SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE fakulta chemickej a potravinárskej technológie

Semestrálny projekt

Riadiaci systém FOXBORO

Vypracoval :

Konzultant :

Vedúci bakalárskeho projektu :

Mário Briš

Ing. Katarína Vaneková

Ing. Branislav Smělík

Bratislava 2008

Slovenská technická univerzita v Bratislave Oddelenie informatizácie a riadenia procesov Fakulta chemickej a potravinárskej technológie Akademický rok: 2007/2008

S т 11 СНР т

ZADANIE BAKALÁRSKEJ PRÁCE

Autor práce:	Mário Briš (22412)
Odbor:	chemická technológia
Študijný odbor:	
Vedúca práce:	Ing. Katarína Vaneková
Konzultant:	Ing. Branislav Smělík
Miesto vypracovania:	Bratislava

Riadiaci systém FOXBORO Názov témy:

Špecifikácia zadania:

Riadiaci systém Foxboro. Programovanie zložiek a blokov. Vizualizácia v programe Foxview. Návrh riadenia pre sústavu výmenníkov tepla a aplikácia navrhnutého riadenia pomocou priemyselného riadiaceho systému Foxboro.

Rozsah práce:

Riešenie zadania práce od: 07.03.2008 Dátum odovzdania:

40

23.05.2008

prof. Ing. Martin Bajys, DrSc. garant študijného programu

By B Mário Briš riešiteľ bakalárskej práce

prof. Ing. Dr. Miroslav Fikar vedúci pracoviska

Pod'akovanie

Chcel by som sa poďakovať vedúcej diplomovej práce Ing. Kataríne Vanekovej za pripomienky, cenné rady, ochotu a odborné vedenie. Zároveň by som sa chcel poďakovať Ing. Branislavovi Smělíkovi za cenné rady, pripomienky a spoluprácu.

Abstrakt

Semestrálny projekt sa zaoberá riadením sústavy dvoch výmenníkov tepla pomocou riadiaceho systému FOXBORO. Výmenníky sú naprogramované pomocou prenosov v integrovanom riadacom konfigurátore. V sústave sa dajú meniť teploty vstupujúcich kvapalín do výmenníkov tepla, čím sa dá otestovať, či riadenú veličinu dokáže navrhutý PI regulátor uriadiť. Riadenou veličinou je teplota na výstupe z druhého výmenníka tepla T_2 a riadiacou veličinou je teplota ohrevno-chladiaceho média Tm vstupujúca do plášťa prvého aj druhého výmenníka tepla. Žiadaná hodnota T2set, parametre regulátora P a I a teploty vstupujúcich prúdov do výmenníka tepla Tv_1 , Tv_2 sú nastavované pomocou prostredia *Foxview*. Riadenie výmenníkov tepla navrhnutými regulátormi je posúdené na základe maximálneho preregulovania δ_{max} , času maximálneho preregulovania t_{δ} a času regulácie t_{reg} .

Abstract

The semestral project deals with the control of two heating exchangers in the control system FOXBORO. The heating exchangers are programmed as five transfer functions in the integrated control configurator. In the system is possible to change the incoming liquid temperatures to the heating exchangers and can be tested if the PI controller is suitable for control process. The controlled value is the temperature of the second heating exchanger T_2 and the action value is heating-cooling medium *Tm*. The setpoint value *T2set*, parameters of the regulator *P* and *I*, and the temperatures of the incoming flows to the heating exchangers Tv_1 , Tv_2 are adjustable by *Foxview*. The proposed controllers are compared by the quality criteria: maximal overshoot δ_{max} , time of maximal overshoot t_{δ} and control time t_{reg} .

Obsah

Úvod	7
1. Riadený systém	8
1.1. Dynamický matematický model (DMM)	9
1.2. Dynamický odchýlkový model	
1.3. Model v tvare prenosov	11
2. Riadiaci systém FOXBORO	
2.1. Integrovaný riadiaci konfigurátor (ICC)	
2.1.1. Vloženie nového compoundu	
2.1.2. Procesné alarmy compoundu	
2.1.3. Vloženie nového bloku	15
2.2. Vytvorenie sústavy dvoch výmenníkov tepla s regulátorom v prostredí ICC	16
2.2.1. AIN bloky	17
2.2.2. CALCA bloky	
2.2.3. PIDA blok	
2.3. Vizualizacne prostredie Foxdraw	
2.3.1. Prostredie Foxdraw	
2.5.2. Vytvorenie sustavy uvoch vymeninkov tepia nadených r i regulatorom v prostředí Pox 2. Formologi	uraw 20
4. AIM Archive Toolbox (AIM AT)	30
4.1. Historian Configurator	
4.2. Historian Manager	31
4.3. AIM Historian Data Dispaly	31
5. Návrh regulátora	33
5.1. Overenie simulačnej schémy	33
5.2. Vloženie PI regulátora do schémy v MATLABe	35
5.3. Výpočet parametrov regulátora	
5.3.1. Metóda umiestnenia pólov	
5.3.2. Ziegler-Nicholsonova metóda	
5.3.3. Cohen-Coonova metóda	
5.3.4. Haalmanova metóda	
5.3.5. Chein-Hrones-Reswickova metoda	
5.4. Posudenie kvality riadenia	
6. Zaver	
Literatúra	50
Prílohy	51
Príloha 1	
Príloha 2	
Príloha 3.	56
Príloha 4	58
Príloha 5	

Úvod

V mojom semestrálnom projekte som sa zaoberal decentralizovaným riadiacim systémom FOXBORO. Tento systém v súčasnosti patrí do skupiny najznámejších systémov, ktorých úlohou je efektívne riadenie technologických procesov. Efektívne riadenie procesov zlepšuje schopnosť predvídať, riadiť, reagovať na zmeny podmienok v systéme a maximálne tak využiť možnosti aké nám daný systém poskytuje. Správne riadenie procesov môže tiež redukovať neefektívnosť daného procesu a chyby vyplývajúce z danej neefektívnosti, taktiež nám efektívne riadenie procesov umožňuje zvýšiť bezpečnosť nášho procesu. Riadiaci systém FOXBORO I/A Series System bol vytvorený, aby spĺňal potreby automatizácie u komplikovaných integrovaných systémov, ktoré riadia kritické operácie, vyžadujú nepretržitú prevádzku a dokonalú bezpečnosť. FOXBORO I/A Series System je kombináciou flexibility, bezpečnosti a vysokej úrovne zosieťovania. I/A Series siete ponúkajú plné riadenie a ochranu pred komunikáciou s chybnými bodmi siete. Systém otvorenej architektúry a zabudovanie priemyselných štandardov umožňujú určiť pre užívateľov najlepšiu stratégiu siete vzhľadom na ich informačné a riadiace požiadavky, a ciele [3].

Cieľom semestrálneho projektu je prostredníctvom riadiaceho systému FOXBORO navrhnúť sústavu výmenníkov tepla, ktoré budú opísané pomocou čiastkových prenosov. Bude zobrazovať výstupné teploty z prvého a druhého výmenníka tepla, žiadanú teplotu a teplotu ohrevno-chladiaceho média v závislosti od času vo forme trendového grafu. Riadenou veličinou je teplota na výstupe z druhého výmenníka tepla. Riadiacou veličinou v sústave je teplota ohrevno-chladiaceho média vstupujúceho do plášťa prvého aj druhého výmenníka tepla. Riadenie sa vykonáva prostredníctvom PI regulátora. Cieľom práce je aj posúdenie kvality regulácie.

1. Riadený systém

Riadený systém (obr. 1) predstavuje sústavu dvoch navzájom prepojených výmenníkov tepla. Do prvého výmenníka s teplovýmennou plochou F_1 , objemom V_1 a koeficientom prechodu tepla α_1 vstupuje kvapalina o teplote Tv_1 , objemovom prietoku q_1 , hustotou ρ a hmotnostnou tepelnou kapacitou c_p . Kvapalina opúšťa prvý výmenník tepla a vstupuje do druhého výmenníka tepla pri teplote T_1 . Do druhého výmenníka tepla vstupuje ďalšia kvapalina pri teplote Tv_2 , objemovom prietoku q_2 , hustote ρ a hmotnostnej tepelnej kapacite c_p . Druhý výmenník tepla má teplovýmennú plochu F_2 , objem V_2 a koeficient prestupu tepla α_2 . Kvapalina opúšťa druhý výmenník tepla pri teplote T_2 . Do plášťov oboch výmenníkov tepla vstupuje ohrevno-chladiace médium o teplote Tm.

Obr. 1 : Schéma zapojenia výmenníkov tepla

Hodnoty parametrov výmenníkov tepla sú zobrazené v tab. 1.

Tab. 1 : Hodnoty parametrov s ich jednotkami

premenná	hodnota	jednotka	parameter	hodnota	jednotka
q_1	0,6	$[m^3.min^{-1}]$	q_2	0,4	$[m^3.min^{-1}]$
V_{I}	5	[m ³]	V_2	6	[m ³]
F_1	15	[m ²]	F_2	17	[m ²]
α_1	72	$[W.m^{-2}.K^{-1}]$	α_2	72	$[W.m^{-2}.K^{-1}]$
ρ	900	[Kg.m ⁻³]	C _p	3,84	$[KJ.Kg^{-1}.K^{-1}]$
$q=q_1+q_2$	1	[m ³ .min ⁻¹]	Tm^{S}	373	[K]
Tv_1^{S}	288	[K]	Tv_2^{S}	298	[K]

1.1. Dynamický matematický model (DMM)

Budeme predpokladať, že akumulačná schopnosť stien výmenníkov oproti akumulačnej schopnosti ohrievanej kvapaliny je zanedbateľná, teplota vo vnútri výmenníkov je v každom objemovom elemente kvapaliny rovnaká, čo sa dá zabezpečiť miešaním, teplota výstupného prúdu je rovnaká ako teplota kvapaliny vo výmenníku. DMM výmenníkov tepla získame entalpickými bilanciami. Entalpické bilancie výmenníkov tepla majú tvar :

$$Tk_1 \frac{dT_1(t)}{dt} = -T_1 + Z_1 Tm + Z_2 Tv_1 \qquad T_1(0) = Tv_{10} \qquad (1)$$

$$Tk_{2}\frac{dT_{2}(t)}{dt} = -T_{2} + Z_{3}T_{1} + Z_{4}Tv_{2} + Z_{5}Tm \qquad T_{2}(0) = Tv_{20}$$
(2)

kde časové konštanty Tk_i a zosilnenia Z_j sú dané vzťahmi, kde i = 1, 2, j = 1, ..., 5

$$Tk_{1} = \frac{V_{1}\rho c_{p}}{q_{1}\rho c_{p} + F_{1}\alpha_{1}} = 5,4795 \text{ min}$$
(3)

$$Tk_{2} = \frac{V_{2}\rho c_{p}}{q\rho c_{p} + F_{2}\alpha_{2}} = 4,4308 \text{ min}$$
(4)

$$Z_1 = \frac{F_1 \alpha_1}{q_1 \rho c_p + F_1 \alpha_1} = 0,3425$$
(5)

$$Z_{2} = \frac{q_{1}\rho c_{p}}{q_{1}\rho c_{p} + F_{1}\alpha_{1}} = 0,6575$$
(6)

$$Z_{3} = \frac{q_{1}\rho c_{p}}{q\rho c_{p} + F_{2}\alpha_{2}} = 0,4431$$
(7)

$$Z_{4} = \frac{q_{2}\rho c_{p}}{q\rho c_{p} + F_{2}\alpha_{2}} = 0,2954$$
(8)

$$Z_{5} = \frac{F_{2}\alpha_{2}}{q\rho c_{p} + F_{2}\alpha_{2}} = 0,2615$$
(9)

Výmenníky tepla budú v ustálenom stave, ak v nich nedochádza k akumulácii tepla, t.j.

$$\frac{dT_1(t)}{dt} = \frac{dT_2(t)}{dt} = 0$$
(10)

Ustálené teploty vstupných prúdov do výmenníkov tepla Tv_1^s , Tv_2^s a ohrevno-chladiaceho média do plášťa oboch výmenníkov tepla Tm^s sa nachádzajú v tab. 1. Pomocou rovníc (1), (2) a (10) vypočítame teploty vo výmenníkoch tepla v ustálenom stave [7]

$$T_1^{\ s} = Z_1 T m^{\ s} + Z_2 T v_1^{\ s} = 317,11 \ K \tag{11}$$

$$T_2^{\ s} = Z_3 T_1^{\ s} + Z_4 T v_2^{\ s} + Z_5 T m^s = 326,08 \ K \tag{12}$$

1.2. Dynamický odchýlkový model

Pre vytvorenie dynamického odchýlkového modelu sme zaviedli odchýlkové veličiny

$$x_1(t) = T_1(t) - T_1^{S}$$
(13)

$$x_2(t) = T_2(t) - T_2^{\ s} \tag{14}$$

$$u(t) = Tm(t) - Tm^{s}$$
⁽¹⁵⁾

$$r_1(t) = Tv_1(t) - Tv_1^{\ S} \tag{16}$$

$$r_2(t) = Tv_2(t) - Tv_2^{\ S} \tag{17}$$

kde odchýlkové vstupné veličiny označíme ako r_1 , r_2 . Rovnice opisujúce dynamiku výmenníkov tepla majú potom tvar

$$T_{1} = \frac{dx_{1}(t)}{dt} = -x_{1}(t) + Z_{1}u_{1}(t) + Z_{2}r_{1}(t) \qquad x_{1}(0) = 0$$
(18)

$$T_2 \frac{dx_2(t)}{dt} = -x_2(t) + Z_3 r_2(t) + Z_4 x_1(t) + Z_5 u(t) \qquad \qquad x_2(0) = 0 \tag{19}$$

Ak výstupnými veličinami, ktoré meriame, sú teploty T_1 a T_2 , vzťah medzi odchýlkovou výstupnou a odchýlkovou stavovou veličinou opisujú rovnice výstupu

$$y_1(t) = x_1(t)$$
 (20)

$$y_2(t) = x_2(t) \tag{21}$$

a preto dynamický odchýlkový model výmenníkov opisujúcich vzťah medzi odchýlkovou vstupnou a odchýlkovou výstupnou veličinou je[1]

10

$$T_2 \frac{dy_2(t)}{dt} = -y_2(t) + Z_3 r_2(t) + Z_4 y_1(t) + Z_5 u(t) \qquad \qquad y_2(t_0)$$
(23)

1.3. Model v tvare prenosov

V ďalšom kroku sa urobí Laplaceova transformácia rovníc (22) a (23). Budú teda existovať dva prenosy pre prvý a tri prenosy pre druhý výmenník tepla. Dostaneme ich tak, že pri odvodení prenosu ten vstup, ktorý neuvažujeme, položíme rovný nule (vstupná veličina je konštantná)[1]. Dostaneme

1. výmenník tepla

$$G_{Y1U}(s) = \frac{Y_1(s)}{U(s)} = \frac{Z_1}{Tk_1 s + 1} = G_1(s) \qquad \qquad R_1(s) = 0 \tag{24}$$

$$G_{Y1R1}(s) = \frac{Y_1(s)}{R_1(s)} = \frac{Z_2}{Tk_1s + 1} = G_2(s) \qquad \qquad U(s) = 0 \tag{25}$$

2. výmenník tepla

$$G_{Y2U}(s) = \frac{Y_2(s)}{U(s)} = \frac{Z_5}{Tk_2s + 1} = G_3(s) \qquad R_2(s) = Y_1(s) = 0$$
(26)

$$G_{Y2R2}(s) = \frac{Y_2(s)}{R_2(s)} = \frac{Z_3}{Tk_2s + 1} = G_4(s) \qquad Y_1(s) = U(s) = 0$$
(27)

$$G_{Y2Y1}(s) = \frac{Y_2(s)}{Y_1(s)} = \frac{Z_4}{Tk_2s + 1} = G_5(s) \qquad \qquad U(s) = R_2(s) = 0 \tag{28}$$

Riadený systém v tvare prenosov je zobrazený v MATLABe na obr. 2.

. .

Obr.2: Schéma výmenníkov tepla v MATLABe

2. Riadiaci systém FOXBORO

FOXBORO I/A Series System je kombináciou flexibility, bezpečnosti a vysokej úrovne zosieťovania. I/A Series siete ponúkajú plne redundantné riadenie a ochranu pred komunikáciou s chybnými bodmi siete. Systém otvorenej architektúry a zabudovanie priemyselných štandardov umožňujú určiť pre užívateľov najlepšiu stratégiu siete vzhľadom na ich informačné a riadiace požiadavky, a ciele[2]. FOXBORO I/A Series System sa skladá z niekoľkých častí. K práci som využil *Integer Control Configurate (ICC)*, vizualizačné prostredie *Foxdraw*, *Foxselect* a históriu *AIM Archív Toolbox*.

2.1. Integrovaný riadiaci konfigurátor (ICC)

Po spustení riadiaceho systému FOXBORO I/A Series sa objaví užívateľské prostredie *Foxview*. Na titulnej lište je názov stanice, ktorá bola vytvorená a definovaná pri samotnej inštalácii programu. V riadiacom systéme FOXBORO sa dá pracovať na štyroch úrovniach, pričom každá úroveň má iné prístupové práva. Najvyššie prístupové práva má úroveň *software engineer* (*softw_eng*). Táto možnosť sa dá zvoliť ikonou *Change Environment* alebo cez záložku, ktorá sa nachádza pod titulnou lištou *File* \rightarrow *Change Environment*. Potom sa pomocou skrolovacieho tlačidla vyberie možnosť *softw_eng*, ktorá má najvyššie prístupové právo a potvrdí sa tlačidlom *OK*.

ICC sa používa na vytváranie riadiacich algoritmov. Compoundy a bloky majú prednastavené hodnoty. Preto je možné ich vložiť pred nastavením jednotlivých parametrov. ICC poskytuje nasledujúce možnosti [2]:

- tvorba a spájanie spojitých, sekvenčných blokov a blokov s reťazovou logikou v štruktúre jedného compoundu
- tvorba skupín a spájanie compoundov
- zmena, kopírovanie a odstraňovanie compoundov a blokov
- nastavenie a zmena Fieldbus modulov
- priradenie riadiacich schém staniciam v prostredí spracovania
- tvorba a udržiavanie knižníc compoundov
- priame pridávanie Equipment Control Block (EBC) a zariadenia

ICC sa spúšťa pomocou záložky *Config* umiestnenej v hlavnej ponuke okna *Foxview* a to nasledovne : *Control_Cfg* \rightarrow *CIO_STN_Cfg* \rightarrow *Config_STUCHF*. V zobrazenom ICC sa v ľavej časti obrazovky nachádza zoznam compoundov, ktoré sa v danej stanici už nachádzajú a na pravej strane

obrazovky zoznam funkcií compoundu. V hornej časti sú umiestnené záložky, ktoré nám poskytujú ďalšie funkcie v ICC.

2.1.1. Vloženie nového compoundu

Z menu compoundových funkcií som použil možnosť *Insert New Compound* a vložil platné meno do poľa pre definíciu mena. Compound sa vytvoril so štandardnými parametrami a vložil pred compound, ktorý bol v čase vytvárania compoundu označený. ICC kontroluje platnosť mena. Ak je meno akceptované, tak pole na definíciu mena zmizne a compound je vytvorený so štandardnými hodnotami parametrov. Ak nie je meno jedinečné, tak je oznámené vloženie nového mena alebo zrušenie žiadosti o vytvorenie compoundu.

Compound, ktorý sa bude konfigurovať sa označí a zvolí funkcia *Edit Compound Parameters*. Takto získame kópiu zo súčasného zoznamu parametrov compoundu. Ak sa hodnoty len kontrolujú bez zmien, tak sa ukončenie potvrdí tlačidlom *Cancel*. V prípade, že sa vykonali zmeny v zozname parametrov a chceme ich uložiť, zvolí sa tlačidlo *Done*. *Done* uloží zmeny a prepíše originál.

Na zobrazenie zoznamu blokov v compounde sa použije funkcia *View Blocks/ECBs in this Compound*. V okne sa miesto zoznamu compoundov zobrazí zoznam blokov a miesto funkcií compoundu sa zobrazia funkcie bloku. V novovytvorenom compounde sa bloky nenachádzajú, takže sú sprístupnené len základné funkcie bloku.

2.1.2. Procesné alarmy compoundu

Alarmy a stavové správy sú vytvárané alarmovými nastaveniami vo zvolenom bloku. Alarmy majú 5 stupňov priority, kde 1 indikuje najvyššiu prioritu alarmu a 0 neprítomnosť alarmu. Tieto sú sumarizované v jednoduchých alarmových sumároch alarmov pre každý compound. Tieto parametre obsahujú prioritu najvyššieho aktuálneho alarmu v tomto compounde [2]. Aby procesné alarmy compoundu boli zobrazované v okne *Alarm Manager*, je potrebné zmeniť v compunde parameter *GR1DV1*. Označil som si môj compound v ľavej časti okna ICC, čiže MARIO_VYM a použil funkciu *Edit Compound Parameters*. Z ponuky hornej lišty som vybral záložku *SHOW* a zo zobrazeného zoznamu použil *Available WP's* (obr. 3).

X FOXBORO	: Integrated Control Configurator	
HELP	SHOW FBM PRINT NEW	CHECKPOINT
Integr		Active
Compour	Available CP's	
STUCHF_	Available FBM's	
STUCHF_	Block Type Names	
KATKA_V	Diskette Directory	
MC_VYM	Available WP's	
KATKA_V	Available Printers	
TANK1_F	Available Historians	
TANK1_0	CP Processing Periods	
RADKA	GW Processing Periods	
VYMENNI	Boolean Descriptors	
MARIO_V	Configured ECB's	

Obr. 3 : Ponuka záložky SHOW v compounde

V pravej časti okna sa mi ukázal názov *Workstation Properties* WPXP01, ktorý som následne napísal do parametra *GR1DV1* a potvrdil klávesou *Enter* (obr. 4). Vykonané zmeny v compounde som potvrdil tlačidlom *Done* na spodnej lište obrazovky.

X FOXBORO: Integra	ted Control Cor	nfigurator						- X
HELP SHOP	FBM	PRINT	NEW	CHECKPOINT	MAINT	BUFFER	EXIT	
Integrated	Control	Configu	rator	Active	Ş	STA = STU	JCHF @STUCHF	
Compounds:	Compou	nd Defin	ition:				WPXP01	
STUCHF_STA	Name:	MARIO_V	YM					
STUCHF_ECB	DESCRP							
KATKA_VYM2	PERIOD	1						
MC_VYM	PHASE	0						
KATKA_VYM1	ON	0						
TANK1_PROC	INITON	2						
TANK1_COMP	CINHIB	0						
RADKA	GR1DV1	WPXP01						
VYMENNIKY	GR1DV2							
MARIO_VYM	GR1DV3							

Obr. 4 : Compoundový parameter *GR1DV1*

Takto upravený compound nám umožní sledovať dátum a čas, kedy alarm nastal, pri akej teplote, typ a prioritu alarmu a text informujúci o alarme v *Alarm Manager* okne (obr.5). *Alarm Manager* okno sa spúšťa cez obrazovku *Foxview* tlačidlom *Process* pod záložkami hlavnej ponuky.

Alarm Manager STUCHES	TUCHF - CAD								
15:58 26-5-0	15:58 26-5-08 Current Alarms New Alarms								
MARIO_VYM:REGULATOR	15.00 ¥	7	15 003	THUNKTTE			LLABS	1	U 🌣
MARIO_VYM:REGULATOR			13.00)	TUHNUTIE	KYAPALINI		LOABS	Z	U
26-05 15:52:42	19.99 %	(20.00)	CHLADNUTI	E KVAPALINY				
MARIO_VYM:REGULATOR 26-05 15:38:45	85.02 %	(85.00)	VAR KVAPA	LINY		HHABS	R	U
MARIO_VYM:REGULATOR 26-05 15:37:39	80.01 %	ć	80.00)	PREHRIEVA	NIE KVAPALINY		HIABS	R	u.
Ack Alarm	Ac Compo	k ound	Ack	Page	Clear Ala	rm	Clear	Pag	e
Alarm Detail	Top Pr	iority	User I	Display	Block Det	ail			
Match Active	Horns N	Muted	PAL	JSED	Alarm 1 o	f 4	14:37 20	6-5-	08

Obr. 5 : Alarm Manager okno

2.1.3. Vloženie nového bloku

Nový compound neobsahuje žiadne bloky a tak pozíciu nového bloku nemožno ovplyvniť. Na vytvorenie bloku som použil *Insert New Block* z funkcií bloku a zobrazila sa ponuka na definíciu bloku. Do *NAME* som vložil platné meno bloku a potvrdil klávesou *Enter*. Ak je meno neplatné, zobrazí sa výzva vo forme chybnej správy. Do ponuky *TYPE* sa vkladá typ bloku, ktorý sa môže vložiť dvoma spôsobmi a to :

- napísať typ bloku manuálne a potvrdiť klávesou Enter
- zvoliť záložku *SHOW* a zo zoznamu vybrať možnosť *Block Type Names* na zobrazenie všetkých typov blokov v pravej časti okna

Vytvorený blok obsahuje štandardné nastavenia podľa toho, aký typ bloku bol vybraný. Z ponuky blokových funkcií sa vyberie možnosť *Edit All Block/ECB Parameters*. V tomto posuvnom zozname parametrov má každý parameter políčko so štandardne nastavenou hodnotou. Zmeny uskutočnené v poli parametra, sa musia vždy potvrdiť klávesou *Enter*. Editovať sa môžu všetky parametre okrem mena *NAME* a typu *TYPE* bloku, ktoré boli zadefinované pri vytváraní bloku. Ak nám vykonané zmeny parametrov v bloku vyhovujú, potvrdia sa tlačidlom *Done* na spodnej lište, ktoré zmeny uloží. V prípade, že by zmeny nevyhovovali a chceli by sme ponechať pôvodné nastavenia, použije sa tlačidlo *Cancel*. Tým sa editované parametre vrátia späť na hodnoty pred editovaním.

2.2. Vytvorenie sústavy dvoch výmenníkov tepla s regulátorom v prostredí ICC

Na vytvorenie sústavy dvoch výmenníkov tepla v prostredí ICC som potreboval vytvoriť 5 AIN blokov a 4 CALCA bloky. Vytvoreným AIN blokom som dal názvy TV1T1, TMT1, TV2T2, T1T2 a TMT2. Názvy vychádzajú zo vstupujúcej teploty do výmenníka tepla a teploty, vystupujúcej z výmenníka tepla. CALCA bloky som pomenoval KONSTANTY1, KONSTANTY2, VYMENNIK_T1 a VYMENNIK_T2. Bloky KONSTANTY1 a KONSTANTY2 počítajú parametre zosilnenia Z_j a časových konštánt Tk_i a bloky VYMENNIK_T1 a VYMENNIK_T2 sčítavajú AIN bloky a prepočítavajú jednotky °C a K (obr. 6).

Obr. 6 : Schéma blokov bez regulátora v ICC

Po overení správnej funkčnosti blokov v programe MATLAB, som si vytvoril kópiu compoundu a medzi blokmi vytvoril blok PIDA. Blok som pomenoval REGULATOR podľa úlohy, ktorú bude plniť v ICC. Spôsob akým som ho prepojil s ostatnými blokmi je znázornený na obr. 7.

Obr.7 : Schéma blokov s regulátorom v ICC

2.2.1. AIN bloky

AIN blok (Analog Input Blok) prijíma vstupnú hodnotu od inteligentného poľa zariadenia *Fieldbus Module (FBM)*, *Fieldbus Card (FBC)* alebo iných blokov a konvertuje ju do vhodnej formy pre použitie v *I/A Series* kontrolnej stratégii [2].

Parametre bloku :

- *FLOP* stanovuje aký typ filtra sa použije na signál, predtým ako je stanovený v *PNT* ako výstup. *FLOP* má nasledujúce hodnoty:
 - 0=bez filtrovania
 - 1=filtrovanie 1. rádu
 - 2=filtrovanie Butterworth
- *FTIM* časová konštanta filtra je vstup, ktorý reprezentuje čas v minútach pre dosiahnutú výstupnú hodnotu určitého percenta z konečnej hodnoty po skokovej zmene
- *IOMOPT* špecifikuje či *FBM* alebo *FBC* spojenie s blokom existuje a ak nie, či má byť použitý alternatívny zdroj. Hodnoty *IOMOPT* sú:
 - 0=AIN blok získava vstupné hodnoty od *MEAS* parametra a upravuje ich podľa hodnoty parametra *SCI*
 - 1=AIN blok získava vstupné hodnoty od *FBM* alebo *FBC* vstupných bodov určených z *IOM_ID* a *PNT_NO*
 - 2=AIN blok získava vstupné hodnoty od parametra *MEAS*. Vstup je vystavený len úprave mierky pre jednotky konverzie
- *KSCALE* parameter charakterizujúci zosilnenie
- *MEAS* parameter, ktorého hodnota je použitá ako vstup do operujúceho bloku, keď *IOMOPT* indikuje, že *FBM* alebo *FBC* nie sú pripojené
- *PNT* parameter charakterizovaný ako blokový výstup. Reprezentuje analógový výstup po vykonaní všetkých blokových operácii

Každý z piatich vytvorených AIN blokov bude predstavovať jeden prenos podľa rovníc (24) až (28). Parametre, ktoré sa menili v blokoch a ich hodnoty sú zobrazené v Prílohe 1. Prenosy sa zadávajú do AIN blokov prostredníctvom parametrov *KSCALE* a *FTIM*. *KSCALE* predstavuje zosilnenie Z a *FTIM* časovú integračnú konštantu *Tk* v minútach.

2.2.2. CALCA bloky

CALCA blok sa využíva na jednoduché matematické operácie ako sú sčítanie, odčítanie, násobenie a podobne. Pre početnosť výpočtov som vytvoril štyri CALCA bloky. Bloky KONSTANTY1 a KONSTANTY2 som použil na výpočty zosilnenia Z_j a časovej konštanty Tk_i podľa

rovníc (3) až (9). Parametre, ktoré sa používali a boli upravované sú zobrazené v Prílohe 2. Reálne vstupy RI01-RI08 sú prázdne, pretože ich hodnoty sa zadávajú priamo z obrazovky *Foxview*. V parametroch *Step01-Step50* sú výpočty rovníc (3) až (9). Výsledky výpočtov sa zapisujú do parametrov RO01-RO04. Bloky VYMENNIK_T1 a VYMENNIK_T2 som vytvoril na sčítavanie AIN blokov a na prepočítavanie °C na Kelviny a naopak. Parametre, ktoré sa používali a boli upravované sú zobrazené v Prílohe 3. Do parametrov RI01-RI08 som písal aj adresy, ktoré brali ako vstupnú hodnotu výstup z AIN blokov.

Parametre bloku :

M01-M24	poskytuje 24 dočasných pamäťových zápisov na uloženie výsledkov z operácií
RI01-RI08	poskytuje 8 reálnych vstupov do CALCA bloku na výpočty
RO01-RO04	poskytuje 4 reálne výstupy z bloku
STEP01-STEP50	poskytuje do 50 programovateľných krokov, ktoré plnia funkciu kalkulačky

2.2.3. PIDA blok

PIDA blok predstavujúci regulátor realizuje priebežnú PID spätnú väzbu, súčtové a násobiace riadenie z analógovej slučky. Jeho hlavné vstupy, setpoint a meranie sú používané na vypočítanie výstupu založeného na nastavených parametroch – proporcionálna zložka, integrálny čas, derivačný čas, čas oneskorenia a relatívne zosilnenie setpointu [2]. V tomto bloku sa budú generovať aj alarmy, pri dosiahnutí kritickej teploty v druhom výmenníku tepla. Parametre bloku, ktoré sa upravovali, sú zobrazené v Prílohe 4. Parametrom *MODOPT* je určené, že blok sa bude správať ako PI regulátor. V regulátore som nastavil dva alarmy. Prvý alarm sa bude generovať pri 20°C a 80°C a druhý pri 15°C a 85°C. Keď výstup z druhého výmenníka tepla dosiahne hraničné teploty alarmov, tak parametre indikujúce stav (*MEASLI, MEASHI, LLAIND, HHAIND*) sa prepnú z hodnoty 0 (FALSE) na hodnotu 1 (TRUE) a alarm sa vygeneruje. Tieto teploty boli zvolené na základe vlastností ohrievanej alebo chladenej kvapaliny. Výstup z regulátora bol ohraničený na teploty 0°C až 250°C a predstavuje teplotu ohrevno-chladiaceho média. Parametre *MALOPT* a *HHAOPT* sú prepísané na hodnotu 1, čím je nastavené, že v bloku budú aktívne horné aj dolné alarmy. Priorita alarmu je nastavená v parametroch *MEASPR* a *HHAPRI*, kde hodnota 1 znamená najvyššiu prioritu.

PIDA blok môže byť nakonfigurovaný na jeden z nasledujúcich riadiacich režimov :

- 1. Proporcionálny (P)
- 2. Integrálny (I)
- 3. Proporcionálny a derivačný (PD)
- 4. Proporcionálny a integračný (PI)
- 5. Proporcionálny, integračný a derivačný (PID)
- 6. Neinteraktívny PID (NIPID)
- 7. Proporcionálny, integračný a s dopravným oneskorením (PITAU)

8. Neinteraktívny, proporcionálny, integračný, derivačný a s dopravným oneskorením (PIDTAU)

PIDA blok nastavený v riadiacom režime 4 (PI) počíta podľa rovnice [2]

$$m_b = \frac{100}{P} \left(\left(\frac{1}{Is} + A \right) r - \left(\frac{1}{Is} + 1 \right) c_f \right) f_r + b$$
(27)

kde

$$c_{f} = \frac{c}{1 + \tau_{S} + 0.5(\tau_{S})^{2}} = c \qquad \tau = 0$$
(28)

 $m_b = m_f + b \tag{29}$

$$m_f = m.f_r \tag{30}$$

$$b = KBIAS(BIAS + BBIAS) \tag{31}$$

- *m* výstup vnútornej riadiacej odozvy
- *r* zvolený setpoint
- A pomer lead/lag hodnôt
- *c* riadená veličina
- c_f meranie prefiltrované pomocou filtra Butterworth
- f_r hodnota MULTIN (multiplikačný dopredný vstup)

2.3. Vizualizačné prostredie Foxdraw

Foxdraw je grafický editor, v ktorom sa vytvárajú a upravujú vizualizácie riadených procesov. Prostredie Foxdraw sa spúšťa cez ponuku na hornej lište Config \rightarrow Foxdraw, pričom musíme byť nastavený ako softw_eng. Následne sa nám zobrazí naposledy upravovaný projekt.

2.3.1. Prostredie Foxdraw

Nový projekt sa otvorí prostredníctvom *File* $\rightarrow New$ alebo pomocou ikony na panely pod záložkami hlavnej ponuky. Pomocou panela nástrojov na ľavej strane obrazovky je možné, si vytvoriť zariadenie, ktoré bude charakterizovať náš proces alebo sa môže použiť knižnica Foxdraw, v ktorej sa

nachádzajú už niektoré priemyselné zariadenia (obr. 8). Do knižnice sa dostaneme cez ponuku *Object* \rightarrow *Link/Copy from palette*.

Obr. 8 : Panel nástrojov a knižnica Foxdraw

V knižnici sa nám zobrazí zoznam typov zariadení a z nich sa vyberie to najvhodnejšie. Na pracovnú plochu sa objekt vkladá kliknutím na obrázok v knižnici a následné kliknutím na pracovnú plochu *Foxdraw*. Takto vložený objekt sa dá ešte ďalej podľa potreby upravovať. Polia, ktoré nám budú zobrazovať číselné údaje a texty, sa vytvoria pomocou ikony *Background Text* na panely nástrojov (obr. 8). Po kliknutí pravým tlačidlom myšky na pole a zvolení *Edit Text* alebo *Graphic Atributes*, možno vložiť text a graficky upravovať.

2.3.2. Vytvorenie sústavy dvoch výmenníkov tepla riadených PI regulátorom v prostredí Foxdraw

Po vložení objektov na pracovnú plochu *Foxdraw*, ich musíme ešte nakonfigurovať tak, aby nám predstavovali žiadaný proces. Aby nám pole zobrazovalo požadované údaje, je potrebné ho vyplniť a upraviť jeho vlastnosti. Pravým kliknutím na pole a zvolení položky *Configure Objects*, sa zobrazí okno s možnosťami konfigurácie. V okne sa zadefinuje, či má pole hodnotu iba zobrazovať (záložka *Update*) alebo chceme prostredníctvom poľa aj editovať parametre v blokoch (záložka *Action*) (obr. 9).

Obr. 9 : Okno na konfiguráciu poľa

Pre zobrazovanie hodnoty som zvolil záložku *Update*, klikol na ikonu *ADD* a zvolil typ poľa. Vhodný typ poľa pre zobrazovanie hodnoty je *Text Contents*, ktorý povoľuje aktualizáciu hodnôt. Ďalej tomuto poľu musíme zadať adresu, odkiaľ bude brať hodnotu. Adresu som vložil do poľa *Tag* a bude mi zobrazovať hodnotu vo *Foxview*. V poli *Delta (units)* sa určuje s akou presnosťou chcem mať zobrazenú hodnotu. Štandardná hodnota je nastavená na ± 0.5 jednotky. Aby som pomocou poľa mohol upravovať aj parametre bloku (napr. regulátora), potreboval som upraviť aj záložku *Action*. Po kliknutí na ikonu *ADD* v záložke *Action* sa zobrazí okno, v ktorom je potrebné zadefinovať typ vkladanej hodnoty. V mojom prípade chcem meniť číselné hodnoty, tak som z ponuky zvolil *Numeric/Text Entry*. Do poľa *Tag* som napísal adresu, kam sa bude hodnota zadávaná z poľa obrazovky *Foxview* zapisovať, resp. prepisovať.

Týmto spôsobom som si vytvoril polia, ktoré budú zobrazovať teploty v prvom aj druhom výmenníku tepla, teplotu ohrevno-chladiaceho média, teploty vstupujúcich prúdov do výmenníkov tepla, žiadanú teplotu (setpoint) a parametre regulátora. V poliach parametrov regulátora, žiadanú teplotu a teplotu vstupujúcich prúdov do výmenníka tepla som upravil aj záložku *Action*, aby som prostredníctvom týchto polí mohol editovať parametre v blokoch. Schéma výmenníkov tepla je zobrazená na obr. 10.

Obr. 10 : Schéma výmenníkov tepla vo FOXBORE

Z objektov knižnice Foxdraw zobrazujúcich môj proces, som upravil parametre len objektu charakterizujúceho druhý výmenník tepla (ďalej už len výmenník tepla). Na tento výmenník tepla, pole zobrazujúce teplotu z výmenníka tepla a dve textové polia charakterizujúce alarm, som aplikoval alarmy. Chcel som, aby sa po vygenerovaní alarmu menila len výplň výmenníka tepla. Pravým tlačidlom myšky som klikol na výmenník tepla a zvolil položku *Configure Objects*. V ľavej časti okna sa nachádzajú časti, z ktorých je objekt zobrazujúci výmenník tepla poskladaný. Aby sa menila len výplň a nie celý výmenník, tak som označil časti s názvom *polygon*, ktoré charakterizujú výplň. Ak by som tak nespravil, boli by zmeny aplikované na celý výmenník tepla. Následne som zvolil záložku *Update* a ikonu *ADD*. Zo zobrazenej ponuky som vybral *Fill Color* (farba výplne) a potvrdil tlačidlom *OK*. Vzhľadom k tomu, že na jeden objekt sa budú aplikovať dva horné a dva dolné alarmy, bolo potrebné do poľa *Tag* napísať adresu *MARIO_VYM:REGULATOR. PRTYPE*. Ponuku *Number of States* som prepísal na hodnotu 5, pričom farba v 1 riadku je farba výplne v normálnom stave. V riadku 2 a 3 sa vyberá farba pre *High* a *Low absolute alarm* a v riadku 4 a 5 farba pre *High-High* a *Low-Low absolute alarm* (obr. 11).

Obr. 11 : Konfigurácia farby výplne pre alarmy

Aby výplň začala blikať pri spustení *High-High (Low-Low) absolute alarmu*, som postup zopakoval a miesto *Fill Color* som zvolil *Fill Blink*. Adresa v poli *Tag* a *Number of States* sú rovnaké. Nastavením prvých troch riadkov na *No Blink* a riadkov 4 a 5 na *Blink Slow* sa blikanie spustí až pri *High-High (Low-Low) absolute alarme* (obr. 12). Takto nastavený výmenník tepla mi bude blikať a meniť farbu výplne podľa toho, aký alarm nastane, resp. nenastane.

Obr. 12 : Konfigurácia blikania výplne pre alarmy

Rovnakým spôsob som upravil aj pole zobrazujúce hodnotu teploty druhého výmenníka tepla a texty charakterizujúce alarm. Pri prvom alarme sa zmení farba zobrazovanej hodnoty a pri druhom začne hodnota už blikať. Pre text, ktorý sa zobrazí pri aktivovaní alarmu a bude ho charakterizovať, som pridal do záložky *Update* ikonou *ADD* funkciu *Visibility*. Keďže chcem, aby sa mi tento text zobrazoval pre oba horné aj dolné alarmy, postačí ak do poľa *Tag* vložím adresu *MARIO_VYM:REGULATOR.MEASHI(MEASLI)*, kde *MEASHI (MEASLI)* je indikátor *High (Low) absolute alarmu* (obr. 13). Cez *PRTYPE* by som postupoval v prípade, že by som chcel pre každý z alarmov rozdielne vlastnosti textu. Takto nakonfigurovaný text sa mi objaví pri aktivovaní prvého alarmu a bude zobrazený, až pokiaľ sa teplota v druhom výmenníku tepla nevráti mimo alarmové hodnoty. Pre informovanie o aký alarm ide, som si vytvoril dva alarmové texty a to PREHRIEVANIE KVAPALINY pre vysoký alarm a PODCHLADENIE KVAPALINY pre nízky alarm (obr. 14). Pri *High-High a Low-Low absolute alarme* sa aktivuje aj blikanie textu.

System	stem 🗘 🔤 Schema_vym_Mario1.fdf STUCHF - FoxDraw				
Change Env File Edit View	Draw Object Tools Layout Options Help	- ()			
FoxSelect]			
Print Screen	Visibility - Discrete State				
Initial_Disp		7			
Kiln	Teg Tvp1 (°C1 Number of States: 2				
Platform へ Shipping O					
Mill	Copy Paste Edit Visibility	ie <i>iv</i> l z			
Reactor A					
Select Object A Background Text	Genera Update Action Menu Copy Paste Dele Dynamic OK Cancel Help				
Prev Next	1 Text Bink MARIO VYM:REGULATOR.PRTYPE discrete 2 Visibility MARIO_VYM:REGULATOR.MEASH discrete 3 Text Color MARIO_VYM:REGULATOR.HHAIND discrete	a ta			

Obr. 13 : Konfigurácia viditeľnosti alarmového textu

Obr. 14 : Aktivovaný vysoký a nízky alarm v druhom výmenníku tepla

Na sledovanie teplôt vo výmenníkoch tepla v čase, je potrebné vo *Foxdraw* vytvoriť trendové grafy, ktoré mi budú priebeh zobrazovať. Trendové grafy spolu s poľami, ktoré budú zobrazovať dôležité hodnoty s možnosťou ich editovania, som vytvoril v novom okne cez záložku v hlavnej ponuke *File* \rightarrow *New* alebo ikonou pod záložkami. Trendový graf som na obrazovku vložil z knižnice *Object* \rightarrow *Link/Copy from Palette* a zo zoznamu objektov som vybral trendový graf. V prvom grafe sledujem teploty vo výmenníkoch tepla spolu so žiadanou hodnotou a v druhom grafe teplotu ohrevno-chladiaceho média (obr. 15).

File View Config (Disp_Disp_1_Disp_2_SitMnt Help	
System 🗛	Trooss 🛔	✓ 26 May 2008 15:59
Change Env	Teploty vo vymennikoc	ch Akcny zasah
FoxSelect	00:00:20:00 55	00:00:20:00 55
Print Screen		
Initial_Disp	100.00 [°C]	
Compression		
Küln	100 76	107.5
Platform	8	125
Shipping	25	625
Mill		
Reactor	May 26 May 26 May 26 May 26	15:0011 15:0015 15:0015 15:0015 15:0015 15:0016 16:0011 16:0011 16:0011 16:0011 16:0011 16:0011 16:0011 16:0011
Municipal		
Initial_Disp	Vstupy do vymennikov	Sledovane veliciny
Initial_Disp	Tv1= 15.00 [°C]	Tm=250.00 [°C]
Initial Disp	Tv2= 25.00[°C]	T1= 25.46 [°C]
	-	T2= 20.34 [°C] — Parametre
	Parametre regulatora	-
Initial_Disp	P= 1.9671	Ziadana teplota T2
Initial_Disp	I= 8.4000[min]	T2set=100.00 [°C] Legenda v
Initial_Disp		

Obr. 15 : Obrazovka s trendovými grafmi

Po kliknutí na graf pravým tlačítkom myšky a zvolení *Configure Objects* sa zobrazí okno na konfiguráciu grafu s niekoľkými záložkami (obr. 16).

С	onfigure Objects					×
	Select Object	General Trend Area Pens	Grid Timing Se	ecurity		
		Color 1 MARIO_VY 2 MARIO_VY 3 MARIO VY	Tag M:VYMENNIK_T1.R0 M:VYMENNIK_T2.R0 M:REGULATOR.SPT	Type N Numeric - Numeric - Numeric -	Marker Range	High:
	Configure Trend Pen Pen Number: Tog: MARIO_VYM.V Historian: hist09	n Color, Marker Styl YMENNIK_T1.R001			Max. Number	of Pens = 4
2	Description: T1 Data Numeric Boolean Static D RowTim High Scale: 100.00	Control Values	Default Values	Cancel	Apply	Help
2	Low Sealer 0.00 Increment: 25.00 Auto-scale	Eng. Units: ["C]			~	

Obr. 16 : Okno Configure Objects

General	v teito	záložke	ie	možné	priradiť	grafu	meno
Gentertat	,	Denobile	J 🗸 .		princent	D	

Trend Area slúži na určenie rozsahu grafu a zobrazovanej časti grafu

- *Pens* v záložke sa nastavuje farba čiary a adresa k parametrom, ktoré chceme mať zobrazené v grafe
- *Grid* určuje počet, farbu a viditeľnosť súradníc

Timing poskytuje možnosť určenia rýchlosti snímania hodnôt premenných a dĺžku časovej (x-ovej) súradnice v grafe

Na zapisovanie údajov o výmenníkoch tepla, kvapaline, parametroch regulátora a zobrazovanie výpočtov zosilnení Z_j , časových konštánt Tk_i a teplôt vo výmenníkoch tepla T_1 , T_2 spolu s ohrevno-chladiacim médiom Tm som si vytvoril nové okno vo *Foxdraw*. Tieto polia som vytvoril tak, aby vypočítané hodnoty spolu so sledovanými boli len zobrazované a polia, na zadávanie vstupov pre výpočty boli editovateľné (obr. 17).

File View Config	Disp Disp_1 Disp_2 SRMnt Help	
System 🖨	Process 🐥	
Change Env		
FoxSelect	vymennik i	vymennik 2
Print Screen	V1= 5.0000 [m3] F1= 15.000 [m2]	V2= 6.0000 [m3] F2= 17.000 [m2]
Initial_Disp	alfa1= 72.000 [KJ/min.m2.K]	alfa2= 72.000 [KJ/min.m2.K]
Compression	Parametre kvapaliny	Parametre regulatora
Kiln	$q1=0.6000 \ [m3.min-1]$ $q2=0.4000 \ [m3.min-1]$	P=1.9671 Proporcionalna zlozka I=8.4000 [min] Integracna zlozka
Platform	cp= 3.8400 [KJ/Kg.K] hustota= 900.00 [Kg/m3]	
Shipping		Sledovane veliciny
Mill	Vstupy do vymennikov	T1= 58.04 [°C] T2= 72.84 [°C]
Reactor	Tv1= 15.00 [°C] Tv2= 25.00 [°C]	Tm= 0.00[°C]
Municipal		Legenda
Initial_Disp	vypocitane parametre	q - prietok do vymennika
Initial_Disp	Z1= 0.3425 Z2= 0.6575	F - plocha vymennika
Initial_Disp	23=0.4431 24=0.2954	alfa - koeficient prestupu tepla
Initial_Disp	25=0.2015	Z - zosilnenie
Initial_Disp	TK1=5.4795 [min] Tk2=4.4308 [min]	TV - vstupne teploty kvapalin Tm - teplota ohrevneho media T - teplota vo unmenniku
Initial_Disp		i cepioca vo vymennika
Initial_Disp	Trend V	ymenniky

Obr. 17 : Obrazovka na výpočet Z_i a Tk_i

Aby som sa medzi vytvorenými obrazovkami mohol ľubovoľne prepínať, musel som si v každej z týchto obrazoviek vytvoriť tlačidlo (pole), ktoré ma bude medzi obrazovkami prepínať. Z knižnice Foxdraw som si prekopíroval dve farebne odlišné tlačidla na všetky tri obrazovky. Pravým tlačidlom myšky som klikol na obrázok tlačidla a vybral *Configure Objects*, záložku *Action* a ikonu *ADD*. Z ponuky som vybral možnosť *Open Overlay*, ktorá umožní otváranie okna. Do poľa *File* som vložil adresu, kde mám na harddisku uložené okno vytvorené vo *Foxdraw*, ktoré chcem aby sa mi po kliknutí na toto tlačidlo otvorilo. Ďalej som si vybral miesto, kde bude nové okno na obrazovke umiestnené. Ostatné tlačidla som si nakonfiguroval rovnakým spôsobom tak, aby som mohol medzi jednotlivými obrazovkami prechádzať z jednej do druhej.

3. Foxselect

Riadenie výmenníkov tepla sa môže začať potom, ako sa zapne compound predstavujúci výmenníky tepla. Každý vytvorený compound je potrebné pred použitím v príslušnej stanici zapnúť. Zapínanie a vypínanie compoundov sa realizuje cez záložku hlavnej ponuky *File* \rightarrow *Foxselect* alebo ikonou *Foxselect* na ľavej strane obrazovky *Foxview*. Okno *Foxselect* obsahuje dve záložky. Prvá záložka *Station View* zobrazuje na ľavom panely stavy staníc a compoundov, zobrazených na obr. 18. Druhá záložka *Block View* predstavuje zoznam blokov vo vnútri všetkých pripojených staníc.

4. AIM Archive Toolbox (AIM AT)

Aim AT je zložka so súborom programov umožňujúcich archiváciu údajov v závislosti od času. Poskytuje export archivovaných údajov vo formáte TXT, ktoré sa dajú ďalej spracovávať v ľubovoľnom programe ako je EXCEL, MATLAB a pod. Všetky tieto programy sa spúšťajú cez ponuku štart na windows lište *Štart* \rightarrow *Programy* \rightarrow *Aim AT*.

Obr. 19 : Aim AT zložka so súbormi

Pre compound je potrebné najprv vytvoriť archív, do ktorého sa budú údaje zapisovať. Archív sa vytvorí pomocou *Historian Configurátor* nachádzajúceho sa v Aim AT zložke (obr.19).

4.1. Historian Configurator

Po spustení *Historian Configurator* sa otvorí sprievodca vytvorením archívu. Vybral som si server, ktorý má archivovať údaje a potvrdil tlačidlom *Next*. Následne som zvolil možnosť *New*, čím sa mi umožnilo vytvorenie nového archívu. Archív som pomenoval *hist09*. Po vytvorení archívu som si nastavil periódu vzorkovania na hodnotu 1sekunda. Tlačidlom *ADD* a následne tlačidlom *Next* som vybral server, compound a blok, ktorého parametre budem archivovať. Po potvrdení tlačidlom *Next* sa zobrazilo okno so zoznamom výstupov jednotlivých blokov. V mojej práci je dôležité sledovať teploty v obidvoch výmenníkoch tepla a teploty ohrevno-chladiaceho média. Preto som zo zoznamu výstupov označil dva CALCA bloky (VYMENNIK_T1, VYMENNIK_T2) a PIDA blok (REGULATOR). Z jednotlivých blokov som už len vybral parametre, ktoré chcem zaznamenávať.

Tlačidlom *Next* program zistí, či sa parameter v bloku nachádza a tlačidlom *Begin* začne hľadanie zvolených parametrov. Ak sa zvolené parametre v bloku nachádzajú, zobrazí sa okno, v ktorom budú zobrazené. Vytvorenie archívu som dokončil tlačidlom *Finish*.

Po vytvorení archívu som potreboval niektorým parametrom nastaviť krok zapisovania údajov do archívu. Napríklad výstup z regulátora sa mi zapisoval každé 1% z maximálnej hodnoty výstupu regulátora. Po vytvorení archívu mi ostalo otvorené okno (obr. 20), v ktorom som sa cez položky *STUCHF* \rightarrow *hist09* \rightarrow *RTP cfg* v ľavej časti obrazovky dostal k parametrom ukladajúcim v archíve. Zo zoznamu zobrazených parametrov som si upravil *Delta* na hodnotu 0, čím sa zápis údajov stane najpresnejší.

Histofg - AlM*Historian (STUCHF\histo	VRTP Cfg)							
File Edit View Window Help								
Add Delete Ok Cance	Modify Undel	ete						
- STUCHF	Name	Descriptor	NameInCollector	Collector	Delta	High Bange	Low Bange	EngUni 🔺
- 283 hist01	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.ACHNGE	hist09	1.00000000 🛫	32767.0000000(🛟	-32768.0000000 🛫	
Ell histo6 284	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.ALMSTA	hist09	1.00000000 🔶	4294967296.00(+	0.00000000 📫	
285	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.BCALCO	hist09	1.00000000	100.00000000 🛟	0.00000000	
IN Instance Cfg 286	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.BLKSTA	hist09	1.00000000 🔶	4294967296.00(🛟	0.00000000 🔶	
E RTP Cfg 287	MARIO_VYM:REGL		MARIO_VYM:REGULATOR.CRIT	hist09	1.00000000	32767.00000000	-32768.0000000	
298 Collection Control	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.ERROR	hist09	0.00000000 🕂	100.00000000 🔶	0.00000000 ÷	
S Control Group Cfg 289	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.FLBREQ	hist09	0.00000000 🔅	100.00000000 🔶	0.00000000 🔶	
S Reduction Group Cfg 290	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.HDAIND	hist09	0.00000000 🔶	1.00000000 🔶	0.00000000 ≑	
291	MABIO_VYM:REGU		MARIO_VYM:REGULATOR.HHAIND	hist09	0.00000000 🔶	1.00000000 🔶	0.00000000 🔶	
292	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.HOAIND	hist09	0.00000000 🔶	1.00000000 ÷	0.00000000 ≑	
293	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.HOLIND	hist09	0.00000000 🔶	1.00000000 🔶	0.00000000 🔶	
294	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.INHSTA	hist09	1.00000000 🔶	4294967296.00(📫	0.00000000 ÷	
295	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.INITO	hist09	1.00000000 🔶	32767.00000000 📫	-32768.0000000 📫	
296	MABIO_VYM:REGU		MARIO_VYM:REGULATOR.LDAIND	hist09	0.00000000	1.00000000 📫	0.00000000	
297	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.LLAIND	hist09	0.00000000 🔶	1.00000000 🔶	0.00000000 📫	
298	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.LOAIND	hist09	0.00000000 ≑	1.00000000 ÷	0.00000000 ≑	
299	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.LOLIND	hist09	0.00000000 🕂	1.00000000	0.00000000	
300	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.MEASHI	hist09	0.00000000 🔶	1.00000000 🛟	0.00000000	
301	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.MEASLI	hist09	0.00000000 🔶	1.00000000 📫	0.00000000 🐥	
302	MABIO_VYM:REGU		MARIO_VYM:REGULATOR.OUT	hist09	0.00000000	200.00000000	0.00000000	
303	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.PRTYPE	hist09	1.00000000 🗘	32767.0000000(拿	-32768.0000000 👙	
304	MARIO_VYM:REGU		MARIO_VYM:REGULATOR.SUPBCO	hist09	1.0000000	100.00000000 🔶	0.00000000	

Obr. 20 : Okno histcfg

4.2. Historian Manager

Vytvorený archív sa musí aktivovať pomocou programu *Historian Manager*. Program sa spúšťa cez ponuku *Štart* \rightarrow *Programy* \rightarrow *Aim AT* \rightarrow *Historian Manager* (obr. 19). Na ľavej časti okna sa nachádza zoznam archívov a na pravej strane záložky a ich možnosti. V záložke *Instance* sa nastaví spúšťanie archivácie pri štarte a to kliknutím na položku *Start on Reboot*.

4.3. AIM Historian Data Dispaly

Na konci merania si môžeme pozrieť údaje zapísane v našom archíve cez program AIM Historian Data Display. Program sa spúšťa cez Štart \rightarrow Programy \rightarrow Aim AT \rightarrow Historian Data Display (obr. 19) alebo ikonou v programe Historian Manager. Na zobrazenie sledovaných parametrov si musím vybrať mnou vytvorený archív *hist09* z ponuky *Historian*. Po vybratí archívu sa mi zobrazí zoznam parametrov, ktoré som si zvolili na archiváciu. Parameter, ktorý chcem zobraziť označím a stlačím tlačidlo *Tag*. V skrolovacích poliach v pravom hornom rohu okna *Start Date, Start Hour* a *Start Minute* si nastavím dátum a čas, kedy som meranie ukončil. V poliach *Time Span* si volím časové rozpätie zobrazujúcich údajov a *Time Interval* v akom časovom intervale majú byť jednotlivé hodnoty parametra zobrazené. Exportovanie dát v závislosti od času do formátu TXT sa uskutoční tlačidlom *View Data* v pravom dolnom rohu okna (obr. 21).

🔲 AIM"Historian Data Display - histddef		
Select Configuration Current Config : Default	Select Date / Time Current Date/Time	
Open Save Delete	Start Date Start Hour Start Minu 05/20/2008 13 30	ite
RTP Selection Server : STUCHF V Historian : hist09 V hist01 hist06	Time Span Time Interval Data Typ	•
Select Desired Tag hist08 MARIO VYM:REGULATOR.HHAIND	Assign Assigned RTPs Historian	n Clear
MARIO_VYM:REGULATOR.HOAIND MARIO_VYM:REGULATOR.HOLIND MARIO_VYM:REGULATOR.INHSTA	TAG 2	2
MARIU_VYM:REGULATOR.LOAIND MARIU_VYM:REGULATOR.LOAIND MARIU_VYM:REGULATOR.LOAIND	TAG 3	3
MARIO_VYM:REGULATOR.LOAIND MARIO_VYM:REGULATOR.LOLIND MARIO_VM:REGULATOR.MEASHI MARIO_VMAREGULATOR MEASHI	TAG 4	4
MARIO VYM.REGULATOR.OUT	TAG 5	- <u>5</u> - 6
MARIO_VTM.REGULATOR.SUP_IN MARIO_VYM.REGULATOR.SUP_IN MARIO_VYM.REGULATOR.UNACK MARIO_VMM.REGULATOR.JNAKE	TAG 7	7
MARIO_VYM:VYMENNIK_T2L00PID MARIO_VYM:VYMENNIK_T2L00PID MARIO_VYM:VYMENNIK_T2.RI01	TAG 8	8
Selected Tag: MARIO_VYM:REGULATOR.OUT Description :	Quit View Trend View Dat	à

Obr. 21 : AIM Historian Data Display

5. Návrh regulátora

Samotnému návrhu a zapojeniu regulátora do sústavy výmenníkov tepla predchádzalo overenie simulačnej schémy v tvare prenosov (obr. 22) so simulačnou schémou naprogramovanou ako S – funkcia v MATLABe (obr. 23). Overením týchto simulačných schém v MATLABe som sa presvedčil, že vytvorené schémy sú správne. Simulačnú schému v tvare prenosov som následne použil na overenie výmenníkov tepla vytvorených v prostredí ICC (obr. 6). Po zhodnom prekrytí grafických priebehov teplôt v závislosti od času z prvého a druhého výmenníka tepla som sa presvedčil, že schéma naprogramovaná v ICC je správna. Z výmenníkov tepla v ICC som si vytvoril kópiu a zapojil regulátor (obr. 7). Pre zapojený regulátor som si vypočítal parametre regulátora piatimi metódami a na základe kritérií, ktoré som si zvolil, vybral najvhodnejšie parametre regulátora.

5.1. Overenie simulačnej schémy

Vypočítané parametre časových konštánt Tk_i , zosilnení Z_j a vstupné ustálene teploty som vložil do simulačnej schémy v tvare prenosov vytvorenej v MATLABe podľa obr. 22. Schéma bola zložená z piatich čiastkových prenosov.

Obr. 22 : Simulačná schéma v tvare čiastkových prenosov

Simulačnú schému v tvare prenosov (obr. 22) som si overoval pomocou S - funkcie naprogramovanej v MATLABe ako skript. S - funkcia pracuje taktiež pomocou časových konštánt Tk_i , zosilnení Z_j a vstupných ustálených teplôt, len proces je sprostredkovaný v jednom simulačnom okne. Do S - funkcie zadávame len vstupné teploty Tv_1 , Tv_2 a Tm, ktoré vstupujú vo vektorovom tvare a na výstupe zobrazuje výstupné teploty T_1 a T_2 , ktoré vystupujú taktiež vo vektorovom tvare (obr. 23).

Obr. 23 : Simulačná schéma v tvare S - funkcie

Skok akčnej veličiny som si zvolil z ustáleného stavu 373 K na 393 K. Ak sa mi teploty grafických priebehov prekryli a tým ukázalo len jednu čiaru teploty pre každý výmenník tepla, tak simulačné schémy sú správne. Porovnanie grafických priebehov teplôt od času som zobrazil na obr. 24 a z nich sa presvedčil, že simulačné schémy sú správne vytvorené. Počiatočné teploty začínajú z ustálených stavov 317.1096 K v prvom a 326.0824 K v druhom výmenníku tepla. Časová (x-ová) os zobrazuje čas v minútach a teplotná (y-ová) os teplotu v Kelvinoch.

Obr. 24 : Grafické porovnanie simulačných schém v tvare prenosov a S - funkcie

Ďalším krokom bolo overenie výmenníkov tepla vytvorených v prostredí ICC (obr. 6) so simulačnou schémou v tvare čiastkových prenosov (obr. 22). Skokovú zmenu akčnej veličiny som zadal z 373 K na 393 K. Dáta z FOXBORO som si dal exportovať do formátu TXT a graficky porovnal s dátami z MATLABu. Výsledný grafický priebeh teplôt je zobrazený na obr. 25 v °C.

Obr. 25 : Grafický priebeh v MATLABe a vo FOXBORO

Po overení, že výmenníky tepla v ICC pracujú správne, som si vytvoril kópiu tejto schémy a pridal do nej PI regulátor (obr. 7).

5.2. Vloženie PI regulátora do schémy v MATLABe

Pri vytváraní regulátora v MATLABe som vychádzal z rovnakej rovnice, s akou pracuje PIDA blok v režime PI regulátora. Na základe rovnice (27), kde *b* je rovné nule a parameter f_r porovnaním rovníc (27), (29) a (30) vypadol, som vytvoril PI regulátor a zapojil do simulačnej schémy zostavenej z čiastkových prenosov v MATLABe. Schému som upravil tak, aby zobrazovala teploty v °C. Vytvorená schéma je zobrazená na obr. 26.

Obr. 26 : Simulačná schéma s PI regulátorom v MATLABe

Grafické priebehy teplôt vygenerované v MATLABe a vo FOXBORE pri zapojenom regulátore, sa mi pri porovnávaní nemohli zhodovať. Je to spôsobené tým, že regulátor v MATLABe integruje na inom princípe ako regulátor vo FOXBORE. Simulačná schéma s PI regulátorom v MATLABe (obr. 26) mi slúžila na zisťovanie, či regulátor bude pri vypočítaných parametroch stabilný alebo nie. Ak bol regulátor stabilný, tak parametre regulátora som mohol použiť na stabilné riadenie procesu vo FOXBORE. Z charakteristickej rovnice PI regulátora pre MATLAB a pre FOXBORO som zistil vzťah medzi proporcionálnou zložkou Z_R v MATLABe a *P* vo FOXBORE a integračnou časovou konštantou T_I v MATLABe a *I* vo FOXBORE.

$$\frac{100}{P}\left(1+\frac{1}{Is}\right) = Z_R\left(1+\frac{1}{T_Is}\right) \tag{29}$$

$$\frac{100}{P} = Z_R \tag{30}$$

$$I = T_I \tag{31}$$

5.3. Výpočet parametrov regulátora

Na vypočítanie parametrov regulátora musíme vytvoriť uzavretý regulačný obvod (URO) (obr. 27). Ten pozostáva z regulátora G_R a prenosu medzi vstupným ohrevno-chladiacim médiom a výstupnou teplotou z druhého výmenníka tepla, ktorý som si označil ako G_P . Výpočet prenosu G_P vychádzal zo schémy obr. 22, kde prenosy G_2 a G_5 som si položil rovné nule, pretože potrebujem prenos medzi Tm a T_2 .

Obr. 27 : Schéma uzavretého regulačného obvodu

$$G_P(s) = G1(s).G4(s) + G3(s) = \frac{0.05903s + 0.01702}{s^2 + 0.4082s + 0.04119}$$
(32)

Výsledný prenos je prenos 2. rádu, z ktorého sa mi nedali vypočítať parametre regulátora, pretože mi vychádzalo viac rovníc ako neznámych. Preto som si prenos musel previesť na prenos 1. rádu [5]. S prenosom G_P som si spravil prechodovú charakteristiku (PCH) pri skokovej zmene z hodnoty 0 na hodnotu 1. Pomocou PCH som si vypočítal zosilnenie Z a pomocou vytvoreného skriptu našiel bod, kde PCH dosiahne 63% z konečnej hodnoty PCH. Tomuto bodu na x-ovej osi

zodpovedá časová konštanta *Tk* v minútach (obr. 28). Zelená čiara predstavuje skokovú zmenu a modrá čiara PCH.

$$Z = \frac{y(\infty) - y(0)}{u(\infty) - u(0)} = 0,4131$$
(33)

$$Tk = 7 \min$$
(34)

Obr. 28 : Určenie Z a Tk z PCH

$$G_{P}(s) = \frac{Z}{(Tks+1)^{n}} e^{-Ds} = \frac{0.4131}{(7s+1)^{1}} e^{-0s} = \frac{0.4131}{(7s+1)}$$
(35)

kde

$$n(r\acute{a}d) = 1 \tag{36}$$

$$D(dopravné oneskorenie) = 0 \tag{37}$$

Výsledný prenos 1. rádu bolo potrebné ešte porovnať na jednotkovú skokovú zmenu s pôvodným prenosom 2. rádu (obr. 29). Žltá čiara predstavuje prenos 2. rádu a ružová čiara porovnávaný prenos 1. rádu. PCH sa líšia len s minimálnou odchýlkou, takže prenos 2. rádu môžem nahradiť prenosom 1. rádu. Ďalej som už počítal a pracoval len s prenosom 1. rádu G_p .

Obr. 29 : Porovnanie prenosu 1. a 2. rádu

Na výpočet parametrov regulátora som použil 5 metód výpočtov. Prvá metóda umiestnenia pólov vychádza z charakteristickej rovnice uzavretého regulačného obvodu (CHR URO). Ďalšie metódy vychádzajú z PCH a sú to Ziegler-Nicholsova metóda, Cohen-Coonova metóda, Haalmanova metóda a Chien-Hrones-Reswickova metóda.

5.3.1. Metóda umiestnenia pólov

Na výpočet parametrov regulátora je potrebné si odvodiť CHR URO. Vychádza sa zo schémy URO (obr. 27),

$$G_R(s) = \frac{100}{P} \left(\left(\frac{1}{Is} + A \right) r - \left(\frac{1}{Is} + 1 \right) c_f \right)$$
(38)

kde r je žiadaná hodnota (setpoint) W a c_f je výstupná veličina Y. Potom môžeme napísať

$$G_R(s) = \frac{100}{P} \left(\left(\frac{1}{Is} + A \right) W - \left(\frac{1}{Is} + 1 \right) Y \right)$$
(39)

Rovnica URO má potom tvar

$$\frac{100}{P} \left(\left(\frac{1}{Is} + A \right) W - \left(\frac{1}{Is} + 1 \right) Y \right) \frac{0.4131}{7s+1} = Y$$
(40)

a postupnou úpravou získame podiel výstupnej veličiny Y vstupnou veličinou W, ktorý predstavuje prenos G_{URO} URO.

$$G_{URO}(s) = \frac{Y(s)}{W(s)} = \frac{\frac{0,4131}{7s+1}\frac{100}{P}\left(\frac{1}{Is} + A\right)}{1 + \frac{0,4131}{7s+1}\frac{100}{P}\left(\frac{1}{Is} + 1\right)}$$
(41)

Menovateľ rovnice (41) predstavuje CHR URO, z ktorej sa budú ďalej počítať parametre regulátora metódou umiestnenia pólov. Úpravou CHR URO na spoločného menovateľa som získal

$$7s + s\left(1 + 0,4131\frac{100}{P}\right) + 0,4131\frac{100}{P}\frac{1}{I} = (s + s_1)^2$$
(42)

Z menovateľa rovnice (35) som si vyjadril pól riadeného procesu

$$s = -\frac{1}{7} \tag{43}$$

a od tejto hodnoty som si volil pól na ľavú stranu od imaginárnej osi ako je pól riadeného procesu. Čím ďalej si pól zvolím, tým bude URO rýchlejší než riadený proces. Avšak, ak zvolím príliš vysokú hodnotu, tak parametre regulátora nedokážu uregulovať riadený proces [1]. Pól som si zvolil $s_1 = -10$ a z rovnice (42) som vypočítal parametre regulátora. Proporcionálna zložka P = 2,1742a integračná časová konštanta I = 0,1900 min . Hodnoty parametrov regulátora sú zapísané v tab. 2 pre MATLAB a v tab. 3 pre FOXBORO.

5.3.2. Ziegler-Nicholsova metóda

Aby sa dali vypočítať parametre regulátora z PCH, bolo potrebné zaviesť dopravné oneskorenie (obr. 30), čím sa zadáva čas prieťahu Tu. Aby sa mi nová PCH líšila od pôvodnej čo najmenej (obr. 31), tak som zvolil dopravné oneskorenie 0,1 minúty (čas prieťahu Tu) a v závislosti od neho prepísal aj časovú konštantu Tk na hodnotu 6,9 minúty (čas nábehu Tn).

Obr. 30 : Schéma zapojenia G_P s dopravným oneskorením a bez dopravného oneskorenia

Obr. 31 : PCH identifikácie G_P s dopravným oneskorením a bez dopravného oneskorenia

Výpočtom sa určia parametre PI regulátora v tvare :

$$G_R(s) = Z_R\left(1 + \frac{1}{T_I s}\right) \tag{44}$$

kde Z_R je proporcionálna zložka a T_I je integračná zložka regulátora.

Sú určené konštanty : zosilnenie Z, doba prieťahu Tu a doba nábehu Tn [6]

$$Z = 0,4131$$
 (45)

$$Tu = 0,1 \min \tag{46}$$

$$Tn = 6.9 \min \tag{47}$$

$$Z_R = \frac{0.9}{Z} \frac{Tn}{Tu} = 150,3268 \tag{48}$$

$$T_{I} = 3,33Tu = 0,3330 \text{ min}$$
⁽⁴⁹⁾

Hodnoty parametrov regulátora sú zapísané v tab. 2 pre MATLAB a v tab. 3 pre FOXBORO.

5.3.3. Cohen-Coonova metóda

Sú určené konštanty : zosilnenie Z, doba prieťahu Tu a doba nábehu Tn podľa rovníc (45), (46) a (47) [6].

$$Z_{R} = \frac{1}{Z} \frac{Tn}{Tu} \left(0.9 + \frac{1}{12} \frac{Tu}{Tn} \right) = 150,5285$$
(50)

40

$$T_{I} = Tu \left(\frac{30 + 3\frac{Tu}{Tn}}{9 + 20\frac{Tu}{Tn}} \right) = 0,3234 \text{ min}$$
(51)

Hodnoty parametrov regulátora sú zapísané v tab. 2 pre MATLAB a v tab. 3 pre FOXBORO.

5.3.4. Haalmanova metóda

Sú určené konštanty : zosilnenie Z, doba prieťahu Tu a doba nábehu Tn podľa rovníc (45), (46) a (47) [6].

Identifikovaný prenos je v tvare : $\frac{Z}{Ts+1}e^{-Ds}$, kde D=Tu a T=Tn.

$$Z_R = \frac{2T}{3D} = 46\tag{52}$$

$$T_I = T = 6,9 \min$$
 (53)

Hodnoty parametrov regulátora sú zapísané v tab. 2 pre MATLAB a v tab. 3 pre FOXBORO.

5.3.5. Chein-Hrones-Reswickova metóda

Sú určené konštantý : zosilnenie Z, doba prieťahu Tu a doba nábehu Tn podľa rovníc (45), (46) a (47).

Identifikovaný prenos je v tvare : $\frac{Z}{Ts+1}e^{-Ds}$, kde D=Tu a T=Tn.

$$Z_{R} = 0.3 \frac{T}{ZD} = 50,1089 \tag{54}$$

$$T_1 = 1,2T = 13,8 \min$$
 (55)

Hodnoty parametrov regulátora sú zapísané v tab. 2 pre MATLAB a v tab. 3 pre FOXBORO.

5.4. Posúdenie kvality riadenia

Kvalita riadenia regulátora s parametrami vypočítanými jednotlivými metódami bola posúdená pomocou maximálneho preregulovania δ_{max} , času maximálneho preregulovania t_{δ} a času regulácie t_{reg} .

Pri definícii kvality riadenia v časovej oblasti je vhodné si vybrať nejaký štandardný priebeh vstupnej veličiny do riadeného systému a vyhodnotiť priebeh výstupnej veličiny. Kvalita regulácie v časovej oblasti bola vyhodnotená na základe času regulácie. Čas regulácie t_{reg} je daný ako čas, po ktorom regulačná odchýlka nebude väčšia ako stanovená hodnota. Obvykle sa hodnota maximálnej regulačnej odchýlky udáva v percentách a vyjadruje šírku pásma so stredom v novej ustálenej hodnote výstupu, v ktorom sa po dosiahnutí t_{reg} bude výstup vždy nachádzať. Štandardne je to 1% - 5%. Úlohou regulácie je dosiahnuť čím menšiu hodnotu t_{reg} [4]. Pre výpočet doby regulácie som si zvolil hodnotu δ okolie ± 1% žiadanej veličiny. Čas maximálneho preregulovania t_{δ} je čas, v ktorom nastane maximálne preregulovanie.

Vyhodnotenia som uskutočňoval na základe troch skokových zmien teplôt a to z 53,0840°C na 70°C, 70°C na 30°C a z 30°C na 53,0840°C. Vypočítané parametre regulátora pre MATLAB sú zobrazené v tab. 2 a parametre regulátora pre FOXBORO v tab. 3. V tab. 4, 5 a 6 sú zaznamenané výsledky vyhodnotenia na základe zvolených kritérií.

Metóda Parametre	Umiestnenie pólov	Ziegler- Nicholsova	Cohen- Coonova	Haalmanova	Chien-Hrones- Reswickova
Z_R	45,9939	150,3268	150,5285	46,000	50,1089
$T_I[min]$	0,1900	0,3330	0,3234	6,9000	8,2800

Tab. 2 : Vypočítané parametre regulátora pre MATLAB

Tab. 3 : Vypočítané parametre regulátora pre FOXBORO

Metóda Parametre	Umiestnenie pólov	Ziegler- Nicholsova	Cohen- Coonova	Haalmanova	Chien-Hrones- Reswickova
Р	2,1742	0,6652	0,6643	2,1739	1,9957
I [min]	0,1900	0,3330	0,3234	6,9000	8,2800

Tab. 4 : Vyhodnotenie riadenia výmenníkov tepla pri skoku z 53,0840°C na 70°C

Metóda návrhu	$\delta_{max} [^{o}C]$	t_{δ} [min]	t _{reg} [min]
Umiestnenie pólov	70,6170	2,4166	2,1134
Ziegler-Nicholsova	70,2500	2,3332	2,1050
Cohen-Coonova	70,2530	2,3332	2,1134
Haalmanova	70,0250	2,8332	2,2099
Chien-Hrones- Reswickova	69,9780	2,9166	2,2279

Metóda návrhu	$\delta_{max} [^{\circ}C]$	t _δ [min]	t _{reg} [min]
Umiestnenie pólov	29,7340	7,8333	7,5555
Ziegler-Nicholsova	29,8860	7,7479	7,5554
Cohen-Coonova	29,8870	7,7479	7,5723
Haalmanova	29,9910	7,7978	7,5694
Chien-Hrones- Reswickova	30,0280	20,000	7,5808

Tab. 5 : Vyhodnotenie riadenia výmenníkov tepla pri skoku zo 70°C na 30°C

Tab. 6 : Vyhodnotenie riadenia výmenníkov tepla pri skoku z 30°C na 53,0840°C

Metóda návrhu	$\delta_{max} [^{\circ}C]$	t_{δ} [min]	t _{reg} [min]
Umiestnenie pólov	53,9200	2,4166	2,5645
Ziegler-Nicholsova	53,4320	2,2499	2,1291
Cohen-Coonova	53,4280	2,3332	2,1538
Haalmanova	53,1180	2,8332	2,1676
Chien-Hrones- Reswickova	53,0550	2,8332	2,1883

Na základe zvolených kritérií a následným porovnaním hodnôt z tab. 4, 5 a 6 som zistil, že regulátor pracoval najrýchlejšie pri parametroch vypočítaných Ziegler-Nicholsovou metódou.

Grafické priebehy teplôt na výstupe z druhého výmenníka tepla, ohrevno-chladiaceho média a regulačnej odchýlky medzi žiadanou hodnotou a teplotou na výstupe z druhého výmenníka tepla v závislosti od času pri troch skokových zmenách teplôt z 53,0840°C na 70°C, 70°C na 30°C a z 30°C na 53,0840°C sú zobrazené na obr. (32) až (40).

Obr. 32 : Priebeh riadenia teploty T2 vo FOXBORE z 53,0840°C na 70°C

Obr. 33 : Teplota ohrevno-chladiaceho média vo FOXBORE pri riadení T2 z 53,0840°C na 70°C

Obr. 34 : Priebeh regulačnej odchýlky vo FOXBORE z 53,0840°C na 70°C

Obr. 35 : Priebeh riadenia teploty T2 vo FOXBORE zo 70°C na 30°C

Obr. 36 : Teplota ohrevno-chladiaceho média vo FOXBORE pri riadení T2 zo 70°C na 30°C

Obr. 37 : Priebeh regulačnej odchýlky vo FOXBORE zo 70°C na 30°C

Obr. 38 : Priebeh riadenia teploty T2 vo FOXBORE z 30°C na 53,0840°C

Obr. 39 : Teplota ohrevno-chladiaceho média vo FOXBORE pri riadení T2 z 30°C na 53,0840°C

Obr. 40 : Priebeh regulačnej odchýlky vo FOXBORE z 53,0840°C na 70°C

6. Záver

Cieľom semestrálneho projektu bolo vytvorenie simulácie riadenia sústavy dvoch výmenníkov tepla pomocou systému I/A Series FOXBORO. V prostredí integrovaného riadiaceho konfigurátora som vytvoril compound, v ktorom som následne vytvoril 5 AIN blokov, 4 CALCA bloky a jeden PIDA blok. Bloky som navzájom prepojil a nastavil ako je zobrazené v prílohách. Takto nastavené bloky predstavovali výmenníky tepla riadené PI regulátorom. AIN bloky predstavovali čiastkové prenosy podľa rovníc (24) až (28). CALCA bloky slúžili na matematické operácie, v ktorých sa počítali zosilnenia Z_j , časové konštanty Tk_i , prepočítavali °C na K a naopak a sčítavali signály z AIN blokov. PIDA blok predstavoval v sústave PI regulátor, ktorý na základe výstupnej teploty z druhého výmenníka tepla a žiadanej teploty v druhom výmenníku tepla reguloval teplotu ohrevno-chladiaceho média vstupujúceho do plášťov výmenníkov tepla. V tomto bloku som vytvoril aj alarmy, informujúce užívateľov o kritickej teplote v druhom výmenníku tepla.

V prostredí *Foxview* som vytvoril 3 užívateľské obrazovky. Prvá obrazovka zobrazovala sústavu dvoch výmenníkov tepla (obr. 10), druhá obrazovka zobrazovala trendové grafy (obr. 15) a tretia obrazovka slúžila na zadávanie hodnôt parametrov charakterizujúcich kvapalinu, výmenníky tepla a zobrazovanie výpočtov zosilnení Z_j a časových konštánt Tk_i (obr. 17). Medzi užívateľskými obrazovkami sa dalo prepínať a v každej obrazovke som vytvoril alarmy v textovej forme a zmene farby poľa zobrazujúceho teplotu na výstupe z druhého výmenníka tepla.

V AIM Archive Toolbox som vytvoril archív *hist09*, v ktorom sa archivovali údaje z vybraných blokov môjho compoundu.

S pomocou FOXBORO I/A Series System som simuloval riadenie sústavy dvoch výmenníkov tepla s parametrami regulátora vypočítanými metódou umiestnenia pólov, Ziegler-Nicholsovou metódou, Cohen-Coonovou metódou, Haalmanovou metódou a Chien-Hrones-Reswickovou metódou. Kvalitu regulácie som posúdil pomocou maximálneho preregulovania δ_{max} , času maximálneho preregulovania t_{δ} a času regulácie t_{reg} . Na základe týchto kritérií som usúdil, že najvhodnejšie parametre regulátora boli vypočítané Ziegler-Nicholsovou metódou.

Literatúra

- M. Bakošová, M. Fikár a Ľ. Čirka: Laboratórne cvičenia zo základov automatizácie, STU Bratislava, 2003
- [2] I/A Series Electronic Documentation V7.0, Integrated Control Configurator a Foxdraw, Invensys System, Inc., 2002
- [3] Tomáš Madzin, diplomová práca: Návrh riadenia pomocou riadiaceho systému FOXBORO, Bratislava 2007
- [4] M. Fikar a J. Mikleš: Modelovanie, identifikácia a riadenie procesov II, STU Bratislava, 2004
- [5] Miroslav Fikar, Ján Mikleš: Identifikácia systému, STU Bratislava, 2003
- [6] Aström, K. J., Hägglund, T.:PID Controllers: Theory, Design and Tuning, Instrument Society of America, Triangle Park, 1994
- [7] M. Bakošová, M. Fikar: Matematické modely chemickotechnologických systémov, prednáška, FCHPT STU v Bratislave, LS 2006/2007

Prílohy

Príloha 1.

AIN blok TV1T1

Parameter	Hodnota	Popis
IOMOPT	2	špecifikuje spojenie
MEAS	MARIO_VYM:VYMENNIK_T1.R003	hodnota používaná ako vstup
FLOP	1	typ filtrovania
FTIM	MARIO_VYM:KONSTANTY1.RO01	časová konštanta
KSCALE	MARIO_VYM:KONSTANTY1.RO03	zosilnenie
PNT	0.0	výstup z bloku

AIN blok TV2T2

Parameter	Hodnota	Popis
IOMOPT	2	špecifikuje spojenie
MEAS	MARIO_VYM:VYMENNIK_T2.RO02	hodnota používaná ako vstup
FLOP	1	typ filtrovania
FTIM	MARIO_VYM:KONSTANTY2.RO01	časová konštanta
KSCALE	MARIO_VYM:KONSTANTY2.R003	zosilnenie
PNT	0.0	výstup z bloku

AIN blok TMT1

Parameter	Hodnota	Popis
IOMOPT	2	špecifikuje spojenie
MEAS	MARIO_VYM:VYMENNIK_T1.RO02	hodnota používaná ako vstup
FLOP	1	typ filtrovania
FTIM	MARIO_VYM:KONSTANTY1.RO01	časová konštanta
KSCALE	MARIO_VYM:KONSTANTY1.RO02	zosilnenie
PNT	0.0	výstup z bloku

AIN blok TMT2

Parameter	Hodnota	Popis
IOMOPT	2	špecifikuje spojenie
MEAS	MARIO_VYM:VYMENNIK_T1.RO02	hodnota používaná ako vstup
FLOP	1	typ filtrovania
FTIM	MARIO_VYM:KONSTANTY2.RO01	časová konštanta
KSCALE	MARIO_VYM:KONSTANTY2.RO04	zosilnenie
PNT	0.0	výstup z bloku

AIN blok T1T2

Parameter	Hodnota	Popis
IOMOPT	2	špecifikuje spojenie
MEAS	MARIO_VYM:VYMENNIK_T1.RO04	hodnota používaná ako vstup
FLOP	1	typ filtrovania
FTIM	MARIO_VYM:KONSTANTY2.RO01	časová konštanta
KSCALE	MARIO_VYM:KONSTANTY2.RO02	zosilnenie
PNT	0.0	výstup z bloku

Príloha 2.

CALCA blok KONSTANTY1

Parameter	Hodnota	Popis
RI01	0.0	objemový prietok q_1
RI02	0.0	objem kvapaliny V_I
RI03	0.0	teplovýmenná plocha F_1
RI04	0.0	koeficient prechodu tepla α_1
RI05	0.0	hustota ρ
RI06	0.0	hmot. tepelná kapacita c_P
STEP01	MUL RI05 RI06	$\rho.c_P$
STEP02	OUT M01	uloženie do dočasnej pamäte
STEP03	MUL RI03 RI04	$F_{I}.\alpha_{I}$
STEP04	OUT M02	uloženie do dočasnej pamäte
STEP05	MUL RI02 M01	$V_{I}. ho.c_{P}$
STEP06	OUT M03	uloženie do dočasnej pamäte
STEP07	MUL RI01 M01	$q_1.\rho.c_P$
STEP08	OUT M04	uloženie do dočasnej pamäte
STEP09	ADD M04 M02	$q_1.\rho.c_P + F_1.\alpha_1$
STEP10	OUT M05	uloženie do dočasnej pamäte
STEP11	DIV M03 M05	$V_1.\rho.c_P / q_1.\rho.c_P + F_1.\alpha_1$
STEP12	OUT RO01	uloženie do pamäte
STEP13	DIV M02 M05	$F_{1}.\alpha_{1}/q_{1}.\rho.c_{P}+F_{1}.\alpha_{1}$
STEP14	OUT RO02	uloženie do pamäte
STEP15	DIV M04 M05	$q_{1}.\rho.c_{P}/q_{1}.\rho.c_{P}+F_{1}.\alpha_{1}$
STEP16	OUT RO03	uloženie do pamäte
M01-M24	0.0	dočasná pamäť
RO01	0.0	časová konštanta <i>Tk</i> ₁
RO02	0.0	zosilnenie Z_l
RO03	0.0	zosilnenie Z_2

CALCA blok KONSTANTY2

Parameter	Hodnota	Popis
RI01	0.0	objemový prietok q_2
RI02	0.0	objem kvapaliny V_2
RI03	0.0	teplovýmenná plocha F_2
RI04	0.0	koeficient prechodu tepla α_2
RI05	MARIO_VYM:KONSTANTY1.RI05	hustota ρ
RI06	MARIO_VYM:KONSTANTY1.RI06	hmot. tepelná kapacita c_P
RI07	MARIO_VYM:KONSTANTY1.RI01	objemový prietok q_1
STEP01	MUL RI05 RI06	$\rho.c_P$
STEP02	OUT M01	uloženie do dočasnej pamäte
STEP03	MUL RI03 RI04	$F_2.\alpha_2$
STEP04	OUT M02	uloženie do dočasnej pamäte
STEP05	ADD RI07 RI01	$q_1 + q_2 = q$
STEP06	OUT M03	uloženie do dočasnej pamäte
STEP07	MUL RI02 M01	$V_2.\rho.c_P$
STEP08	OUT M04	uloženie do dočasnej pamäte
STEP09	MUL M03 M01	$q.\rho.c_P$
STEP10	OUT M05	uloženie do dočasnej pamäte
STEP11	ADD M05 M02	$q.\rho.c_P + F_2.\alpha_2$
STEP12	OUT M06	uloženie do dočasnej pamäte
STEP13	DIV M04 M06	$V_2.\rho.c_P / q.\rho.c_P + F_2.\alpha_2$
STEP14	OUT RO01	uloženie do pamäte
STEP15	MUL RI07 M01	$q_1.\rho.c_P$
STEP16	OUT M07	uloženie do dočasnej pamäte
STEP17	DIV M07 M06	$q_1.\rho.c_P / q.\rho.c_P + F_2.\alpha_2$
STEP18	OUT RO02	uloženie do pamäte
STEP19	MUL RI01 M01	$q_2.\rho.c_P$
STEP20	OUT M08	uloženie do dočasnej pamäte
STEP21	DIV M08 M06	$q_2.\rho.c_P / q.\rho.c_P + F_2.\alpha_2$
STEP22	OUT RO03	uloženie do pamäte
STEP23	DIV M02 M06	$F_2.\alpha_2/q.\rho.c_P+F_2.\alpha_2$

STEP24	OUT RO04	uloženie do pamäte
M01-M24	0.0	dočasná pamäť
RO01	0.0	časová konštanta <i>Tk</i> ₂
RO02	0.0	zosilnenie Z_3
RO03	0.0	zosilnenie Z_4
RO04	0.0	zosilnenie Z_5

Príloha 3.

CALCA blok VYMENNIK_T1

Parameter	Hodnota	Popis
RI01	MARIO_VYM:TV1T1.PNT	výstup z AIN bloku TV1T1[K]
RI02	MARIO_VYM:TMT1.PNT	výstup z AIN bloku TMT1[K]
RI03	MARIO_VYM:REGULATOR.OUT	výstup z regulátora <i>Tm</i> [°C]
RI04	0.0	teplota $Tv_1[^{\circ}C]$ z obrazovky
RI05	273	konštanta
STEP01	ADD RI03 RI05	$Tm[^{\circ}C] + 273$
STEP02	OUT RO02	uloženie do pamäte
STEP03	ADD RI04 RI05	$Tv_{I}[^{\circ}C] + 273$
STEP04	OUT RO03	uloženie do pamäte
STEP05	ADD RI01 RI02	TV1T1[K] + TMT1[K]
STEP06	OUT RO04	uloženie do pamäte
STEP07	SUB RO04 RO05	<i>T</i> ₁ [K] - 273
STEP08	OUT RO01	uloženie do pamäte
M01-M24	0.0	dočasná pamäť
RO01	0.0	teplota $T_{I}[^{\circ}C]$
RO02	0.0	teplota <i>Tm</i> [K]
RO03	0.0	teplota $Tv_I[K]$
RO04	0.0	teplota $T_I[K]$

CALCA blok VYMENNIK_T2

Parameter	Hodnota	Popis
RI01	MARIO_VYM:TV2T2.PNT	výstup z AIN bloku TV2T2[K]
RI02	MARIO_VYM:T1T2.PNT	výstup z AIN bloku T1T2[K]
RI03	MARIO_VYM:TMT2.PNT	výstup z AIN bloku TMT2[K]
RI04	0.0	teplota $Tv_2[^{\circ}C]$ z obrazovky
RI05	273	konštanta
STEP01	ADD RI04 RI05	$Tv_2[^{\circ}C] + 273$
STEP02	OUT RO02	uloženie do pamäte
STEP03	ADD RI01 RI02	TV2T2[K] + T1T2[K]
STEP04	OUT M01	uloženie do dočasnej pamäte
STEP05	ADD M01 RI03	TV2T2[K] + T1T2[K] + + TMT2[K]
STEP06	OUT RO03	uloženie do dočasnej pamäte
STEP07	SUB RO03 RI05	<i>T</i> ₂ [K] - 273
STEP08	OUT RO01	uloženie do pamäte
M01-M24	0.0	dočasná pamäť
RO01	0.0	teplota $T_2[^{\circ}C]$
RO02	0.0	teplota Tv ₂ [K]
RO03	0.0	teplota $T_2[K]$

Príloha 4.

PIDA blok REGULATOR

Parameter	Hodnota	Popis
MEAS	MARIO_VYM:VYMENNIK_T2.R001	hodnota používaná ako vstup
MEASHI	0	indikátor alarmu
MEASHL	80.0	limit horného alarmu
MEASHT	PREHRIEVANIE KVAPALINY	zobrazovaný text v proces
MEASLI	0	indikátor alarmu
MEASLL	20.0	limit dolného alarmu
MEASLT	CHLADNUTIE KVAPALINY	zobrazovaný text v proces
MEASPR	1	priorita High a Low alarmu
HHALIM	85	limit High-High alarmu
HHAIND	0	indikátor High-High alarmu
ННАТХТ	VAR KVAPALINY	zobrazovaný text v process
LLALIM	15	limit Low-Low alarmu
LLAIND	0	indikátor Low-Low alarmu
LLATXT	TUHNUTIE KVAPALINY	zobrazovaný text v process
HHAPRI	1	priorita HH a LL alarmu
MALOPT	1	alarmové nadstavenia meraní
ННАОРТ	1	HH alarmové nadstavenia
MODOPT	4	regulátor typu PI
HSCO1	250.0	horná hranica výstupu z reg.
LSCO1	250.0	dolná hranica výstupu z reg.
HOLIM	250.0	horný limit výstupu z reg.
LOLIM	250.0	dolný limit výstupu z reg.
OUT	0.0	výstup z regulátora
INT	100.0	integračná zložka
PBAND	1000.0	proporcionálna zložka
SPT	0.0	žiadaná hodnota (setpoint)

Príloha 5.

Obsahuje DVD, na ktorom sa nachádzajú naprogramované výmenníky tepla vo FOXBORE, semestrálny projekt vo formáte PDF a v MATLABe vytvorené schémy, grafy a programy.