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express my thank to Ing. Michal Čižniar, for his guidance, comments,

tireless support, and debates that inspired me a lot. I am grateful also

to all the people, who helped me in any way throughout my studies and

spent their precious time for me, whenever a I had some problem. Last,

but not least, I would like to thank to members of my family for standing

behind me and supporting my studies in many ways.

Bratislava, 2008

Radoslav Paulen



Abstract

This work deals with the problem of global optimization of processes (GOP). As a result of

dynamic modeling of processes in chemical technology we usually obtain the set of differential

equations. Optimization of these processes is often complicated by the presence of non-

convexities. In recent years many methods were introduced, which solve global optimization

problems. In this work deterministic spatial branch and bound optimization algorithm is

used for finding the solution of GOP. Three techniques for computing bounds on variables

participating in convex relaxation of original problem are proposed. Selected examples are

solved for problems with processes described by ordinary differential parameter-dependent

equations.



Abstrakt

Táto práca sa zaoberá problémom globálnej optimalizácie procesov. Výsledkom dyna-

mického modelovania procesov chemickej technológie je obyčajne systém diferenciálnych

rovńıc. Optimalizácia týchto procesov je často komplikovaná pŕıtomnost’ou nekonvexnost́ı.

V posledných rokoch bolo uvedených niekol’ko metód, ktoré riešia problémy globálnej opti-

malizácie. V tejto práci je pre nájdenie riešenia globálnej optimalizácie procesov použ́ıvaný

optimalizačný algoritmus založený na priestorovej metóde vetiev a hrańıc. Sú navrhnuté tri

metódy pre výpočet hrańıc premenných participujúcich na konvexnej relaxácii originálneho

problému. Vyriešené sú vybrané pŕıklady pre problémy s procesmi oṕısanými obyčajnými

diferenciálnymi rovnicami závislými na parametroch.
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Chapter 1
Introduction

One of the most fundamental principles in our world is the search for an optimal state. It

begins in the microcosm where atoms in physics try to form bonds in order to minimize the

energy of their electrons. When molecules form solid bodies during the process of freezing,

they try to assume energy optimal crystal structures. These processes, of course, are not

driven by any higher intention but purely result from the laws of physics.

Exactly the same goes for the biological principle of survival of the fittest, which, together

with the biological evolution, leads to better adaptation of the species to their environment.

Here, a local optimum is a well–adapted species that dominates all other creatures in its

surroundings. In some manner mankind can be considered as the species which reached the

point of global optimum as a fittest animal on earth. Human science is now so developed

that the optimization problems became the part of daily life of every researcher, developer or

designer in engineering, computational chemistry, finance and medicine amongst many other

fields. In many practical situations, there are several possible actions, and the best one must

be chosen. For example, the best design of an object, or the best control of a plant must be

found. The set of possible actions is usually characterized by parameters p = (p1, . . . , pn),

and the result of different actions (controls) is characterized by an objective function f(p).

In some cases, the objective function describes losses or expenses; in such cases, the

problem of finding the best action (design or control) can be described as the problem of

global minimization, i.e., the problem of finding the values p for which the function f(p)

attains the smallest possible value. In other cases, the objective function describes gain;

in such cases, the problem of finding the best action can be described as the problem of

global maximization, i.e., the problem of finding the values p for which the function f(p)

attains the largest possible value. Similar problems arise in data processing, when we have

a model characterized by several parameters which provide the best fit of the data, i.e.,

for which the discrepancy f(p) between data and the model is the smallest possible. Due
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to the fact that processes are usually described by set of differential equations, methods

of dynamic optimization must be used to find (local) solution of optimization of these

processes. The techniques utilized for solving dynamic optimization problems fall under

two broad frameworks: variational methods and discretization methods.

The first technique, the variational approach, encompasses the classical methods of the

calculus of variations and many of the modern methods of optimal control. These methods

approach the problem in the original infinite dimensional space and attempt to determine

stationary functions via the solution of the Euler–Lagrange equations. The variational

approach for solving dynamic optimization problems is extremely attractive because by ad-

dressing the optimization problem in the infinite dimensional space, the problem can be

solved in its original form without any mathematical transformations. In addition to the

variational approach for solving dynamic optimization problems, another approach exists

based on discretization. While discretization has the disadvantage that it is only an approx-

imation of the infinite dimensional problem, it possesses the tremendous advantage that it

transforms the original infinite dimensional problem into a problem defined at least partially

in a finite space. Therefore, the problem can often be solved by standard nonlinear program-

ming (NLP) methods. Discretization can be subdivided into two broad classifications known

as simultaneous and sequential. The simultaneous method is a complete discretization of

both state and control variables, often achieved via collocation (Tsang et al., 1975). While

completely transforming a dynamic system into a system of algebraic equations eliminates

the problem of optimizing in an infinite dimensional space, simultaneous discretization has

the unfortunate side effect of generating a multitude of additional variables yielding large,

unwieldy nonlinear programs (NLPs) that are often impractical to solve numerically.

Sequential discretization is usually achieved via control parametrization, (Brusch and

Schappelle, 1973) in which the control variable profiles are approximated by a series of basis

functions in terms of a finite set of real parameters. These parameters then become the

decision variables in a dynamic embedded NLP. Function evaluations are provided to this

NLP via numerical solution of a fully determined initial value problem (IVP), which is given

by fixing the control profiles. This method has the advantages of yielding a relatively small

NLP and exploiting the robustness and efficiency of modern IVP and sensitivity solvers.

For a number of years, researchers have known that dynamic optimization problems

encountered in chemical engineering applications exhibit multiple local optima. This prop-

erty, which can be attributed to non–convexity of the functions participating in most chem-

ical engineering models, implies that standard local optimization methods will often yield

suboptimal solutions to problems. Suboptimality can have direct economic, safety, and

environmental impacts if a suboptimal operating policy is implemented on a real process.



With the rising performance of the computers present in last few years scientists were

able to create techniques which led to solutions of problems of GOP (also called the non–

convex dynamic optimization). There are many possible classifications of global optimization

methods, but the simplest and most fundamental divides these methods in two categories:

stochastic (also called probabilistic) and deterministic ones.

For the class of stochastic approaches, such as multistart, clustering methods, variable

neighbourhood search, genetic algorithms, simulated annealing and few others, which are

based on the random search technique, it was proved that they cannot guarantee the global

optimality of the obtained solution. Algorithms based on the deterministic approach such

as generalized Benders decomposition (Geoffrion (1972), Floudas and Visweswaran (1990)

and Bagajewicz and Manousiouthakis (1991)), branch and bound (Soland (1971), Ryoo and

Sahinidis (1995) and Adjiman et al. (1996)) and interval analysis (Ratschek and Rokne

(1988), Vaidyanathan and El-Halwagi (1994) and Han et al. (1997)). guarantee the finite ǫ–

convergence (convergence to the global optimum in finite computation steps for a given finite

error tolerance) and the global optimality of the obtained solution. Therefore, although they

take more computational effort, these methods are more interesting. Subclass branch and

bound (BB) methods, which are based on the concept of relaxations, are the most utilized

and most suitable for solving GOP problems.

Spatial Branch–and–Bound (sBB) algorithms are the extension of traditional BB algo-

rithms to continuous solution spaces. They are termed “spatial” because they successively

partition the Euclidean space where the problem is defined into smaller and smaller regions

where the problem is solved recursively by generating converging sequences of upper and

lower bounds to the objective function value.

In this work a deterministic sBB global optimization algorithm is used for GOP problems

with set of first–order parameter dependent differential equations in the constraints. The

main purpose of this work is to illustrate utilization of sBB global optimization algorithm and

to develop successive ways to obtain bounds on variables participating on convex relaxation

of original problem. Chapter 2 gives the mathematical formulation of the problem studied.

It is a non–convex minimization problem with an IVP for a set of first–order parameter

dependent differential equations in the constraints. Chapter 3 discusses convex relaxation of

original non–convex dynamic optimization problem. Chapter 4 presents global optimization

sBB algorithm. In Chapter 5 selected examples for parameter estimation problems are

solved.



Chapter 2
Problem Statement

In this chapter we describe original non–convex dynamic optimization problem. Its solution

gives an upper bound for sBB algorithm.

2.1 Dynamic Process Models

A process model is in general a set of equations. These equations determine existence of

the process as they bond together inputs, properties, and variables which describe behavior

and outputs of the process. All of these can be considered as functions of time in dynamic

modeling yielding a set of differential equations. The processes considered in this work

are described by the following set of first–order parameter dependent, typically nonlinear,

differential equations

ẋ(t, p) = f
(

t, x(t, p), p
)

∀t ∈ I ≡ [t0, tNP ] (2.1)

where t ∈ I ⊂ R, denotes time as the independent variable and NP is the number of points

considered additionally to the initial point t0, p ⊂ Rr is the vector of parameters of the

process, x ⊂ Rn stands for the state variables and ẋ ⊂ Rn are their derivatives with respect

to t1. The function f is such that f : I ×Rn ×Rp → Rn . The solution x(t, p) of this set

satisfies the initial condition

x(t0, p) = x0(p) (2.2)

where the function x0 is such that x0 : Rr → Rn.

1It is assumed for the rest of this work that a dot over a variable represents its derivative with respect

to t.
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2.2 Process Constraints

Constraints are mathematical functions, which, simply speaking, determine the domain of

possible values of variables participated in process. Inequality constraints can be imposed

at discrete time points, ti. These are point constraints of the form

gi

(

x(ti, p), p
)

≤ 0 i = 0, 1, . . . , NP (2.3)

where the functions gi, i = 0, 1, . . . , NP , are such that gi : Rn ×Rr → Rsi . Of course any

equality point constraint can be replaced by two inequality point constraints. Lower and

upper bounds are imposed on the parameters p:

pL ≤ p ≤ pU (2.4)

The impact of constraint functions on solution of optimization problem will be shown in

next section.

2.3 Objective Function

The objective function for a dynamic optimization problem can be expressed in terms of the

values of the state variables at discrete points and of the parameters

J
(

x(ti, p), p; i = 0, 1, . . . , NP
)

(2.5)

The function J is such that J : Rn(NP+1) × Rr → R. Integral terms that may appear in

the objective function can always be eliminated by introducing additional state variables

and equations in the set of differential equations. Figure 2.1 shows a simple example of a

two–dimensional function which exhibit multiple optima. The region of possible values of

time–dependent variables is constrained by the simple bounds given on them. This region

is denoted as X. Here we can see what is the effect of process constraints on optimization

results.
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Figure 2.1: Two–dimensional function with multiple optima

2.4 Dynamic Optimization Problem

The formulation of the dynamic optimization problem studied is given by

min
p

J
(

x(ti, p), p; i = 0, 1, . . . , NP
)

s.t. ẋ(t, p) = f
(

t, x(t, p), p
)

∀t ∈ I

x(t0, p) = x0(p) (2.6)

gi

(

x(ti, p), p
)

≤ 0 i = 0, 1, . . . , NP

pL ≤ p ≤ pU

The minimization of the objective function (2.5) is considered subject to the dynamics of

the system, described by IVP (2.1) and (2.2), the point constraints (2.3) and the bounds on

the parameters (2.4). Systems with controls that depend on t can be transformed to this

form using control parameterization (Vassiliadis et al., 1994a,b).

The following assumptions are made on the properties of the functions in (2.6):

• J
(

x(ti, p), p; i = 0, 1, . . . , NP
)

is once continuously differentiable with respect to

x(ti, p), i = 0, 1, . . . , NP and p on Rn(NP+1) ×Rr.

• each element of gi

(

x(ti, p), p
)

, i = 0, 1, . . . , NP , is once continuously differentiable with

respect to x(ti, p) and p on Rn ×Rr .

• each element of f(t, x, p) is continuous with respect to t and once continuously differ-

entiable with respect to x and p on I ×Rn ×Rr .

• each element of x0(p) is once continuously differentiable with respect to p on Rr.
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• f(t, x, p) satisfies a uniqueness condition on I ×Rn ×Rr.

The sequential approach is used for the solution of this dynamic optimization problem. The

gradients with respect to p can be evaluated using the parameter sensitivities. These are

given from the solution of the sensitivity equations (Vassiliadis et al., 1994a,b). Due to

the generally non–convex nature of the functions used in the formulation of the dynamic

optimization problem, the solution obtained using the sequential approach and a standard

gradient–based NLP technique, is a local optimum and therefore provides an upper bound

for the global optimum solution.
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Chapter 3
Convex Relaxation

As it was mentioned before, BB algorithms are operating with concept of relaxations. In this

section we propose a possible convex relaxation of the non–convex dynamic optimization

problem that was introduced in the previous chapter. The solution of this convex relaxation

provides a lower bound for the global optimum of the non–convex problem.

3.1 Reformulation of NLP Problem

First, we the reformulate NLP problem (2.6) as

min
x̂,p

J(x̂, p)

s.t. gi(x̂i, p) ≤ 0 i = 0, 1, . . . , NP

x̂i = x(ti, p) i = 0, 1, . . . , NP (3.1)

p ∈ [pL, pU ]

where x̂ is a vector of new added optimized variables and values of x(ti, p), i = 0, 1, . . . , NP

are obtained from the solution of the IVP

ẋ = f(t, x, p) ∀t ∈ I

x(t0, p) = x0(p)
(3.2)

3.2 Convex Relaxation of Algebraic Functions

It is assumed that the functions J and gij , i = 0, 1, . . . , NP , j = 1, 2, . . . , si can be de-

composed into a sum of terms, where each term may be classified as linear (LT), convex

(CT), bilinear (BT), trilinear (TT), fractional (FT), fractional trilinear (FTT) or univariate

concave (UT).

14



Linear and convex terms do not require any transformation. For non–convex terms,

except special types of non–convex terms, a convex underestimator is generated by adding

a relaxation function to them (Adjiman et al., 1998b). The special types of non–convex

terms (bilinear, trilinear, fractional, trilinear fractional, and univariate concave terms) can

be replaced by very tight convex underestimators which are already known. The convex

envelopes can be constructed by the following simple rules.

Underestimating Bilinear Terms

In the case of bilinear term xy, a tight convex lower bound over the domain [xL, xU ]×[yL, yU ]

is obtained by introducing a new variable wBT which replaces every occurence of xy in the

problem and adding the following four linear inequality constraints

wBT ≥ xLy + xyL − xLyL

wBT ≥ xUy + xyU − xUyU (3.3)

wBT ≤ xLy + xyU − xLyU

wBT ≤ xUy + xyL − xUyL

Underestimating Trilinear Terms

Any trilinear term of the form xyz can be underestimated over the domain [xL, xU ] ×

[yL, yU ]× [zL, zU ] by introducing a new variable wTT and boundig it by the following linear

inequality constraints

wTT ≥ xyLzL + xLyzL + xLyLz − 2xLyLzL

wTT ≥ xyUzU + xUyzL + xUyLz − xUyLzL − xUyUzU

wTT ≥ xyLzL + xLyzU + xLyUz − xLyUzU − xLyLzL

wTT ≥ xyUzL + xUyzU + xLyUz − xLyUzL − xUyUzU (3.4)

wTT ≥ xyLzU + xLyzL + xUyLz − xUyLzU − xLyLzL

wTT ≥ xyLzU + xLyzU + xUyUz − xLyLzU − xUyUzU

wTT ≥ xyUzL + xUyzL + xLyLz − xUyUzL − xLyLzL

wTT ≥ xyUzU + xUyzU + xUyUz − 2xUyUzU

Underestimating Fractional Terms

Fractional terms of the form x
y

are underestimated by introducing a new variable wFT and

two new inequality constraints which depend on the sign of the bounds on x

15



wFT ≥

{

xL

y
+ x

yU − xL

yU if xL ≥ 0

− x
yU − xLy

yLyU + xL

yU if xL < 0

wFT ≥

{

xU

y
+ x

yL − xU

yL if xU ≥ 0

− x
yL − xUy

yLyU + xU

yU if xU < 0

(3.5)

Underestimating Fractional Trilinear Terms

For fractional trilinear term of the form xy

z
, an underestimator is derived by introducing a

new variable wFTT by the following inequality constraints for xL, yL, zL ≥ 0:

wFTT ≥
xyL

zU
+

xLy

zU
+

xLyL

z
− 2

xLyL

zU

wFTT ≥
xyL

zU
+

xLy

zL
+

xLyU

z
−

xLyU

zL
−

xLyL

zU

wFTT ≥
xyU

zL
+

xUy

zU
+

xUyL

z
−

xUyL

zU
−

xUyU

zL

wFTT ≥
xyU

zU
+

xUy

zL
+

xLyU

z
−

xLyU

zU
−

xUyU

zL
(3.6)

wFTT ≥
xyL

zU
+

xLy

zL
+

xUyL

z
−

xUyL

zL
−

xLyL

zU

wFTT ≥
xyU

zU
+

xUy

zL
+

xLyU

z
−

xLyU

zU
−

xUyU

zL

wFTT ≥
xyL

zU
+

xLy

zL
+

xUyL

z
−

xUyL

zL
−

xLyL

zU

wFTT ≥
xyU

zL
+

xUy

zL
+

xUyU

z
− 2

xUyU

zL

Underestimating Univariate Concave Terms

Univariate concave terms are trivially underestimated by their linearization at the lower

bound of the variable range. Thus the convex envelope of the concave function UT (x) over

[xL, xU ] is the following linear function of x:

UT (xL) +
UT (xU ) − UT (xL)

xU − xL
(x − xL) (3.7)

An overall convex underestimator is given by the summation of the convex underestimators

for each term in the function. Therefore, introduction of additional constraints is required

for the special type of non–convex terms.
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3.3 Bounds on Variables and Relaxation of Dynamic

Information

It is very useful and in many cases essential to have bounds on variables, which are partic-

ipating in optimization problem. This section discusses the possible techniques, which can

be used to obtain bounds on these variables. For case of problem (3.1) bounds on parame-

ters p are user–defined and bounds on variables x̂i can depend on these parameters or just

on bounds of these parameters, as it will be shown in next section. Within the generation

of bounds on x̂i, which will definitely replace the presence of dynamic information in (3.1)

relaxation of dynamic information will be formed.

3.3.1 Bounding the Solution of IVP

The dependence of convex relaxations on variable bounds is a common feature of determinis-

tic global optimization algorithms. Since state variables appear in the non–convex objective

function and constraints, a method for the derivation of rigorous bounds on these variables

at point ti, i = 0, 1, . . . , NP , is needed. This issue can be resolved by generating bounds on

the solution space of the dynamic system. Consider an example of the following IVP for a

first–order parameter dependent differential equation

ẋ = −x2 + p ∀t ∈ [0, 1]

x(t = 0, p) = 9
(3.8)

where p ∈ [−5, 5]. The solution x(t, p) of this IVP for different values of p is shown in

Fig. 3.1. As it can be seen, solutions of IVP for the upper bound and the lower bound

of p give bounds on the trajectories. According to (Papamichail and Adjiman, 2002)

this section introduces a systematic approach for the derivation of such bounds, applica-

ble to IVPs for a system of generally nonlinear first–order parameter dependent differ-

ential equations. Notation f(t, x, p) = f(t, xk, xk−, p), which is similar to (Papamichail

and Adjiman, 2002) is used, where the following is considered: x = (x1, x2, . . . , xn)T and

xk− = (x1, x2, . . . , xk−1, xk+1, . . . , xn)T .

Parameter Independent Bounds

Lower and upper parameter independent bounds can be determined for the solution x(t, p)

of IVP (3.2) such that x(t) ≤ x(t, p) ≤ x̄(t) ∀p ∈ [pL, pU ] ∀t ∈ I where the inequali-

ties are understood component–wise. Considering the assumptions and theorem given in

Papamichail and Adjiman (2002) it can be assumed that, if f is continuous and satisfies a

17
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Figure 3.1: State variable trajectories for different values of p

uniqueness condition on I0 ≡ (t0, tNP ] × Rn × [pL, pU ], then the solution x(t) and x̄(t) of

the following IVP satisfies

ẋk = inf fk(t, xk, [xk−, x̄k−], [pL, pU ])

∀t ∈ I k = 1, 2, . . . , n

˙̄xk = sup fk(t, x̄k, [xk−, x̄k−], [pL, pU ])

∀t ∈ I k = 1, 2, . . . , n

x(t0) = inf x0([p
L, pU ])

x̄(t0) = sup x0([p
L, pU ])

(3.9)

These IVPs provide a practical procedure to construct bounding trajectories for IVP (3.2)

if the appropriate continuity and uniqueness conditions are satisfied. Natural interval ex-

tensions are used as inclusion functions (Nickel, 1986).

Example (3.8) which was already introduced at the beginning of this section is recon-

sidered here. Based on (3.9), IVPs whose solutions x(t) and x̄(t) can give bounds on the

solution of IVP (3.8) ∀v ∈ [−5, 5] are constructed. The subfunction is given by

ẋ = −x2 − 5 ∀t ∈ [0, 1]

x(0) = 9
(3.10)

and the superfunction is given by

˙̄x = −x̄2 + 5 ∀t ∈ [0, 1]

x̄(0) = 9
(3.11)

The solutions of these bounding IVPs are shown in Fig. 3.2. They enclose the solution space

of the original IVP for the parameter dependent differential equation.
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Figure 3.2: Parameter independent bounds on the solution space.

Parameter Dependent Bounds

Using the parameter independent bounds already presented, lower and upper parameter

dependent bounds can be determined for the solution x(t, p) of IVP (3.2) such that x(t, p) ≤

x(t, p) ≤ ¯̄x(t, p) ∀p ∈ [pL, pU ] ∀t ∈ I. For functions f(t, x, p) and f̄(t, x, p) we consider the

same assumptions as for function f(t, x, p), which participates in IVP (3.2). Following the

theorems introduced by Papamichail and Adjiman (2004) it can be written

f(t, x, p) ≤ f(t, x, p) ∀x ∈ [x(t), x̄(t)]

∀p ∈ [pL, pU ] ∀t ∈ I

x
0
(p) ≤ x0(p) ∀p ∈ [pL, pU ]

(3.12)

then the solution x(t, p) of the IVP

ẋ = f(t, x, p) ∀t ∈ I

x(t0, p) = x
0
(p)

(3.13)

is such that

x(t, p) ≤ x(t, p) ∀p ∈ [pL, pU ] ∀t ∈ I (3.14)

where x(t, p) is the solution of IVP (3.2). And in the same manner we can write

f̄(t, x, p) ≥ f(t, x, p) ∀x ∈ [x(t), x̄(t)]

∀p ∈ [pL, pU ] ∀t ∈ I

¯̄x0(p) ≥ x0(p) ∀p ∈ [pL, pU ]

(3.15)

The solution x(t, p) of the IVP

˙̄̄x = f̄(t, ¯̄x, p) ∀t ∈ I

¯̄x(t0, p) = ¯̄x0(p)
(3.16)
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is such that

¯̄x(t, p) ≥ x(t, p) ∀p ∈ [pL, pU ] ∀t ∈ I (3.17)

In what follows, parameter dependent bounds are constructed for the example already

discussed above. The function f(t, x, v) = −x2 + p can be underestimated by the function

f(t, x, p) = −(x + x̄)x + xx̄ + p ∀x ∈ [x, x̄] ∀p ∈ [−5, 5] ∀t ∈ [0, 1].

Previously mentioned solution x(t, v) of the IVP

ẋ = −(x + x̄)x + xx̄ + p ∀t ∈ [0, 1]

x(0, p) = 9
(3.18)

is such that

x(t, p) ≤ x(t, p) ∀p ∈ [−5, 5] ∀t ∈ [0, 1] (3.19)

where x(t) and x̄(t) are given from the solutions of IVPs (3.10) and (3.11) and x(t, p) is

the solution of IVP (3.8). Following previously proposed approach it can be shown that the

solution ¯̄x1(t, p) of the IVP

˙̄̄x1 = −2x¯̄x1 + x2 + p ∀t ∈ [0, 1]

¯̄x1(0, p) = 9
(3.20)

is such that

¯̄x1(t, p) ≥ x(t, p) ∀p ∈ [−5, 5] ∀t ∈ [0, 1] (3.21)

and the solution ¯̄x2(t, p) of the IVP

˙̄̄x2 = −2x̄ ¯̄x2 + x̄2 + p ∀t ∈ [0, 1]

¯̄x2(0, p) = 9
(3.22)

is such that

¯̄x2(t, p) ≥ x(t, p) ∀p ∈ [−5, 5] ∀t ∈ [0, 1] (3.23)

All these parameter dependent bounds, for p = 0, together with the parameter independent

ones are shown in Fig. 3.3. It can be observed that the second overestimator is tighter

than the first one for all t ∈ [0, 1]. Although the first overestimator crosses overestimator,

constructed as the parameter independent upper bound, at t = 0.8, based on (3.14), it is

still a valid overestimator.

3.3.2 Convex Relaxation of Dynamic Information

The set of equalities in (3.1) can be written as two sets of inequalities

x̂i − x(ti, p) ≤ 0 i = 0, 1, . . . , NP

x(ti, p) − x̂i ≤ 0 i = 0, 1, . . . , NP
(3.24)
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Figure 3.3: Parameter independent and dependent bounds for p = 0. The solution of x(t, 0)

(-), the underestimator (.), the first overestimator (o) and the second overesti-

mator (x) are shown

Their relaxation is given by

x̂i + x̆−(ti, p) ≤ 0 i = 0, 1, . . . , NP (3.25)

x̆(ti, p) − x̂i ≤ 0 i = 0, 1, . . . , NP (3.26)

where x̆ denotes the convex underestimator of the specified function and x−(ti, p) = −x(ti, p).

Thus, the function x̆(ti, p) is a convex underestimator of x(ti, p) and the function −x̆−(ti, p)

is a concave overestimator of x(ti, p). The generation of these under and overestimators is

the most challenging step in the construction of the convex relaxation of the problem be-

cause no analytical form is available for x(ti, p). Next sections discuss developed strategies

for obtaining these estimators.

Constant Bounds

The constant bounds are given by inequalities

x(ti) ≤ x̂i ≤ x̄(ti) i = 0, 1, . . . , NP (3.27)

These inequalities are valid convex underestimators and concave overestimators for x(ti, p)

and therefore they can replace inequalities (3.25) and (3.26). These bounds do not depend

on the parameters p themselves, but do depend on the bounds on p.
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Affine Bounds

A tighter convex relaxation may be derived if parameter dependent under and overestimators

can be constructed. This issue is tackled in this section, where affine functions of the

parameters are obtained. If f(t, x, p) = A(t)x + B(t)p + C(t) and x
0
(p) = Dp + E, where

A(t), B(t) and C(t) are continuous on I, then from linear systems theory (Zadeh and Desoer,

1963) the solution of IVP (3.13) is given by

x(t, p) =

{

Φ(t, t0)D +

∫ t

t0

Φ(t, τ)B(τ)dτ

}

p + Φ(t, t0)E +

∫ t

t0

Φ(t, τ)C(τ)dτ (3.28)

where Φ(t, t0) is the transition matrix, which is the solution of the IVP

Φ(t, t0) = A(t)Φ(t, t0) ∀t ∈ I

Φ(t0, t0) = I
(3.29)

and I is the identity matrix. From (3.28), it is clear that x(t, p) is an affine function of p of

the form:

x(t, p) = M(t)p + N(t) (3.30)

where M(t) is an n × r matrix and N(t) is an n × 1 matrix. In the same manner, if there

exist functions f̄(t, ¯̄x, p) = Ā(t)x + B̄(t)p + C̄(t) and ¯̄x0(p) = D̄p + Ē, where Ā(t), B̄(t) and

C̄(t) are continuous on I, then the solution of IVP (3.16) is of the form:

¯̄x(t, p) = M̄(t)p + N̄(t) (3.31)

where M̄(t) is an n × r matrix and N̄(t) is an n × 1 matrix. If the functions f , x
0
, f̄ and

¯̄x0 defined above satisfy the conditions (3.12) and (3.15), then (3.30) and (3.31) provide

parameter dependent bounds for the solution of IVP (3.2). Functions f , x
0
, f̄ and ¯̄x0 that

satisfy at least the inequality conditions can easily be constructed for dynamic systems

with functions f and x0 which can be decomposed into a sum of linear, bilinear, trilinear,

univariate convex and univariate concave terms. The matrices A to E and Ā to Ē needed

for the construction of these functions usually depend on the bounds pL, pU , x(t) and x̄(t).

However, the functional form of x(t) and x̄(t) is not known and the matrices needed in (3.30)

and (3.31) cannot be calculated analytically. The affine bounds for t = ti can be used for

the convex underestimation of x(ti, p) and x−(ti, p) over the domain [pL, pU ] ⊂ Rr

x̆(ti, p) = M(ti)p + N(ti) i = 0, 1, . . . , NP

x̆−(ti, p) = −M̄(ti)p − N̄(ti) i = 0, 1, . . . , NP
(3.32)

M(ti) and N(ti), i = 0, 1, . . . , NP can be calculated from the solution of the linear system

produced when (3.30) is applied for t = ti and for r + 1 values of p chosen such that

det

([

p1 p2 . . . pr+1

1 1 . . . 1

])

6= 0 (3.33)
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This system has the form x(ti, pj) = M(ti)pj + N(ti), j = 1, . . . , r + 1. Condition (3.33)

ensures that a unique solution exists. The values of x(ti, pj), j = 1, . . . , r +1 are given from

the numerical solution of IVP (3.13) coupled, when necessary, with IVP (3.9). In the same

manner, M̄(ti) and N̄(ti), i = 0, 1, . . . , NP can be calculated.

α–based Bounds

An alternative way to generate the underestimators needed has been proposed by Esposito

and Floudas (2000a,b,c). Based on assumptions in Papamichail and Adjiman (2002), x(ti, p)

is a twice continuously differentiable function of the parameters p on Rr. This means that

the α–based underestimators can be used for the convex underestimation of x(ti, p) and

x−(ti, p) over the domain [pL, pU ] ⊂ Rr

x̆k(ti, p) = xk(ti, p) +

r
∑

j=1

α+
kij(p

L
j − pj)(p

U
j − pj) i = 0, 1, . . . , NP (3.34)

k = 1, 2, . . . , n

x̆−
k (ti, p) = x−

k (ti, p) +
r
∑

j=1

α−
kij(p

L
j − pj)(p

U
j − pj) i = 0, 1, . . . , NP (3.35)

k = 1, 2, . . . , n

The difficulty in this approach is the calculation of the non–negative α+
kij and α−

kij parame-

ters. There is no functional form available for the Hessian matrices in order to use interval

calculations directly. As suggests Adjiman et al. (1998a) for underestimation of non–convex

terms fNT (z), values of non–negative parameters α are calculated using scaled Gerschgorin

method. This method requires the use of a symetric interval matrix [HfNT ] = ([hij , h̄ij])

such that [HfNT ] ∋ HfNT (z) = ∇2fNT (z), ∀z ∈ [zL, zU ] ⊂ Rm. Then values of α can be

calculated by the following formula

αi = max

{

0,−
1

2

(

hii −
∑

j 6=i

|h|ij

)}

i, j = 1, 2, . . . , m (3.36)

where |h|ij = max{|hij|, |h̄ij|}. The interval matrix [HfNT ] is calculated by applying natural

interval extensions to the analytical expression for each second–order derivative of fNT .

The calculation of the required interval matrices is given as [Hxk(ti)] ∋ Hxk(ti)(p) =

∇2xk(ti, p), ∀p ∈ [pL, pU ] and [H−
xk(ti)

] = −[Hxk(ti)]. Esposito and Floudas (2000a,b,c) pro-

posed three methods based on sampling. Using this local information, the authors show

that the ability of the algorithm to identify the global solution depends on the value of the

parameters, which must be large enough for the lower bounding problem to have a unique
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solution. As a result, they find that the number of sample points used affects the convexity

of the underestimator. Thus, the method using interval calculations produces an interval

matrix [H∗], that may be an underestimation of the space of the Hessian matrices. This

means that there may exist p ∈ [pL, pU ] : ∇2xk(ti, p) = Hxk(ti)(p) /∈ [H∗]. A rigorous pro-

cedure is proposed in work of Papamichail and Adjiman (2004) for the calculation of the

α+
kij and α−

kij parameters. The scaled Gerschgorin method put forward by Adjiman et al.

(1998a) and formulas similar to (3.36) can be utilized again. The difficulties associated with

the computation of valid Hessian matrices are resolved by constructing bounds using (3.9)

for the IVP that is generated when the first and the second–order sensitivity equations are

coupled with the original IVP (3.2). These bounds on the second–order derivatives can then

be used to construct each element of the interval Hessian matrices needed.

3.3.3 Comparison of the Two Bounding Strategies

The solution x(t, p) of IVP (3.8), for t = 1, is a concave function of the parameter p, as

shown in Fig. 3.4(a) using a solid line. The constant and affine bounds methods proposed

can be applied to construct valid convex relaxations on the domain [-5, 5]. The constant

bounds for the whole range of parameters are given from the solution of IVPs (3.10) and

(3.11) and are shown using the dashed lines. The affine bounds are shown using the dotted

lines. They are given from (3.30) and (3.30), where the matrices needed are calculated from

the solution of the linear system produced when these equations are applied for t = 1 and

for p = pL and p = pU . The values of the state variables are given from the numerical

solution at t = 1 for p = pL and p = pU of IVPs (3.18)–(3.22) coupled, when necessary, with

IVPs (3.10) and (3.11). In Fig. 3.4(b), the domain of p is divided into two subdomains and

the two strategies are applied again. The affine underestimator is tighter than the constant

lower bound and one of the two affine overestimators is tighter than the constant upper

bound. Although the second affine overestimator is not that tight for the whole range of

p, it reduces the convex space even more. Since the constant bounds are generated at no

extra cost when the affine bounds are used, the relaxation strategies used in practice always

involve the constant bounds, with or without the affine bounds.
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Figure 3.4: Over and underestimators for the solution of IVP (3.8) for t = 1. The solution

x(1, p) (-),the constant bounds(—) and the affine bounds(· · · ) are shown.(a)One

region: p ∈ [−5, 5].(b)Two regions: p ∈ [−5, 0] and p ∈ [0, 5]

3.3.4 Convex Relaxation of the NLP

After underestimating the objective function and overestimating the feasible region, the

convex relaxation of the NLP problem (3.1) is given by

min
x̂,p,w

J̆(x̂, p, w)

s.t. ği(x̂i, p, w) ≤ 0 i = 0, 1, . . . , NP

x(ti) ≤ x̂i ≤ x̄(ti) i = 0, 1, . . . , NP (3.37)

C(x̂, p, w) ≤ 0

p ∈ [pL, pU ]

where J̆ denotes the convex underestimator of the specified function, C denotes the set of

additional constraints arising from the convex relaxation of non–convex terms of special

types and w denotes the vector of new variables introduced by this relaxation. If the affine

or α–based bounds are additionally used for the convex relaxation of the set of equality

constraints then the following constraints can be added to the above formulation:

x̂i + x̆−(ti, p) ≤ 0 i = 0, 1, . . . , NP (3.38)

x̆(ti, p) − x̂i ≤ 0 i = 0, 1, . . . , NP (3.39)

where x̆(ti, p) and x̆−(ti, p) are given either from (3.32) for the case of utilizing affine bounds

or from (3.34) and (3.35) for the case of α–based bounds.
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Chapter 4
Global optimization algorithm

In this chapter global optimization algorithm is presented, as it was introduced in Pa-

pamichail and Adjiman (2004). After constructing the convex relaxation of the original

NLP problem, a deterministic spatial BB global optimization algorithm, which follows the

one by Horst and Tuy (1990), can be used in order to obtain the global minimum within an

optimality margin. A relative optimality margin, ǫr, and a maximum number of iterations,

MaxIter are user–defined.

Step 1. Initialization

• Set the upper bound on the objective function, Ju := +∞.

• Initialize the iteration counter, Iter := 0.

• Initialize a list of subregions L to an empty list, L := ∅.

• Initialize a region R to the region covering the full domain of variables p, R := [pL, pU ].

Step 2. Upper bound

• Solve the original NLP problem with bounds on p given by R.

• If a feasible solution pR is obtained with objective function Ju
R , then set the best

feasible solution p∗ := pR and Ju := Ju
R.

Step 3. Lower bound

• Obtain bounds on the differential variables.

26



• If affine bounds (α–based bounds) can be constructed and are additionally used for the

convex relaxation of the set of equality constraints, then obtain the necessary matrices

(bounds on the second–order sensitivities).

• Form the convex relaxation of the problem for R and solve it.

• If a feasible solution p∗R is obtained for R with objective function J l
R , then add R to

the list L together with J l
R and p∗R.

Step 4. Subregion selection

• If the list L is empty, then the problem is infeasible. Terminate.

• Otherwise set the region R to the region from the list L with the lowest lower bound,

R := arg minLi∈L J l
Li

.

• Remove R from the list L.

Step 5. Checking for convergence

• If (Ju−J l
R)/|J l

R| ≤ ǫr , then the solution is p∗ with an objective function Ju. Terminate.

• If Iter = MaxIter, then terminate and report (Ju − J l
R)/|J l

R|.

• Otherwise increase the iteration counter by one: Iter := Iter + 1.

Step 6. Branching within R

• Apply the least reduced axis rule on region R to choose a variable on which to branch

and generate two new subregions R1 and R2 which are a partition of R.

Step 7. Upper bound for each region

• For i = 1, 2, solve the original NLP problem with bounds on p given by Ri.

• For i = 1, 2, if a feasible solution pRi
is obtained with objective function Ju

Ri
< Ju ,

then update the best feasible solution found so far p∗ := pRi
, set Ju := Ju

Ri
and remove

from the list L all subregions R
′

such that J l

R
′ > Ju.
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Step 8. Lower bound for each region

• Obtain bounds on the differential variables.

• If affine bounds (α–based bounds) can be constructed and are additionally used for the

convex relaxation of the set of equality constraints, then obtain the necessary matrices

(bounds on the second–order sensitivities).

• Form the convex relaxation of the problem for each subregion R1 and R2 and solve it.

• For i = 1, 2, if a feasible solution p∗Ri
is obtained for Ri with objective function J l

Ri
,

then:

– If affine or α–based bounds are used and J l
Ri

< J l
R , then set J l

Ri
:= J l

R.

– If J l
Ri

≤ Ju, then add Ri to the list L together with J l
Ri

and p∗Ri
.

• Go to Step 4.

In order to reduce the computational expense arising from the repeated solution of local

dynamic optimization problems, the upper bound generation (Step 7) does not have to be

applied at every iteration of the algorithm. This does not affect the ability of the algorithm

to identify the global solution. In the BB algorithm of Horst and Tuy (1990) if the relaxed

problem is feasible for a region, then it has to be at least as tight as the relaxation at its

parent node to ensure that the bounding operation is improving. This is true when only

constant bounds are used for the relaxation of the set of equality constraints because of their

theoretical properties (Papamichail and Adjiman, 2002). A step to enforce this requirement

was included in the algorithm for the case in which affine or α–based bounds are used

additionally to the constant bounds (Step 8, 5fth bullet point).
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Chapter 5
Examples

The global optimization algorithm presented in Chapter 4 was implemented using MAT-

LAB 6.5. To obtain the bounds on variables we used the constant bounds approach (see

sections 3.3.1 and 3.3.2). This technique is relatively simple, but suitable for the examples

solved in this diploma work. Solution of NLP problems was found using function fmincon.

It is an implementation of a general NLP solver, provided by the Optimization Toolbox,

uses either a subspace trust region method, based on the interior–reflective Newton method,

or a sequential quadratic programming method. The MATLAB function ode45 was used

for the integration of IVPs. It is an implementation of a Runge–Kutta method based on

the Dormand–Prince pair. The interval calculations needed were performed explicitly using

interval arithmetic. Interval arithmetic computations are showed for each example. First

example is a simple dynamic optimization problem. The next three examples are parameter

estimation problems in chemical kinetics modeling. All the case studies were solved on a

Dell workstation (3 GHz Intel Pentium 4 CPU, 1GB RAM).

5.1 Example 1: A Simple Dynamic Optimization Prob-

lem

This example is a problem with one optimization parameter p defined in Chapter 3 by

equations (3.8). This problem has two local minima. Its formulation is given by

min
p

− x(t = 1, p)2

s.t. ẋ = −x2 + p ∀t ∈ [0, 1] (5.1)

x(t = 0, p) = 9

− 5 ≤ v ≤ 5
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Applying the procedure defined by (3.9) leads to the expressions

ẋ = inf(−x2 + [pL, pU ]) ∀t ∈ [0, 1]

x0 = inf x0([p
L, pU ])

(5.2)

˙̄x = sup(−x̄2 + [pL, pU ]) ∀t ∈ [0, 1]

x̄0 = sup x0([p
L, pU ])

(5.3)

which using the interval arithmetic calculation results in two bounding IVPs

ẋ = −x2 − 5 ∀t ∈ [0, 1]

x0 = 9
(5.4)

˙̄x = −x̄2 + 5 ∀t ∈ [0, 1]

x̄(t0) = 9
(5.5)

Solutions of these ODEs represent a convex underestimator and concave overestimator of

the relaxed problem solution space.

The global optimization algorithm converged with the relative convergence criterion ǫr

set to 1 × 10−7. The global optimum parameter found was p = −5 and the value of the

objective function for the global optimum parameter was equal to -8.2290. However, it is a

very simple problem and only 2 iterations were needed for convergence. The solution time

was 1 second of CPU time.

5.2 Example 2: A First–order Irreversible Liquid–phase

Reaction

The second example is a parameter estimation problem with two parameters and two dif-

ferential equations as the constraints. It was published in Esposito and Floudas (2000b) as

well as in Papamichail and Adjiman (2002). It involves a first–order irreversible isothermal

liquid–phase chain reaction.

A
k1→ B

k2→ C
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The problem can be formulated as follows:

min
k1,k2

10
∑

j=1

2
∑

i=1

(xi(t = tj , k1, k2) − xexp
i (tj))

2

s.t. ẋ1 = −k1x1 ∀t ∈ [0, 1]

ẋ2 = k1x1 − k2 x2 ∀t ∈ [0, 1]

x1(t = 0, k1, k2) = 1 (5.6)

x2(t = 0, k1, k2) = 0

0 ≤ k1 ≤ 10

0 ≤ k2 ≤ 10

where x1 and x2 are the mole fractions of components A and B, respectively. k1 and k2 are

the rate constants of the first and second reaction, respectively. xexp
i (tj) is the experimental

point for the state variable i at time tj . The points used are taken from Esposito and

Floudas (2000b).

Applying the procedure defined by (3.9) led to the expressions

ẋ1 = inf(−[kL
1 , kU

1 ] × x1) ∀t ∈ [0, 1]

x10 = inf x10([p
L, pU ])

ẋ2 = inf([kL
1 , kU

1 ] × [x1, x̄1] − [kL
2 , kU

2 ] × x2) ∀t ∈ [0, 1]

x20 = inf x20([p
L, pU ])

(5.7)

˙̄x1 = sup(−[kL
1 , kU

1 ] × x̄1) ∀t ∈ [0, 1]

x̄10 = sup x10([p
L, pU ])

˙̄x2 = sup([kL
1 , kU

1 ] × [x1, x̄1] − [kL
2 , kU

2 ] × x̄2) ∀t ∈ [0, 1]

x̄20 = sup x20([p
L, pU ])

(5.8)

which using the interval arithmetic calculation results in four bounding IVPs

ẋ1 = −kL
1 x1 ∀t ∈ [0, 1]

x10 = 1

ẋ2 = kL
1 x1 − kU

2 x2 ∀t ∈ [0, 1]

x20 = 0

(5.9)

˙̄x1 = −kU
1 x̄1 ∀t ∈ [0, 1]

x̄10 = 1

˙̄x2 = kU
1 x̄1 − kL

2 x̄2 ∀t ∈ [0, 1]

x̄20 = 0

(5.10)

Solutions of these ODEs represent a convex underestimator and concave overestimator of

the relaxed problem solution space.
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Figure 5.1: Experimental points and state variable trajectories for the globally optimal pa-

rameters in Example 2

The global optimization algorithm converged with the relative convergence criterion ǫr

set to 1 × 10−2. The global optimum parameter found was k1 = 5.0035 and k2 = 1.0000

and the value of the objective function for the global optimum parameter was equal to

1.1856 × 10−6. 3436 iterations were necessary for convergence of the algorithm in 2632

seconds. The experimental points and trajectories of state variables for global optimum are

showed in Fig. 5.1. The upper bound calculation was performed once every 100 iterations.

5.3 Example 3: Catalytic Cracking of Gas Oil

This example is a parameter estimation problem with three parameters and two differential

equations in the constraints. It appears in Esposito and Floudas (2000b) and Papamichail

and Adjiman (2004). It involves an overall reaction of catalytic cracking of gas oil (A) to

gasoline (Q) and other products (S):

A
k1→ Q

Q
k2→ S

A
k3→ S
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The problem can be formulated as follows:

min
k1,k2,k3

20
∑

j=1

2
∑

i=1

(xi(t = tj , k1, k2, k3) − xexp
i (tj))

2

s.t. ẋ1 = −(k1 + k3)x
2
1 ∀t ∈ [0, 0.95]

ẋ2 = k1x
2
1 − k2x2 ∀t ∈ [0, 0.95]

x1(t = 0, k1, k2, k3) = 1 (5.11)

x2(t = 0, k1, k2, k3) = 0

0 ≤ k1 ≤ 20

0 ≤ k2 ≤ 20

0 ≤ k3 ≤ 20

where x1 and x2 are the mole fractions of components A and Q, respectively. k1, k2 and

k3 are the rate constants of the respective reactions. xi(tj) is the experimental point for

the state variable i at time tj . The points used are again taken from Esposito and Floudas

(2000b).

Applying the procedure defined by (3.9) results in expressions

ẋ1 = inf(−[kL
1 + kL

3 , kU
1 + kU

3 ] × x2
1) ∀t ∈ [0, 1]

x10 = inf x10([p
L, pU ])

ẋ2 = inf([kL
1 , kU

1 ] × [x1, x̄1] × [x1, x̄1] − [kL
2 , kU

2 ] × x2) ∀t ∈ [0, 1]

x20 = inf x20([p
L, pU ])

(5.12)

˙̄x1 = sup(−[kL
1 + kL

3 , kU
1 + kU

3 ] × x̄2
1) ∀t ∈ [0, 1]

x̄10 = sup x10([p
L, pU ])

˙̄x2 = sup([kL
1 , kU

1 ] × [x1, x̄1] × [x1, x̄1] − [kL
2 , kU

2 ] × x̄2) ∀t ∈ [0, 1]

x̄20 = sup x20([p
L, pU ])

(5.13)

which using the interval arithmetic calculation results in following bounding IVPs

ẋ1 = −(kU
1 + kU

3 )x2
1 ∀t ∈ [0, 1]

x10 = 1

ẋ2 = kL
1 x2

1 − kU
2 x2 ∀t ∈ [0, 1]

x20 = 0

(5.14)

˙̄x1 = −(kL
1 + kL

3 )x̄2
1 ∀t ∈ [0, 1]

x̄10 = 1

˙̄x2 = kU
1 x̄2

1 − kL
2 x2 ∀t ∈ [0, 1]

x̄20 = 0

(5.15)
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Figure 5.2: Experimental points and state variable trajectories for the globally optimal pa-

rameters in Example 3

Solutions of these ODEs represent a convex underestimator and concave overestimator of

the relaxed problem solution space.

The globally optimal parameters are k1 = 12.2111, k2 = 7.9764, and k3 = 2.2259 with

the corresponding value of the objective function equal to 2.655 × 10−3. The experimental

points and the state variable trajectories for the global optimum are shown in Fig. 5.2.

Algorithm converged after 8497 iterations and 13637 seconds of CPU time. The upper

bound calculation was performed once every 100 iterations.

5.4 Example 4: A First–order Reversible Liquid–phase

Reaction

The fourth example is a parameter estimation problem with four parameters and three

differential equations. It appears in Esposito and Floudas (2000b). It involves a first–order

reversible isothermal liquid–phase chain reaction.

A
k1

⇄
k2

B
k3

⇄
k4

C
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The problem can be formulated as follows:

min
k1,k2,k3,k4

20
∑

j=1

3
∑

i=1

(xi(t = tj , k1, k2, k3, k4) − xexp
i (tj))

2

s.t. ẋ1 = −k1x1 + k2x2 ∀t ∈ [0, 1]

ẋ2 = k1x1 − (k2 + k3)x2 + k4x3 ∀t ∈ [0, 1]

ẋ3 = k3x2 − k4x3 ∀t ∈ [0, 1]

x1(t = 0, k1, k2, k3, k4) = 1

x2(t = 0, k1, k2, k3, k4) = 0 (5.16)

x3(t = 0, k1, k2, k3, k4) = 0

0 ≤ k1 ≤ 10

0 ≤ k2 ≤ 10

0 ≤ k3 ≤ 10

0 ≤ k4 ≤ 10

where x1, x2 and x3 are the mole fractions of components A, B and C, respectively. k1,

k2 and k3 are the rate constants of the first and second reaction, respectively. xi(tj) is

the experimental point for the state variable i at time tj . The points used are taken from

Esposito and Floudas (2000b).

Applying the procedure defined by (3.9) leads to the expressions

ẋ1 = inf(−[kL
1 , kU

1 ] × x1 + [kL
2 , kU

2 ] × [x2, x̄2]) ∀t ∈ [0, 1]

x10 = inf x10([p
L, pU ])

ẋ2 = inf([kL
1 , kU

1 ] × [x1, x̄1] − [kL
2 + kL

3 , kU
2 + kU

3 ] × x2 + [kL
4 , kU

4 ] × [x3, x̄3]) ∀t ∈ [0, 1]

x20 = inf x20([p
L, pU ])

ẋ3 = inf([kL
3 , kU

3 ] × [x2, x̄2] − [kL
4 , kU

4 ] × x3) ∀t ∈ [0, 1]

x30 = inf x30([p
L, pU ])

(5.17)

˙̄x1 = sup(−[kL
1 , kU

1 ] × x̄1 + [kL
2 , kU

2 ] × [x2, x̄2]) ∀t ∈ [0, 1]

x̄10 = sup x10([p
L, pU ])

˙̄x2 = sup([kL
1 , kU

1 ] × [x1, x̄1] − [kL
2 + kL

3 , kU
2 + kU

3 ] × x̄2 + [kL
4 , kU

4 ] × [x3, x̄3]) ∀t ∈ [0, 1]

x̄20 = sup x20([p
L, pU ])

˙̄x3 = sup([kL
3 , kU

3 ] × [x2, x̄2] − [kL
4 , kU

4 ] × x̄3) ∀t ∈ [0, 1]

x̄30 = sup x30([p
L, pU ])

(5.18)
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Figure 5.3: Experimental points and state variable trajectories for the globally optimal pa-

rameters in Example 4

which using the interval arithmetic calculation results in six bounding IVPs

ẋ1 = −kU
1 x1 + kU

2 x2 ∀t ∈ [0, 1]

x10 = 1

ẋ2 = kL
1 x1 − (kU

2 + kU
3 )x2 + kL

4 x3 ∀t ∈ [0, 1]

x20 = 0

ẋ3 = kL
3 x2 − kU

4 x3 ∀t ∈ [0, 1]

x30 = 0

(5.19)

˙̄x1 = −kL
1 x̄1 + kU

2 x̄2 ∀t ∈ [0, 1]

x̄10 = 1

˙̄x2 = kU
1 x1 − (kL

2 + kL
3 )x̄2 + kU

4 x̄3 ∀t ∈ [0, 1]

x̄20 = 0

˙̄x3 = kU
3 x̄2 − kL

4 x̄3 ∀t ∈ [0, 1]

x̄30 = 0

(5.20)

Solutions of these ODEs represent a convex underestimator and concave overestimator of

the relaxed problem solution space.

The experimental points and trajectories of state variables for global optimum are shown

in Fig. 5.3.

Algorithm converged within the relative convergence criterion ǫr set to 1 × 10−2 global

optimization. Global optimum found was with parameter values k1 = 3.9990, k2 = 1.9981,

k3 = 40.0000 k4 = 20.0007, and the value of the objective function for the global optimum

parameter was equal to 1.1856 × 10−6. Algorithm converged after 44600 iterations and
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142380 seconds of CPU time. The upper bound calculation was performed once every 100

iterations.
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Chapter 6
Conclusion

As it was mentioned before, modeling of processes (dynamic systems) leads to a dynamic

model consisting of set of differential equations. Considered processes are described by

first–order parameter dependent, typically nonlinear, differential equations. Local optimum

solutions of these systems are found by means of dynamic optimization using gradient–based

methods, while dynamic optimization problem is formulated as a non–convex NLP problem.

Main purpose of this work was to present a global optimization algorithm suitable for

solving GOP problems. A deterministic sBB global optimization algorithm was introduced,

discussed and implemented for the dynamic optimization problem. Local solutions, pro-

duced using the sequential approach, were used as an upper bound on the global minimum

of the objective function value. Lower bounds were provided from the solution of a convex

relaxation of the problem on subregions considered in the BB algorithm. This convex relax-

ation was achieved after defining a convex underestimation of the objective function and a

convex overestimation of the feasible region. Algebraic functions were underestimated using

well–known techniques.

Three procedures were proposed for the convex relaxation of the dynamic information,

namely constant, affine a α–based bounds. Constant and affine bounds are operating with

theory of bounding solutions of IVPs. It was shown that affine bounds technique is useable

only in case that righthand side of model differential equations can be decomposed into

sum of non-fractional terms. Alpha–based bounds approach is based on the overestimation

of the space of solutions of the parameter dependent ordinary differential equations(ODE)

system that results when the original system is coupled with the first and the second–order

sensitivity equations.

We implemented the proposed algorithm and used it to solve selected examples relevant

to chemical engineering. The principle of constant bounds is very useful and also quite

simple. Therefore we focused on this approach in the work. Explicit interval arithmetic
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calculations are used and solution of IVP (3.9) is performed once at each node of BB tree.

Results show that the method of constant bounds for larger problems results in enormous rise

of the number of iterations, and of course CPU time, needed to obtain the global optimum.

When affine estimators are used additionally to the constant bounds there is an increase in

the size of the integrated ODE systems. However, the comparison of bounding strategies

suggests that the algorithm can converge in far fewer iterations than in the case of using the

constant bounds alone. That is the reason why further work should be dedicated to focus

on larger systems with utilization of combinations of the proposed bounding strategies.
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