between the ob-

servations and predictions. The predictions are performance indicis or solutions of states

of mathematic model, at appropriate measurement times. We can define them as

f (p,x) = 0 (2.2)

9

2.1. COST FUNCTIONAL

where x ∈ Rnxm is a vector of nxm experimentally measured and in this case also optimized

variables, p ∈ Rnp is a vector of np unknown parameters, and f ∈ Rnxm represents the

system of nxm algebraic functions.

Laboratory measurements are affected to some extent by an error. These are related

to the true values as follows:

xi = x̂i + εi, i = 1, . . . , nm (2.3)

where x̂i is vector of unknown true values of the experimentally measured variables, xi, at

the ith data point from nm taken measurements, and εi is a vector of appropriate additive

error.

The objective is to find such values of parameters that participate and describe the

measured data with the biggest probability. The following probability satisfies our re-

quests:

L(p,ψ) ≡ θ(E(p)|ψ) (2.4)

Here, L represents likelihood function and E ≡ [eT
1 , eT

2 , . . . , eT
nm

] is vector of errors be-

tween observations and predictions from different data points. If we suppose that exper-

imental data are independent, without correlation and identically distributed, then we

may write the likelihood function in form

L(p,ψ) =

nm∏
i=1

θ(ei(p)|ψi) (2.5)

Taking logarithms 1, results in

ln L(p,ψ) =

nm∑
i=1

ln θ(ei(p)|ψi) (2.6)

where p is a set of unknown parameters and ψ is a set of statistical parameters. We defined

maximization problem, where we are trying to maximize the occurence of parameter value

through a set of measurements (maximizing of values for p and ψ which maximize L).

Likelihood function L represents probability of the occurence of given set of statistical

parameters ψ, in a set of observed errors, E, through whole data set.

Uncorrelated measurements produce error with normal distribution without mean and

covariance matrix V :

θ(e|V) = N(e|V) =
2π−nxm/2√|V | exp

[
−1

2
eTV −1e

]
(2.7)

1For convenience it is much easier to work with (ln L) and maximization of ln L is equivalent to

maximization of the original function L

10

2.1. COST FUNCTIONAL

Substitution (2.7) into (2.6) yields the following

ln L = −nxmnm

2
ln 2π − 1

2

nm∑
i=1

ln |V i| − 1

2

nm∑
i=1

eT
i V

−1
i ei (2.8)

Next, when we define R = eTe, (2.8) can be reformulated taking following:

Firstly: covariance matrix is completely known for each experiment:

min

nm∑
i=1

RiV
−1
i (2.9)

Secondly: covariance matrix is same for each experimental point V 1 = V 2 = · · · = V ,

and then

min
nm∑
i=1

RiV
−1 (2.10)

Thirdly: covariance matrix V is diagonal with elements vi:

min
nm∑
i=1

nxm∑
j=1

e2
i,jv

−1
j (2.11)

where e2
i,j is jth component from the vector ei, that is the error associated with the

jth variable in the ith experiment.

We will use third form, where the squared standard deviation σ2
j of the jth variable

can subtitute original term vj. Standard deviation equals to

σj =

⎛
⎝

√√√√ 1

Nmeasurements − 1

Nmeasurements∑
k=1

(xjk − xj)2

⎞
⎠ (2.12)

where xj is average over k replicate experiments, such that xj = (1/Nmeasurements

∑
xjk).

Substituting the definition of ei,j from (2.3) minimization takes the following formulation,

known as the error-on-variables:

min
x̂i,p

nm∑
i=1

nxm∑
j=1

(x̂i,j − xi,j)
2

σ2
j

(2.13a)

subject to

h(x̂i,p) = 0, i = 1, . . . , nm (2.13b)

11

2.2. PROCESS MODEL EQUATIONS

2.2 Process Model Equations

The kinetic model under study may be described either by a set of ordinary differential

equations (ODE) or differential-algebraic equations (DAE) of the form

Mẋ(t) = f(t,x(t),p), x(0) = x0(p) (2.14)

where t denotes time from interval [t0, tf],M is a constant mass matrix, f is vector valued

function of right sides of ODE/DAE’s with x ∈ Rnx as state variables with constant initial

conditions x0, and p ∈ Rnp as a set of time independent parameters to be estimated.

2.3 Constraints

Constraints to be accounted for typically include equality and inequality infinite dimen-

sional, interior-point, and terminal-point constraints (Goh and Teo, 1988b).

(i) Infinite dimensional constraints: t ∈ [τ1, τ2], t0 ≤ τ1 < τ2 ≤ tf

h(x,p, t) = 0 (2.15a)

g(x,p, t) ≥ 0 (2.15b)

(ii) Interior-point constraints: τ ∈ [t0, tf]

h(x,p, τ) = 0 (2.15c)

g(x,p, τ) ≥ 0 (2.15d)

(iii) Terminal-point constraints: t = tf

h(x,p, tf) = 0 (2.15e)

g(x,p, tf) ≥ 0 (2.15f)

Using the definition of the model presented in (2.14), taking the additional constraints

(2.15) to be satisfied during the optimization into account and assuming that the variance

of the error associated with each measured variable is equal, the resulting optimization

problem can be rewritten as

min
x̂,p

nm∑
i=1

(x̂(ti) − x(ti))
T (x̂(ti) − x(ti)) (2.16a)

12

2.3. CONSTRAINTS

such that

Mẋ(t) = f(t,x(t),p), x(0) = x0(p) (2.16b)

h(t,x(t),p) = 0 (2.16c)

g(t,x(t),p) ≤ 0 (2.16d)

x(t)L ≤ x(t) ≤ x(t)U (2.16e)

pL ≤ p ≤ pU (2.16f)

where superscripts L,U are the lower and upper profile bounds.

13

CHAPTER 3

Numerical Methods

The numerical methods used to find a deterministic solution of dynamic optimization

problems can be grouped into two categories: indirect methods, based on optimal control

theory (Bellman, 1957; Bryson and Ho, 1975; Pontryagin et al., 1964), and direct meth-

ods, based on modifying the original optimization problem by discretization of process

variables. In this work only direct methods are considered. In this category, there are

two strategies: sequential method and simultaneous method. The sequential strategy,

often called Control Vector Parameterization (CVP), consists in an approximation of the

control trajectory by a function of only a few parameters and leaving the state equations

in the form of the original system of Differential-Algebraic Equations (DAE) (Goh and

Teo, 1988b). In the simultaneous strategy, both the control and state variables are dis-

cretized using polynomials (e.g., Lagrange polynomials) of which the coefficients become

the decision variables in a much larger Nonlinear Programming problem (NLP) (Cuthrell

and Biegler, 1987).

This chapter describes the NLP formulations for parameter estimation problems of

the form (2.16) for aforementioned two direct approaches.

3.1 Sequential Approach

As in the optimization problem (2.16) just state variables, x, as function of time indepen-

dent parameters, p, appear as optimization variables, the resulting optimization problem

14

3.2. SIMULTANEOUS APPROACH

ζ0 ζi−2 ζi−1 ζi ζi+2 ζne+1

τ1 τ1 τ1τ2 τ2 τ2τk τk τk
0 1

Δζi−1 Δζi Δζi+1

xi−11 xi−1k xi1 xi2 xik xi+11 xi+1k

Figure 3.1: Collocation method on finite elements.

can be rewritten as

min
p

nm∑
i=1

(x̂(ti) − x(ti))
T (x̂(ti) − x(ti)) (3.1a)

such that

Mẋ(t) = f(t,x(t),p), x(0) = x0(p) (3.1b)

hi = Gi(tj ,x(t1), . . . ,x(tf),p) +

∫ tf

t0

Fi(t, x(t), p)dt = 0 (3.1c)

i = 1, . . . , nh

gk = Gk(tj,x(t1), . . . ,x(tf),p) +

∫ tf

t0

Fk(t, x(t), p)dt ≤ 0 (3.1d)

k = 1, . . . , ng

x(t)L ≤ x(t) ≤ x(t)U (3.1e)

pL ≤ p ≤ pU (3.1f)

where the equality constraints, h, are for i = 1, . . . , nh and the inequality constraints,

g, are for k = 1, . . . , ng. Both, equality and inequality constraints are considered in the

Lagrange form (see (V́ıteček and V́ıtečková, 2002)).

This approach has been implemented within FORTRAN code GDOC by Singer et al.

(2005) and will be used to solve the problems defined in Chapter 5.

3.2 Simultaneous Approach

Many different collocation-based discretisations exist for the solution of ODE/DAE sys-

tems. In this section the method of orthogonal collocation on finite elements will be used

to parametrize the state variables (Cuthrell and Biegler, 1989; Logsdon and Biegler, 1989,

1992). This transforms the original problem into a fully algebraic NLP.

The state profiles are approximated by piecewise Lagrange polynomials using k point

15

3.2. SIMULTANEOUS APPROACH

orthogonal collocation on ne finite elements as shown in Figure 3.1

xk+1(t) =
k∑

j=0

xijφj(t) (3.2a)

φj(t) =
k∏

l=0,l �=j

(t − til)

(tij − til)
(3.2b)

for i = 1, . . . , ne, j = 0, . . . , k, l = 0, . . . , k

These polynomials have the feature that at the time point t = tij , the coefficient of the

polynomial, xij is the value of the state profile at that point. Therefore, the coefficients

have a physical meaning which makes it easier to generate bounds for these variables.

Moreover, the times tij are shifted roots of Legendre polynomial of degree k on interval

[0, 1] (tij = ζi−1 + Δζiτj). Substituing (3.2a) into (2.16b) yields the residual equation

M

k∑
j=0

xijφ̇j(τl) − Δζif (til,xk+1(til),p) = 0 (3.3)

to be solved at l = 1, . . . , k collocation points on each element i = 1, . . . , ne with its

length Δζi = ζi − ζi−1, where ζi−1, ζi are the initial and final time of given element, and

til = ζi−1 + Δζiτl (see Figure 3.1). As the state profile should be continuous over the full

time interval t ∈ [t0, tf], continuity constraints of the form

xi0 −
k∑

j=0

xi−1jφj(τ = 1) = 0 (3.4)

are imposed at each element endpoint (interior knots ζi, i = 1, . . . , ne). In addition, the

initial conditions are imposed at the start of the first element:

x10 − x(0) = 0 (3.5)

The algebraic equality (2.16c) and inequality (2.16d) constraints are simply imposed at

the collocation points:

h(tij,xk+1(tij),p) = 0 (3.6a)

g(tij ,xk+1(tij),p) ≤ 0 (3.6b)

Moreover it is important to determine the values of the state variables x̂ in times tm,

in which the measured data x are taken. This is done by

xk+1(tm) =

k∑
j=0

xijφj(τm), τm =
tm − ζ(i−1)m

Δζim

(3.7)

16

3.2. SIMULTANEOUS APPROACH

where the element index im, represents the element in which the measurements are taken,

defined as im ≡ {i : ζ(i−1) ≤ tm ≤ ζi}.
The problem (2.16) now becomes:

min
xij ,p

nm∑
i=1

(x̂(ti) − x(ti))
2 (3.8a)

such that

x10 − x0 = 0 (3.8b)

M
k∑

j=0

xijφ̇j(τl) − Δζif(til,xk+1(til),p) = 0, (3.8c)

i = 1, . . . , ne, l = 0, . . . , k

xi0 −
k∑

j=0

xi−1jφj(1) = 0, i = 2, . . . , ne (3.8d)

xf −
k∑

j=0

xnejφj(1) = 0 (3.8e)

h(tij,xk+1(tij),p) = 0 (3.8f)

g(tij ,xk+1(tij),p) ≤ 0 (3.8g)

xL
ij ≤ xk+1(tij) ≤ xU

ij (3.8h)

i = 1, . . . , ne, j = 0, . . . , k

pL ≤ p ≤ pU (3.8i)

where i refers to the element, j, l refer to the collocation points, Δζi represents finite-

element lengths, x0 holds the values of the states at time t = 0, xf holds the values of

the states at the final time t = tf , h is vector valued function of the equality constraints

evaluated in time tij , g is the vector valued function of inequality constraints evaluated

in time tij , and xij are the collocation coefficients for the state profiles.

Problem (3.8) can be now solved by any standard nonlinear programming solver.

This approach has been implemented within MATLAB code DYNOPT (Čižniar et al.,

2006). This exploits the function fmincon as one of several codes included in MATLAB

Optimization Toolbox (MathWorks, 2006). DYNOPT will be also used to solve the prob-

lems defined in Chapter 5.

17

CHAPTER 4

Global Optimization

Many of dynamic optimisation problems that are encountered in chemical engineering

application are solved today by means of NLP algorithms. However, it is well known that

many of them exhibit multiple local optima. This property which can be attributed to

nonconvexity of the functions participating in most chemical engineering models, implies

that standard local optimization methods will often yield suboptimal solutions and has

motivated researchers to develop global optimization algorithms for solving nonconvex

NLPs. Furthermore, the steady improvement in the performance of computers constantly

extends the scope of problems which are tractable with global optimization approaches.

This chapter describes the multistart method, which is based on statistics, and does

not give the guarantee to converge to the global solution and the αBB algorithm (Adjiman

et al., 1998a,b), which guarantees the ε-convergence to the global solution.

4.1 Multistart Method

Multistart method randomly searches local minima between chosen parameter bondaries.

That means, that the optimization is started repeatedly with different set of initials. The

results are then compared to each other, and the best solution is chosen. Multistart

approach can not provide any guarantee about quality of results.

18

4.2. αBB METHOD

4.2 αBB Method

Consider one of NLP problems (3.1), or (3.8) which result from applying one of the direct

methods (e.g., either CVP or TP) to parameter estimation problem defined by equations

(2.16).

min
z

J (z) (4.1a)

s.t.

h(z) = 0 (4.1b)

g(z) ≤ 0 (4.1c)

where z ∈ C ⊆ Rnz is a vector of optimized parameters of size nz, and J represents

the optimisation criterion constrained by equality and inequality constraints h and g.

All of them must belong to C2 ⊆ R2, that means, they have to be a twice-differentiable

functions.

4.2.1 The αBB Algorithm

The αBB algorithm operates within a branch-and-bound framework (Adjiman et al.,

1998a) and is designed to solve nonconvex minimization problems of the generic type

represented by formulation (4.1). The theoretical properties of the algorithm guarantee

that such a problem can be solved to global optimality within finite ε-convergence.

A branch-and-bound algorithm begins by constructing a relaxation of the original

nonconvex problem (4.1). This relaxation is then solved to generate a lower bound on

the solution of the original problem and should, in some way be easier to solve than

the original problem. In the current context, the relaxation is a convex optimization

problem whose objective function underestimates the nonconvex objective function on C
and whose feasible set contains that of the nonconvex problem. This can be achieved

by constructing functions that are convex relaxations of the objective and constraint

functions on C and formulating a convex optimization problem for these relaxed functions.

In addition, because every local minimum of a convex optimization problem is a global

minimum, standard NLP algorithms designed to locate local minima can find this lower

bound reliably. An upper bound is generated by the value of the nonconvex objective

function at any feasible point (e.g., a local minimum found by standard NLP algorithm, or

a problem (4.1) evaluation at the solution of the relaxation problem). If these bounds are

not within some ε tolerance a branching heuristic is used to partition the set C into two new

subproblems (e.g., bisect on one of the variables). Relaxations can be constructed on these

19

4.2. αBB METHOD

R0

R1 R2

zL
0 zU

0 z

J (z)

LB0

UB0

zL
1 zU

2zU
1 = zL

2 z

J (z)

LB1

UB1

LB2

UB2

Figure 4.1: The Branch-and-Bound Procedure.

two smaller sets, and lower and upper bound can be computed for these partitions. If the

lower bound on a partition is greater than the current best upper bound, a global solution

cannot exist in that partition and this partition is excluded from further consideration

(fathoming). This process of branching, bounding and fathoming continues until the lower

bound on all active partitions is within ε-tolerance of the curent best upper bound. The

branch-and-bound procedure is ilustrated in Figure 4.1. A convex relaxation (dashed line)

of a nonconvex function J(z) is solved on R0 (center plot) to find a lower bound LB0 to

J(z). Upper bound UB0 is given by solving the nonconvex function on R0. The region

R0 is then subdivided to form regions R1 and R2, and the relaxation is repeated to find

a new lower bounds for each region (right plot). By finding a point z in region R2 where

J (z) is less than the convex lower bound LB1 for region R1, one can show that a global

minimum cannot exist in region R1. This region can now be discarded from the search

tree, whereas R2 is further subdivided as shown in the branch-and-bound tree (left plot).

4.2.2 Convex Relaxations

A determining step in the convexification strategy is the decomposition of each nonlinear

function into a sum of nonconvex terms of special type (e.g., linear, bilinear, trilinear,

fractional, fractional trilinear, convex, univariate concave) and nonconvex terms of ar-

bitrary type. Based on these categories, a function J (z) with continuous second-order

derivatives can be written as:

J (z) = LT (z) + CT (z) +

nBT∑
i=1

bizBTi,1zBTi,2 +

nTT∑
i=1

tizTTi,1zTTi,2zTTi,3

+

nF T∑
i=1

fi
zFTi,1

zFTi,2
+

nF TT∑
i=1

fti
zFTTi,1zFTTi,2

zFTTi,3
+

nUT∑
i=1

UTi(zUTi
) +

nNT∑
i=1

NTi(z) (4.2)

20

4.2. αBB METHOD

where LT (z) is a linear term; CT (z) is a convex term; nBT is the number of bilinear

terms, zBTi,1 and zBTi,2 denote the two variables that participate in the ith bilinear term

and bi is its coefficient; nTT is the number of trilinear terms, zTTi,1, zTTi,2 and zTTi,3 denote

the three variables that participate in the ith trilinear term and ti is its coefficient; nFT is

the number of fractional terms, zFTi,1 and zFTi,2 denote the two variables that participate

in the ith fractional term and fi is its coefficient; nFTT is the number of fractional trilin-

ear terms, zFTTi,1, zFTTi,2 and zFTTi,3 denote the three variables that participate in the ith

fractional trilinear term and fti is its coefficient; nUT is the number of univariate concave

terms, UTi(zi) is the ith univariate concave term, zUTi
denotes the variable that partic-

ipates in UTi; nNT is the number of general nonconvex terms, NTi(z) is the ith general

nonconvex term. Although it is possible to decompose the nonconvex function into other

mathematical structures such as signomial expressions (SE), they are not considered in

this work. A detailed description of the treatment of such terms can be found in Maranas

and Floudas (1997).

Techniques can be derived to generate valid and, in some cases, very tight convex

underestimators of these terms. A detailed description of the treatment of such terms can

be found in Adjiman et al. (1998b); Androulakis et al. (1995). In constructing a convex

underestimator for the overall function, it is first noted that linear and convex terms do

not require any transformation. The special type of nonconvex terms (bilinear, trilinear,

fractional, trilinear fractional, and univariate concave terms) is then replaced by very tight

convex underestimators which are already known (Adjiman et al., 1998b; Floudas, 2000).

The convex envelopes can be constructed by the following simple rules.

Underestimating bilinear terms

In the case of bilinear term xy, a tight convex lower bound over the domain [xL, xU] ×
[yL, yU] is obtained by introducing a new variable wBT which replaces every occurence of

xy in the problem and adding the following four linear inequality constraints:

wBT ≥ xLy + xyL − xLyL (4.3a)

wBT ≥ xUy + xyU − xUyU (4.3b)

wBT ≤ xLy + xyU − xLyU (4.3c)

wBT ≤ xUy + xyL − xUyL (4.3d)

21

4.2. αBB METHOD

Underestimating trilinear terms

Any trilinear term of the form xyz can be underestimated over the domain [xL, xU] ×
[yL, yU] × [zL, zU] by introducing a new variable wTT and boundig it by the following

linear inequality constraints:

wTT ≥ xyLzL + xLyzL + xLyLz − 2xLyLzL (4.4a)

wTT ≥ xyUzU + xUyzL + xUyLz − xUyLzL − xUyUzU (4.4b)

wTT ≥ xyLzL + xLyzU + xLyUz − xLyUzU − xLyLzL (4.4c)

wTT ≥ xyUzL + xUyzU + xLyUz − xLyUzL − xUyUzU (4.4d)

wTT ≥ xyLzU + xLyzL + xUyLz − xUyLzU − xLyLzL (4.4e)

wTT ≥ xyLzU + xLyzU + xUyUz − xLyLzU − xUyUzU (4.4f)

wTT ≥ xyUzL + xUyzL + xLyLz − xUyUzL − xLyLzL (4.4g)

wTT ≥ xyUzU + xUyzU + xUyUz − 2xUyUzU (4.4h)

Underestimating fractional terms

Fractional terms of the form x
y

are underestimated by introducing a new variable wFT and

two new inequality constraints which depend on the sign of the bounds on x:

wFT ≥
{

xL

y
+ x

yU − xL

yU if xL ≥ 0

− x
yU − xLy

yLyU + xL

yU if xL < 0
(4.5a)

wFT ≥
{

xU

y
+ x

yL − xU

yL if xU ≥ 0

− x
yL − xUy

yLyU + xU

yU if xU < 0
(4.5b)

Underestimating fractional trilinear terms

For fractional trilinear term of the form xy
z

, an underestimator is derived by introducing

a new variable wFTT by the following inequality constraints for xL, yL, zL ≥ 0:

wFTT ≥ xyL

zU
+

xLy

zU
+

xLyL

z
− 2

xLyL

zU
(4.6a)

wFTT ≥ xyL

zU
+

xLy

zL
+

xLyU

z
− xLyU

zL
− xLyL

zU
(4.6b)

wFTT ≥ xyU

zL
+

xUy

zU
+

xUyL

z
− xUyL

zU
− xUyU

zL
(4.6c)

(4.6d)

22

4.2. αBB METHOD

wFTT ≥ xyU

zU
+

xUy

zL
+

xLyU

z
− xLyU

zU
− xUyU

zL
(4.6e)

wFTT ≥ xyL

zU
+

xLy

zL
+

xUyL

z
− xUyL

zL
− xLyL

zU
(4.6f)

wFTT ≥ xyU

zU
+

xUy

zL
+

xLyU

z
− xLyU

zU
− xUyU

zL
(4.6g)

wFTT ≥ xyL

zU
+

xLy

zL
+

xUyL

z
− xUyL

zL
− xLyL

zU
(4.6h)

wFTT ≥ xyU

zL
+

xUy

zL
+

xUyU

z
− 2

xUyU

zL
(4.6i)

Underestimating univariate concave terms

Univariate concave terms are trivially underestimated by their linearisation at the lower

bound of the variable range. Thus the convex envelope of the concave function UT (x)

over [xL, xU] is the following linear function of x:

UT (xL) +
UT (xU) − UT (xL)

xU − xL
(x − xL) (4.7)

Underestimating nonconvex terms of arbitrary type

For the nonconvex terms of arbitrary type, whose convex envelopes are not known, a

convex underestimator is generated by adding to them the relaxation function (Adjiman

et al., 1998b), RF (z,α):

RF (z,α) = −
nz∑
j=1

αj(z
U
j − zj)(zj − zL

j) (4.8)

where αj ≥ 0, corresponds to the variable j = 1, . . . , nz. Given sufficiently large values of

the αj parameters, all nonconvexities in the original function J (z) can be overpowered

by the convex quadratic therm and LαBB(z,α) is therefore a valid convex underestimator

of the form:

LαBB(z,α) = J (z) +

nNT∑
i=1

RFi(z,αi) (4.9)

where αi corresponds to the term i = 1, . . . , nNT . To derive a valid convex underestimator

therefore consists in generating a set of α parameters. How to generate them will be

discussed in section 4.2.4.

Overall Convex Underestimator

Based on the decomposition approach given in equation (4.2) and every customized under-

estimators discussed in sections above, the corresponding lower bounding function L(z)

to J (z) is:

23

4.2. αBB METHOD

L(z) = LT (z) + CT (z) +

nBT∑
i=1

biwBTi
+

nTT∑
i=1

tiwTTi
+

nF T∑
i=1

fiwFTi
+

nF TT∑
i=1

ftiwFTTi

+

nUT∑
i=1

[
UTi(z

L
UTi

) +
UTi(z

U
UTi

) − UTi(z
L
UTi

)

zU
UTi

− zL
UTi

(zi − zL
UTi

)

]

+

nNT∑
i=1

[
NTi(z) +

nz∑
j=1

αij(z
U
j − zj)(zj − zL

j)

]
(4.10)

where αij corresponds to the i-th general nonconvex term and the j-th variable; the wBTi
,

wTTi
, wFTi

, wFTTi
must satisfy constraints of the forms given by the sets of equation (4.3),

(4.4), (4.5), and (4.6) respectively.

4.2.3 Equality Constraints

In order to generate a valid lower bound on the global solution of the nonconvex NLP, the

underestimating NLP generated in each subdomain must be convex. This implies that

all inequality constraints in the lower bounding problem should be convex, all equality

constraints should be linear and that the size of the feasible region must be increased

relative to that of the original nonconvex problem.

Strategies that can be used to underestimate a nonlinear equality constraint depend

on the type of terms it involves.

• For equalities in which only linear, bilinear, trilinear, fractional and fractional tri-

linear terms appear, the nonlinear terms are replaced by new variables which par-

ticipate linearly in the problem. The equality resulting from the substitution is

therefore linear. Moreover, since the set of values these new variables can take on

is a superset of the values that can be attained by the nonlinear term, the linear

equality corresponds to an enlarged feasible region. Thus given the equality:

0 = LT (z) +

nBT∑
i=1

bizBTi,1zBTi,2 +

nTT∑
i=1

tizTTi,1zTTi,2zTTi,3

+

nF T∑
i=1

fi
zFTi,1

zFTi,2

+

nF TT∑
i=1

fti
zFTTi,1zFTTi,2

zFTTi,3

(4.11)

the following underestimator can be used:

0 = LT (z) +

nBT∑
i=1

biwBTi
+

nTT∑
i=1

tiwTTi
+

nF T∑
i=1

fiwFTi
+

nF TT∑
i=1

ftiwFTTi
(4.12)

where the notation is as previously defined, and the appropriate inequality constraint

for the w variables are added to the problem.

24

4.2. αBB METHOD

• For nonlinear equality constraint containing convex or general nonconvex terms,

the equality obtained by simple substitution of the corresponding underestimator

is nonlinear. Furthermore, if it contains univariate concave terms, it is linear but

corresponds to a different feasible region. In the presence of either convex, univariate

concave or general nonconvex terms, the original equality hj(z) = 0 must therefore

be split as two inequalities of opposite sign:

hj(z) ≤ 0 (4.13a)

−hj(z) ≤ 0 (4.13b)

These two inequality cosntraints must then be underestimated independently. The

univariate concave terms appearing in the nonconvex equality become convex terms

in one of the two inequalities while the convex terms become concave, and the

general nonconvex terms become either concave or remain nonconvex.

4.2.4 Rigorous Calculation of α

Since L(z) in (4.10) is convex means that its Hessian matrix HL(z) is positive semi-

definite, a useful convexity condition is derived by noting that HL(z) is related to the

Hessian matrix HJ (z) of J (z) by:

HL(z) = HJ (z) + 2Δ (4.14)

where Δ is a diagonal matrix whose diagonal elements are the αi’s and is referred to as

the diagonal shift matrix. In order to derive a valid convex underestimator, the set of α

parameters must satisfy the following theorem:

Theorem 1 L(z), as defined in (4.10), is convex if HJ (z) + 2Δ = HJ (z) + 2diag(αi)

is positive semi-definite for all z ∈ [zL, zU].

In recent years, a number of deterministic methods have been devised in order to auto-

matically identify an appropriate diagonal shift matrix, based on interval arithmetic. Two

classes of approaches to this problem are considered subsequently: (i) Uniform diagonal

shift of the Hessian matrix of J (z); (ii) Nonuniform diagonal shift of the Hessian matrix

of J (z). For further details refer, for instance, to Adjiman et al. (1998b).

Uniform Diagonal Shift Matrix

For this class of methods, the underestimator is re-formulated using a single α value:

L(z,α) = J (z) + α

nz∑
j=1

(zU
j − zj)(zj − zL

j) (4.15)

25

4.2. αBB METHOD

All non-zero elements of Δ are therefore equal to α. It can be shown that L(z) is a valid

convex underestimator of J (z) if:

α ≥ max

(
0,−1

2
min

i,zL≤z≤zU
λi(z)

)
(4.16)

where the λi’s are the eigenvalues of HJ (z).

Considering an interval Hessian matrix [HJ] ⊆ {HJ (z), z ∈ [zL, zU]}, it can be

shown that a sufficient condition for the convexity of L(z) is given by:

α ≥ max

(
0,−1

2
λmin([HJ])

)
(4.17)

where λmin([HJ]) is the minimum eigenvalue of the interval matrix family [HJ]. Exam-

ples of such class of methods are (Adjiman et al., 1998b):

• Gerschgorin’s theorem for interval matrices.

• E-matrix method.

• Mori and Kokame’s method.

• The lower bounding Hessian method.

• A method based on the Kharitonov theroem.

• Hertz’s method.

Nonuniform Diagonal Shift Matrix

This class of methods allows the calculation of a different α value for each variable in

order to construct an underestimator of the form shown in equation (4.10). In this case

the non-zero elements of the diagonal shift matrix can no longer be related to the mini-

mum eigenvalue of the interval Hessian matrix [HJ]. Examples of such class of methods

are (Adjiman et al., 1998b):

• Scaled Gerschgorin’s theorem.

• H-matrix method.

• Minimisation of maximum separation distance.

26

4.2. αBB METHOD

4.2.5 Branching Strategies

Although it does not present any theoretical difficulties, the branching step of any branch-

and-bound algorithm often has significant effect on the rate of convergence. This is

especially true for the αBB algorithm since the quality of the underestimator depends

on the variable bounds in a variety of ways. For instance, if a variable participates only

linearly in the problem, branching on it will not have any effect on the accuracy of the

convex lower bounding functions. On the other hand, reducing the range of a variable

raised to high power is likely to result in much tighter underestimating problems. To take

advantage of these obsevations, the implementation of the αBB algorithm offers some

choice of the branching strategies. Four alternatives are currently available:

Strategy 1

The interval to be bisected is determined through the least reduced axis rule (Adjiman

et al., 1998b) whose application involves the calculation of a current range to original

range ratio, denoted ri, for each variable:

ri =
zU

i − zL
i

zU
i,0 − zL

i,0

(4.18)

where zU
i,0 and zL

i,0 are, respectively, the upper and lower bounds on variable zi at the first

node of the branch-and-bound tree, and zU
i and zL

i are the upper and lower bounds on

the variable zi at the current node of the tree. The variable with the largest ri is selected

for branching.

Strategy 2

While the second branching option requires additional computational effort, it results

in a significant improvement of the convergence time for difficult problems. A different

measure μ for each type of the underestimator is considered to facilitate the assessment

of the quality of the lower bounding function (Adjiman et al., 1998a; Androulakis et al.,

1995). The maximum separation distance between the underestimator and the actual

term at the optimal solution of the lower bound problem is one possible indicator of the

degree of accuracy achieved in the construction of the convex approximation.

• For the bilinear term xy, the maximum separation distance is:

μBT =
(xU − xL)(yU − yL)

4
(4.19a)

27

4.2. αBB METHOD

• For a univariate concave term UT (x), the maximum separation distance can be

expressed as an convex optimisation problem so that μUT is given by:

μUT = − min
xL≤x≤xU

{−ut(x) + utL(x)} (4.19b)

where utL(x) is the linearisation of ut(x) around xL.

• For a general nonconvex term, the maximum separation distance μNT is:

μNT =
1

4

nz∑
i=1

αi(z
U
i − zL

i)2 (4.19c)

where the αi’s are defined by equation (4.9).

Given a node to be partitioned, the values of μBT , μUT and μNT are calculated for each

term in accordance with its type. The term which appears to have the worst underestima-

tor, e.g., the largest μ, is then used as a basis for the selection of the branching variables.

Out of the set of the variables that participate in that term, the one with the least re-

duced axis, as defined by equation (4.18), is chosen for k-section. Under this strategy, the

influence of the variable bounds on the quality of the underestimators is directly taken

into account, and hence this adaptive branching scheme ensures the effective tightening

of the lower bounding problem from iteration to iteration.

Strategy 3

This strategy is a variant of Strategy 2. Instead of computing the maximum separation

distance between a term and its underestimator, their separation distance at the optimum

solution of the lower bounding problem is used (Adjiman et al., 1998a):

• The measures μBT , μTT , μFT and μFTT for bilinear, trilinear, fractional and frac-

tional trilinear terms, are:

μBT = |x∗y∗ − w∗
BT | (4.20a)

μTT = |x∗y∗z∗ − w∗
TT | (4.20b)

μFT =

∣∣∣∣x∗

y∗ − w∗
FT

∣∣∣∣ (4.20c)

μFTT =

∣∣∣∣x∗y∗

z∗
− w∗

FTT

∣∣∣∣ (4.20d)

where wBT , wTT , wFT and wFTT are the variables that are substituted for the

bilinear term xy, trilinear term xyz, fractional term x
y

and fractional trilinear term
xy
z

in order to construct their convex envelopes and the ∗ superscript denotes the

value of the variable at the solution of the current lower bounding problem.

28

4.2. αBB METHOD

• The measure for univariate concave term ut(x) is:

μUT = ut(x∗) − utL(x∗) (4.20e)

• The general nonconvex term measure is:

μNT = −
nz∑
i=1

αi(z
U
i − z∗i)(z

∗
i − zL

i) (4.20f)

Strategy 4

The fourth branching procedure takes the approach of Strategy 3 one step further by

considering the overall influence of each variable on the convex problem (Adjiman et al.,

1998a). After the relevant measures μBT , μTT , μFT , μFTT , μUT and μNT have been

calculated for every term, a measure μ of each variable’s contribution may be obtained as

follows:

μi =
∑

j∈BTi

μj
BT +

∑
j∈TTi

μj
TT +

∑
j∈FTi

μj
FT +

∑
j∈FTTi

μj
FTT +

∑
j∈UTi

μj
UT +

∑
j∈NTi

μj
NT (4.21)

where μi is the measure of the i-th variable. BTi is the index set of the bilinear terms in

which the i-th variable participates and μj
BT is the measure of the j-th bilinear term. TTi

is the index set of the trilinear terms in which the i-th variable participates and μj
TT is the

measure of the j-th trilinear term. FTi is the index set of the fractional terms in which

the i-th variable participates and μj
FT is the measure of the j-th fractional term. FTTi

is the index set of the fractional trilinear terms in which the i-th variable participates

and μj
FTT is the measure of the j-th fractional trilinear term. UTi is the index set of

univariate concave terms in which the i-th variable participates and μj
UT is the measure of

the j-th univariate concave term. NTi is the index set of the general nonconvex terms in

which the i-th variable participates and μj
NT is the measure of the j-th general nonconvex

term. The variable with the largest measure μ is selected as the branching variable, and

k-section can be performed on it. If two or more variables have the same measure, the

least reduced axis test is performed to distinguish them.

Note that branching strategies 2, 3, and 4 are particularly efficient since they take into

account the sensitivity of the underestimators to the bounds used for each variable.

4.2.6 Variable Bound Updates

The quality of the convex lower bounding problem can also be improved by ensuring that

the variable bounds are as tight as possible. In the current implementation of the αBB

29

4.2. αBB METHOD

algorithm, variable bound updates can either be performed at the onset of an αBB run

or at each iteration.

In both cases, the same procedure is followed in order to construct the bound update

problem. Given a solution domain, the convex underestimator for every constraint in the

original NLP is formulated. The bound problems for variable zi are then expressed as:

zL,new
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

minz zi

s.t.

Lg(z) ≤ 0

LJ (z) ≤ UBD

zL ≤ z ≤ zU

(4.22a)

zU,new
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

minz −zi

s.t.

Lg(z) ≤ 0

LJ (z) ≤ UBD

zL ≤ z ≤ zU

(4.22b)

where LJ (z) and Lg(z) are the convex underestimators of the objective function and of

the constraints respectively, zL and zU are the best calculated bounds on the variables,

and UBD is the current best upper bound on the global solution. Once a new lower bound

zL,new
i on zi has been computed via problem (4.22a), this value is used in the formulation

of problem (4.22b) for generation of an upper bound zU,new
i .

Note that because of the computational expense incurred by an update of the bounds

on all variables, it is often desirable to define a smaller subset of the variables on which

this operation is to be performed. The criterion devised for the selection of the branching

variables can be used in this instance since it provides a measure of the sensitivity of

the problem to each variable. An option was therefore set up, in which bound updates

are carried out only for a fraction of the variables with a non-zero μ, as calculated in

equation (4.21).

30

CHAPTER 5

Computational Studies

5.1 Example 1

5.1.1 Problem Formulation

This model represents a first-order irreversible chain reaction A
k1→ B

k2→ C as presented

in Kaszonyi, private communication. Only the concentration of components A and B

were measured, therefore, component C does not appear in the model used for estimation

and its concentration can be simply calculate from substances A and B. The ODE model

is of the form

ẋ1 = −p1x1 (5.1a)

ẋ2 = p1x1 − p2x2 (5.1b)

x0 = [2, 0] (5.1c)

where the state vector, x, is defined as concentration of substances A and B [cA, cB] and

the parameter vector, p, is defined as kinetic rate constants [k1, k2]. The data used in the

study (see Table 5.1) were generated with values for the parameters of p = [0.8, 0.3] with

no added error.

Finally, using the known values of the components A and B we can create an objective

function for comparing the known data x = [cA, cB] (see Table 5.1) at each point with the

state variables in the model x̂ = [ĉA, ĉB]. Let j be the index corresponding to each data

31

5.1. EXAMPLE 1

t [min] cA [mol/dm3] cB [mol/dm3] t [min] cA [mol/dm3] cB [mol/dm3]

0 2.000 0.000 5.5 0.025 0.575

0.5 1.341 0.609 6 0.016 0.503

1 0.899 0.933 6.5 0.011 0.438

1.5 0.602 1.077 7 0.007 0.380

2 0.404 1.110 7.5 0.005 0.329

2.5 0.271 1.079 8 0.003 0.285

3 0.181 1.011 8.5 0.002 0.246

3.5 0.122 0.925 9 0.001 0.213

4 0.082 0.833 9.5 0.001 0.184

4.5 0.055 0.742 10 0.001 0.158

5 0.037 0.655

Table 5.1: Example 1 – Experimental Data

point

min
x̂,p

2∑
i=1

10∑
j=1

(x̂i(tj) − xi(tj))
2 (5.1d)

5.1.2 Results

DYNOPT used 5 collocation points for approximation of state profiles on 4 equal-length

finite elements. The bounds on variables being set to xL,U = [0 2; 0 2], pL,U = [0 1; 0 1], in

both solvers. Running optimization 100 times we get several optima sorted in Table 5.3

for DYNOPT and Table 5.4 for GDOC. As we can see, cost function values are spreaded

almost identically. Also, the best optained minima from both multistarts are equal to

global solution presented in Table 5.2 with ε certainty. Each approach reports similar

value of estimated parameters. Integration with found parameter values against original

measurements are displayed in Figure 5.1 and Figure 5.2 where the best obtained values

are used. The results fitted experimental values precisely.

Minimum obj value p1 p2

Global 0.00017604 0.8004760 0.2997822

Table 5.2: Example 1 – αBB method performed by GDOC

32

5.1. EXAMPLE 1

0 2 4 6 8 10
0

0.5

1

1.5

2

t [min]

c A
,c

B
 [m

ol
/d

m
3]

c
A,measured

c
A,estimated

c
B,measured

c
B,estimated

Figure 5.1: Example 1: DYNOPT

0 2 4 6 8 10
0

0.5

1

1.5

2

t [min]

c A
,c

B
 [m

ol
/d

m
3]

c
A,measured

c
A, loc. estimated

c
A, glob. estimated

c
B,measured

c
B, loc. estimated

c
B, glob. estimated

Figure 5.2: Example 1: GDOC

Minimum obj value p1 p2 frequency (%)

Local 0.00017604 0.8004062859 0.2997848632 96.4

Local 0.00017605 0.8004062276 0.2997850392 1.7

Local 0.00017606 0.8004101658 0.2997855893 0.9

Local 0.00017610 0.8004612658 0.2997856149 0.2

Local 0.00017612 0.8004058796 0.2997849440 0.1

Local 0.00017613 0.8004062276 0.2997850392 0.2

Local 0.00017614 0.8004612658 0.2997856149 0.2

Local 0.00017631 0.8004062859 0.2997848632 0.3

Table 5.3: Example 1 – Multistart method with 100 runs performed by DYNOPT (some

picked values of objective function)

Minimum obj value p1 p2 frequency (%)

Local 0.00017605 0.8004947 0.2997755 76.5

Local 0.00017607 0.8004217 0.2997820 9

Local 0.00017608 0.8005090 0.2997815 5.4

Local 0.00017609 0.8004903 0.2997791 4.5

Local 0.00017610 0.8004947 0.2997755 2.6

Table 5.4: Example 1 – Multistart method with 100 runs performed by GDOC (some

picked values of objective function)

33

5.2. EXAMPLE 2

5.2 Example 2

5.2.1 Problem formulation

This model is theoretical kinetic model described by reactions

A + B
k1→ C + F

A + C
k2→ D + F

A + D
k3→ E + F

published in Himmelblau (1970). Only the concentration of component A was measured.

The ODE model is of the form

ẋ1 = −p1x1x2 − p2x1x3 − p3x1x4 (5.2a)

ẋ2 = −p1x1x2 (5.2b)

ẋ3 = p1x1x2 − p2x1x3 (5.2c)

ẋ4 = p2x1x3 − p3x1x4 (5.2d)

ẋ5 = p3x1x4 (5.2e)

x0 = [0.02090, 0.00697, 0, 0, 0] (5.2f)

where the state vector, x is defined as concentration of substances [cA, cB, cC , cD, cE] and

the parameter vector, p, is defined by kinetic rates constants [k1, k2, k3]. The data used

in the study are shown in Table 5.5.

Again, using the known values of the component A we can create an objective function

for comparing the known data x = [cA] (see Table 5.5) at each point with the state

variables in the model x̂ = [ĉA]. Let i be the index corresponding to each data point.

min
x̂,p

22∑
i=1

(x̂(ti) − x(ti))
2 (5.2g)

5.2.2 Results

Dynopt used 8 collocation points for approximation of state profiles on 8 equal-length finite

elements. Table 5.6 shows some local minima from 100 multistarts running DYNOPT. In

Table 5.2 can be seen global minimum obtained by αBB method and some local minima

from 100 multistarts running GDOC. DYNOPT results lower performance indices than

GDOC (See Table 5.7). It is probably caused by difference in approaches. While in

DYNOPT, both state and control profiles are discretized on each interval, in GDOC are

34

5.2. EXAMPLE 2

t [min] cA × 103 [mol/liter] t [min] cA × 103 [mol/liter]

4.50 51.400 76.75 8.395

8.67 14.220 90.00 7.891

12.67 13.350 102.00 7.510

17.75 12.320 108.00 7.370

22.67 11.810 147.92 6.646

27.08 11.390 198.00 5.883

32.00 10.920 241.75 5.322

36.00 10.540 270.25 4.960

46.33 9.780 326.25 4.518

57.00 9.157 418.00 4.075

69.00 8.594 501.00 3.372

Table 5.5: Example 2 – Experimental Data

control profiles discretized and state profiles are integrated on each time interval. A small

difference between predicted model and measured samples can be observed in both cases

on pictures Figure 5.3, Figure 5.4 and in Table 5.6, Table 5.7 and Table 5.8. The best

obtained values are used for comparisons.

Minimum obj value p1 p2 p3 frequency (%)

Local 0.00401 22.84936 1.48237 0.30374 19

Local 0.00402 21.80278 1.48678 0.30331 18

Local 0.00403 24.28812 1.47666 0.30433 20

Local 0.00406 21.75700 1.48682 0.30329 10

Local 0.00408 22.03482 1.48611 0.30336 4

Local 0.00411 22.07459 1.48742 0.30317 1

Table 5.6: Example 2 – Multistart method with 100 runs performed by DYNOPT (some

picked values of objective function)

35

5.2. EXAMPLE 2

0 100 200 300 400 500

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

t [min]

c A
 [m

ol
/d

m
3]

c
A,measured

c
A,estimated

Figure 5.3: Example 2: DYNOPT

0 100 200 300 400 500

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

t [min]

c A
 [m

ol
/d

m
3]

c
A,measured

c
A, loc. estimated

c
A, glob. estimated

Figure 5.4: Example 2: GDOC

Minimum obj value p1 p2 p3 frequency (%)

Local 0.00469 23.65910 1.48098 0.30351 24

Local 0.00470 23.00078 1.48313 0.30371 49

Local 0.00471 19.51164 1.49981 0.30188 1

Local 0.00472 23.68011 1.47900 0.30418 1

Local 0.00473 26.11833 1.47158 0.30474 2

Local 0.00474 23.00078 1.48313 0.30371 3

Local 0.00475 23.90928 1.47906 0.30394 1

Table 5.7: Example 2 – Multistart method with 100 runs performed by GDOC (some

picked values of objective function)

Minimum obj value p1 p2

Global 0.00468 23.63440 1.48019

Table 5.8: Example 2 – αBB method performed by GDOC

36

5.3. EXAMPLE 3

5.3 Example 3

5.3.1 Problem formulation

This model is a theoretical kinetic model published in Himmelblau (1970). The concen-

tration of components A and B were measured. The ODE model is of the form

ẋ1 = −p1x1x2 − p2x1x4 (5.3a)

ẋ2 = −p1x1x2 (5.3b)

ẋ3 = p1x1x2 (5.3c)

ẋ4 = p1x1x2 + p2x1x4 (5.3d)

ẋ5 = p2

√
x1x4 (5.3e)

x0 = [1.5, 1, 0, 0, 0] (5.3f)

where the state vector, x is defined as concentration of substances [cA, cB, cC , cD, cE] and

the parameter vector, p, is defined by kinetic rate constants [k1, k2]. The data used in

the study (see Table 5.9) were generated with values for the parameters of p = [0.3, 0.1]

with added small error.

Again, using the known values of the components A and B we can create an objective

function for comparing the known data x = [cA, cB] (see Table 5.9) at each point with the

state variables in the model x̂ = [ĉA, ĉB]. Let j be the index corresponding to each data

point.

min
x̂,p

2∑
i=1

10∑
j=1

(x̂i(tj) − xi(tj))
2 (5.3g)

5.3.2 Results

In this case study, Table 5.10 provides same results from 100 different starting points for

parameters using DYNOPT. GDOC refers twice lower value of cost functions in Table 5.11

and global solution displayed in Table 5.12. In this case is clear that CVP method is

more precise compared to TP. From Figure 5.5 and Figure 5.6 is visible that quality of

parameter values obtained by GDOC are more precise than values obtained by DYNOPT.

The best obtained values are used for comparisons. It seems that with small number of

measured data, which are also dispersed, DYNOPT could not fit very well. It is caused

by oscilation of Lagrange polynomial in TP against smooth integrated curved provided

by CVP method. DYNOPT works with 4 same interval’s length and 4 colocation points.

37

5.3. EXAMPLE 3

t [min] cA [mol/liter] cB [mol/liter]

1 1.1529 0.6747

2 0.9333 0.4944

3 0.7806 0.3828

4 0.6675 0.3083

5 0.5801 0.2558

6 0.5104 0.2173

7 0.4535 0.1881

8 0.4060 0.1653

9 0.3658 0.1473

10 0.3314 0.1327

Table 5.9: Example 3 – Experimental Data

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

t [min]

c A
,c

B
 [m

ol
/d

m
3]

c
A,measured

c
A,estimated

c
B,measured

c
B,estimated

Figure 5.5: Example 3: DYNOPT

0 2 4 6 8 10

0.2

0.4

0.6

0.8

1

1.2

1.4

t [min]

c A
,c

B
 [m

ol
/d

m
3]

c
A,measured

c
A, loc. estimated

c
A, glob. estimated

c
B,measured

c
B, loc. estimated

c
B, glob. estimated

Figure 5.6: Example 3: GDOC

Minimum obj value p1 p2 frequency (%)

Local 0.02595 0.30804 0.10591 100

Table 5.10: Example 3 – Multistart method with 100 runs performed by DYNOPT

38

5.3. EXAMPLE 3

Minimum obj value p1 p2 frequency (%)

Local 0.01206579 0.3514424 0.07976015 31.1

Local 0.01206580 0.3514051 0.07977576 38.9

Local 0.01206581 0.3514051 0.07977576 13

Local 0.01206582 0.3514051 0.07977576 5.7

Local 0.01206583 0.3514274 0.07980991 5.9

Local 0.01206584 0.3514051 0.07977576 4

Table 5.11: Example 3 – Multistart method with 100 runs performed by GDOC (some

picked values of objective function)

Minimum obj value p1 p2

Global 0.01206578 0.3514370 0.07976381

Table 5.12: Example 3 – αBB method performed by GDOC

39

5.4. EXAMPLE 4

5.4 Example 4

5.4.1 Problem formulation

This model represents the cyclohexadienyl radical reaction with oxygen in non-polar sol-

vents as presented in Taylor et al. (2004). Only the absorbance for cyklohexadienyl radicals

was measured. The ODE model is of the form

ẋ1 = q1x2x3 − q3(p1 + p2)x1 + (p1/q4)x4+

+ (p2/q5)x5 − q2x
2
1 (5.4a)

ẋ2 = −q1x2x3 (5.4b)

ẋ3 = −q1x2x3 (5.4c)

ẋ4 = p1x1q3 − (p1/q4)x4 (5.4d)

ẋ5 = p2q3x1 − (p3 + p2/q5)x5 (5.4e)

x = [0, 0.00014, 0.4, 0, 0] (5.4f)

q = [53, 1200, 0.0019, 2081, 4162] (5.4g)

where the state vector, x, is defined as [c-C6H7, (CH3)3CO, 1, 4-C6H8, p-C6H7OO, o-C6H7OO],

and the parameter vector, p, is defined as [k2, k3, k4] (see (Taylor et al., 2004), (Singer

et al., 2006)).

Finally, using the known values of the absorbance d for cyclohexadienyl radical we

can create an objective function. The known values of absorbance di at each point are

compared with calculated absorbance values from the model. The state vector is de-

fined as x̂ = [cA, cB, cC , cD, cE] and then predicted absorbance d̂ is equal to 2100x̂1(ti) +

200(x̂4(ti) + x̂5(ti)). Let i be the index corresponding to each data point. Cost function

is described as

min
x̂,p

460∑
i=1

(d̂(ti) − d(ti))
2 (5.4h)

5.4.2 Results

Using 10 collocation points for approximation of state profiles on 11 finite elements of

lengths [0.46; 4], with bounds on variables being set to, pL,U = [10 1200; 10 1200; 0.001 40]

we obtain results printed in Table 5.13. Comparison between the integrated system with

estimated parameters values and the original data is shown on Figure 5.7 where the best

found local optimum is used. GDOC did not converge.

40

5.4. EXAMPLE 4

0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

t [10−6 s]

O
pt

ic
al

 d
en

si
ty

c
A,measured

c
A,estimated

Figure 5.7: Example 4: DYNOPT

Minimum obj value p1 p2 p3 frequency (%)

Local 0.03916 531.2500 400.7325 32.0750 1

Local 0.04014 550.5497 1084.2537 0.2716 1

Local 0.06380 29.7843 978.0523 19.4768 1

Local 0.10122 662.4405 1114.4850 0.2796 1

Local 0.14415 1146.5787 374.6621 24.1901 1

Local 0.52467 1081.2793 401.4550 24.5058 1

Table 5.13: Example 4 – Multistart method with 100 runs performed by DYNOPT (some

picked values of objective function)

41

CHAPTER 6

Conclusions

Parameter estimation becomes an important part of chemical computing in matter of

determining of parameters in semi-known models that describe variety of chemical tech-

nologies. Major difficulty is to locate almost true values from noisy data obtained from

experimental measurements. To express relationship between measurements and appro-

priate model data, Chapter 2 defined objective function based on error-on-variables ap-

proach that maximize likelihood of occurence certain parameter values in all experimental

data. In other words, we minimize weighted least-squared error between observations and

predictions.

Bigger precision is needed in model described with differential algebraic equations

or ordinary differential equations for parameter estimation problems. In Chapter 4 we

introduced two numerical methods and we compared them. One which integrates original

process equations and second which does not integrate, but discretizes and approximates

states by Lagrange polynomial with Legendre roots. In both methods control vector is

provided by measured samples. This method, called orthogonal collocation, transfers

dynamic system into static nonlinear problem (NLP) which is then solved with nonlinear

solvers. As it is obvious, the second method is less precise than the first one.

All previous steps were sufficient for locally optimal solutions. A local solution depends

on an initial set of parameters. To improve precision of results we test two methods on

several examples presented in Chapter 4. Multistart is a very simple method and as name

says it is based on selected count of local optimizations with randomlly generated initial

set of optimized parameters. On the other side, αBB method searches through intervals

42

that are branched into smaller ones. At each iteration we also compute α coefficient

from Hessians of original functions and by underestimating ensure that the solution is

really global. Using CVP method we are unable to compute exact αs, because it does not

operate with hessians. Advantage of orthogonal collocation is that we are able to compute

αs at each iteration cycle. This can not be compared against CVP method because it is

subject of further work.

There was another recent developement beside improving quality of parameter estima-

tion of DYNOPT. An user-friendly graphical interface and automatic gradient generation

has been implemented. The problem inputing into DYNOPT is much more easier as is

shown in Appendix A.

43

Bibliography

C. S. Adjiman, I. P. Androulakis, and C. A. Floudas. A global optimization method,

αBB, for general twice-differentiable constrained NLPs - II. Implementation and com-

putational results. Computers and Chemical Engineering, 22(9):1159–1179, 1998a.

C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier. A global optimization

method, αBB, for general twice-differentiable constrained NLPs - I. Theoretical ad-

vances. Computers and Chemical Engineering, 22(9):1137–1158, 1998b.

T. F. Anderson, D. S. Abrams, and E. A. Grens II. Evaluation of parameters for nonlinear

thermodynamic models. AIChE Journal, (24):20, 1975.

I. P. Androulakis, C. D. Maranas, and C. A. Floudas. αBB: A global optimization method

for general constrained nonconvex problems. Journal of Global Optimization, 7(4):337–

363, 1995.

Y. Bard. Nonlinear Parameter Estimation. Academic Press, New York, 1974.

Y. Bard and L. Lapidus. Kinetics analysis by digital parameter estimation. Catalysis

Reviews, (2):67, 1968.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

R. Bellman, J. Jacquez, R. Kalaba, and S. Schwimmer. Quasilinearization and estimation

of chemical rate constraints from raw kinetic data. Math Biosci, (1):71, 1967.

H. I. Britt and R. H. Luecke. The estimation of parameters in nonlinear implict models.

Technometrics, (15):233, 1973.

44

BIBLIOGRAPHY

A. E. Bryson and Y. Ho. Applied Optimal Control. Hemisphere Publishing Corporation,

Washington, D.C., 1975.

C. T. Chen and C. Hwang. Optimal control computation for differential-algebraic process

systems with general constraints. Chem. Eng. Comm., (97):9–26, 1990.

J. E. Cuthrell and L. T. Biegler. On the optimization of differential-algebraic process

systems. AIChE Journal, 33:1257–1270, 1987.

J. E. Cuthrell and L. T. Biegler. Simultaneous optimization and solution methods for

batch reactor control profiles. Computers and Chemical Engineering, 13(1/2):49–62,

1989.

W. R. Esposito and C. A. Floudas. Global optimization for the parameter estimation od

differential-algebraic systems. Ind. Eng. Chem. Res., (39):1291–1310, 2000.

W. F. Feehery. Dynamic Optimisation with Path Constraints. PhD thesis, MIT, 1998.

M. Fikar and M. A. Latifi. User’s guide for FORTRAN dynamic optimisation code DYNO.

Technical Report mf0201, LSGC CNRS, Nancy, France; STU Bratislava, Slovak Repub-

lic, 2002.

C. A. Floudas. Deterministic Global Optimization: Theory, methods and applications.

Nonconvex optimization and its applications. Kluwer Academic Publishers, 2000.

C. J. Goh and K. L. Teo. Control parametrization: a unified approach to optimal control

problems with general constraints. Automatica, (10):3–18, 1988a.

C. J. Goh and K. L. Teo. Control parametrization: a unified approach to optimal control

problems with general constraints. Automatica, (10):3–18, 1988b.

D. M. Himmelblau. Process Analysis by Statistical Methods. John Wiley and Sons Inc,

New York, 1970.

M. Hwang and J. H. Seinfeld. A new algorithm for the estimation of parameters in

ordinary differential equations. AICHE J., (18):90, 1972.

D. Jacobson and M. Lele. A transformation technique for optimal control problems with a

state variable inequality constraint. IEEE Trans. Automatic Control, 5:457–464, 1969.

N. Kalogerakis and R. Luus. Simplification of quasilinearization method for parameter

estimation. AICHE J., (29):858, 1983.

45

BIBLIOGRAPHY

A. Kaszonyi. private communication.

M. J. Liebman, T. F. Edgar, and L. S. Lasdon. Efficient data reconciliation and estimation

for dynamic processes using nonlinear programming techniques. Comp. Chem. Eng.,

(16):963, 1992.

J. S. Logsdon and L. T. Biegler. Accurate solution of differential-algebraic optimization

problems. Chemical Engineering Science, (28):1628–1639, 1989.

J. S. Logsdon and L. T. Biegler. Decomposition strategies for large-scale dynamic opti-

mization problems. Chemical Engineering Science, 47(4):851–864, 1992.

R. Luus. Parameter estimation of lotka-volterra problem by direct search optimization.

Hung. J Ind. Chem., (26):287, 1998.

C. D. Maranas and C. A. Floudas. Global optimization in generalized geometric program-

ming. Computers and Chemical Engineering, 21(4):351–369, 1997.

The MathWorks. Symbolic Math Toolbox for use with MATLAB: User’s Guide, 1998.

The MathWorks. Optimization Toolbox for use with MATLAB: User’s Guide, 2006.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. The

Mathematical Theory of Optimal Processes. Pergamon Press, New York, 1964.

H. Schwetlick and V. Tiller. Numerical methods for estimating parametrs in nonlinear

models with error in the variables. Technometrics, (27):17, 1985.

A. B. Singer, Benoit Chachuat, and Barton P. I. GDOC manual. Department of Chemical

Engineering Massachusetts Institute of Technology, Massachusetts, 2005.

A. B. Singer, J. W. Taylor, P. I. Barton, and W. H. Green. Global dynamic optimization

for parameter estimation in chemical kinetics. 110:971–976, 2006.

W. H. Southwell. Fitting experimental data. J. of Comp. Physics, (4):465, 1969.

J. W. Taylor, G. Ehlker, H-H. Carstensen, L. Rulsen, R. W. Field, and W. H. Green. Direct

measurement of the fast, reversible reaction of cyclohexadienyl radicals with oxygen in

nonpolar solvents. Journal of Physical Chemistry A, 108(35):7193–7203, 2004.

T. B. Tjoa and L. T. Biegler. Simultaneous solution and optimization strategies for

parameter estimation of differential algebraic equation systems. Ind. Eng. Chem. Res.,

(30):376, 1991.

46

BIBLIOGRAPHY

B Van Den Brosch and L. A. Hellinckx. A new method for the estimation of parameters

in differential equations. AICHE J., (20):250, 1974.

M. Čižniar, M. Fikar, and M. A. Latifi. MATLAB Dynamic Optimisation Code DYNOPT.

User’s Guide, version 4.1.0. KIRP FCHPT STU, Bratislava, 2006.

M. Čižniar, M. Podmajersky, M. Fikar, and M. A. Latifi. MATLAB Dynamic Optimisation

Code DYNOPT. User’s Guide, version 4.1.1. KIRP FCHPT STU, Bratislava, 2007.

M. Čižniar, D. Salhi, M. Fikar, and M. A. Latifi. A MATLAB package for orthogonal

collocations on finite elements in dynamic optimisation. In Proc. 15. Int. Conference

Process Control ’05, page 058f.pdf, Štrbské Pleso, High Tatras, Slovakia, 2005.

J. Villadsen and M. L. Michelsen. Solution of Differential Equation Models by Polynomial

Approximation. Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1978.

A. V́ıteček and M. V́ıtečková. Optimálńı Systémy Řı́zeńı (Optimal Control Systems).

VŠT–Technická Univerzita Ostrava, 2002.

47

APPENDIX A

Dynopt GUI and Symdynopt

Since the first version of DYNOPT package was released (Čižniar et al., 2005), there was

continuing development process (see http://www.kirp.chtf.stuba.sk/~fikar) and at

present, the package earns improved computational effort: the problems with varying lev-

els of difficulty such as minimum time problems, unconstrained problems and constrained

problems applied at the final time or over the full time interval, and parameter estimation

problems by simple start or using multistart option, is able to solve.

All the aforementioned features did not refer to user’s comfort due to expected deeper

knowledge and practise with the derivatives. This can affect the computional procedure

in a way of generating and providing gradients manually. From user’s point of view, to

define the gradients for a given complex problem can be slow and painful. On the other

hand, the evaluation of such problems without provided gradients, is almost impossible.

The aim of this package is to be as much as possible user-friendly, user should no more

think about the gradients. The tool symdynopt for generating the analytical gradients

automatically instead of being generated by user manually is developed and implemented

within DYNOPT package in the dynoptfunctions function. Moreover, to make the defini-

tion of the optimization problem more comfortable, the graphical interface dynoptgui has

been developed, too.

The generation of analytical gradients is based on functions from Matlab Symbolic

Toolbox. The closer look and differences between previous and current inputs are demon-

strated in Sections A.2 and A.3 as recent developments in DYNOPT package.

48

A.1. EXAMPLE DEFINITION

A.1 Example definition

Consider the following problem (Feehery, 1998; Fikar and Latifi, 2002; Jacobson and Lele,

1969)

min
u(t)

J =

∫ 1

0

(x2
1 + x2

2 + 0.005u2)dt (A.1a)

subject to the process described by a set of 2 ODEs:

ẋ1 = x2, x1(0) = 0 (A.1b)

ẋ2 = −x2 + u, x2(0) = −1 (A.1c)

such that following state path constraint needs to be satisfied:

x2 − 8(t − 0.5)2 + 0.5 ≤ 0, t ∈ [0, 1] (A.1d)

with terminal time tf = 1. x1(t), x2(t) as states and u(t) as control variable. As DYNOPT

needs the objective function in the Mayer form, an additional differential equation will be

defined

ẋ3 = x2
1 + x2

2 + 0.005u2, x3(0) = 0 (A.1e)

and therefore, the cost (A.1a) will be rewritten to

min
u(t)

J = x3(tf) (A.1f)

A.2 Symdynopt

Dynopt function requests tree input files: process, objfun, confun. These functions con-

tain necessary values for further optimization divided into flags. The dynoptfunctions

function fill them with appropriate data, constructed from user’s input. There were two

different ways that simplify the problem formulation: (i) to add another layer, which

builds requested files from modified user’s input, or (ii) to avoid algorithm from input

output operations and to evaluate all equations in memory. To keep previous syntax and

to elude of complications with new problem definition or brand new file syntax, symdynopt

is based on Matlab Symbolic Toolbox (MathWorks, 1998) as a stand-alone application

included in DYNOPT bundle. It does not interfere with original dynopt code and can be

used with all DYNOPT 4.x.x versions.

Let’s describe how the procedure works. Input into dynoptfunctions function is as

follows: number of states, controls and parameters variables, and also main equations. The

input equations must have string form because Symbolic toolbox operates with symbolic

49

A.2. SYMDYNOPT

objects and then conversion between them is simplier. In original dynopt m-functions are

equations of NLP formulation and appropriate partial derivatives. In cycle, step-by-step,

dynopt m-functions are filled with process ODEs and their partial derivatives by all state,

control and parameter vectors. These vectors are builted in compliance with given number

of states, controls and parameters. Then are used in Jacobian, as it is demonstrated below,

to generate symbolic matrix of partial derivatives. In next step, this matrix is converted

into string form, which satisfies dynopt m-function’s syntax and can be inserted into it.

Next, we show how Matlab’s function Jacobian is used. At first, database of symbolic

objects is created

>> syms x1 x2 x3 u

Next, string description of equation is converted using another Matlab’s functions fprintf

and eval into symbolic object

>> f = x1^2 + x2^2 + 0.005*u^2

f =

x1^2+x2^2+1/200*u^2

No we are able to utilise built-in routines of Symbolic toolbox. The partial derivatives by

vector x and u are given as

>> dfdx = jacobian(f,[x1 x2 x3])

dfdx =

[2*x1, 2*x2, 0]

>> dfdu = jacobian(f,[u])

dfdu =

1/100*u

The complete usage of symdynopt tool is demonstrated and commented below.

In the previous versions of DYNOPT package, user had to define problem A.1 with

the tree mentioned functions and fill them with many information as shown in steps 1–3:

Step1: Process

function sys = process(t,x,flag,u,p)

switch flag,

case 0 % right sides of ODE/DAEs

50

A.2. SYMDYNOPT

sys = [x(2);

-x(2)+u;

x(1)^2+x(2)^2+0.005*u^2];

case 1 % df/dx

sys = [0 0 2*x(1);

1 -1 2*x(2);

0 0 0];

case 2 % df/du

sys = [0 1 0.01*u];

case 3 % df/dp

sys = [];

case 4 % df/dt

sys = []; % [0 0 0]

case 5 % x0

sys = [0;-1;0];

case 6 % dx0/dp

sys = [];

case 7 % mass matrix M

sys = [];

case 8 % unused flag, don’t use it !

sys = [];

otherwise

error([’unhandled flag = ’, ...

num2str(flag)]);

end

Step2: Objective Function

function [f,Df] = objfun(t,x,u,p)

f = [x(3)];

Df.t = [];

Df.x = [0;0;1];

Df.u = [];

Df.p = [];

51

A.2. SYMDYNOPT

Step3: Constraints

function [c,ceq,Dc,Dceq] = ...

confun(t,x,flag,u,p)

switch flag

case 0 % constraints at t0

c = [];

ceq = [];

% gradient calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

case 1 % constraints in [t0,tf]

c = [x(2)-8*(t-0.5)^2+0.5];

ceq = [];

% gradient calculus

if nargout == 4

Dc.t = [-16*t+8];

Dc.x = [0;1;0];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

52

A.2. SYMDYNOPT

case 2 % constraints at tf

c = [];

ceq = [];

% gradient calculus

if nargout == 4

Dc.t = [];

Dc.x = [];

Dc.u = [];

Dc.p = [];

Dceq.t = [];

Dceq.x = [];

Dceq.u = [];

Dceq.p = [];

end

end

As it was mentioned, the aim was to make the problem definition user-friendly. This led

to development of an additional tool, symdynopt. User can use function dynoptfunctions

to construct the aforementioned functions, as it is demonstrated in the following code:

Step1-3: Using symdynopt Tool

eq.nx = 3;

eq.nu = 1;

eq.np = 0;

eq.M = [];

eq.shortcuts = [];

eq.process = {’x(2)’;

’-x(2)+u’;

’x(1)^2+x(2)^2+0.005*u^2’};

eq.x0 = {’0’;’-1’;’0’};

eq.objfun = {’x(3)’};

eq.confun.c.t0 = [];

eq.confun.ceq.t0 = [];

eq.confun.c.t0tf = {’x(2)-8*(t-0.5)^2+0.5’};

eq.confun.ceq.t0tf = [];

53

A.2. SYMDYNOPT

eq.confun.c.tf = [];

eq.confun.ceq.tf = [];

dynoptfunctions(eq)

Code can be run separately before or in front of, as a part of main optimization code.

It will automatically generate the process, objfun, confun functions and fill them with all

necessary informations shown in steps 1–3. It is done by exploiting the Matlab Symbolic

Toolbox (MathWorks, 1998).

The rest of the procedure (i.e., optimization and interpretation of the results) stays

unchanged.

Step4: Optimization

opt = optimset(’LargeScale’,’off’, ...

’Display’,’iter’);

opt = optimset(opt,’GradObj’, ’on’, ...

’GradConstr’,’on’);

opt = optimset(opt,’TolFun’,1e-7);

opt = optimset(opt,’TolCon’,1e-7);

opt = optimset(opt,’TolX’,1e-7);

optimparam.optvar = 3;

optimparam.objtype = [];

optimparam.ncolx = 6;

optimparam.ncolu = 2;

optimparam.li = (1/6)*ones(6,1);

optimparam.tf = 1;

optimparam.ui = zeros(1,6);

optimparam.par = [];

optimparam.bdu = [];

optimparam.bdx = [];

optimparam.bdp =[];

optimparam.objfun = @objfun;

optimparam.confun = @confun;

optimparam.process = @process;

54

A.3. DYNOPT GUI

optimparam.options = opt;

[optimout,optimparam]=dynopt(optimparam)

After the problem has been defined by the above mentioned functions, user calls the

dynopt functions profiles and constraints as follows:

Step5: Interpretation of Results

[tplot,uplot,xplot] = ...

profiles(optimout,optimparam,10);

[tp,cp,ceqp] = ...

constraints(optimout,optimparam,10);

More information about DYNOPT package and symdynopt tool also is in User’s Guide

(Čižniar et al., 2007).

A.3 Dynopt GUI

A fully interactive graphical user interface has been developed for dynopt. This add-

on depends on symdynopt, but does not affect original dynopt tool. Firstly, user passes

through wizard, then necessary files will be generated and executed. The aim was to create

a transparent interface, easy to use, to accelerate inputs, to report errors from checking

fields and missing fields, and to display content evolving from previous selections.

A.3.1 Step 1: Create or Load a Problem

User begins with selection of a type of optimization problem (see Figure A.1).

A.3.2 Step 2: Optimization Options

Here maximal number of function evaluations, iterations and tolerance for objective func-

tion, constraints and variables, as well as a choice of optimization variables can be selected

(see Figure A.2).

55

A.3. DYNOPT GUI

Figure A.1: Optimization type selection

A.3.3 Step 3: Initialisation Values for Optimization

Step 3 asks for number of state, control and parameter variables, dynamic model and

constraints, number of collocation points for states and controls that describe quality of

discretisation procedure, width of intervals, final time value, bounds to states, controls

and parameters, path to mesured data and number of multistart evaluations. Not every

field is obligatory. The number of obligatory entries depends on records from previous

steps. If certain inputs are unnecessary for given problem, the field is disabled. Provided

data must pass the check of validity. If they do not pass, an error message appears to

point at bad entries (see Figure A.4 and Figure A.3).

A.3.4 Step 4: Cost and Process

In tab step 4 the cost function and process model have to be defined. It is done via a

simple input dialog box shown Figure A.6. Process equations are stored in the listbox

56

A.3. DYNOPT GUI

Figure A.2: Bundle of initial optimization settings

where they can be simply added, edited, positioned or cleared (see Figure A.5).

A.3.5 Steps 5-7: Constraints

Constraints can be entered very similary to previous tab. They are provided by listbox

and appropriate input dialog (see Figure A.7, Figure A.8, and Figure A.9).

A.3.6 Step 8: Save and Solve Problem

The Last step is to save (in Figure A.11) the problem and run main optimization process

(see Figure A.10). Then symdynopt generates derivations automatically and calls dynopt

that solves the problem.

57

A.3. DYNOPT GUI

Figure A.3: Form for definition of initials and bounds depends on preliminary selections

Figure A.4: Error message report for incorrect inputs

58

A.3. DYNOPT GUI

Figure A.5: Form for cost function and process model

Figure A.6: Equation input dialog

59

A.3. DYNOPT GUI

Figure A.7: Form for equality and inequality constraints at initial time

60

A.3. DYNOPT GUI

Figure A.8: Form for equality and inequality constraints between initial and final time

61

A.3. DYNOPT GUI

Figure A.9: Form for equality and inequality constraints at final time

62

A.3. DYNOPT GUI

Figure A.10: Form to save and solve problem

Figure A.11: Save dynamic optimization problem dialog

63

