
Slovak University of Technology in Bratislava
Faculty of Chemical and Food Technology

Institute of Information Engineering, Automation, and Mathematics

Real-Time Explicit Model Predictive Control
of Processes

Ing. Martin Herceg

Dissertation Thesis

Supervisors: Prof. Ing. Miroslav Fikar, DrSc.
Ing. Michal Kvasnica, PhD.

2009

Acknowledgment

It would not been possible to write the thesis without a tight collaboration from my col-
leagues. I start by expressing my deepest gratitude to my nearest supervisor, Michal
Kvasnica. From the early beginnings of my research activities, he has been guiding me in
systematic way towards practical solutions and even in the cases when I thought it would
be impossible . . . Thank you for instilling this non giving up temperament in me and con-
tinuous guidance in every aspect of the academic life.

Secondly, my thanks goes to my direct supervisor Miroslav Fikar who has taken care of
my scientific activities since I was an early stage student. He has opened the doorway
to the Institute where I could spend long time by “playing with things” in laboratories,
experiencing the principles of real-time control. I’m very grateful for his teaching guidance
when I met with Linux stuff for the first time as well as with LATEX, Matlab, C, and many
more. Furthermore, he allowed me to meet and visit the top level research groups for which
I’m utmost grateful.

My former PhD colleagues Michal Čižniar and Tomáš Hirmajer deserve a special thanks
for instantaneous discussions and support with software implementation of MPC. It was
really special time of year when we could share the ideas in one office. Without both of
you, I would not finish very important parts of my research regarding nonlinear MPC.
Thank you guys!

I must also mention the colleagues from the Institute, especially L’uboš Čirka, Marián Pod-
majerský, Juraj Vöröš, Radoslav Paulen, Stanislav Vagač, Janka Závacká, Katka Vaneková,
Lenka Blahová, Andrea Kalmárová, Mária Karšaiová, Anna Vasičkaninová as well as Pro-
fessors Alojz Mészáros, Ján Mikleš, Ján Dvoran, and Monika Bakošová for creating an
unique working atmosphere at the Institute where it was a pleasure to work in. Especially,
my thanks goes to Monika Cepeková for her friendly and easy going attitude to process
heaps of the paper work.

Throughout my studies I met a lot of exceptional people. Many of them come from the
chemical engineering group at STU Bratislava, namely: Matúš Chlebovec, Pavol Laššák,
Kataŕına Vaňková, Martin Hućık, Juraj Sláva, and from the Automatic Control Laboratory
in Zurich: Sébastien Mariéthoz, Colin Jones, and many more I have met on my journeys
and conferences. Thank you all for sharing the research experiences and all the great times!

Last but not least I wish to thank to my family and nearest friends, for their support and

iii

iv

patience throughout my studies. Without your help it would be very difficult to finish the
studies. Thank you very much for everything.

Martin Herceg
Bratislava, November 2009

Abstract

The aim of the thesis is to provide techniques for computing and application of explicit
model predictive control of processes in real-time. Explicit model predictive control is a
method for optimal control of processes with constraints where the control law is given
in an explicit form. It is an optimization based approach where a process model is used
to predict the future. In the presented approach the model is derived using a hybrid
modeling framework. It will be shown how that hybrid models are capable of modeling
wide class of processes with a sufficient precision. Based on the hybrid model, it is possible
to formulate an optimal control problem which considers varying dynamical properties
of the plant and moreover, takes the operating constraints into account. If the optimal
control problem is solved for the whole set of initial conditions, an explicit solution is
obtained. The explicit solution characterizes the optimal control law as a function of given
initial conditions. This allows the control law to be easily realized in practice, just by
evaluating the function for given value of initial conditions. Therefore, the explicit model
predictive controller designed in this way is especially suitable for applications with fast
dynamical changes which require low implementation cost. The thesis describes essentials
for understanding ingredients of explicit model predictive control. In particular, the main
part concerns with construction of hybrid models and their deployment in formulation of
optimization problems. Consequently, efficient algorithms for computing explicit solutions
to time optimal control problems are proposed. Obtained results are applied in real-time
experiments that show desired optimal performance and the controller satisfies all operating
constraints.

Abstrakt

Ciel’om dizertačnej práce je prezentovat’ metódy výpočtov explicitného predikt́ıvneho ria-
denia a ich aplikácie na procesoch v reálnom čase. Explicitné predikt́ıvne riadenie je spôsob
optimálneho riadenia procesov s obmedzeniami, kde zákon riadenia je daný priamo, čiže
v explicitnej forme. Základom predikt́ıvneho riadenia je model, ktorý slúži na źıskanie
predpovede do budúcnosti a následnej formulácie problému optimálneho riadenia. V tejto
práci sa využ́ıva hybridný pŕıstup k modelovaniu, ktorý dokáže oṕısat’ dynamické vlast-
nosti procesov s dostatočnou presnost’ou. Na základe hybridného opisu je potom možné
naformulovat’ problém optimálneho riadenia, v ktorom vystupujú meniace sa dynamické
vlastnosti procesu, a navyše je možné zahrnút’ aj operačné obmedzenia. Ak sa takýto prob-
lém rieši pre celú množinu začiatočných podmienok, výsledok sa nazýva explicitné riešenie.
Explicitné riešenie charakterizuje zákon riadenia ako funkciu začiatočných podmienok, čo
umožňuje vel’mi jednoduchú aplikáciu zákona riadenia v praxi, danú evaluáciou funkcie
pre konkrétnu hodnotu začiatočných podmienok. Preto sú práve explicitné riešenia vel’mi
vhodné na riadenie procesov s rýchlou dynamikou a vyžadujú nenáročné podmienky na
implementáciu. Práca vysvetl’uje základné prinćıpy potrebné na porozumenie výpočtov
explicitných riešeńı v predikt́ıvnom riadeńı. Zaoberá sa hlavne modelovańım hybridných
systémov a ich zakomponovańım do formulácie optimalizačných problémov. Navrhnuté
sú algoritmy na źıskanie explicitných riešeńı časovo-optimálnych úloh riadenia, ktoré sú
aplikované a verifikované v praxi. Dosiahnuté výsledky riadenia potvrdzujú, že meni-
ace vlastnosti procesu sú rešpektované, kvalita riadenia a všetky operačné obmedzenia sú
splnené.

Contents

Introduction 1
Main Goals . 4

I BACKGROUND 5

1 Mathematical Basics 7
1.1 Basic Definitions . 7

1.1.1 Sets . 7
1.1.2 Functions . 9

1.2 Polytopes . 9
1.3 Geometric Operations with Polytopes . 11

2 Optimization Problems 15
2.1 General Formulation . 15
2.2 Convex Problems . 16

2.2.1 Linear Programming . 16
2.2.2 Quadratic Programming . 16
2.2.3 Semidefinite Programming . 17
2.2.4 Sum of Squares Decomposition . 17

2.3 Non-convex Problems . 18
2.3.1 Mixed Integer Linear Programming 18

3 Multiparametric Programming 19
3.1 Multiparametric Problems . 19

3.1.1 Multiparametric Linear Programming 19
3.1.2 Multiparametric Quadratic Programming 20
3.1.3 Multiparametric Mixed Integer Linear Programming 20

3.2 Solving Multiparametric Problems . 20
3.3 Properties of the Explicit Solutions . 23

4 Model Predictive Control 29
4.1 Predicting the Future . 29

ix

x Contents

4.2 Formulation of a General Optimal Control Problem 31
4.3 Closed-Loop Implementation of MPC . 32
4.4 Ingredients of MPC . 35

4.4.1 Cost Function . 35
4.4.2 Process Models . 36
4.4.3 Constraints . 41

4.5 Stability Requirements . 41
4.6 Methods for Computing Terminal Sets . 44

5 Explicit MPC 47
5.1 Main Features . 47
5.2 Multiparametric Forms of Optimal Control Problems 48

5.2.1 Linear Model, 1/∞-Norm . 48
5.2.2 Linear Model, 2-Norm . 50
5.2.3 PWA Model, 1/∞-Norm . 52

5.3 Multiparametric Problems in MPC for PWA Systems 54
5.3.1 Constrained Finite Time Optimal Control 54
5.3.2 Time Optimal Control . 55

5.4 On-line Implementation . 57

II MODELING AND CONTROL OF HYBRID SYSTEMS 61

6 Modeling of Hybrid Processes 63
6.1 HYSDEL . 64

6.1.1 General Properties . 64
6.1.2 HYSDEL Language Syntax . 65

6.2 HYSDEL 3.0 . 66
6.2.1 MLD System Formulation . 68
6.2.2 Using HYSDEL 3.0 . 68
6.2.3 Language Elements . 71
6.2.4 Compiler . 79
6.2.5 Graphical Modeling . 79

6.3 Translation to PWA System . 84

7 Explicit MPC for PWA Systems 89
7.1 Time Optimal Tracking of a Varying Reference 89

7.1.1 Problem Formulation . 89
7.1.2 Design of the Stabilizing Terminal Set 90
7.1.3 The Time Optimal Algorithm for Reference Tracking 91
7.1.4 The Robust Time Optimal Algorithm for Reference Tracking 93
7.1.5 Examples . 95

7.2 Adaptive Time Optimal Control . 101

Contents xi

7.2.1 Problem Formulation . 103
7.2.2 Adaptive Time Optimal Algorithm 104
7.2.3 Example . 108

7.3 Time Optimal Control of Takagi-Sugeno Fuzzy Systems 111
7.3.1 Relation Between TS Model and PWA Model 112
7.3.2 Transformation to Uncertain PWA System 114
7.3.3 Example . 116

7.4 Polynomial Approximation of MPC . 120
7.4.1 Stability Analysis . 121
7.4.2 Polynomial Approximation . 122
7.4.3 Complexity Analysis . 124
7.4.4 Example . 126

III APPLICATIONS 129

8 Servo Engine 131
8.1 Physical Setup . 131
8.2 Hybrid Model and Experimental Validation 132

8.2.1 Deadzone Measurement . 134
8.2.2 PWA Model . 134
8.2.3 Experimental Validation . 137

8.3 Real-Time Implementation . 138

9 Thermo-Optical Device 141
9.1 Device Description . 141
9.2 Identification and PWA Modelling . 143
9.3 Control Design . 145

9.3.1 Prediction Model . 145
9.3.2 Control Problem . 146
9.3.3 Explicit Solution . 146
9.3.4 Polynomial Approximation . 148

9.4 Real-Time Implementation . 150
9.4.1 Computational Demands . 150
9.4.2 Experimental Data . 151

10 Conclusions 153

Bibliography 155

Publication List 165

Curriculum Vitae 169

List of Abbreviations

CFTOC – constrained finite time optimal control
CITOC – constrained infinite time optimal control

CPU – central processing unit
CSTR – continuously stirred tank reactor
DMC – dynamic matrix control
ELC – extended linear complementarity (system)

FLOPS – floating point operations
GPC – generalized predictive control

HYSDEL – hybrid system description language
IMC – internal model control
LC – linear complementarity (system)

LED – light emitting diode
LMI – linear matrix inequality
LP – linear program

MILP – mixed-integer linear program
MLD – mixed logical dynamical (system)

MMPS – max-min-plus-scaling systems
MPC – model predictive control

mpLP – multiparametric linear program
mpMILP – multiparametric mixed-integer linear program

mpQP – multiparametric quadratic program
NLP – nonlinear program
PDC – parallel distributed compensation
PID – proportional integral derivative (controller)

PWA – piecewise affine
QP – quadratic program

RTW – real-time workshop
SDP – semi-definite program
SOS – sum of squares
TS – Takagi-Sugeno (system)

xiii

Introduction

One of the developing fields in process control is model predictive control (MPC). MPC is
an optimization-based approach which exploits the knowledge of dynamical behavior of the
plant, represented by a process model. Based upon the information from the model, the
optimal control problem is constructed where specific requirements regarding performance
as well as constraints satisfaction can be met [68]. MPC has spread out in the industry with
an increasing grow in computer-aided engineering, because it mostly relies on optimization
routines.

Traditionally, MPC approach solves the optimal control problem repeatedly in every sam-
pling period. At each computation the controller predicts the process behavior over some
time horizon to the future by using the process inputs as degrees of freedom. The aim is to
find a future sequence of these inputs such that certain goals are attained. MPC therefore
searches such sequence by solving an optimization problem. If a solution is found, MPC
actually uses only the first element of the computed sequence and this is applied to the
plant. This is how MPC implements feedback action in the closed-loop system.

Computational power is often required because advanced optimization routines are needed
to solve the optimal control problem. In practice, the measurements are usually collected
periodically, and the time lag between two consecutive updates refers to sampling time.
For a safe operation of the plant, the optimization algorithm should terminate before next
sampling instant. Therefore, MPC has been mostly applied in the chemical industry where
processes have large settling times, and thus the sampling time is sufficiently large. Hence,
the popularity of MPC grew mainly in this field and garnered large attention due to its
major advantage, to deal with operating constraints. Several commercial packages are cur-
rently available which implement MPC in the on-line fashion, i.e. solving the optimization
problem as the process is running. An excellent survey of these methods is documented in
[87]. The disadvantage is, however, this way for implementation of MPC is very demanding
on computational resources and it is also reason for expensive hardware & software setup.
These incentives have motivated development of explicit MPC.

In the explicit MPC setup, the optimization problem is solved parametrically, i.e. for
the whole set of variables which satisfy design constraints. This alternative approach
ensures that the solution to the optimal control problem exists before the plant actually
starts operation. In the implementation phase there is no need for repetitive optimization,
only the explicit solution is evaluated at every sampling instant. The approach has thus
computational advantage on the implementation side, hence it is suitable for processes

1

2 Contents

with very small sampling times. Furthermore, evaluation of the explicit solution can be
done with low computational power which makes explicit MPC attractive for industrial
purposes.
Quality of predictions in explicit MPC can be improved by finding a process model that
has a sufficient accuracy in the desired operating regime. Therefore, the progress of ex-
plicit MPC has evolved from using linear models [11, 14, 16] toward hybrid models with
higher accuracy [12, 23, 32] motivated by the fact, that hybrid models can approximate
the original system with arbitrary accuracy [94]. However, to deploy hybrid models for
MPC synthesis, they need to converted to a form suitable for optimization purposes [15]
and there are few software tools that can provide such translation, e.g. [107]. The explicit
MPC approach has been developed by [11, 16, 23] and recent progress in the field is sum-
marized in book collections [83, 84].

The structure of the thesis is as follows:

Part I gives an overview of the current state in the literature. The computational principles
of explicit MPC are explained, in particular, the concepts of polytopic sets and optimiza-
tion problems. Next, the multiparametric technique for solving the optimization problems
is detailed which creates the core of explicit MPC. General MPC approach is explained
in Chapter 4 where concrete ingredients as well as feedback implementation are discussed.
The main building block for the remainder of the thesis is Chapter 5, where original algo-
rithms of [5, 11, 16, 23, 46] are presented.

Part II presents the main theoretical contributions of the thesis. Firstly, a software for
modeling and simulation of linear hybrid systems is presented. This part builds on results
from HYSDEL 3.0 project was established between STU Bratislava and ETH Zurich be-
tween 2008 – 2009. HYSDEL 3.0 is a modeling language for hybrid systems and allows
easy setup of optimization problems in MPC. HYSDEL 3.0 is an extension of [107] which
offers more flexibility and compatibility with MPC setups.
Secondly, the control part deals with the time optimal control of hybrid systems. The
presented results are extensions of the approach [46] for a tracking problem and for a
regulation problem of uncertain hybrid systems. The same idea used in time optimal
control of uncertain hybrid system has been applied to fuzzy systems. Concretely, these
results are given as:

Time optimal tracking of a time varying reference signal for PWA systems. Published
in:

– Herceg, M., Kvasnica, M., Fikar, M.: Minimum-time predictive control of a
servo engine with deadzone, Control Engineering Practice, 17(11):1349–1357,
2009.

Adaptive time optimal control of PWA systems. Published in:

Contents 3

– Kvasnica, M., Herceg, M., Čirka, L’, Fikar, M.: Robust Adaptive Minimum-
Time Control of Piecewise Affine Systems, 48th IEEE Conference on Decision
and Control, Shanghai, China, 2009. Accepted.

Time optimal control of Takagi-Sugeno fuzzy systems. Published in:

– Kvasnica, M., Herceg, M., Čirka, L’, Fikar, M.: Time-Optimal Control of Takagi-
Sugeno Fuzzy Systems. In Proceedings of the 10th European Control Conference,
Budapest, Hungary, 2009.

– Kvasnica, M., Herceg, M., Čirka, L’., Fikar, M.: Time Optimal Control of Fuzzy
Systems: a Parametric Programming Approach. In Proceedings of the 28th
IASTED Conference on Modelling, Identification and Control, pp. 640-805.pdf,
2009.

– Herceg, M., Kvasnica, M., Fikar, M.: Stabilizing Predictive Control of Fuzzy
Systems Described by Takagi-Sugeno Models. Editors: J. Mikleš, M. Fikar, M.
Kvasnica, In Proceedings of the 16th International Conference Process Control
’07, Slovak University of Technology in Bratislava, pp. 223f.pdf, 2007.

– Herceg, M., Kvasnica, M., Fikar, M.: Transformation of Fuzzy Takagi-Sugeno
Models into Piecewise Affine Models. Editors: M. Kryszkiewicz, J. F. Peters, H.
Rybinski, A. Skowron, In Proceedings of the International Conference on Rough
Sets and Intelligent Systems Paradigms, Springer, Warsaw, Poland, vol. LNAI
4585, pp. 211-220, 2007.

Furthermore, an alternative approach for computing a low complexity explicit MPC con-
troller is presented, which offers the implementation with very low computational resources.
The approach is referred to as “polynomial approximation of MPC” and it has been pub-
lished in:

– Kvasnica, M., Christophersen, F. J., Herceg, M., Fikar, M.: Polynomial Approxima-
tion of Closed-form MPC for Piecewise Affine Systems. In Proceedings of the 17th
World Congress of the International Federation of Automatic Control, Seoul, Korea,
pp. 3877–3882, 2008.

Part III presents the application of the proposed algorithms from Part II to laboratory
devices. First application is a servo engine with a deadzone type of nonlinearity which is
controlled in a time-optimal manner. The second application is the polynomial approxi-
mation approach tested on a light bulb device with fast sampling. The results have been
published in:

– Herceg, M., Kvasnica, M., Fikar, M.: Minimum-time predictive control of a servo
engine with deadzone, Control Engineering Practice, 17(11):1349–1357, 2009.

– Herceg, M., Kvasnica, M., Fikar, M., Čirka, L’.: Real-Time Control of a Thermo-
Optical Device Using Polynomial Approximation of MPC Scheme. Editors: Fikar,
M., Kvasnica, M., In Proceedings of the 17th International Conference on Process
Control ’09, Slovak University of Technology in Bratislava, pp. 332–340, 2009.

4 Contents

Main Goals

The main theme is to provide techniques for computing and efficient application of explicit
MPC to real-time equipments. This aim is tackled in three phases: modeling, control
design, and real-time application.

• The first objective is a software implementation for modeling of linear hybrid sys-
tems. Since process models are inherent part of MPC, generation of numerically
sound models helps to formulate an optimization problem more efficiently. It will
be shown that the developed software is capable of producing compact process mo-
dels from simple logical rules that are specially tailored for optimization purposes.
Furthermore, the software allows composition of large models and analysis of their
dynamic behavior in a user friendly manner.

• The control design part follows three main goals:

– Explicit solution to time optimal MPC tracking problem for linear hybrid sys-
tems. The proposed solution is an extension of the explicit MPC approach
to cases for tracking an unknown (and possibly time varying) reference. It is
demonstrated that such a solution guarantees convergence to the desired refe-
rence signal in a minimal number of steps and maintains all design constraints.

– Explicit solution to time optimal MPC problem for uncertain linear hybrid sys-
tems. The objective of the scheme is to extend the results of explicit MPC to
cases with uncertain hybrid models. In particular, the proposed scheme is ca-
pable of incorporating parametric uncertainties present in dynamical matrix to
explicit control design if certain assumptions on process model are satisfied. Fur-
thermore, the approach is applicable to a class of Takagi-Sugeno fuzzy systems
which is a significant contribution to the control theory of fuzzy systems.

– Design of a low-complexity explicit MPC scheme. The suggested approach dra-
matically reduces the requirements for data storage and processing power needed
to implement explicit MPC. Motivated by practical needs to meet the hardware
constraints the scheme offers alternative implementation of explicit MPC. The
scheme thus suits applications with very cheap implementation cost.

• The aim of the practical part is to study the proposed solutions to explicit MPC in
real-time experiments. Provided results shall give an immediate answer for practical
applicability and one can verify theoretical conclusions directly from the experiments.

Part I

BACKGROUND

Chapter 1

Mathematical Basics

To understand the concepts of MPC, one has to take a deeper look for the concrete building
blocks used in optimization theory, such as functions and sets. This chapter thus introduces
standard mathematical concepts used throughout the whole thesis. Especially, the part
devoted to geometrical operations with sets will be emphasized and important geometrical
operations are illustrated to simplify the presentation.

1.1 Basic Definitions

Fundamental definitions from set and function theory are given in this section. The no-
tions of convexity and the abbreviation PWA, meaning piecewise affine, will be the most
frequently used throughout the thesis. Notations and definitions are based on [31, 63].

1.1.1 Sets

Definition 1.1 (ǫ-Ball [31]) The open n-dimensional ǫ-ball in R
n around a given point

(center) xc is the set
Bǫ(xc) := {x ∈ R

n | ‖x− xc‖ < ǫ},
where the radius ǫ > 0 and ‖ · ‖ denotes any vector norm (usually the Euclidean vector
norm ‖ · ‖2).

Definition 1.2 (Neighborhood [31]) The neighborhood of a subset S of X ⊆ Rn is
defined as a set N (S) with S ⊂ N (S) ⊆ X such that for each s ∈ S there exist an
n-dimensional ǫ-ball with Bǫ(s) ⊆ N (S) and ǫ > 0.

Definition 1.3 (Convex set [31]) A set S ⊆ Rns is convex if the line segment connect-
ing any pair of points of S lies entirely in S, i.e. if for any s1, s2 ∈ S and any α with
0 ≤ α ≤ 1, we have

αs1 + (1 − α)s2 ∈ S.

See Figs. 1.1(a), 1.1(b).

7

8 1 Mathematical Basics

s1

s2

S

(a)

s1

s2

S

(b)

Figure 1.1: Convex (a) and non-convex (b) set.

Definition 1.4 (Convex hull [31]) The convex hull of a set S ⊆ Rns is the smallest
convex set containing S, i.e.

hull(S) :=

{

k
∑

i=1

αisi ∀si ∈ S ∃αi, αi ≥ 0,
k
∑

i=1

αi = 1

}

.

Definition 1.5 (Closed set [31]) A set S ⊆ Rns is closed if every point not in S has a
neighborhood disjoint from S, i.e.

∀x /∈ S,∃ǫ > 0 such that Bǫ(x) ∩ S = ∅.

Definition 1.6 (Bounded set [31]) A set S ⊆ R
ns is bounded if it is contained inside

some ball Br(·) of finite radius r, i.e.

∃r < ∞, s ∈ R
ns such that S ⊆ Br(s).

Definition 1.7 (Compact set [31]) A set S is compact if it is closed and bounded.

Definition 1.8 (Set collection [31]) S is called a set collection (in R
ns) if it is a col-

lection of finite number of ns-dimensional sets Si, i.e.

S := {Si}NS

i=1,

where dim(Si) = ns and Si ⊆ R
ns for i = 1, . . . , NS with NS < ∞. A set collection of

sometimes also referred to as family of sets.

Definition 1.9 (Partition [31]) A collection of sets {Si}NS

i=1 is a partition of a set S if
S = ∪NS

i=1Si and Si ∩ Sj for all i 6= j, where i, j ∈ {1, . . . , NS}.

1.2 Polytopes 9

1.1.2 Functions

Definition 1.10 (Vector 1-, ∞-, 2-norm [31]) The vector 1-, ∞-, and 2-norm of x ∈
R

n is defined as

‖x‖1 :=
n
∑

i=1

|xi|, ‖x‖∞ := max
1≤i≤n

|xi|, ‖x‖2 :=
n
∑

i=1

x2
i

respectively, where xi is the i-th element of x.

Definition 1.11 (Convex/concave function [31]) A real-valued function f : X 7→
R

nf is convex if its domain X ⊆ Rn is a convex set and

∀x1,x2 ∈ X , 0 ≤ α ≤ 1 =⇒ f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2)

where ≤ is to be considered component wise. f(·) is strictly convex if the last inequality
above is replaced by strict inequality. f(·) is concave if −f(·) is convex.

Definition 1.12 (Positive/negative (semi-)definite function [31]) A real-valued func-
tion f : X 7→ R

nf with X ⊆ R
n is positive definite if f(0) = 0 and f(x) > 0,∀x 6= 0.

f(·) is positive semi-definite if f(0) = 0 and f(x) ≥ 0,∀x 6= 0. f(·) is called negative
(semi-)definite if −f(·) is positive (semi-)definite.

Definition 1.13 (Affine function [31]) A real-valued function f : X 7→ R
nf with X ⊆

R
n is affine if it is of the form

f(x) := Fx+ g,

where F ∈ R
nf×n and g ∈ R

nf .

Definition 1.14 (Piecewise affine function [31]) A real-valued function fPWA : X 7→
R

nf with X ⊆ R
n is piecewise affine (PWA), if {Xi}NX

i=1 is a set partition of X and

fPWA(x) := F ix+ gi ∀x ∈ Xi,

where F i ∈ R
nf×n, gi ∈ R

nf , and 1, . . . , NX .

1.2 Polytopes

Polytopes are a special type of sets that are very important in the optimization theory.
This section reviews the basic notation used in this field. For a detailed view, the reader
is referred to [47].

Definition 1.15 (Hyperplane [31]) A hyperplane P in R
n is a set of the form

P := {x ∈ R
n | hTx = l},

where h ∈ R
n, l ∈ R.

10 1 Mathematical Basics

Definition 1.16 (Half-space [31]) A (closed) half-space P in R
n is a set of the form

P := {x ∈ R
n | hTx ≤ l},

where h ∈ R
n, l ∈ R.

Definition 1.17 (Polyhedron [31]) A polyhedron is the intersection of a finite number
of half-spaces.

One fundamental property of polyhedrals is stated by the following lemma.

Lemma 1.1 ([31]) A polyhedron P ∈ Rn is a convex set and can always be represented
in the form

P := {x ∈ R
n |Hx ≤ l},

where H ∈ R
m×n, l ∈ R

m.

Definition 1.18 (Face, facet, ridge, edge, vertex [63]) A linear inequality hTx ≤ l
is called valid for a polyhedron P if hTx ≤ l holds ∀x ∈ P. A subset F of P of a polyhedron
is called a face of P if it can be represented as

F := P ∩ {x ∈ R
n | hTx = l},

for some valid inequality hTx = l. The faces of the polyhedron P with dimension 0, 1,
(n-2), and (n-1) are called vertices, edges, ridges, and facets, respectively.

Definition 1.19 (Polytope [31]) A polytope is a bounded polyhedron.

Following theorem defines two representation of a polytope: H- and V- polytope. For
graphical illustration, see Figs. 1.2(a), 1.2(b).

Theorem 1.1 (Polytope representation [31]) P ⊂ R
n is the convex hull of a finite

point set V = {v1, . . . ,vNv} for some vi ∈ R
n with 1, . . . , Nv (V-polytope)

P := hull(V) =

{

x ∈ R
n x =

Nv
∑

i=1

αivi, 0 ≤ αi ≤ 1,
Nv
∑

i=1

αi = 1

}

,

if and only if it is bounded intersection of finitely many half-spaces (H-polytope)

P := {x ∈ R
n |Hx ≤ l},

for some H ∈ R
m×n, l ∈ R

m.

Definition 1.20 (Polytope collection [31]) P is called a polytope collection or P-collection
(in R

n) if it is a set collection of a finite number of n-dimensional polytopes Pi, i.e.

P := {Pi}NP

i=1

where Pi := {x ∈ R
n |Hx ≤ l}, dim(Pi) = n, i = 1, . . . , NP with NP < ∞. A P-collection

is also referred to as family of polytopes.

See Fig. 1.3.

1.3 Geometric Operations with Polytopes 11

1.3 Geometric Operations with Polytopes

Definition 1.21 (Intersection of Polytopes) The intersection of two polytopes P ∈
R

n and Q ∈ R
n is defined by

P ∩Q := {x ∈ R
n | x ∈ P,x ∈ Q}.

See Fig. 1.4.

Definition 1.22 (Set Difference [31]) The set difference of two polytopes P ∈ R
n and

Q ∈ R
n is defined by

P\Q := {x ∈ R
n | x ∈ P, x /∈ Q}.

See Figs. 1.5(a), 1.5(b).

Definition 1.23 (Pontryagin Difference [63]) The Pontryagin difference of two poly-
topes P ∈ R

n and Q ∈ R
n is a polytope

P ⊖Q := {x ∈ R
n | x+ q ∈ P, ∀q ∈ Q}.

See Figs. 1.6(a), 1.6(b).

Definition 1.24 (Chebyshev Ball [31]) The Chebyshev Ball of a polytope P ⊂ R
n is

the largest Euclidean ball

Br(xc) := {x ∈ R
n | ‖x− xc‖2 ≤ r}

where r is the Chebyshev radius and xc the Chebyshev center, such that Br(xc) ⊆ P.

Definition 1.25 (Projection [31]) Given a set Q ⊆ R
nQ and a set P ⊆ R

nP with nQ ≤
nP < ∞, the (affine) projection of P onto Q is defined as

projQ(P) := {q ∈ Q | ∃p ∈ P with q = Ap+ f}

for some given A ∈ R
nQ×nP and f ∈ R

nQ.

Definition 1.26 (Bounding Box [97]) A bounding box Bbox(P) of a set P = {x ∈
R

n |Hx ≤ l} is the smallest hyperrectangle which contains the set P.

See Fig. 1.7

Definition 1.27 (Affine Transformation) An affine transformation of a polytope P ∈
R

n is a polytope R ∈ R
n

R := {Ax+ f , x ∈ P}
for some given A ∈ R

n×n and f ∈ R
n.

See Fig. 1.8.

12 1 Mathematical Basics

P

(a)

P
v1

v2

v3
v4

v5

(b)

Figure 1.2: H-(a) and V-(b) representation of a polytope.

P1

P2 P3

P4

P5

Figure 1.3: Polytope collection (or P-collection) is a (possibly) non-convex union of poly-
topes, i.e. P =

⋃

i Pi.

P
Q

R

Figure 1.4: Intersection of two polytopes, R = P ∩Q.

1.3 Geometric Operations with Polytopes 13

P Q
(a)

R1

R2

(b)

Figure 1.5: Set difference R = P\Q = R1 ∪R2.

P

Q

(a)

P

R

(b)

Figure 1.6: Pontryagin difference R = P ⊖Q.

P

Bbox(P)

Figure 1.7: Bounding box of a polytope P .

P
R

Figure 1.8: Affine transformation of polytope P , R = AP + f for given A, f .

Chapter 2

Optimization Problems

In this chapter basic optimization problems are reviewed. Some of the problems will be
used later in the thesis to characterize the proposed approaches to MPC. Formulation of
the optimization problems follows the convention used in textbooks on optimization where
the unknown variables are usually denoted as x ∈ R

n, i.e. x = (x1, x2, . . . , xn)T . Interested
reader may find out more in excellent books [1, 79].

2.1 General Formulation

A general optimization problem can be written as follows

min
x

F (x) (2.1a)

s.t. f(x) = 0 (2.1b)

g(x) ≤ 0 (2.1c)

where F (x) : R
n 7→ R is the objective function, g(x) : R

n 7→ R
ng , f(x) : R

n 7→ R
nf

are inequality and equality constraints, respectively. The vector of variables x ∈ R
n

represents the parameters to be determined. Solution x∗ of the problem (2.1) is optimal if
F (x) ≥ F (x∗) holds for any x from sets (2.1b) and (2.1c). A discipline encompassing the
theory and practice of numerically solving problems like (2.1) is known as mathematical
programming [1, Section 1.1]. Depending on the form of the objective function (2.1a) and
sets (2.1b), (2.1c) two main groups are distinguished:

1. convex optimization [24],

2. non-convex optimization [7, 17, 37].

Convex optimization is basically a subgroup of more general, non-convex optimization, and
its specification is that objective function (2.1a) is a convex function and constraints (2.1b),
(2.1c) are convex sets. This fundamental property plays an important role in determining
the strategy which should be applied in order to efficiently solve the problem. In the sequel
some basic properties of both groups will be outlined and some methods for solving the
problems will be reviewed.

15

16 2 Optimization Problems

2.2 Convex Problems

Convex optimization problems have the property that (2.1b) and (2.1c) are convex func-
tions according to Definition 1.11. Furthermore, any local optimal point x∗ (i.e. with
respect to neighborhood of a point x∗) is also globally optimal (i.e. with respect to all
points in constraint set (2.1b) and (2.1c)). In other words, there is guarantee that absolute
minimum of the objective function will be found. Another aspect of convex optimization
problems is that there exist very efficient methods to solve it. This section lists basic
problems which will be frequently used in the main part of the thesis.

2.2.1 Linear Programming

Linear Program (LP) is a convex optimization problem where the objective function and
constraints are linear, i.e.

min
x
cTx (2.2a)

s.t. Gx ≤ h (2.2b)

Ax = b (2.2c)

where c ∈ R
n, G ∈ R

m×n, h ∈ R
m, A ∈ R

p×n and b ∈ R
p. In fact, the inequalities in

(2.2b) and (2.2c) create a polyhedron, which is called the constraint set. Geometrically, LP
can be interpreted as searching the minimum of a linear function over a given polyhedral
set. The solution of LP has one important property that it always lies on a boundary of the
set (2.2b). Complexity of the problem can be expressed in the number of variables n and
constraints m entering the problem. Currently the most efficient methods to solve LP are
simplex methods with exponential complexity and interior point methods with polynomial
complexity [110].

2.2.2 Quadratic Programming

A Quadratic Program (QP) is a convex optimization problem where the objective function
is quadratic and constraints are linear. Precisely,

min
x

0.5xTPx+ qTx (2.3a)

s.t. Gx ≤ h (2.3b)

Ax = b (2.3c)

where the quadratic term 0.5xTPx ≥ 0 is restricted to have only nonnegative values, i.e.
the matrix P � 0 is positive semidefinite. Moreover, P ∈ R

n×n, q ∈ R
n, G ∈ R

m×n,
h ∈ R

m, A ∈ R
p×n and b ∈ R

p. From a geometrical point of view, a minimum of a convex
quadratic function is searched over a polyhedral set (2.3b), (2.3c). QP can be solved using
active set methods, or interior point methods [79].

2.2 Convex Problems 17

2.2.3 Semidefinite Programming

A Semidefinite Program (SDP) is a convex optimization problem of the form

min
x
cTx (2.4a)

s.t. F 0 +
∑

i

xiF i � 0, (2.4b)

where F i ∈ R
n×n are given symmetric matrices and c ∈ R

n. The fundamental property
of SDP is that the set (2.4b) is a convex set (Definition 1.3) and the constraint � 0
means positive semidefinite. SDP covers wider scope of problems, including LP, linear
matrix inequalities (LMI), and has interesting geometrical interpretation. In particular,
the constraints create a convex conic set over which a given convex function is minimized.
Solution can be found by employing one of the interior point methods with polynomial
complexity. Practically, SDP solvers are roughly one order of magnitude slower than LP
or QP solvers [45]. For a more detailed view in SDP, the reader is referred to [24].

2.2.4 Sum of Squares Decomposition

One of the basic problems in control theory is checking global non-negativity of a function
of several variables, which in general can be shown to be a very difficult problem [80, Section
4.1]. A Sum of Squares (SOS) decomposition is a convex optimization problem where the
non-negativity of a polynomial p(x) ≥ 0 with degree d is certified by searching for an
existence of a monomial v(x) of degree less than or equal to d/2 such that p =

∑

i=1 v2
i (x).

Mathematically, the problem can be written as SDP, i.e.

find Q (2.5a)

s.t. p(x) = vT (x)Qv(x) (2.5b)

Q � 0 (2.5c)

where Q is a symmetric and positive definite matrix. Note that there can be multiple
solutions to problem (2.5), thus some objective function is usually added. The choice of
objective function depends on the particular problem. For instance, the problem of finding
the lowest bound for polynomial p(x) ≥ 0 can be written as

min
Q

γ (2.6a)

s.t. p(x) − γ = vT (x)Qv(x) (2.6b)

Q � 0 (2.6c)

where γ ∈ R, γ > 0 is the objective function. Problems with SOS decomposition have been
extensively studied in [80] and have wide applications in systems and control theory. Since
SOS decomposition are embedded into SDP framework, efficient solvers are available.

18 2 Optimization Problems

2.3 Non-convex Problems

To tackle the general Non-Linear Program (NLP) (2.1), an insight view into the prob-
lem’s structure must be taken because there exists no unique approach in selection of
optimization algorithms. Based on the structure, NLPs are categorized into several groups
where concrete methods can be applied. One special class of NLP is a mixed-integer linear
program which is of main interest in the following.

2.3.1 Mixed Integer Linear Programming

A Mixed Integer Linear Program (MILP) is a non-convex optimization problem where the
objective function and constraints are linear. The non-convexity stems from the fact that
the optimized variables x, δ belong to the real set R and binary set {0, 1}, respectively. In
particular,

min
x,δ

cTx+ dTδ (2.7a)

s.t. Gx+ Tδ ≤ h (2.7b)

Ax+Eδ = b (2.7c)

where x ∈ R
n, δ ∈ {0, 1}q, c ∈ R

n, d ∈ R
q, G ∈ R

m×n, T ∈ R
m×q, h ∈ R

m, A ∈ R
p×n,

E ∈ R
p×q, and b ∈ R

p. The only difference comparing to convex LP is a presence of
binary variables δ which can take only values {0, 1} and this is also a reason why the set
(2.7b) is non-convex. Fortunately, if the binary variable is fixed or relaxed, a convex set
is obtained and the problem can be solved using methods for convex optimization. This
principle is deployed in branch and bound and branch and cut methods [66, 92] that avoid
complete enumeration of 0-1 integer values. Even with this enhancement, the algorithms
have exponential complexity depending on the cardinality of binary vector δ.

Chapter 3

Multiparametric Programming

The aim of the multiparametric programming is to characterize the optimal solution x∗

of a given optimization problem for a full range of parameters θ ⊂ R
s. Such result is

referred to as explicit solution because it is expressed as a map in an explicit form, i.e.
x∗(θ) : R

s 7→ R
n. If the parameters θ are fixed numbers, the multiparametric problem will

reduce to (2.1). Multiparametric programming is thus another way of solving optimization
problems which gives exactly the same result as if the problem has been solved using any
of the methods reviewed in Chapter 2. The main advantage of explicit solutions is their
geometric interpretation which has a strong application in theory of optimal control. Some
basic multiparametric problems will be introduced in the sequel.

3.1 Multiparametric Problems

For a sake of completeness, multiparametric versions of LP, QP and MILP problems will
be introduced in this section. Multiparametric programs are emerging field in system en-
gineering and recent developments in theory and applications are summarized in collection
[83, 84].

3.1.1 Multiparametric Linear Programming

A multiparametric Linear Program (mpLP) is a convex optimization problem where the
objective function and constraints are linear, and moreover, constraints depend linearly on
a given vector of parameters θ ∈ R

s. More precisely,

min
x
cTx+ dTθ (3.1a)

s.t. Gx ≤ h+ Sθ (3.1b)

Mθ ≤ l (3.1c)

where x ∈ R
n is a vector of optimization variables. Furthermore, c ∈ R

n, d ∈ R
s,

G ∈ R
m×n, S ∈ R

m×s, h ∈ R
m, M ∈ R

p×s, and l ∈ R
p. The only difference comparing

to LP is that the solution of the problem (3.1) is searched for whole possible values of

19

20 3 Multiparametric Programming

parameters θ ∈ Θ, Θ := {θ ∈ R
s | Mθ ≤ l}, i.e. (3.1c). Let X ⊂ R

n denote the set of
x∗ for which the problem (3.1) was feasible. Then, the explicit solution will be a mapping
x∗(θ) : Θ 7→ X . The attribute multiparametric refers to presence of multiple parameters,
otherwise the problem boils down to LP.

3.1.2 Multiparametric Quadratic Programming

A multiparametric Quadratic Program (mpQP) is a convex optimization problem where the
objective function is quadratic, constraints are linear, and the right hand side of constraints
contains a vector of parameters θ ∈ R

s which depend linearly on θ, i.e.

min
x

0.5xTPx+ 0.5θTQθ + θTRx (3.2a)

s.t. Gx ≤ h+ Sθ (3.2b)

Mθ ≤ l (3.2c)

where P ≻ 0, Q � 0, R ≻ 0, P ∈ R
n×n, Q ∈ R

s×s, R ∈ R
s×n, G ∈ R

m×n, h ∈ R
m,

S ∈ R
m×s M ∈ R

p×s and l ∈ R
p. Contrary to QP, the solution is searched for the whole

range of parameters θ ∈ Θ, Θ := {θ ∈ R
s | Mθ ≤ l}, i.e (3.2c). Let X ⊂ R

n denote the
set of x∗ for which the problem (3.2) was feasible. Then, the solution will be a mapping
x∗(θ) : Θ 7→ X . Equation (3.2b) express the polyhedral set as a function of θ over which
the feasible solution is to be found.

3.1.3 Multiparametric Mixed Integer Linear Programming

A multiparametric Mixed Integer Linear Program (mpMILP) is a non-convex optimization
problem where the objective function and constraints are linear, and moreover, the variables
belong to real and binary set. Moreover, the right hand side of constraints contains a vector
of parameters θ ∈ R

s which depend linearly on θ. Precisely,

min
x,δ

cTx+ dTδ (3.3a)

s.t. Gx+ Tδ ≤ h+ Sθ (3.3b)

Mθ ≤ l (3.3c)

where x ∈ R
n, δ ∈ {0, 1}q, c ∈ R

n, d ∈ R
q, G ∈ R

m×n, T ∈ R
m×q, h ∈ R

m, S ∈ R
m×s,

M ∈ R
p×s l ∈ R

p. However, for a given combination of fixed binary variables δ, the
problem (3.3) boils down to mpLP. For fixed δ’s, there exist up to 2q possible combinations
of binary couples has to be explored but due to branch and bound techniques for solving
MILP, this number is gradually reduced.

3.2 Solving Multiparametric Problems

The aim of this section is to present one of the methods for solving multiparametric prob-
lems. More details about the efficient strategies for solving mpLP, mpQP and mpMILP

3.2 Solving Multiparametric Problems 21

problems are given in [11, 16, 23]. An efficient version of the multiparametric algorithm
appeared in [105] and more recently in [57]. In fact, the overall principle is the same thus
only mpQP case is detailed here.
Given P ≻ 0 in mpQP problem (3.2), it is convenient to introduce a new variable z ∈ R

n

z = x+ P−1Rθ. (3.4)

By substitution of (3.4) in (3.2), the problem is transformed to a form

min
z

0.5zTPz (3.5a)

s.t. Gz ≤ h+ Tθ (3.5b)

where T = S +GP−1R. It is very important to note that parameter θ enters the con-
straints (3.5b) linearly. The transformed problem (3.5) is tackled by investigating the
necessary Karush-Kuhn-Tucker optimality conditions which provide the basic apparatus
for solving mpQP. Expressing these conditions for problem (3.5) gives

Pz +GTλ = 0, λ ∈ R
q (3.6a)

λi(Giz − hi − T iθ) = 0, i = 1, . . . , q (3.6b)

λ ≥ 0 (3.6c)

Gz − h− Tθ ≤ 0 (3.6d)

where λ is a vector of Lagrange multipliers. From (3.6a) one immediately obtains

z∗ = −P−1GTλ (3.7)

which turns out to be a linear relation between x and λ through the substitution (3.4). As
the relation (3.4) is linear in θ, relation (3.7) is also linear with respect to θ. Solving the
problem (3.5) for a particular value of θ gives expression for λ and since λ is constraint-
dependent, denote the part λA as the vector of Lagrange multipliers corresponding to
active constraints λA > 0, and λI to inactive constraints λI = 0. Similarly, define

A(θ) = {i Giz(θ) = hi + T iθ} (3.8)

which is the set of indices of active constraints at the optimum. The set (3.8) is obtained
by solving QP for a feasible initial value of θ. Subsequently, rows indexed by the active
constraints A(θ) are extracted from the constraint matrices G, h, T to form matrices GA,
hA, TA considering only this limited set of constraints. Substituting (3.7) into equality
constraints (3.6b) gives

−GAP
−1GT

AλA + hA + TAθ = 0 (3.9)

which in turn defines set of active multipliers

λA = (GAP
−1GT

A)−1(hA + TAθ). (3.10)

22 3 Multiparametric Programming

Combining (3.10) with equation (3.7) the expression for z∗ is

z∗ = −P−1GT
A(GAP

−1GT
A)−1(hA + TAθ) (3.11)

which is a solution to (3.5). In the back-transformation, the minimizer x∗ of the problem
(3.2) is given as

x∗ = F rθ + gr (3.12)

which is an affine function in θ where

F r = P−1GT
A(GAP

−1GT
A)−1TA − P−1RT (3.13)

gr = P−1GT
A(GAP

−1GT
A)−1hA. (3.14)

Moreover, as the active constraints are defined over the set A(θ), conditions (3.6c) and
(3.6d) must be satisfied. Therefore by plugging (3.10) in (3.6c) and (3.11) in (3.6d) one
obtains a polyhedral description in the parameter space where x∗ is valid

Pr = {θ ∈ R
s Hrθ ≤ lr} (3.15)

with

Hr =

(

G(F r + P−1RT) − T
(GAP

−1GT
A)TA

)

(3.16)

lr =

(

h−Ggr

−(GAP
−1GT

A)hA

)

. (3.17)

Note that the optimizer (3.12) is actually associated with the region of active constraints
(3.15). To cover the whole feasible area, the algorithm traverses through the parameter
space and iteratively detects the active sets (3.8). By this way a sequence of affine functions
(3.12) is generated, each corresponding to given region (3.15). The final result of the
multiparametric problem forms r = 1, . . . , nR partitions of PWA function defined over
Pf =

⋃Pr partitions where Pf is called a feasible set.
In summary, mpQP algorithm can be summarized into following steps:

1. Active constraint identification: For a given initial feasible θ search a set of active
constraints (3.8) by solving (3.5). Extract the particular rows from matrices G, h,
T and form matrices GA, hA, TA to obtain optimizer (3.11).

2. Region computation: Obtain explicit representation of the optimizer x∗ (3.12) and
the corresponding region (3.15).

3. State space exploration: If the first region is found, continue the search by change
in parameters θ and repeating steps 1. – 2. until the whole feasible domain is not
covered. Partitioning the remainding space is done via reversing the sign in one
of the inequality (3.15) and removing redundant inequalities, as suggested in [16].
Alternatively, one can use approach of [3].

This method for solving multiparametric problem mpLP, mpQP, and mpMILP are im-
plemented in Multi-Parametric Toolbox (MPT) by [64] which is freely available on the
internet.

3.3 Properties of the Explicit Solutions 23

3.3 Properties of the Explicit Solutions

The properties of the explicit solutions are stated by following theorems.

Theorem 3.1 (Properties of mpLP, [23]) Consider the mpLP (3.1) with a linear ob-
jective function J (x,θ) = cTx + dTθ. Then, the set of feasible parameters Θ is convex,
there exists an optimizer x(θ) : Θ 7→ R

n which is continuous and piecewise affine, i.e.

x∗(θ) = F rθ + gr if θ ∈ Pr, (3.18)

where Pr = {θ ∈ R
s |Hrθ ≤ lr} , r = 1, . . . , nR and the optimal value function J (x∗,θ) :

Θ 7→ R is continuous, convex and piecewise affine.

Example 3.1 Consider the following mpLP

min
x

x (3.19)

s.t. θ1 − θ2 − x ≤ 0.2

−0.5θ1 + θ2 − x ≤ 0.4

−1 ≤ x ≤ 1

0 ≤ θ1 ≤ 1

0 ≤ θ2 ≤ 1

where x is the optimization variable and θ = (θ1, θ1)
T is the vector of parameters. Solving

the problem (3.19) parametrically, with the help of optimization tools such as YALMIP and
MPT [64, 67], gives

x∗ =

{

−0.5θ1 + θ2 − 0.4 if θ ∈ P1

θ1 − θ2 − 0.2 if θ ∈ P2

(3.20)

where

P1 :=















θ ∈ R
2









−1 0
1 0
0 1

0.6 −0.8









θ ≤









0
1
1

−0.08























,

P2 :=















θ ∈ R
2









−1 0
0 −1
1 0

−0.6 0.8









θ ≤









0
0
1

0.08























.

Partitions P1 and P2 are depicted in Fig. 3.1 (a). Optimizer x∗ of the problem (3.19) is
shown in Fig. 3.2 (a) and value function J(x∗,θ) is illustrated in Fig. 3.3 (a).

24 3 Multiparametric Programming

Theorem 3.2 (Properties of mpQP, [23]) Consider mpQP (3.2). Then, the set of
feasible parameters Θ is convex, the optimizer x∗ : Θ 7→ R

n is continuous and piecewise
affine, i.e.

x∗(θ) = F rθ + gr if θ ∈ Pr, (3.21)

where Pr = {θ ∈ R
s |Hrθ ≤ lr} , r = 1, . . . , nR and the optimal value function J (x∗,θ) :

Θ 7→ R is continuous, convex and piecewise quadratic.

Example 3.2 Consider the following mpQP

min
x

x2 (3.22)

s.t. θ1 − θ2 − x ≤ 0.2

−0.5θ1 + θ2 − x ≤ 0.4

−1 ≤ x ≤ 1

0 ≤ θ1 ≤ 1

0 ≤ θ2 ≤ 1

where x is the optimization variable and θ = (θ1, θ2)
T is the vector of parameters. Problem

(3.22) differs from (3.19) only in the objective function, the constraint set is the same.
Solving the problem (3.22) parametrically gives

x∗ =











0 if θ ∈ P1

θ1 − θ2 − 0.2 if θ ∈ P2

−0.5θ1 + θ2 − 0.4 if θ ∈ P3

(3.23)

where

P1 :=























θ ∈ R
2













−1 0
0 −1
1 0

0.707 −0.707
−0.447 0.894













θ ≤













0
0
1

0.141
0.358



































,

P2 :=







θ ∈ R
2





0 −1
1 0

−0.707 0.707



θ ≤





0
1

−0.141











,

P3 :=















θ ∈ R
2









−1 0
1 0
0 1

0.447 −0.894









θ ≤









0
1
1

−0.358























.

Partitions P1, P3, and P3 are depicted in Fig. 3.1 (b). Optimizer x∗ of the problem (3.19)
is shown in Fig. 3.2 (b) and value function J(x∗,θ) is illustrated in Fig. 3.3 (b).

3.3 Properties of the Explicit Solutions 25

Theorem 3.3 (Properties of mpMILP, [23]) Consider the mpMILP (3.3). Then the
set of feasible parameters Θ is a (possibly) non-convex polyhedral set and the value function
J(z∗,θ), z∗(θ) = (x∗(θ), δ∗(θ))T , is piecewise affine on polyhedra. If the optimizer z∗(θ)
is unique for all θ ∈ Θ, then the optimizer function z∗(θ) is piecewise affine on polyhedra.
Otherwise, it is always possible to define a piecewise affine optimizer function z∗(θ) ∈ Z(θ),
Z(θ) := Θ 7→ 2R

n × 2{0,1}q
which describes for all θ ∈ Θ the set of optimizers x(θ) related

to J(z∗).
Moreover, if the cost function J(z∗) is convex in z for each fixed θ, then it is always
possible to define a piecewise affine and continuous optimizer function z∗(θ) ∈ Z(θ).

Example 3.3 Consider the following mpMILP

min
x

δ (3.24)

s.t. θ2 + 0.5δ ≤ 1

−θ2 − 0.5δ ≤ −0.5

θ1 + θ2 + δ ≤ 2

0 ≤ θ1 ≤ 1

0 ≤ θ2 ≤ 1

where δ is the binary optimization variable and θ = (θ1, θ2)
T is the vector of parameters.

Solving the problem (3.24) parametrically gives

δ∗ =

{

0 if θ ∈ P1

1 if θ ∈ P2

(3.25)

where

P1 :=















θ ∈ R
2









0 −1
1 0
0 1
−1 0









θ ≤









−0.5
1
1
0























,

P2 :=















θ ∈ R
2









0 1
0.707 0.707
−1 0
0 −1









θ ≤









0.5
0.707

0
0























.

Partitions P1 and P2 are shown in Fig. 3.4(a). Note that the union of both partitions is
non-convex. Optimal values of δ∗ are shown in Fig. 3.4(b), one representing the value of
0 and the other one value of 1.

26 3 Multiparametric Programming

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ
1

θ 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

θ
1

θ 2

(a) (b)

Figure 3.1: Partitions of the explicit solution for mpLP (a) and mpQP (b).

0
0.5

1

0

0.5

1

−0.2
0

0.2
0.4

0.6

θ
1

θ
2

x*

0
0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

θ
1

θ
2

x*

(a) (b)

Figure 3.2: Corresponding optimizer for mpLP (a) and mpQP (b).

0
0.5

1

0

0.5

1

−0.2
0

0.2
0.4

0.6

θ
1

θ
2

J*

0
0.5

1

0
0.5

1
0

0.2

0.4

0.6

θ
1

θ
2

J*

(a) (b)

Figure 3.3: Value function for mpLP (a) and mpQP (b).

3.3 Properties of the Explicit Solutions 27

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

θ
1

θ 2

(a)

0
0.5

1

0

0.5

1
0

0.5

1
δ*

θ
1

θ
2

(b)

Figure 3.4: Explicit solution to mpMILP problem in Example 3.3 consist of two partitions
which create a non-convex union (a). The value function is equal to the optimizer in this
case (b).

Chapter 4

Model Predictive Control

Model Predictive Control (MPC) is one of successful methodologies which is especially
suitable for control of processes in the presence of physical constraints [25, 68]. Its app-
licability to industrial processes is excellently documented in [87] where an overview of
available commercial packages is given. Currently, the notion of MPC covers a wide area
of methods, which can be categorized depending on various criteria. In this chapter the
principles of MPC will be explained and an overview of existing approaches will be given.
It should be stressed here that the symbols used in this Chapter follow the convention of
textbooks on control theory. In particular, x will be used to denote the plant’s states,
u are the plant’s inputs and y are the plant’s outputs. The optimization variables and
parameters will be specified accordingly.

4.1 Predicting the Future

As the adverb predictive suggests, the idea of MPC is to somehow foresee the future and
use this prediction to consequently make a decision. This behavior is typical in human
reasoning and no wonder that it has been applied to process control. In fact, the first ever
predictive approach is a standard proportional-integral-derivative (PID) controller. The
prediction part is built by the derivative term which foresees the process evolution over an
infinite small time horizon. The overall effect of PID controller is then composed of weighted
past and future information. So far PID control has been the best possible solution for
industry, providing cheap and reliable process management. However, in human reasoning
the predictions are realized over larger horizons. This approach is called decision planning
and one may remember such strategy e.g. from playing chess game. Forecasting the future
affects our everyday life. For instance, one can imagine a situation when driving a car as
given in Fig. 4.1. The future information for the driver is the shape of the road ahead with
possible obstacles. Current information gives the front panel with the actual speed and
engine revolutions, whereas past information can be seen in the rear mirror. Depending on
these information the driver can decide which action should be taken in order to manage
the left turn. In this situation the prior information comes from the future and the resulting
driver’s actions is turning the wheel to the left.

29

30 4 Model Predictive Control

Figure 4.1: Driving a car is a predictive control strategy.

In order to carry over this decision making process for automatic control, its necessary
to introduce the concept of process model. A model is a mathematical abstraction of real
process which is usually described using input-output relations. Inputs are usually signals
to the plant which can be manipulated (e.g. gas pedal) or can not (e.g. side wind, slope
of the road). The actual information about the plant is given by state variables, such as
car speed or engine revolutions, and one can read some output variables (e.g. data on the
front panel). Usually, the updates about plant outputs are provided by measurements.
Denoting u in general as plant inputs with dimension m, x as states with dimension n, y
as outputs with dimension r, one such model can be given by

x(t + Ts) = f(x(t),u(t)) (4.1a)

y(t) = g(x(t),u(t)) (4.1b)

where f , g are corresponding mathematical functions of x(t), u(t). The variable t repre-
sents time and Ts is a discrete sample time unit. The process model (4.1) gives the state
prediction one step ahead, i.e. in time t+Ts based on the current information from x(t) and
u(t). It is assumed that variables in (4.1) are functions of time, i.e. u = u(t), x = x(t),
y = y(t), but the time dependence notation will be mostly deprecated throughout the
thesis.

Assuming that the process model (4.1) is given, this information can be utilized to obtain
future predictions from current time t to t + kTs, where k = 1, 2, . . . , N and N denotes
the prediction horizon. To simplify the presentation, it is more convenient to replace
the prediction interval [t, t + kTs] with time instances as {t0, . . . , tN} where t0 = t and
tN = t + NTs. For dynamical systems it is always important to know initial condition
x0 = x(t0) which gives the initial constraint on state variables. Given x0, one can compute
the time evolution of system (4.1), that is, for particular values of input u0, . . . ,uN−1

to obtain states x1, . . . ,xN and outputs y0, . . . ,yN at given prediction times t0, . . . , tN .
Future inputs U = (uT

0 ,uT
1 , . . . ,uT

N−1)
T can be taken to play the role of decision variables

which influence the outputs, thus the model outputs can be managed to follow a certain
goal. Now the question which arises is, how to manage the future inputs? The answer is,
to formulate an optimal control problem.

4.2 Formulation of a General Optimal Control Problem 31

4.2 Formulation of a General Optimal Control Prob-

lem

Due to increasing needs for constraints treatment in the process control, there is a strong
motivation to express control problems as problems of constrained optimization. The
optimization theory allows a suitable translation between the linguistic representation of
a control problem to an equivalent mathematical form. A very general optimal control
problem might be formulated as follows

Problem 4.1 (General Formulation of Optimal Control Problem) Find optimal
control inputs U ∗ = (uT

0 ,uT
1 , . . . ,uT

N−1)
T which drive the system from the current state x0

at time t0 towards origin such that

min F (xN) +
N−1
∑

k=0

L(xk,uk) (4.2a)

subject to: xk+1 = f(xk,uk), (4.2b)

xk ∈ X (4.2c)

uk ∈ U . (4.2d)

Expression (4.2a) defines the cost function, (4.2b) is the process model and X , U are the
constraints on states (4.2c) and inputs (4.2d), respectively. Problem 4.1 is often referred to
as constrained finite time optimal control (CFTOC) because of the presence of constraints
and finite horizon N . If the optimization problem is formulated over an infinite horizon, it is
referred to as constrained infinite time optimal control problem (CITOC). Predictions from
the process model are taken into account up to N steps to the future and control inputs U ∗

are the optimized degrees of freedom. Optimal control problems, such as Problem 4.1, have
been formulated in late 50’s of the 20th century and the main motivation that time was
driven by military and aerospace needs with applications in flight control. This research
stream is often referred to as classical theory of optimal control and it has provided a very
powerful tool for solving numerous practical problems [9, 68].
Assume that Problem 4.1 is feasible for x0 = x(t). Depending on how the control input
U ∗ are expressed, the optimal solution to Problem 4.1 is characterized as follows:

implicit solution: The computed input U ∗ is given as a sequence of numerical values u∗
0,

u∗
1, . . ., u∗

N−1 which depend on the particular values of x0 at specific times within
the interval [t0, tN].

explicit solution: The control input U ∗ is given as a sequence of functions typically with
plant state as its argument, i.e. u∗

0 = π0(x0), u
∗
1 = π1(x0), etc.

In fact, the solution to CFTOC Problem 4.1 comprises of future optimal instances of
inputs, states, outputs, and they form input/state/output trajectories. These trajectories
represent the optimal evolution of a given process model from the current time t0 up to

32 4 Model Predictive Control

time tN in the predicted future. Obtained sequence of inputs U can be fed to the system
in an open-loop manner and the system states will move from x0 towards origin. However,
it can happen that xN may not be at the origin at tN due to finite horizon N . One may
try to recompute the solution to Problem 4.1 again, using xN as the initial point, but
it may cause CFTOC Problem 4.1 to become infeasible. Moreover, since the model is a
simplification of real behavior, there is always mismatch between the real plant and the
process model. The consequence of the mismatch can cause the real final state to differ
from the prediction. Ignoring this fact may cause unwanted performance loss, and in the
worst, case violation of constraints as well as instability of the closed loop [63]. Therefore,
additional corrections via feedback implementation are necessary.

4.3 Closed-Loop Implementation of MPC

Applying the optimal solution to CFTOC problem in the closed loop setup does not guar-
antee convergence toward origin since the predicted and real trajectories may differ. The
computed sequence of inputs is based on the actual information given by the state x0.
Note that the actual feedback part of U is only the first element u0, and the rest of the
computed trajectory is an open loop sequence. Thus, in order to introduce the feedback,
u0 should be applied repetitively.

This way of implementation is called receding horizon principle and can be illustrated as
shown in Fig. 4.2. Denote t0 as the current time and t1 as one time step forehead and
t−1 as one step backward. Analogously, the states and inputs are defined with respect
to their corresponding time. Consider the prediction horizon N = 3. Fig. 4.2(a) shows
the predictions of state x with the corresponding input signal u up to time t3 from given
initial condition x0. The red axis refers to the current time t0. Optimization algorithm
searches the future evolution of the state up to time t3 with manipulating the future
inputs U = (uT

0 ,uT
1 ,uT

2)T until there is no improvement in the optimization objective of
Problem 4.1. When optimization terminates, the first element u0 is selected and applied to
the plant. Fig. 4.2(b) shows the situation where new updates x0 arrived and the prediction
is shifted one step ahead. The red axis has moved indicating that the red lines are now
referring to the past. Note that there is a difference between the real evolution of the plant
state (solid red trajectory) contrary to the prediction (dashed trajectory). The new state
update x0 creates now initial condition for new predictions. The optimization problem
needs to be recomputed again based on the new initial condition. If the optimal solution
is available, the first element u0 is picked from the computed trajectory, fed back to the
plant, and the same principle repeats as shown in Fig. 4.2(c).

The implementation scheme differs for the implicit and explicit type of solution. In the
implicit case, the optimal inputs are given as sequence of numbers, thus it suffices to use the
element from this sequence and apply it to the plant. However, the optimization problem
needs to be recomputed again in the next sample to obtain a new sequence of inputs.
The implementation of the implicit solution thus solves CFTOC every time as new state
updates are collected. This scheme is shown in Fig. 4.3.

4.3 Closed-Loop Implementation of MPC 33

x, u

x0

x3

x1

x2

u1

u0

u2

t0 t1 t2 t3

(a)

x, u

x−1

x0

x3
x1

x2

u1

u−1

u0

u2

t0 t1 t2 t3t−1

(b)

x, u

x−2
x−1

x0

x3x1 x2

u1

u−2

u−1

u0

u2

t0 t1 t2 t3t−1t−2

(c)

Figure 4.2: Receding horizon principle.

34 4 Model Predictive Control

Plant

control actions plant state

feedback

solve CFTOC
x0 = x(t)u(t) = u0 U

select u0

Figure 4.3: A feedback control scheme with implicit solution.

Plant

control actions plant state

feedback

x0 = x(t)u(t) = u0
evaluate u0 = π0(x0)

Figure 4.4: A feedback control scheme with explicit solution.

In the explicit case, the optimal inputs are expressed as functions of states, i.e. u∗
0 =

π0(x0), u1 = π1(x0),. . ., u
∗
N−1 = πN−1(x0). To apply the receding horizon principle, the

first function is evaluated for the actual value of state x0 and the value u∗
0 is applied to

the plant. Remaining functions are not needed since in the next sampling instant the same
function u∗

0 = π0(x0) is evaluated again, but this time with a new state. The scheme is
depicted in Fig. 4.3.
There are advantages and disadvantages of both implementation schemes. The feedback
control scheme using the implicit solution translates CFTOC problem to one of the op-
timization problems stated in Chapter 2 that can be efficiently solved with existing opti-
mization tools. The scheme thus relies on the optimization solver at each sampling time.
Typically, the solver is capable of dealing with large problems but it needs some time to

4.4 Ingredients of MPC 35

terminate. Therefore, this approach is suitable for plants with high number of optimized
variables and constraints where the sampling time is long enough for the solver to termi-
nate. The closed-loop scheme using explicit solution is much simpler to implement, as it
only evaluates the given function for a changing state. CFTOC problem is transformed to
a corresponding multiparametric program presented in Chapter 3 and solved explicitly for
the whole range of operating parameters. However, such computation is much more diffi-
cult to obtain if the number of optimized parameters is large. The explicit MPC approach
is thus suitable for plants with small number of variables and fast sampling.

Implementation of the optimal control law via receding horizon policy is based on the
assumption that the solution to Problem 4.1 exists for all time t > 0. Therefore, one
should formulate the optimal control problem with some feasibility guarantees. Stability
of the closed-loop system is yet another issue of the feedback implementation. Both,
feasibility and stability issues will be detailed later in Section 4.5. In the following sections
the attention will be given to particular ingredients of CFTOC problem, namely, the cost
function, the process model and the constraints.

4.4 Ingredients of MPC

This section explains the ingredients needed to formulate the optimal control Problem 4.1.
In particular, a quick overview in the selection of cost functions and constraints is given.
The main attention is paid to process models that will be further described in Part II.

4.4.1 Cost Function

The cost function in Problem 4.1 characterizes the performance criterion to be minimized
with the predicted behavior of a process model up to horizon N . Typically, the cost
function accounts the predicted trajectories of states x and future control moves U with
respect to the desired reference point. Without loss of generality, assume that the given
reference point is the origin, which is a typical goal for a regulation problem. In order to
reach the maximum performance, the predictions should be counted up to infinite horizon
N → ∞. Such objective can be expressed as follows

J(x,U) =
∞
∑

k=0

L(xk,uk) (4.3)

where L(x,u) : R
n × R

m 7→ R is a function of states and inputs at k-th step during the
prediction. Although there exist approaches that can handle CITOC problems [5, 78, 86],
it is standard practice to split the objective function (4.3) to a finite sum and terminal
cost, i.e.

J(x,U) = F (xN) +
N−1
∑

k=0

L(xk,uk) (4.4)

36 4 Model Predictive Control

where F (x) : R
n 7→ R is a terminal cost function. The truncated cost function (4.4)

approximates the cost function with infinite horizon (4.3) but it requires a finite number
of optimization variables. The choice of F (·) and L(·) depends on the particular control
problem. A very common formulation of cost function (4.4) is as follows

F (x) = ‖Px‖p (4.5a)

L(x,u) = ‖Qx‖p + ‖Ru‖p (4.5b)

where ‖ · ‖p is a p-norm with p = {1, 2,∞} and P , Q, R are weighting factors.
Time optimal control problems use the cost function in the form

J = N (4.6)

which accounts only prediction horizon. The control objective is to minimize the number
of predicted steps.

4.4.2 Process Models

Models play a very important role in MPC, as they are the only source of predicting future.
Mathematical modeling of a real physical process utilizes usually 1) theoretical aspects such
as laws of mass and energy conservation, mechanical principles, etc., 2) empirical aspects
such as observation, measurement, or 3) combination of both. The result of mathematical
modeling is a process model describing a process behavior with respect to time and it can
be given in one of the following form:

Input-output models: Predicted outputs y0, y1, . . ., yn are function of past outputs
and past inputs u0, u1, . . ., un, i.e.

yn = f(yn−1, . . . ,y0,un, un−1, . . . ,u0). (4.7)

Input-output models are easily obtained in practice, e.g. by investigating step or
input responses of the plant. Therefore, several approaches to MPC has been devel-
oped which use input-output models, e.g. dynamic matrix control (DMC) approach
[36, 85], internal model control (IMC) [42], generalized predictive control (GPC) [35].
In fact, GPC approach turned to be as one of the very successful control methodolo-
gies and the original paper became the 3rd most cited article in Automatica [109]. A
detailed overview on GPC with industrial applications in given in [25].

State-space models: The state-space formulation is given by

xk+1 = f(xk,uk), (4.8a)

yk = g(xk,uk) (4.8b)

where the subscript k denotes the discrete time instance. Equation (4.8a) repre-
sents the plant dynamics and (4.8b) is the output equation. The structure of state-
space models provides useful information for investigating closed loop properties,
e.g. stability. Derivations of MPC approaches with state space models is evident in
[69, 71, 90] and later in [68].

4.4 Ingredients of MPC 37

In principle, input-output models (4.7) and state-space models (4.8) are equivalent, as
they can be translated from one form to another. State-space models have the advantage
that they contain more information about the plant due to the presence of state variables
x which is missing in the input-output representation. Moreover, most of optimal control
theory is based on state-space models, hence in the remainder of the thesis only state-space
representation will be considered.
Goal of the modeling process is to obtain the simplest representation of the real plant
while capturing its most important dynamical properties. However, the model will never
be perfect, thus some discrepancy will be always present. To account this difference,
uncertain models have been introduced. In particular,

Models with additive disturbances: Dynamic equation of the model is affected by dis-
turbance term d from a bounded set D, i.e.

xk+1 = f(xk,uk) + dk, dk ∈ D. (4.9)

Note that the uncertainty d enters the equation (4.9) linearly which has important
consequences in robust control design [89].

Models with parametric uncertainties: The uncertainty affects the parameters p which
are part of the function f , i.e.

xk+1 = f(pk,xk,uk), pk ∈ P. (4.10)

Parameters p are not constants but they are allowed to vary in bounded set P .

To meet the main goals of the thesis, an overview of hybrid models needs to be introduced.
Specifically, the following models are considered:

Linear Time Invariant (LTI) models: The dynamic equation (4.8a) has a specific form
where the functions f , g are given as a linear combination of states and inputs, i.e.

xk+1 = Axk +Buk (4.11a)

yk = Cxk +Duk (4.11b)

where A ∈ R
n×n, B ∈ R

n×m, C ∈ R
r×n, D ∈ R

r×m are constant matrices. LTI
models are widely used in MPC due to their relatively simple structure, defined by
matrices A, B, C and D, which is valid over the whole space of interest. Moreover,
LTI models can be easily obtained in practice, e.g. using techniques from experi-
mental identification [72, Chapter 6]. Formulation and solution to optimal control
problems involving LTI models has been extensively studied in many textbooks, for
instance [58, 68, 72].

Hybrid models: Hybrid models are a special class of systems where the equation for
system dynamics is combined with logical rules. The consequence of logical operations
is that variables describing the model are defined not only in the class of real numbers,

38 4 Model Predictive Control

PWA

MLD

LC

ELC

MMPS

Figure 4.5: Equivalence of hybrid dynamical models [48].

but also Boolean variables are present. A hybrid model can be given in the form
of (4.8) whereas additional conditions have to be provided to specify the relation
between binary and real variables. Fundamentals of integrating logical elements into
predictive control framework are documented in [15] and the interested reader may
find more in [65]. It has been shown in [48] that the behavior of hybrid systems can
be captured using many forms, in particular

• Mixed Logical Dynamics (MLD) systems

• Piecewise Affine (PWA) systems

• Linear complementarity (LC) systems

• Extended linear complementarity (ELC) systems

• Max-min-plus-scaling (MMPS) systems

and their dynamical behavior is equivalent. The equivalence principle allows one to
transform from one representation to another and opens the possibility to select the
desired hybrid modeling framework. Illustration of the equivalence principle is shown
in Fig. 4.5. For the use in this thesis, only MLD and PWA systems will be reviewed.

Piecewise Affine (PWA) models: PWA systems are a special class of hybrid sys-
tems which can approximate the dynamic behavior of general nonlinear systems
with arbitrary precision [94]. PWA systems have strong advantages for the use
in optimal control. From a practical point of view, they can be easily obtained
by linearization technique at various operating points. On a theoretical side,

4.4 Ingredients of MPC 39

they maintain a piecewise linear structure which is very useful for optimiza-
tion. Their dynamical behavior is given by in the state space form (4.8) and are
composed of multiple linear models, i.e.

xk+1 = fPWA(xk,uk) (4.12a)

= Aixk +Biuk + ci if

(

xk

uk

)

∈ Di (4.12b)

where matrices Ai, Bi, ci, i = 1, . . . , nD define the local linear model and nD

is the total number of dynamics. The specificity of PWA model (4.12) lies in
IF-THEN logical rules, that is, whenever state-input vector (xT

k ,uT
k)T lies inside

a polytopic set

Di :=

{(

x

u

)

∈ R
n+m H i

(

x

u

)

≤ li
}

, (4.13)

local dynamics i is selected. In order to avoid multiple updates xk+1, there
can be only one dynamics associated to given partition which comes with the
following assumption:

Assumption 4.1 (Well-posedness) PWA model in (4.12) is well-posed ac-
cording to Definition 1 in [15] if the regions (4.13) are not overlapping, i.e.
Di ∩ Dj = ∅ for i 6= j.

PWA model thus acts as dynamical selection from table of local models. Com-
paring to LTI systems the evolution of PWA model can be non-smooth due to
switching, thus MPC based on PWA models has to deal also with these issues.
An overview of PWA based MPC approaches is given in [3, 23, 32].

Mixed Logical Dynamical (MLD) Models: Mixed Logical Dynamical (MLD)
systems describe in general the behavior of linear discrete-time systems with
integrated logical rules. MLD systems have been introduced by [15], and the
model is given by a set of following equations

xk+1 = Axk +Buuk +Bauxwk +Baff (4.14a)

yk = Cxk +Duuk +Dauxwk +Daff (4.14b)

Exxk +Euuk +Eauxwk ≤ Eaff (4.14c)

where (4.14a) is the state-update equation, (4.14b) is the output equation, and
linear inequalities (4.14c) describe the switching conditions expressed as inequal-
ities. MLD model (4.14) uses following notations: x ∈ R

nxr ×{0, 1}nxb is a vector
of real and binary states, u ∈ R

nur × {0, 1}nub are the (real and binary) inputs,
y ∈ R

nyr × {0, 1}nyb vector of (real and binary) outputs, w ∈ R
nz × {0, 1}nd

represent auxiliary real, and binary variables, respectively, and A, Bu, Baux,
Baff, C,Du,Daux,Daff, Ex, Eu, Eaux, Eaff are matrices of suitable dimensions.
For a given state xk at discrete time instant k and input uk the evolution of
the MLD system (4.14) is determined by solving wk from (4.14c) and updating

40 4 Model Predictive Control

xk+1, yk. In order to avoid multiple solutions to (4.14), MLD system must be
well-posed, i.e. there must exist only unique solution xk+1 and yk once xk and
uk are specified [15].

The specificity of MLD model (4.14) contrary to general case (4.8) comes from its
internal structure. That is, relations between variables are linear and operating
constraints (4.20) are integral part of the model. The practical advantage of
MLD models is that they can be generated from basic logical rules used very
common in industry.

Takagi-Sugeno (TS) fuzzy models: Fuzzy sets and systems have been introduced by
[114] and they represent objects with different grades of membership. A fuzzy system
is characterized by a base of rules with associated membership functions and its
properties are determined by a combination of these rules. A great advantage of fuzzy
systems is their ability to approximate almost any dynamic systems with arbitrary
precision [100].

The class of discrete-time TS models [98] is described by fuzzy “IF . . . THEN” rules
which specify interpolating conditions between i = 1, . . . , nD local dynamics. Con-
trary to PWA models more than one local model can be valid at the same time. This
is the fundamental difference comparing to PWA models where only one model can
be selected. Generally, TS model is given as

IF x1,k is µi1 and . . . xn,k is µin THEN xk+1 = Aixk +Biuk + ci (4.15)

where µij are fuzzy sets for i = 1, . . . , nD dynamics and j = 1, . . . , n with n being
the dimension of x. Matrices Ai, Bi, ci define the local dynamics and µij ∈ [0, 1] is
the fuzzy membership function. The aggregated system output is inferred as

xk+1 =

∑nD

i=1 wi(xk)(Aixk +Biuk + ci)
∑nD

i=1 wi(xk)
(4.16)

with

wi(xk) =
n
∏

j=1

µij(xj,k) (4.17)

where the membership function µij(xj,k) measures the activation of the fuzzy set j
in the rule i. Using the definition

αi(xk) =
wi(xk)

∑nD

i=1 wi(xk)
, αi(xk) ≥ 0 (4.18)

the overall system model can be described as

xk+1 =

nD
∑

i=1

αi(xk)(Aixk +Biuk + ci). (4.19)

The use of fuzzy models in control is excellently documented in a survey paper by [40].

4.5 Stability Requirements 41

4.4.3 Constraints

Physical, safety, environmental, or economical constraints are often entering the formu-
lations of optimal control problems. Presence of constraints in optimization problems is
usually a consequence of real world limitations to a mathematical abstraction represented
by process model. In fact, the model of the form (4.1) is an equality constraint, restricting
the optimal solution to be searched along the predicted trajectory. Besides equality con-
straints there exist also inequality constraints which define the operating space of variables.
Examples of such constraints are for instance the non-negativity of liquid flow, finiteness
of equipment performance, boundedness of supply resources etc. Constraints are thus very
important ingredient of MPC as they can be directly considered in the control design.
Practically, this ability makes MPC superior to other control approaches.
Constraints on state and control variables can be separated according to their validity over
the prediction horizon [t0, tN], into following categories:

Interior constraints: The constraints are imposed at each predicted times t1, t2, . . .,
tN−1 inside the prediction interval, i.e.

φ(xi,ui) = 0, (4.20a)

ψ(xi,ui) ≤ 0. (4.20b)

Initial constraints: These constraints actually determine the feasible set of initial con-
ditions at time t0, i.e.

φ(x0) = 0, (4.20c)

ψ(x0) ≤ 0. (4.20d)

Terminal constraints: The constraints are imposed only at the final time tN , i.e.

φ(xN) = 0, (4.20e)

ψ(xN) ≤ 0. (4.20f)

Constraints have a direct consequence on the feasibility of the resulting optimization prob-
lem. For instance, investigation of the initial constraint set can help to determine the
feasibility of the optimization problem even without solving it. If the initial constraint set
is empty, then the problem does not have any solution. Therefore, the optimization prob-
lem should be formulated in such a manner that there are feasibility guarantees which in
turn help to ensure stability of the closed loop [93]. Further issues regarding the closed-loop
stability are discussed in the next section.

4.5 Stability Requirements

Due to safety reasons it is often required that the closed loop system remains in the
given operating range and does not uncontrollable drifts away. Theoretically speaking, the

42 4 Model Predictive Control

closed loop system must be stable, i.e. resistant to small perturbations of the initial state.
Stability thus plays an important role in the control design and has also to be considered in
MPC approach. Due to model/plant mismatch, finite horizon, unaccountable disturbances,
the predicted trajectories may differ from real ones. Thus, the computed optimal action
may be based on wrong future assessment and it may cause instability. Instability can
originate also from the process model, for instance if it contains unstable poles.
The problem of ensuring stability in the closed loop implementation of MPC has been
studied very extensively in the literature and various modifications in the construction of
the optimization problem have been proposed. A common feature of these approaches lies
in incorporation of some correction factor in the predictions such that given goal is truly
achieved. Looking at the structure of general optimal control Problem 4.1 this factor can
be part of objective function or constraints, as the model is usually given. An excellent
survey paper [70] deals with this topic exhaustively in details and the main results are
presented here.
Since the early development of predictive control in 1970’s – 1990’s, stability was mostly
achieved by extensive tuning. This was the easiest way until Keerthi and Gilbert [59]
(1988) established the connection with Lyapunov stability theory for discrete-time systems
and Mayne and Michalska [69] (1990) for continuous-time systems. Since then the value
function was almost universally employed as a natural Lyapunov function for investigating
stability [70, sec. 2.4.1].
To clarify the approach, consider that the controlled plant is modeled by a set of equations
defined by a state-space model (4.8) in discrete time. Moreover, the process is under state
constraints X and input constraints U which can take one of the form given in (4.20).
Without loss of generality assume that the optimal control is given as a regulation problem
with general cost function (4.4), that is, from any initial condition x0 ∈ X the goal is to
find a sequence of control moves which drive states and inputs toward the point (0,0),
which is the origin of the given coordinate system and a stabilizing solution to (4.8), i.e.
0 = f(0,0). The sets U , X are assumed to be compact and contain the origin in their
interior. The optimal control problem can be cast as follows

min
U

J(x,U) = F (xN) +
N−1
∑

k=0

L(xk,uk) (4.21a)

s.t. xk+1 = f(xk,uk) (4.21b)

xk ∈ X (4.21c)

uk ∈ U (4.21d)

x0 = x(t) (4.21e)

where (4.21a) is the cost function, (4.21b) represents the process model and (4.21c), (4.21d)
and (4.21e) are the constraints. Assuming that the cost function (4.21a) is a Lyapunov
function candidate, then there exists MPC control law which asymptotically stabilizes the
controlled system and the selected cost function corresponds to Lyapunov function if the
following assumptions hold [70]:

4.5 Stability Requirements 43

A1: There exists a terminal set Ω ⊂ X , such that Ω is closed and 0 ∈ Ω (state constraints
are satisfied in Ω).

A2: There exists a terminal controller κ(xk) ∈ U , ∀xk ∈ Ω, k = N, . . . ,∞ (input
constraints are satisfied in Ω).

A3: The set Ω is positively invariant for f(x,κ(x)), i.e. for any x0 ∈ Ω all subsequent
updates of xk+1 = f(xk,κ(xk)) remain in the set Ω.

A4: F (f(x,κ(x)))− F (x) + L(x,κ(x)) ≤ 0, ∀x ∈ Ω, F (·) is a local Lyapunov function
in Ω.

According to assumptions A1–A4, various predictive control schemes exist which guarantee
asymptotic stability and a brief summary is revealed in the sequel.

MPC using terminal state constraints: Here the stability of the closed loop control
is achieved by imposing

xN = 0 (4.22)

which is the terminal equality constraint (4.20e). Equation (4.22) induces that Ω =
{0}, Ω is invariant and terminal controller κ(x) = 0 maintains the states at the stable
origin. Obviously, the left hand side of inequality in A4 is equal to 0 for all x(t), t >
tN . This approach was one of the earliest methods of ensuring closed loop stability.
Adding the relatively simple requirement (4.22) to the optimization problem forces
the predicted trajectories to reach the terminal state, thus the given goal will always
be met if the problem (4.21) is feasible. However, from the computational point of
view, the terminal state equality constraint causes that the resulting optimization
problem might be difficult to solve. In the case that the initial condition x0 is far
from the origin, one has to choose prediction horizon long in order to retain the
optimization problem feasible. Simultaneously, with longer prediction horizon also
the number of decision variables grows, and this increases the complexity of the
optimization problem.

MPC using terminal cost: This approach introduces a non-zero terminal cost in (4.21a)
without imposing terminal state constraints. However, for general systems (4.8)
stability holds only if the prediction horizon is very large, otherwise this approach
is valid for linear unconstrained systems, or constrained but stable linear systems.
Nevertheless, this methodology was introduced by [20] and later explored by [90].

MPC using terminal constraint set: In this MPC setup, the stabilizing ingredient is
the terminal set constraint Ω, i.e.

xN ∈ Ω (4.23)

with an active terminal controller κ(x) inside the region Ω. The terminal controller
(A2) ensures that all states from Ω are steered to the stable origin rendering the
set Ω positively invariant (A3). Such scheme is sometimes referred to as dual-mode

44 4 Model Predictive Control

MPC due to use of two controllers. The first controller is based on the receding
horizon principle and the second κ(x) takes care of stabilizing effect of the closed
loop. Assumptions A1-A3 can be easily checked to hold and A4 is satisfied by a
proper choice of F (·) in (4.21a).

MPC using terminal cost and terminal constraint set: This modification of MPC
is widely adopted in the literature, since it can handle a large variety of control
problems. Both terminal constraint (4.23) and terminal cost in (4.21a) are employed
to guarantee stability. These ingredients satisfy exactly the assumptions A1-A4 and
the related approach will be detailed in the next section.

Infinite horizon MPC: In this variation of MPC, the optimal control problem is solved
with infinite horizon. Thus, all possible future evolution of the system is taken into
account and the assumptions A1-A4 are not needed. However, the disadvantage of
this approach is that the resulting optimization problem can be of high complexity
due to infinite number of decision variables. Despite this fact, there are approaches
for solving it [5, 78, 86] .

Contractive MPC: In this approach, as suggested by [38], stability is enforced using
contractive constraints defined as

‖xN‖p ≤ β‖x0‖p (4.24)

where β ∈ (0, 1) ⊂ R is a positive constant and p denotes the selected norm. Con-
straint (4.24) enforces predicted states to lie closer to the origin in some p-norm
measure with decay β. Applying the approach in the receding horizon fashion, the
contractive constraint (4.24) causes that the set of states xN is shrinking towards
origin, thus stability can be established.

Suboptimal MPC offers stability guarantees even if there is no need for optimal so-
lutions. This approach is investigated in [93] where the authors retain decreasing
property of the Lyapunov function across closed loop trajectory as a natural conse-
quence of imposing either terminal equality constraints (4.22) or terminal inequality
constraints (4.23). The MPC problem is then recast as feasibility problem (i.e. with-
out objective function).

4.6 Methods for Computing Terminal Sets

Construction of the terminal set Ω is of crucial importance in MPC because it is one of
the ingredients commonly used to ensure stability of the closed loop system. The question
which arises is, how to compute the terminal set Ω and terminal controller κ(x) such that
assumptions A1-A4 hold. This comes with the notion of invariance as follows:

Definition 4.1 (Control Invariant Set) A control invariant set Ω is the set of states
for which there exist a controller u = κ(x) ∈ U such that if x0 ∈ Ω, then all subsequent
state updates xk+1 = f(xk,κ(xk) also belong to the set Ω for k = 0, . . . ,∞.

4.6 Methods for Computing Terminal Sets 45

Definition 4.1 suggests that the terminal set can be found by investigating the autonomous
behavior of f(x,κ(x) for given set of initial conditions. This is one of the many ways in the
literature for computing terminal sets, for further references see for instance [29, 58, 61, 89].
The terminal set is interesting from a computational point of view, because the size of the
set influences the complexity of the optimal control Problem 4.1. If the model is linear,
stable, and no constraints are imposed, it can be shown that the terminal set is the whole
feasible space. As input/state constraints are present, the terminal set may be only a subset
of the state space [29]. In some cases the terminal region may reduce to only one point,
which is basically achieved by MPC using terminal state constraint approach. Therefore
one would like to have possibly the largest terminal region. However, it is very difficult,
if not impossible, to find the largest terminal region for a given nonlinear system [28].
The main unresolved difficulty at this point is the determination of the region Ω which
appears to require that some global test is satisfied which again may not be trivial except
for academic examples [77].
In the following some of the methods for computing terminal sets for LTI and PWA systems
are reviewed. The approaches generating Ω in a polytopic form are preferred, since they
enter the formulation of optimization problem linearly and thus can be employed in explicit
MPC.
Theoretical concepts of polytopic invariant sets originate from the work of [44] and were
extended later to cover cases with additive disturbances in [21, 61]. Consider a class of LTI
systems (4.11) which evolve under given linear control law u = Kx with known matrixK,
i.e. xk+1 = (A+BK)x = Φxk and x ∈ X . The state constraint set X as in a polytopic
form (1.1), i.e. X = {x ∈ R

n |Hx ≤ l}. By defining the set Ωk as

Ωk :=
{

x ∈ R
n Φkx ∈ X , k = 0, 1, . . .

}

(4.25)

the maximal positively invariant set for a controller u = Kx can be found via following
algorithm:

Algorithm 4.1 (Maximal invariant set for LTI systems [44])

Step 1: Set k=0.

Step 2: If the set Ωk+1 generated by (4.25) equals Ωk, jump to step 4, otherwise set k =
k + 1 and continue.

Step 3: Replace k = k + 1 and go back to Step 2.

Step 4: The maximal invariant set is given by Ω = Ωk. The maximal number of iteration
is k∗ = k.

The maximal invariant set Ω can be found after k∗ iterations. The proof for finite conver-
gence as well as other detail of the Algorithm 4.1 can be found in [44].
The result for LTI systems have been further extended to the framework of PWA systems
by [46]. Later, the algorithm has been modified to cover PWA models with additive

46 4 Model Predictive Control

disturbances in [88]. Here, the approach of [46] is reviewed which aims at finding the
maximal invariant set for PWA systems of the form (4.12). It is assumed that given PWA
system is stabilizable at the origin, i.e. those local dynamics containing origin must have
the affine term ci equal zero. Furthermore, input contraints U and state constraints X are
present and are given as polytopic sets. The stabilizing terminal controller u = κ(x) can
be found via solving the following LMI optimization problem

min
Y i,Z,γ

γ (4.26a)

subj. to Z ≻ 0, (4.26b)












Z ∗ ∗ ∗

(AiZ +BiY i)
T Z ∗ ∗

(Q0.5Z) 0 γI ∗
(R0.5Y i) 0 0 γI













� 0, ∀i ∈ I0 (4.26c)

where the set I0 is a selection of indexes corresponding to dynamics that contain the
origin, Q, R are weighing matrices, Y i = KiZ, Z = (1/γ)P−1 are unknown matrices
and the scalar γ accounts for the worst case switching sequence within I0. Solution to
the problem (4.26) results in a state feedback law u = Kix with gains Ki for which
there exist a quadratic Lyapunov function V (x) = xTPx. Subsequently, for the terminal
controller u = Kix and given constraint set X , U one can apply techniques for computing
the maximal invariant set as follows:

Algorithm 4.2 (Maximal invariant set for PWA systems [88])

Step 1: Select the initial region Ω0 as union of all partitions containing origin, i.e Ω0 =
⋃

i∈I0
Di, and set k = 0.

Step 2: Compute the reachable set Ωk+1 for the set Ωk assuming that the system (4.12)
evolves according to piecewise linear feedback law u = Kix such that constraints on
states X and inputs U are satisfied, i.e.

Ωk+1 = {x ∈ X | ∃u = Kix ∈ U s.t. fPWA(x,Kix) ∈ Ωk, i ∈ I0} (4.27)

where fPWA is given by (4.12).

Step 3: If the generated set Ωk+1 equals Ωk, jump to Step 4, otherwise set k = k + 1 and
repeat step 2.

Step 4: Maximal invariant set is given by Ω = Ωk.

Important is, that the terminal set Ω can be represented as a polytope

Ω := {x ∈ R
n |Hx ≤ l} (4.28)

and enters the optimization problem linearly in states. The triple P , Ω together with the
terminal controller u = Kix with i ∈ I0 can be used to design a stabilizing MPC controller
for PWA systems (4.12) according to scheme using terminal cost and terminal constraint
set.

Chapter 5

Explicit MPC

Introduction of explicit MPC has been a very significant step in control theory. Due to the
progress of multiparametric programming, the solution to some optimization problems can
be found in an explicit form where the control law is given as a function of parameters. As
seen from MPC view, such a solution avoids repetitive optimization and allows MPC to be
implemented on systems with rapid sampling. This chapter reviews some of the effective
methods in explicit MPC and details the implementation issues. Outlined methods are
based on original publications by [11, 16, 23, 46].

5.1 Main Features

The idea behind the explicit approach is transformation of the optimal control Problem 4.1
to its parametric form (3.1), (3.2) or (3.3). The parameter θ is usually given by the state
vector of initial conditions x0 which represents the feedback information from the plant.
Solving the optimization problem parametrically gives the expression for optimal control
actions as a sequence of functions U ∗ = (π0(x0)

T ,π1(x0)
T , . . . ,πN−1(x0)

T)T . Recalling
the receding horizon principle in MPC, only the first element is used, i.e. the function
π0(x0). The benefit of the explicit MPC is that it solves the optimal control problem only
once. The function π0(x0) is then applied in the feedback connection as already shown in
Fig. 4.3 on page 34.
Another very important feature of explicit solutions is that the result can be further sim-
plified and stored in a very compact format. This format is typically a look-up table which
comprises multiple sorted elements. Nowadays, various techniques exist which provide
fast searching and evaluation of such structures, giving the effectiveness of the explicit
solutions not only on speed advantages but also on ease of implementation. Design and
implementation of explicit MPC can be summarized into following points:

Off-line: Solve the optimal control Problem 4.1 for all possible values of initial conditions
x0.

On-line: Compute the optimal control u∗ = π0(x0) law by evaluating the corresponding
function, as shown in Fig. 4.3.

47

48 5 Explicit MPC

However, the explicit MPC has limitations. In fact, the number of partitions that define the
control law may grow in the worst case exponentially. This has motivated for development
of new methods that provide less complex solutions, see e.g. [115] for references, and it is
one of the goals to be addressed in Part II of the thesis.

5.2 Multiparametric Forms of Optimal Control Prob-

lems

In the sequel, multiparametric versions of optimal control problems based on linear and
PWA models are formulated. The presented technique shows how to translate the optimal
control problems to their respective multiparametric forms reviewed in Chapter 3.

5.2.1 Linear Model, 1/∞-Norm

Consider a regulation problem of a dynamical system described by a set of equations in
the state space and in discrete time (4.8) with a special linear form (4.11). To derive
the multiparametric problem involving model (4.11), only the dynamic equation (4.11a) is
considered, i.e. xk+1 = Axk +Buk, where A ∈ R

n×n is the dynamic matrix, B ∈ R
n×m is

the input matrix, x ∈ R
n denotes the state vector and u ∈ R

m is the input vector. Assume
that both input and state variables are subjected to hard constraints, i.e.

X := {x ∈ R
n | x ≤ x ≤ x} (5.1)

U := {x ∈ R
m | u ≤ u ≤ u} (5.2)

where x, u and x, u denote the lower and upper bounds, respectively. The constraints
(5.1), (5.2) restrict the initial feasible set for state x ∈ R

n and input u ∈ R
m variables.

Furthermore, it is required that these constraint are satisfied throughout the whole predic-
tion interval. The goal of the optimal control problem is to determine a sequence of future
inputs U = (uT

0 ,uT
1 , . . . ,uT

N−1)
T by solving the following optimization problem

min
U

J(x,U) = ‖PxN‖p +
N−1
∑

k=0

‖Qxk‖p + ‖Ruk‖p (5.3a)

s.t. xk+1 = Axk +Buk (5.3b)

xk ∈ X (5.3c)

uk ∈ U (5.3d)

xN ∈ Ω (5.3e)

x0 = x(t) (5.3f)

accounting the predictions of states and inputs at sampling instants k = 0, 1, . . . , N where
N is the prediction horizon and p denotes 1- or ∞- norm. It is assumed that matrices
Q, R are non-singular, and P has full column rank, and the pair A, B is stabilizable.

5.2 Multiparametric Forms of Optimal Control Problems 49

Equation (5.3e) is the terminal polytopic set constraint (4.28) due stability requirements.
The initial condition (5.3f) is considered as a vector of parameters in the multiparametric
approach. Problem (5.3) is transformed to standard form of mpLP (3.1) by introducing
auxiliary vector z depeding on the norm p [24]. If p = 1, then

z =
(

(ǫx
0)

T , · · · , (ǫx
N)T , (ǫu

1)
T , · · · , (ǫu

N−1)
T ,UT

)T
(5.4)

and it relates to the following set of constraints

−ǫx
k ≤ Qxk (5.5a)

−ǫx
k ≤ −Qxk (5.5b)

−ǫu
k ≤ Ruk (5.5c)

−ǫu
k ≤ −Ruk. (5.5d)

For p = ∞,

z = (ǫx
0 , · · · , ǫx

N , ǫu
0 , · · · , ǫu

N−1,U
T)T (5.6)

and it must satisfy

−1ǫx
k ≤ Qxk (5.7a)

−1ǫx
k ≤ −Qxk (5.7b)

−1ǫu
k ≤ Ruk (5.7c)

−1ǫu
k ≤ −Ruk (5.7d)

where 1 is column vector of ones. Both cases (5.4)–(5.5), (5.6)–(5.7) are very similar, thus
in the sequel only case for p = ∞ will be considered. With the help of z the objective
function in (5.3a) is replaced by

J(z) = ǫx
0 + · · · + ǫx

N + ǫu
1 + · · · + ǫu

N−1 (5.8)

which is an upper bound on J(U). Using the linear relation in (5.3b) the predictions can
be written as a function of initial conditions x0 and vector U , i.e.

xk = Akx0 +
k−1
∑

j=0

AjBuk−1−j, k = 1, . . . , N (5.9a)















x0

x1

x2

...
xN















=















I

A

A2

...
AN−1















x0 +















0 0 0 . . . 0
B 0 0 . . . 0
AB B 0 . . . 0

...
.

...
AN−2B . . . AB B 0















U (5.9b)

= Ãx0 + B̃U (5.9c)

50 5 Explicit MPC

Using the expression (5.9) the optimization problem (5.3) can be rewritten as

min
z

J(z) (5.10a)

s.t.

Ãx0 + B̃U ≤ x (5.10b)

−Ãx0 − B̃U ≤ −x (5.10c)

U ≤ u (5.10d)

−U ≤ −u (5.10e)

H̃Ãx0 + H̃B̃U ≤ l (5.10f)

−1ǫx ≤ ±Q̃
(

Ãx0 + B̃U
)

(5.10g)

−1ǫu ≤ ±R̃U (5.10h)

where H , l, H̃ = (0, . . . ,0,H) is the H-representation of the terminal set Ω (4.28) and
Q̃ = diag(Q, . . . ,Q,P), R̃ = diag(R, . . . ,R). Subsequently, the overall formulation (5.10)
can be written in a vector form as follows

min
z

J(z) = 1Tz (5.11a)

s.t. Gz ≤ h+ Sx0 (5.11b)

where z is the optimized variable and x0 is a vector of parameters. Variables G, h, S are
obtained by appropriate substitution from problem (5.10), i.e.

G = (B̃T ,−B̃T , I,−I, (H̃B̃)T , (Q̃B̃)T ,−(Q̃B̃)T ,−R̃T , R̃T)T

h = (xT ,−xT ,uT ,−uT , lT , ǫx1T , ǫx1T , ǫu1T , ǫu1T)T

S = (−ÃT , ÃT ,0,0,−(H̃Ã)T , (Q̃Ã)T ,−(Q̃Ã)T ,0,0)T .

Formulation (5.11) is now in a standard form as given by (3.1) and can be solved using
multiparametric techniques presented in Chapter 3. For further details regarding this
technique the reader is referenced to [11].

5.2.2 Linear Model, 2-Norm

The use of one or infinity norms in cost function have the advantage that the resulting
optimization problem is transformed to mpLP where the relations are linear. Replacing
the objective function with 2-norm creates a quadratic function and the problem thus
shifted into QP field. Consider a regulation problem of a linear discrete time system (5.3b)
subject to input and state constraints (5.1), (5.2) respectively. Mathematically, the optimal

5.2 Multiparametric Forms of Optimal Control Problems 51

control problem can be formulated as

min
U

J(x,U) = ‖PxN‖2 +
N−1
∑

k=0

‖Qxk‖2 + ‖Ruk‖2 (5.12a)

s.t. xk+1 = Axk +Buk (5.12b)

xk ∈ X (5.12c)

uk ∈ U (5.12d)

xN ∈ Ω (5.12e)

x0 = x(t) (5.12f)

where Q = QT � 0, R = RT ≻ 0, and P = P T � 0. It is assumed that the system
(5.12b) is stabilizable and the stabilizing terminal set Ω in (5.12e) has been determined.
To express the problem (5.12) in the parametric version, the predictions of the linear model
are constructed as in (5.9) and plugged into respective equations (5.12). Consequently, the
problem can be rewritten as follows

min
U

J(x,U) (5.13a)

s.t.

Ãx0 + B̃U ≤ x (5.13b)

−Ãx0 − B̃U ≤ −x (5.13c)

U ≤ u (5.13d)

−U ≤ −u (5.13e)

H̃Ãx0 + H̃B̃U ≤ l (5.13f)

where
J(x,U) = UT (B̃T Q̃B̃ + R̃)U + 2xT

0 Ã
T Q̃B̃U + xT

0 Ã
T Q̃Ãx0 (5.14)

and Q̃ = diag(Q, . . . ,Q,P), R̃ = diag(R, . . . ,R) and H̃ = (0, . . . ,0,H)T . Since constant
term appears in (5.14), objective function can be modified to a simpler form

J ′(x,U) = 0.5UTMU + xT
0NU (5.15)

where M = B̃T Q̃B̃ + R̃ and N = ÃT Q̃B̃. By introducing an auxiliary vector

z = U +M−1NTx0 (5.16)

and plugging in (5.15) the objective function becomes J(z) = 0.5zTMz. Using this
simplified notation, the optimization problem (5.13) is transformed to

min
z

J(z) = 0.5zTMz (5.17a)

s.t. Gz ≤ h+ Sx0 (5.17b)

52 5 Explicit MPC

where G, h, S are given by

G = (B̃T ,−B̃T , I,−I, (H̃B̃)T)T

h = (xT ,−xT ,uT ,−uT , lT)T

S = ((B̃M−1N − Ã)T , (Ã− B̃M−1N)T , (M−1N)T ,−(M−1N)T , (H̃B̃M−1N − H̃Ã)T)T .

The problem (5.17) is a standard form of mpQP (3.2) with x0 as a parameter and z as
optimization variable. Further details regarding the multiparametric approach to MPC
with quadratic objective are given in [16].

5.2.3 PWA Model, 1/∞-Norm

Optimal control problem involving PWA model (4.12) can be formulated as follows

min
U

J(x,U) = ‖PxN‖p +
N−1
∑

k=0

‖Qxk‖p + ‖Ruk‖p (5.18a)

s.t. xk+1 = fPWA(xk,uk) (5.18b)

xk ∈ X (5.18c)

uk ∈ U (5.18d)

xN ∈ Ω (5.18e)

x0 = x(t) (5.18f)

where p = {1,∞}, X , U are interior constraint sets for states (5.1) and inputs (5.2),
respectively, and Ω is a terminal set constraint (4.28). The specificity of problem (5.18) is
due to presence of switching rules in PWA model (4.12) which select the active dynamics
i if the condition (4.13) is fulfilled. Formally, such a rule is associated to a binary variable
δi = {0, 1} which is activated if all inequalities of (4.13) are satisfied, i.e.

δi,k = 1 ⇐⇒
(

xk

uk

)

∈ Di, Di =

{(

x

u

)

∈ R
n+m H i

(

x

u

)

≤ li
}

(5.19)

where the variable δi,k denotes a selector which is activated if the state-input vector
(xT

k ,uT
k)T belongs to a polytopic set Di. Note that the variable δi,k is a function of discrete

time k. Evolution of such system posses hybrid behavior because it comes to switching
whenever state-input vector (xk,uk)

T moves from region Di to Dj. Incorporation of dis-
crete logic into MPC framework has been studied in [15] and it is referred to as big-M
technique. The principle relies on transformation of logical rules into set of inequalities
which contain both, real and binary variables. Assuming that the regions Di do not overlap,
i.e. Di ∩ Dj = ∅, (5.19) can be rewritten as

H i

(

xk

uk

)

− li ≤M i(1 − δi,k), ∀i = 1, . . . , nD (5.20a)

nD
∑

i=1

δi,k = 1 (5.20b)

5.2 Multiparametric Forms of Optimal Control Problems 53

whereM i = max
xk,uk

(

H i

(

xk

uk

)

− li
)

. Note that (5.20b) represents an exclusive or condition,

that is, if δi,k = 1 other delta’s different from i are equal zero. With the help of (5.20)
PWA model (4.12) is given by

xk+1 =

nD
∑

i=1

δi,k(Aixk +Biuk + ci) (5.21)

which is nonlinear due to product between δi,k and states/inputs. But, using the big-M
technique, (5.21) can be converted to linear form as follows

xk+1 − (Aixk +Biuk + ci) ≤ x(1 − δi,k), (5.22a)

xk+1 − (Aixk +Biuk + ci) ≥ x(1 − δi,k). (5.22b)

It’s easy to verify that if δi,k = 1, the terms in the right-hand-side of constraints (5.22)
vanish, and the double-sided inequalities reduce to and equality constraint xk+1 = Aixk +
Biuk + ci. If, on the other hand, δi,k = 0, then (5.22) simply become redundant and the
i-th local model doesn’t contribute to xk+1. Hence, PWA model (4.12) is transformed to
a set of inequalities given by (5.20) and (5.22). Collecting equations (5.20), (5.22) with
input/state constraints (5.1), (5.2), and terminal constraint (4.28), the optimal control
problem can be formulated as follows:

min
U

J(x,U) = ‖PxN‖p +
N−1
∑

k=0

‖Qxk‖p + ‖Ruk‖p (5.23a)

s.t. H i

(

xk

uk

)

− li ≤M i(1 − δi,k) (5.23b)

nD
∑

i=1

δi,k = 1 (5.23c)

xk+1 − (Aixk +Biui + ci) ≤ x(1 − δi,k) (5.23d)

xk+1 − (Aixk +Biui + ci) ≥ x(1 − δi,k) (5.23e)

x ≤ xk ≤ x (5.23f)

u ≤ uk ≤ u (5.23g)

xN ∈ Ω (5.23h)

x0 = x(t) (5.23i)

where the optimization variables are U , δk, xk for k = 0, . . . , N and x0 is the vector of
parameters. Formulation (5.23) is further transformed to its mpMILP form (3.3) similarly
as outlined for LTI systems in Section 5.2.1.
Alternatively, one may exploit the equivalence between PWA models and mixed-logical
MLD systems (4.14) to derive a multiparametric problem formulation. The advantage of
MLD representation is that the binary variables δ ∈ {0, 1}nd and constraints are internal

54 5 Explicit MPC

part of the model and one can use it to obtain state predictions as functions of x0, similarly
as with LTI model (5.9), i.e.

xk = Akx0 +
k−1
∑

j=0

Aj (Buuk−1−j +Bauxwk−1−j +Baff) , k = 1, . . . , N. (5.24)

where w ∈ R
nw are auxiliary variables. Assuming x0 as parameters and u0, . . . ,uN−1,

w0, . . . ,wN−1 as optimization variables, one can reformulate MPC problem for PWA model
(4.12) as a standard mpMILP [4, 13].

5.3 Multiparametric Problems in MPC for PWA Sys-

tems

This section reviews the multiparametric problems for PWA systems and approaches for
solving them. The same theory can be applied to LTI systems, as they are subclass of
PWA systems. The main aim is to characterize the properties of explicit solutions and to
present algorithms needed to efficiently compute the result.

5.3.1 Constrained Finite Time Optimal Control

The CFTOC problem for PWA systems (5.18) searches for an optimal control input U ∈
U which drives the system states x ∈ X from any initial condition x0 ∈ X towards
neighborhood of the origin Ω using finite number of steps. CFTOC problems for PWA
systems have been studied by [3, 23, 32] and the main results are extracted here.
Explicit solution to CFTOC problem (5.18) is stated by the following theorem:

Theorem 5.1 (Solution to CFTOC [23]) The solution to the optimal control problem
(5.18) with p ∈ {1,∞} and a linear state-update in (5.18b) is a time-varying piecewise
affine state feedback control law of the form

u∗(xk) = F k,ixk + gk,i if xk ∈ Pk,i (5.25)

and the optimal value function is a time-varying piecewise affine function of the state

J∗(xk) = Φk,ixk + Γk,i if xk ∈ Pk,i (5.26)

where Pk,i = {x ∈ R
n |Hk,ix ≤ lk,i} is a polyhedral partition of the set Xk of feasible states

xk at time k with k = 0, . . . , N − 1.

Theorem 5.1 is powerful as it provides the tool for obtaining optimal feedback law (5.25)
in the form of a piecewise affine function defined over finite number of polytopes Pk,i.
Moreover, Theorem 5.1 provides information about the cost function (5.26) which can be
further utilized. Notation in Theorem 5.1 should be interpreted as at k-th instance of the

5.3 Multiparametric Problems in MPC for PWA Systems 55

prediction horizon i = 1, . . . , nP regions are generated. For the use in MPC and due to
receding horizon principle, only the first element from the vector U is of interest, i.e. u0,i.
It is therefore convenient to denote the solution to CFTOC problem (5.25) as u = F ix0+gi

if x0 ∈ Pi, and (5.26) as J(x0) = Φix0 + Γi if x0 ∈ Pi, which will be mostly used in the
remainder of the manuscript.
Explicit solution to (5.18) in the form of (5.25) can be obtained in the dynamic program-
ming fashion, utilizing the backward propagation principle. That is, starting from the
given known set Ω and solving smaller subproblems in the backward time. Algorithm for
computing explicit solution to CFTOC via dynamic programming can be summarized as
follows:

Algorithm 5.1 (Solution to CFTOC via Dynamic Programming [3])

1. Calculate a stabilizing terminal set Ω, terminal cost P and terminal controller.

2. Set J0 = ‖Px0‖p, and denote the initial feasible set S0 = Ω.

3. For k = 1 to N , solve parametrically

min
uk

Jk = ‖Qxk‖p + ‖Ruk‖p + Jk−1 (5.27a)

s.t. xk+1 = fPWA(xk,uk) (5.27b)

xk+1 ∈ Sk−1 (5.27c)

xk ∈ X (5.27d)

uk ∈ U (5.27e)

and generate new regions Sk =
⋃

i Pk,i by intersection and comparison.

At each step of the algorithm a subproblem (5.27) is solved parametrically which yields
an expression for state feedback control law with corresponding local region according to
Theorem 5.1. More specifically, the Algorithm 5.1 solves mpLP iteratively through nD

dynamics and through nPk
terminal sets at k-th iteration, which gives nDnPk

operations
in total. As the generated local regions may be overlapping, the geometric operations of
intersection and comparisons are performed to deal with the possibly non-convex shape
of regions Sk. The intersection operation is such that redundant polytopes are removed
(i.e. those which are completely covered by other polytopes). Under comparison operation
one can understand selection of regions, to which the minimal cost function is assigned
[3]. Moreover, if the cost function Jk is expressed as a function of x0, the algorithm allows
to spot whether it differs in two consecutive steps, opening a way towards finding explicit
solution to CITOC problem. For more details about the algorithm, the reader is referred
to [5].

5.3.2 Time Optimal Control

In this section a multiparametric version of time optimal control [46] of PWA systems is
presented. The attribute time optimal refers to a control policy which drives the system

56 5 Explicit MPC

states/inputs towards given terminal set Ω in the least possible number of steps. The
related optimization problem can be formulated as follows

min
U

J = N (5.28a)

s.t. xk+1 = fPWA(xk,uk) (5.28b)

xk ∈ X (5.28c)

uk ∈ U (5.28d)

xN ∈ Ω (5.28e)

x0 = x(t) (5.28f)

where X , U are sets of state, input constraints respectively, and Ω is a terminal set con-
straints. The idea for solving the time optimal control lies in partitioning the problem (5.28)
into a sequence of horizon N = 1 subproblems, and solving them sequentially. Basically,
the algorithm consists of two steps:

1. Finding a stabilizing terminal set Ω around origin.

2. Solving a sequence of 1-step optimal control problems that drive the system states
towards Ω.

The terminal set Ω is associated with a state feedback law which guarantees the invariance
property. That is, once the states enter the set Ω, there exist a local terminal controller
which guarantees that states remain in this set for all time. Construction of the invariant
set is of crucial importance due stability reasons [70] and this has influence on the stability
of overall approach since all states are driven to this set. Hence, if one finds such a
set, it is then used in the subsequent horizon 1 control problem as a terminal constraint.
Reformulating the optimal control problem into sequences of 1-step control problems has
several advantages, namely:

• Closed loop stability is guaranteed by construction of the invariant terminal set and
requiring that all states are pushed towards this set in finite time.

• The resulting look-up table is sequentially constructed which simplifies the imple-
mentation task.

The stabilizing terminal set Ω can be computed using approaches in [61, 88] as it was
presented in Section 4.6. The set Ω is used as a terminal constraint in the consequent
1-step CFTOC problem given by

min
uk

‖Ruk‖p + ‖Qxk‖p + ‖Pxk+1‖p (5.29a)

s.t. xk+1 = fPWA(xk,uk) (5.29b)

xk+1 ∈ Sk (5.29c)

xk ∈ X (5.29d)

uk ∈ U (5.29e)

5.4 On-line Implementation 57

Solving the problem (5.29) parametrically gives the result in a form of PWA state feedback
law, which is associated with polytopic regions Pk,i, as stated by Theorem 5.1. One impor-
tant implication of Theorem 5.1 is that the set of states Pk,i for which the problem (5.29)
is feasible can be represented as a union of convex polytopes. This allows one to formulate
the algorithm for time optimal approach as follows

Algorithm 5.2 (The Time Optimal Algorithm [46])

1. Calculate an initial stabilizing terminal set using reachability techniques as discussed
by [88]. Denote the set by S0 = Ω. Set the iteration counter k = 0.

2. Solve parametrically the optimization problem (5.29) with the terminal set Sk con-
straint in (5.29c). Denote the feasible set of the problem (5.29) as the union of all i
regions as Sk+1 =

⋃

i Pk+1,i.

3. If Sk+1 = Sk, abort, the algorithm has converged.

4. Otherwise increment the iteration counter k = k + 1 and jump back to Step 2.

5. The total number of iterations is given by k∗ = k.

The explicit solution generated in Step 2 of Algorithm 5.2 may contain overlapping regions
due to MILP nature of (5.29). In this case the operations of intersection and comparison are
performed as in CFTOC approach. The algorithm is illustrated in Fig. 5.1 for k = 0, 1, 2, 3
iterations. The initial terminal set S0 = Ω, associated to the iteration counter k = 0,
is depicted with the darkest gray. The consequent terminal sets S1, S2, S3 have brighter
shadows. Because the optimization problem (5.29) is solved for 1-step ahead in each
iteration the overall control effect is that the system states are pushed from the set Sk+1

to Sk in one time step, hence the initial stabilizing set is reached at most k∗ steps where k∗

denotes the number of iterations at which the algorithm converged. One can notice that
the whole feasible domain D might not be covered by the PWA control law (3.21) and
white areas in Fig. 5.1 denote parts of the state-space for which the Problem 5.29 is not
feasible at any iteration. For further details regarding the computations, see [46] as well as
[45, 63].

5.4 On-line Implementation

Once the explicit solution to MPC is computed, the feedback control law is given as PWA
function, i.e.

u∗ = F ix+ gi if x ∈ Pi (5.30)

where i = 1, . . . , nP is the number of regions Pi and F i, gi are computed via (3.12). The
control law (5.30) is defined over nP polytopes and in the on-line implementation phase of
explicit MPC one has to evaluate such a function in real-time. The feedback control scheme
is shown in Fig. 4.3 whereas the control law π0(x0) is given as PWA function (5.30).

58 5 Explicit MPC

Figure 5.1: Explicit solution to the time optimal control problem. The algorithm evolves
from the terminal set S0 outwards and the union of the sets is the maximum controllable
domain.

If there is enough time for evaluation, one may proceed with a sequential approach. That
is, for given state x loop through regions Pi until the corresponding region index j is
found where x ∈ Pj. Then evaluate the feedback law (5.30). Such scheme has linear
complexity in the number of regions, i.e. O(nP). However there exist cases, where the
control scheme is implemented with very high sampling rates, e.g. control of electrical
drives, voltage converters [8, 43], and a sequential search can be prohibitive. To deal with
this issue, [106] suggested to translate PWA function (5.30) to a binary search tree where
the complexity of on-line evaluation is logarithmic in number of regions, i.e. O(log2 nP).
The idea behind is to index the look-up table to a special tree form which allows faster
searching through union of regions Pi. The algorithm for construction of the binary tree
partitions the union of regions at each step by half, according to leading hyperplanes. A
leading hyperplane is searched among H-representation of regions Si which separates their
union in two halfspaces such that they both contain approximately the same number of
regions. An illustration of a search tree construction in shown in Fig. 5.2. At each stage
the leading hyperplane (shown as red dashed line) is selected and the remaining space is
partitioned until individual regions are reached. Moreover, the algorithm of [106] tries to
optimize the search tree in a way such that the total number of separating hyperplanes
is minimized and the tree contains the minimum number of nodes. The total number
of hyperplanes defines the tree depth D, and it expresses the total number of operations
needed to traverse from a main root to a particular leaf.

Once the binary search tree has been constructed, it has very attractive properties for
evaluation of PWA function in the on-line phase of MPC. In particular, its running time

5.4 On-line Implementation 59

P1

P1

P1

P2

P2

P2

P3

P3

P3

P3

P4

P4

P4

P5

P5

P5

P5

Figure 5.2: Construction of a binary search tree.

is influenced by the tree depth, which is approximately D = ⌈1.7 log2 nP⌉. Memory and
storage requirements depend on the total number of nodes, i.e. n1.7

P .

Part II

MODELING AND CONTROL OF
HYBRID SYSTEMS

Chapter 6

Modeling of Hybrid Processes

Model predictive control utilizes information from the process model to predict future.
Ideally, the model should capture most of the relevant dynamical properties in order to
design the best possible control. From MPC point of view, the process model enters the
formulation of optimal control problems as equality constraint and influences the complex-
ity of the optimization problem. The problem of finding a suitable model for MPC thus
reduces to investigating the difficulty of solving the optimization problem for a concrete
application.

It was shown in Sections 5.2.1 and 5.2.2 that if the provided model (4.11) is linear in
states and inputs, this structure can be exploited to formulate mpLP or mpQP and solved
explicitly. Linear models are thus very suitable for explicit MPC. Furthermore, linear
models can be obtained easily in practice, e.g. using the well-established techniques for
experimental identification [72]. Many of the identification algorithms are available as
software packages that can provide linear models directly from the measurement data, e.g.
IDTOOL [34].

However, for many industrial processes the use of linear models is often related to some
neighborhood of the operating point and as the plant drifts away from this point, the lin-
ear model looses accuracy. Furthermore, many applications can contain logical parts, such
as on/off switches, mechanical gears or if-then rules, where the use of LTI models (4.11)
is inappropriate. To overcome this limitation, hybrid models have been introduced, and
are reviewed in Section 4.4.2. Hybrid models, and in particular PWA systems, have been
proved to provide sufficient accuracy when approximating the dynamical behavior of gen-
eral nonlinear systems [94]. Moreover, as it was shown in Section 5.2.3, hybrid models are
suitable for explicit MPC due to their piecewise linear structure. However, when it comes
to practice, there’s a lack of software tools that can generate hybrid models without much
programming effort. Although there are tools capable of programming almost arbitrary
dynamics, the resulting model often contains elements from the programming language
or it is represented as ’black box’. Especially, when it comes to formulations of optimal
control problems, such models are unsuitable for the use in explicit MPC.

Therefore, the contribution of this part is to present a software tool for modeling of hybrid
systems which is capable of generating models suitable for explicit MPC. In particular, the

63

64 6 Modeling of Hybrid Processes

software produces MLD models (4.14) that combine

• linear dynamics

• logical statements

• constraints

in one compact representation. The structure of MLD models is given by a set of linear
equations/inequalities in real and binary variables which is specifically tailored for the
optimization purposes. Due to equivalence between hybrid models [48] MLD models can
be further transformed to other forms [10], such as PWA systems (4.12), and one can
deploy existing algorithms for synthesis and implementation of explicit MPC.

6.1 HYSDEL

HYbrid System DEscription Language (HYSDEL) is a software tool for modeling of hybrid
systems. The original idea has been introduced by [107] in order to simplify the task of
generating MLD models (4.14) from simple language statements. HYSDEL was crea-
ted to automatize the translation from logical expressions such as (5.21) into equivalent
mathematical representation (5.20) using the big-M translation technique of [15].

6.1.1 General Properties

HYSDEL allows modeling of wide class of hybrid systems described by interconnections
of linear dynamic systems, automata, if-then-else and propositional logic rules. It allows
hybrid models to be formulated on a very low level which is very appealing for processor
programming languages. Based on this elementary description, HYSDEL translates the
code into equivalent MLD form (4.14) which is suitable for further analysis, including
control design. Unlike general-purpose optimization modeling languages, HYSDEL is a
specialized language for describing a dynamic behavior combined with logical conditions.
Tailored to the specific class of problems, algorithms implemented in the HYSDEL compiler
generate models which are more compact and which render the optimization problems using
such models more efficient compared to formulations obtained by general-purpose modeling
software. The process of generating a model with the help of HYSDEL can be described
using three main components:

• HYSDEL source file (input)

• compiler

• mathematical model (output).

At the input side user creates a HYSDEL source code, represented by HYSDEL file, which is
consequently passed to a compiler. The compiler executes the big-M translation technique
on a given script and outputs MLD model. The operational principle is shown in Fig. 6.1.

6.1 HYSDEL 65

Figure 6.1: Principle of model generation in HYSDEL.

6.1.2 HYSDEL Language Syntax

The source file is created using HYSDEL programming language which allows to use dif-
ference equations, on/off switches, IF-THEN-ELSE rules, and finite state automata in a
programming-typical way. Structure of HYSDEL source file can be categorized in two main
parts

• interface part

• implementation part.

The interface part serves as a place for declaration of variables and in the implementation
part the relations between variables are defined. Each of the mode is delimited by curly
brackets and a typical structure of a HYSDEL source file looks as follows

SYSTEM name {

/* example of HYSDEL file structure */

INTERFACE {

/* declaration of variables */

}

IMPLEMENTATION {

/* relations between declared variables */

}

}

HYSDEL language is similar to C programming language, however, the flexibility of the
code is different. In particular, the HYSDEL version 2.0.5 by [107] does not support vectors
and matrices as variables and lacks important language constructs like loops. These draw-
backs make the description of large models cumbersome and prone to errors. For instance,
if one wants to write a code for a linear time-invariant model, the possible HYSDEL script
might look as shown in the following example, where each variable must be written as
scalar, i.e.

SYSTEM model {

INTERFACE {

STATE { REAL x1, x2; }

INPUT { REAL u1, u2; }

OUTPUT { REAL y; }

PARAMETER { REAL a11=1; REAL a12=-0.2;

66 6 Modeling of Hybrid Processes

REAL a21=-0.3; REAL a22= 0.5; }

}

IMPLEMENTATION {

CONTINUOUS {

x1=a11*x1 + a12*x2 + u1;

x2=a21*x1 + a22*x2 + u2;

}

OUTPUT {

y = x1 + x2;

}

}

}

Moreover, during the last 2 years the development of HYSDEL has not been following the
progress of research in the topic, i.e. the generation of MLD models from logic conditions
uses a relatively limited set of algorithms originally implemented in HYSDEL compiler,
while recently several tools have emerged providing means for more advanced MLD and
PWA model formulations, most notably MPT [64] and YALMIP [67].
From the usability point of view, the current version of HYSDEL has some major draw-
backs. Thus, to overcome all of the shortcomings, HYSDEL 3.0 has been developed, which
offers more enhanced modeling, code flexibility and graphical interface.

6.2 HYSDEL 3.0

The new developed version of HYSDEL 3.0 includes several enhancements, in particular,

• extension of HYSDEL syntax

• new improved compiler

• generation of higher quality models

• merging of models

• graphical modeling of hybrid systems.

The extended HYSDEL syntax can be characterized by use of variables in vectorized/matrix
form, indexed access to declared variables, nested FOR loops, and structured model merg-
ing. Enhanced syntax allows now code writing in a rationalized form which is more easier
to follow and revise. Returning to the previous example of LTI model, new HYSDEL 3.0
syntax looks as follows

SYSTEM model {

INTERFACE {

STATE { REAL x(2); }

6.2 HYSDEL 3.0 67

INPUT { REAL u(2); }

PARAMETER { REAL A = [1, -0.2; -0.3,0.5]; }

}

IMPLEMENTATION {

CONTINUOUS { x = A*x + u; }

}

}

Note that the size of code is reduced due to vectorized syntax. Further code reductions
is obtained by simplifying the earlier commands. For instance, PWA model comprising of
two dynamics can be written as follows

SYSTEM model {

INTERFACE {

STATE { REAL x(2); }

INPUT { REAL u(2); }

PARAMETER { REAL A1 = [1, -0.2; -0.3, 0.5];

REAL A2 = [0.9, -0.8; 1.2, 0.7]; }

}

IMPLEMENTATION {

AUX { REAL z(2); }

DA { z = { IF x(1) >= 0 THEN A1*x + u ELSE A2*x + u;} }

CONTINUOUS { x = z; }

}

}

The compiler in HYSDEL 3.0 uses YALMIP to generate MLD model. YALMIP is a MAT-
LAB toolbox for rapid prototyping of optimization problems [67] and it allows generation
of numerically well conditioned models. The operation principle of HYSDEL 3.0 is shown
in Fig. 6.2. Introduction of YALMIP extended the possibilities of HYSDEL 3.0 language.

Figure 6.2: Operational principle of HYSDEL 3.0.

In particular, HYSDEL 3.0 offers compositional modeling, i.e. generation of models by
merging of submodels. This has a strong advantage for modeling of large scale systems be-
cause it is allowed to write the description in multiple source files and merge them together
directly on a language level. In addition, HYSDEL 3.0 incorporates some of the tricks
investigated in [63] for efficient implementation of big-M technique needed for generation
of high quality models. The produced models can be further optimized to get numerically
sound models as best as possible. HYSDEL 3.0 thus features various enhancements and
its code extensions will be reviewed in the following.

68 6 Modeling of Hybrid Processes

6.2.1 MLD System Formulation

Arising from shortcomings of MLD model used by HYSDEL 2.0.5, new version of HYSDEL
3.0 offers more flexibilities to describe the behavior of hybrid systems. In order to clearly
distinguish between real/binary variables and equalities/inequalities in MLD formulation,
sets of indices are added to MLD form and new notations are adopted. More precisely,
MLD description is given by

xk+1 = Axk +Buuk +Bauxwk +Baff (6.1a)

yk = Cxk +Duuk +Dauxwk +Daff (6.1b)

Exxk +Euuk +Eauxwk ≤ Eaff (6.1c)

{sets of indices} Jx, Ju, Jw, Jeq, Jineq (6.1d)

where the auxiliary vector wk comprises of two elements wk = (zT
k , δT

k)T . Comparing
to the previous description (4.14), the model contains indices (6.1d) that indicate which
variables in the vector correspond to real/binary for states Jx, inputs Ju, and auxiliaries
Jw. Additionally, Jeq corresponds to a set of indices that define rows of matrices (6.1c)
with equality constraints and Jineq with inequalities, i.e.

Eeq
x xk +Eeq

u uk +Eeq
auxwk = E

eq
aff

Eineq
x xk +Eineq

u uk +Eineq
auxwk ≤ E

ineq
aff

Structure of the indexed sets Jx, Ju, Jw is vector-wise and it distinguishes between binary
and real variables with strings ’r’, ’b’. Precisely, string ’r’ refers to real and string ’b’ refers
to Boolean variable, e.g.

{Jx} =









’r’

’r’

’b’

’r’









corresponds to









x1 is of type REAL

x2 is of type REAL

x3 is of type BOOL

x4 is of type REAL









To be able to determine the position of a given real/binary variable in a vector, these sets
contain also a numerical information. For instance, the location of equality constraints in
matrices (6.1c) is given by Jeq and refers to rows in (6.1c) which form equalities e.g.

Jeq =





1
5
8



 corresponds to





1st row is an equality constraint
5th row is an equality constraint
8th row is an equality constraint





6.2.2 Using HYSDEL 3.0

Procedure for generation of the MLD system (6.1) starts in writing a corresponding source
in some text editor using HYSDEL language and specifying the suffix .hys. Assume,
that a file with name my_file.hys was created and written in HYSDEL language. To
get an appropriate MLD representation (6.1), the file needs to be processed in MATLAB
environment as follows:

6.2 HYSDEL 3.0 69

>> hysdel3(’my_file.hys’)

where hysdel3 is the main routine for executing the compilation. By invoking this com-
mand in MATLAB, an m-file equivalent of the my_file.hys, i.e. my_file.m is generated
in the current directory. This new generated m-file is basically YALMIP code which con-
tains whole information given by my_file.hys. The m-file represents now MLD model
(6.1) and by typing simply the same name at MATLAB prompt

>> my_file

the script automatically generates a structure called S. The structure contains all details
about MLD model (6.1), i.e. matrices, dimensions, indexes of constraints, etc. If the
structure S is available, each particular information about the MLD model (6.1) can be
extracted using MATLAB “dot” syntax, i.e.

S.nx /* dimension of states */

.nxr /* dimension of real states */

.nxb /* dimension of binary states */

.nu /* dimension of inputs */

.nur /* dimension of real inputs */

.nub /* dimension of binary inputs */

.ny /* dimension of outputs */

.nyr /* dimension of real outputs */

.nyb /* dimension of binary outputs */

.nw /* dimension of auxiliary variables */

.nz /* dimension of auxiliary real variables */

.nd /* dimension of auxiliary binary variables */

.nc /* dimension of constraints (equalities + inequalities) */

Matrices introduced in MLD model (6.1) are stored as fields with the same name, i.e.

S.A

.Bu

.Baux

.Baff

.C

.Du

.Daux

.Daff

.Ex

.Eu

.Eaux

.Eaff

and indexed sets are accessible through substructure J

70 6 Modeling of Hybrid Processes

S.J.X /* string of indices (’r’ or ’b’) for states */

.J.U /* string of indices (’r’ or ’b’) for inputs */

.J.Y /* string of indices (’r’ or ’b’) for outputs */

.J.W /* string of indices (’r’ or ’b’) for auxiliary variables */

Information about the numerical position of variables in a vector is given by a substructure
j, i.e.

S.j.xr /* indices of REAL states */

.j.xb /* indices of BOOL states */

.j.ur /* indices of REAL inputs */

.j.ub /* indices of BOOL inputs */

.j.yr /* indices of REAL outputs */

.j.yb /* indices of BOOL outputs */

.j.d /* indices of BOOL auxiliary variables */

.j.z /* indices of REAL auxiliary variables /*

.j.eq /* indices of equality constraints */

.j.ineq /* indices of inequality constraints */

Further information about MLD model are stored in remaining substructures of the variable
S. Here belong the names, types, and dimensions of declared variables, i.e.

S.InputName /* names of input variables */

.InputKind /* types of the input variables (real, binary) */

.InputLength /* dimensions of the input variables */

.StateName /* names of state variables */

.StateKind /* types of the state variables (real, binary) */

.StateLength /* dimensions of the state variables */

.OutputName /* names of output variables */

.OutputKind /* types of the output variables (real, binary) */

.OutputLength /* dimensions of the output variables */

.AuxName /* names of auxiliary variables */

.AuxKind /* types of the auxiliary variables (real, binary) */

.AuxLength /* dimensions of the auxiliary variables */

upper and lower bounds

S.xl /* lower bound on state variables */

.xu /* upper bound on state variables */

.ul /* lower bound on input variables */

.uu /* upper bound on input variables */

.wl /* lower bound on auxiliary variables */

.wu /* upper bound on auxiliary variables */

The number of total constraints is given by the field

6.2 HYSDEL 3.0 71

S.nc /* total number of constraints (equalities + inequalities) */

Information about possible symbolic variables in HYSDEL file is stored in the field

S.symtable /* information about declared variables */

as a substructure with additional fields. Since HYSDEL 3.0 offers merging of several MLD
structures on a syntactical level, the information about the interconnections between the
local models is stored in field

S.connections /* table of interconnections between HYSDEL modules */

Next section describes the particular extensions in HYSDEL 3.0 language.

6.2.3 Language Elements

INTERFACE Section

The INTERFACE section defines main variables which appear for the given modeled SYS-
TEM. More precisely, this section defines input, state and output variables distinguished
by strings INPUT, STATE, and OUTPUT. Moreover, additional variables which do not
belong to these classes are supposed to be declared in the section called PARAMETER.
The MODULE section is to be present where subsystems are declared.
Syntactical structure of the INTERFACE section is of the following form

INTERFACE { interface_item }

which comprises of curly brackets and interface item. The interface item may take only
following forms

/* allowed INTERFACE items */

MODULE { /* module_item */ }

INPUT { /* input_item */ }

STATE { /* state_item */ }

OUTPUT { /* output_item */ }

PARAMETER { /* parameter_item */ }

where each item appears only once in this section. Each interface item is separated at least
with one space character and may be omitted, if it is not required. The order of each item
can be arbitrary, it does not play a role for further processing.

Example 6.1 A structure of a standard HYSDEL file is shown here, where the INTER-
FACE items are separated by paragraphs, and curly brackets denote visible start- and end-
points of each section.

72 6 Modeling of Hybrid Processes

SYSTEM name {

/* example of HYSDEL file */

INTERFACE {

/* declaration of variables, subsystems */

MODULE {

/* declaration subsystems */

...

}

INPUT {

/* declaration input variables */

...

}

STATE {

/* declaration state variables */

...

}

OUTPUT {

/* declaration output variables */

...

}

PARAMETER {

/* declaration of parameters */

...

}

}

IMPLEMENTATION {

/* relations between declared variables */

...

}

}

The main change comparing to previous version is that input variables can be defined
as vectors, whereas the dimension of the input vector of real variables is nur and nub

for
binary variables. This allows to define vectorized variables in the meaning of ur ∈ R

nur ,
ub ∈ {0, 1}nub and the corresponding syntax is as follows

REAL var(nur) [var_1_min, var_1_max;

var_2_min, var_2_max;

..., ...;

var_nur_min, var_nur_max];

for variables of type REAL and

BOOL var(nub);

6.2 HYSDEL 3.0 73

for Boolean variables where var is the name of the variable. Note that according to
expression in parentheses “(“ “)”, which denotes the dimension of the vector, the lower
and upper bounds must be specified for each variable in this vector. The above syntax of
variable declaration is valid for each of the interface item except the case, if the variable
to be defined is symbolic parameter. For symbolic parameters the declaration reads

PARAMETER {

type var; /* symbolic scalar */

type var(n); /* symbolic vector */

type var(n,m); /* symbolic matrix */

}

where the string type is either REAL or BOOL and the variable var can be scalar, vector
with n rows, or matrix with dimensions n and m.

Example 6.2 We want to declare constants a = 1 as Boolean variable, b = (−1, 0.5, −7.3)T

and D =

(

−1 0 0.23
0.12 −0.78 2.1

)

as real variables. This can be done as follows

PARAMETER {

BOOL a = 1; REAL b = [-1; 0.5; -7.3];

REAL D = [-1, 0, 0.23; 0.12, -0.78, 2.1];

}

IMPLEMENTATION Section

Relations between variables are determined in the IMPLEMENTATION section. Accord-
ing to type of variables, this section is further partitioned into subsections, which remain
the same as in previous version. Syntactical structure of the IMPLEMENTATION section
has the following form

IMPLEMENTATION { implementation_item }

which comprises of curly brackets and implementation item. The implementation item

may take only following forms

AUX { /* aux_item */ }

CONTINUOUS { /* continuous_item */ }

AUTOMATA { /* automata_item */ }

LINEAR { /* linear_item */ }

LOGIC { /* logic_item */ }

AD { /* ad_item */ }

DA { /* da_item */ }

MUST { /* must_item */ }

OUTPUT { /* output_item */ }

74 6 Modeling of Hybrid Processes

where each item appears only once in this section. Each implementation item is separated
at least with one space character and may be omitted, if it is not required. The order
of each item can be arbitrary, it does not play a role for further processing. Note that
OUTPUT section is also present as in the INTERFACE part but here it has different
syntax and semantics.

Example 6.3 A structure of the standard HYSDEL file is given next where the meaning
of each subsection of the IMPLEMENTATION part is briefly explained

SYSTEM name {

INTERFACE {

/* declaration of variables, subsystems */

}

IMPLEMENTATION {

/* relations between declared variables */

AUX {

/* declaration of auxiliary variables, needed for

calculations in the IMPLEMENTATION section */

}

CONTINUOUS {

/* state update equation for variables of type REAL */

}

AUTOMATA {

/* state update equation for variables of type BOOL */

}

LINEAR {

/* linear relations between variables of type REAL */

}

LOGIC {

/* logical relations between variables of type BOOL */

}

AD {

/* analog-digital block, specifying relations between

variables of type REAL to BOOL */

}

DA {

/* digital-analog block, specifying relations between

variables of type BOOL to REAL */

}

MUST {

/* specification of input/state/output constraints */

}

OUTPUT {

6.2 HYSDEL 3.0 75

/* selection of output variables which can be of type

REAL or BOOL) */

}

}

}

HYSDEL 3.0 enhancements in the IMPLEMENTATION section can be applied in any of
the implementation item and the common features are listed as follows:

• indexing

• FOR and nested FOR loops

• operators and built-in functions

Indexing

Introducing vectors and matrices induced the extension of the HYSDEL 3.0 language to
use indexed access to internal variables. The syntax is different for vectors and matrices
since it depends on the dimension of the variable. Access to vectorized variables has the
following syntax

new_var = var(ind);

where new_var denotes the name of the auxiliary variable (must be defined in AUX section),
var is the name of the internal variable and ind is a vector of indices, referring to position
of given elements from a vector. Indexing is based on a MATLAB syntax, where the
argument ind must contain only N

+ = {1, 2, . . .} valued elements and its dimension is
less or equal to dimension of the variable var. Syntax of the ind vector can be one of the
following:

• increasing/decreasing sequence

ind_start:increment:ind_end

where ind_start denotes the starting position of indexed element, increment is the
value of which the starting value increases/decreases, and ind_end indicates the end
position of indexed element.

• increasing by one sequence

ind_start:ind_end

where the value increment is now omitted and HYSDEL 3.0 automatically treats
the value as +1

76 6 Modeling of Hybrid Processes

• particular positions

[pos_1, pos_2, ..., pos_n]

where pos_1, ..., pos_n indicates the particular position of elements

• nested indices

ind(sub_ind)

where the vector ind is sub-indexed via the aforementioned ways by vector sub_ind
with N

+ values

Example 6.4 In the parameter section were defined two variables. The first variable is a
constant vector h = (−0.5, 3, 1, π, 0)T and the second variable is a symbolical expression
g ∈ R

3, g1 ∈ [−1, 1], g2 ∈ [−2, 2], g3 ∈ [−3, 3]. We want to assign new variables z and
v for particular elements of these vectors. Examples are:

• increasing sequence, e.g. z = (−0.5, 1, 0)T

z = h(1:2:5);

• decreasing sequence, e.g. v = (g3, g2)
T

v = g(3:-1:2);

• increasing by one, e.g. z = (1, π, 0)T

z = h(3:5);

• particular positions, e.g. v = (g1, g3)
T

v = g([1,3]);

• nested indexing, e.g. z = (3, π)T , k = (2, 3, 4)

z = h(k([1, 3]));

where the variable k has to be declared first.

6.2 HYSDEL 3.0 77

FOR Loops

FOR loops are another important feature of HYSDEL 3.0 version. To create a repeated
expression, one has to first define an iteration counter in the AUX section according to
syntax

AUX {

INDEX iter;

}

where the prefix INDEX denotes the class, and iter is the name of the iteration variable.
If there are more iteration variables required, the additional variables are separated by
commas “,”, i.e.

AUX {

INDEX iter1, iter2, iter3;

}

As the iteration variable is declared, the FOR syntax takes the form of

FOR (iter = ind) { repeated_expr }

where the string FOR is followed by expression in normal brackets“(”, “)”and expression in
curly brackets “{”, “}”. The expression in normal brackets is characterized by assignment
iter = ind where the iteration variable iter incrementally follows the set defined by
variable ind and this variable takes one of the form shown in Section 6.2.3 Indexing. The
expression in curly brackets named repeated expr is recursively evaluated for each value
of iterator iter and can take the form of

Operators and Built-in Functions

Throughout the whole HYSDEL source file various relations between variables can be de-
fined. Because the variables may be also vectors (matrices), the list of supported operators
is distinguished by

• element-wise operations (Tab. 6.1)

• and vector functions (Tab. 6.2).

For Boolean variables HYSDEL supports operators, as summarized in Tab. 6.3. Addition-
ally, syntactical functions are available, which allow condition checking and are summarized
in Tab. 6.4.

78 6 Modeling of Hybrid Processes

Relation Operator HYSDEL representation
addition + +

subtraction − -

multiplication . *

elementwise multiplication . .*

division / /

elementwise division / ./

absolute value |a| abs(a)

a to the power of b ab a.^b

eb exp b exp(b)

square root
√

a sqrt(a)

common logarithm (with base 10) log a log10(a)

natural logarithm (with base e) ln a log(a)

binary logarithm (with base 2) log2 a log2(a)

cosine cos a cos(a)

sine sin a sin(a)

tangent tan a tan(a)

rounding function round round(a)
rounding function ceil ceil(a)
rounding function floor floor(a)

Table 6.1: List of supported element-wise operators on variables of type REAL.
Relation Operator HYSDEL representation

matrix/vector addition + +

matrix/vector subtraction − -

matrix/vector multiplication . *

matrix power Ab A^b

vector sum
∑

i ai sum(a)

1-norm of a vector
∑

i |ai| norm_1(a)

∞-norm of a vector max|ai| norm_inf(a)

Table 6.2: List of supported vector/matrix operators on variables of type REAL.
Relation Operator HYSDEL representation

or ∨ | or ||
and ∧ & or &&

one way implication ⇒ ->

one way implication ⇐ <-

equivalence ⇔ <->

negation ¬ ~ or !

Table 6.3: List of supported operators on variables of type BOOL.
Function HYSDEL representation

true if all elements of a vector are nonzero all(a)

true if any element of a vector is nonzero any(a)

Table 6.4: List of functions for condition checking.

6.2 HYSDEL 3.0 79

6.2.4 Compiler

HYSDEL 3.0 incorporates compiler that uses YALMIP [67] for rapid algorithm develop-
ment. The language of YALMIP is consistent with standard MATLAB syntax, thus making
it extremely simple to use for anyone familiar with MATLAB. Another benefit of YALMIP
is that it implements many advanced techniques allowing the user to concentrate on the
high-level model, while YALMIP takes care of the low-level modeling to obtain as efficient
and numerically sound models as possible.

The YALMIP’s ability to produce a numerically well-conditioned models stands for genera-
tion of higher quality MLD models, which at the end serve for better conditioned optimiza-
tion. Another important aspects of YALMIP are its easy maintainability, independence
from operating system platforms and its relatively easy way of code extension.

6.2.5 Graphical Modeling

HYSDEL 3.0 offers a graphical layer of modeling which includes also model merging. This
layer comprises of “HYSDEL 3.0 Model” block which is a basic HYSDEL 3.0 library block.
In addition, this block can be further converted into arbitrary library unit, depending on
which source file it refers to. By this way the user can create its own library of standard
units (e.g. valves, pumps, burners, etc.) which can be dragged and dropped to a graphical
interface and connected thereafter. HYSDEL 3.0 offers the possibility to transform the
whole graphical layer to a single HYSDEL source file to create the corresponding MLD
model. By this way the user does not have to take care about the code writing which is
done automatically. An example of a simple block scheme is depicted in Fig. 6.3. Each

Figure 6.3: Graphical layer of HYSDEL 3.0.

of the library’s block is basically a separate HYSDEL file with its own parameters. This
approach allows user to adjust the dynamical properties of given block by specifying the
model parameter and increases the modularity of the overall model.

Creating Subsystems

Subsystems are declared in the MODULE section according to their file’s name and con-
taining parameters. Structurally, subsystems are independent HYSDEL 3.0 source files

80 6 Modeling of Hybrid Processes

with given names, inputs, outputs, states, parameters and are contained in the same di-
rectory as the master file. Consider a simple production system which is built by two
storage tanks, one conveyor belt and a packaging unit, as illustrated in Fig. 6.4. The task
is to model the whole production unit using MLD system. First, the production unit is
virtually separated into subsystems, as shown in Fig. 6.5 and the connections between the
subsystems are clarified.

Figure 6.4: Illustrative example of a production system.

Figure 6.5: Partitioning the overall process into subsystems.

The master file can be denoted as production and at first sight it seems that one would
declare four slave files, e.g.

1. tank1

2. tank2

3. belt

4. packer

but because tanks tank1 and tank2 have the same dynamics, it is better to treat these
objects as parameters of one file. Subsequently, it is possible to group these both tanks
into one file and end up in only three subsystems, e.g.

6.2 HYSDEL 3.0 81

1. storage_tank

2. conveyor_belt

3. packaging

where each of the objects is now an individual hys-file and can contain arbitrary number
of parameters. Declaration of these subsystems in HYSDEL 3.0 takes a form

MODULE {

storage_tank tank1, tank2;

conveyor_belt belt;

packaging packer;

}

and it corresponds to three HYSDEL 3.0 source files which will be included, i.e.

1. storage_tank.hys

2. conveyor_belt.hys

3. packaging.hys

Each of these file is a slave file. For instance, the file storage_tank.hys may be written
in HYSDEL 3.0 language as follows

SYSTEM storage_tank {

INTERFACE {

STATE { REAL level; }

INPUT { REAL u; }

OUTPUT { REAL y; }

PARAMETER {

REAL diameter;

REAL k=1e-2;

}

}

IMPLEMENTATION {

CONTINUOUS { level = 0.9*level+1/diameter*(u-k*level);}

OUTPUT { y = level; }

}

}

where one parameter as kept as symbolic. This is important, as it allows to define only
one hys-file which can be used several times for different values of this parameter, thus
referring to multiple objects. Similarly, one can create other slave files, in particular

82 6 Modeling of Hybrid Processes

SYSTEM conveyor_belt {

INTERFACE {

STATE { REAL speed [0, 6]; }

INPUT { BOOL sw; }

OUTPUT { REAL y; }

PARAMETER {

REAL k=[0.5, 0.1];

}

}

IMPLEMENTATION {

AUX { REAL z; }

DA { z = {IF sw THEN k(1)*speed+2*(REAL sw) ELSE k(2)*speed }; }

CONTINUOUS { speed = z; }

OUTPUT { y = speed; }

}

}

and

SYSTEM packaging {

INTERFACE {

INPUT { REAL inflow [0, 50]; }

OUTPUT { REAL outflow; }

}

IMPLEMENTATION {

OUTPUT { outflow = 0.5*inflow; }

}

}

which does not contain any symbolic parameters. As slave files have been declared, each
of them can be compiled individually and used for simulation. However, since the interest
is to have a single MLD file, next section gives an outline how to do this.

Model Merging

Having the subsystems declared, it is now possible to link them together in a single source
file using LINEAR or LOGIC section (depending on the class of connected variables).
Here it is important to know the “dot” syntax of MATLAB, which is used to access the
inputs/outputs of subsystem in a hierarchy tree. For instance, we have declared parameters
tank1 and tank2 in a MODULE section of a slave file storage_tank, which has input
variable denoted as u and output variable y. Access to these variables is done via “dot”
syntax, i.e.

tank1.y

tank1.u

6.2 HYSDEL 3.0 83

tank2.y

tank2.u

and it can be extended to vector notation, e.g. tank1.y(1) etc. Using this syntax, one
can now merge the slave files to one single master file with name production.hys

SYSTEM production {

INTERFACE {

MODULE {

storage_tank tank1, tank2;

conveyor_belt belt;

packaging packer;

}

STATE { REAL time [0, 1000]; }

INPUT { REAL raw_flow(2) [0, 5; 0, 5]; }

OUTPUT { REAL packages; }

}

IMPLEMENTATION {

AUX { BOOL d;}

LINEAR {

tank1.u = raw_flow(1);

tank2.u = raw_flow(2);

packer.inflow = 0.1*tank1.y + 0.5*tank2.y;

}

LOGIC { belt.sw = d; }

AD { d = packer.inflow > 0; }

CONTINUOUS { time = time + 1; }

OUTPUT { packages = packer.outflow; }

MUST {

tank1.level <= 100;

tank2.level <= 80;

}

}

}

where all the subconnections are declared in LINEAR and LOGIC section. Note that
the master file production.hys has its own inputs and outputs and these are assigned
to subsystems via “dot” syntax. Furthermore, one can access the state variables of single
subsystems and do additional operations with them, e.g. adding constraints as given in
MUST section of production.hys file.
After all the involved sub-connections in the master file are declared, one can proceed with
compilation of the master file

>> hysdel3(’production’)

84 6 Modeling of Hybrid Processes

Creating instance "tank1" of "storage_tank"...

Creating instance "tank2" of "storage_tank"...

Creating instance "belt" of "conveyor_belt"...

Creating instance "packer" of "packaging"...

and HYSDEL 3.0 generates an m-file equivalent of the input file (here production.m). The
generated m-file is a YALMIP code, given as a script which returns MLD model (6.1) in
a symbolical form. The values of symbolical parameter have the same names as they were
defined in the source file (i.e. tank1.diameter, tank2.diameter). The final representation
can be obtained via command

>> production

and it returns MLD model (6.1) for the given production system depicted in Fig. 6.4.
The procedure for generating MLD form of the master file can be done simple on a graphical
level as long the source master file production.hys is available. For this purpose, the
standard HYSDEL 3.0 block is copied from HYSDEL 3.0 Simulink library to a new scheme
and all the required fields as shown in Fig. 6.6 are filled. Here, the values of symbolical
parameters for tank diameter have been assigned in par structure. After confirming the
OK option, HYSDEL 3.0 automatically compiles the source file and generates a subsystem
with corresponding input/output ports. Consequently, one can add other blocks to the
scheme and the result might look as given in Fig. 6.6. By pressing START button in
Simulink, the simulation of MLD system should output the number of packages generated
for given input raw flow, which is illustrated in Fig. 6.7.

Figure 6.6: Production system using HYSDEL 3.0 graphical layer.

6.3 Translation to PWA System

Once MLD structure is available in MATLAB workspace, one can use it in several ways,
including simulation of hybrid systems, or control design using MPT toolbox [64]. First,

6.3 Translation to PWA System 85

Figure 6.7: Output from the “production.hys” system.

however, MLD model needs to be transformed to PWA model required by MPT toolbox.
The principle of conversion is based on an equivalence between different forms of hybrid
system [48] and an efficient transformation from MLD description to PWA system has been
shown in [10]. The algorithm is implemented in HYSDEL 3.0 under function h3 mld2pwa.
The use of this function is as follows

>> sysStruct = h3_mld2pwa(S)

where the input argument is MLD structure S and the output sysStruct is PWA model
described in MPT format.

Example 6.5 The aim is to obtain PWA representation of a simple hybrid model of car.
The dynamics of a car is given by three states position, velocity, turbocount and the
switching between two hybrid modes (normal mode/turbo mode) is given by an external
binary input turbo. The source file might be given as follows:

SYSTEM turbo_car {

INTERFACE {

STATE {

REAL position [-50, 50];

REAL velocity [-10, 10];

REAL turbocount [-10, 10];

}

INPUT {

REAL acc [-1, 1];

BOOL turbo;

86 6 Modeling of Hybrid Processes

}

OUTPUT {

REAL y;

}

}

IMPLEMENTATION {

AUX {

REAL aux_acc;

}

DA {

aux_acc = {IF turbo THEN 2*acc ELSE acc};

}

CONTINUOUS {

position = position + velocity + aux_acc;

velocity = velocity + 0.5*aux_acc;

turbocount = turbocount - (REAL turbo);

}

OUTPUT {

y = position;

}

}

}

To get MLD model, the source file turbo_car.hys is compiled first

>> hysdel3(’turbo_car’)

and evaluated

>> turbo_car

Secondly, PWA form can be obtained by

>> sysStruct = h3_mld2pwa(S)

which can be used for control design in MPT Toolbox. For instance, to obtain an explicit
controller which drives the car to a position 30, can be achieved by defining a problem
structure probStruct in MATLAB (see MPT manual for help)

>> probStruct.N = 3;

>> probStruct.Q = [1 0.5 0];

>> probStruct.R = [1 0];

>> probStruct.norm = 1;

>> probStruct.subopt_lev = 0;

>> probStruct.xref = [30; 0; 0];

6.3 Translation to PWA System 87

and invoking the main routine

>> ctrl = mpt_control(sysStruct, probStruct);

Resulting controller is stored in a MPT-structure and to simulate a closed loop we need to
use other functions of MPT Toolbox, such as

>> mpt_plotTimeTrajectory(ctrl,[0;0;0],20)

which returns a plot shown in Fig. 6.8.

0 5 10 15 20
−10

0

10

20

30

40
Evolution of states

Sampling Instances

S
ta

te
s

0 5 10 15 20
0

5

10

15

20

25

30

35
Evolution of outputs

Sampling Instances

O
ut

pu
ts

0 5 10 15 20
−1

−0.5

0

0.5

1
Evolution of control moves

Sampling Instances

In
pu

ts

0 5 10 15 20
1

1.2

1.4

1.6

1.8

2
Active dynamics

Sampling Instances

D
yn

am
ic

s

x
1

x
2

x
3

y
1

u
1

u
2

Figure 6.8: A closed loop simulation for a turbo_car model as returned by MPT Toolbox.

Conclusions

The chapter presents HYSDEL 3.0, a tool for modeling and composition of hybrid systems.
The software allows automatic generation of high quality models from simple language
statements defined between real and binary variables. The tool offers high flexibility with

88 6 Modeling of Hybrid Processes

low level modeling language, especially due to extended syntax and possibility to define
symbolical variables. Furthermore, HYSDEL 3.0 incorporates a graphical level of modeling
which is suitable for modeling and composition of large scale models. The software is inte-
grated for the use with MPT Toolbox, thus the generated MLD models can be transformed
to PWA models and readily deployed into MPC framework. Having addressed the first aim
of the thesis, the focus in the next chapter is given to tackle time optimal MPC problems
for PWA systems and to present low complexity MPC scheme.

Chapter 7

Explicit MPC for PWA Systems

7.1 Time Optimal Tracking of a Varying Reference

The technique for computing explicit solution to time optimal control problem for PWA
systems has been published in [46]. However, the proposed methodology deals with a
regulation problem towards origin and does not guarantee that the plant will follow the
desired set-point. Problem of driving the states toward given reference is a standard re-
quirement in industry and this field is traditional application for PID controllers. However,
if the plant operates under hard constraints, such as saturation of an actuator, the task
of maintaining constraints may be overwhelming for PID controllers and may cause severe
problems. Not surprisingly that [19] reports 30% of all control loops in Canadian paper
mills were oscillating because of valve problems. In order to tackle this problem, plant
dynamics with operating constraints must be considered for controller design. This field is
especially suited for hybrid modeling framework because the plant dynamics are naturally
captured by MLD model (4.14) or PWA model (4.12). Due to equivalence of hybrid mod-
els, PWA model is preferred because formulation of MPC problem (5.23) is more suitable
for multiparametric programming as with MLD model. In order to guarantee real-time
implementability of the approach, the time optimal MPC problem is solved explicitly for
all possible values of plant states. This section thus presents a novel way of synthesizing
an explicit controller which achieves time optimal tracking of a varying reference for PWA
systems.

7.1.1 Problem Formulation

The task of designing a control law which drives system states to a desired target set in
the minimum number of steps has been reviewed in Section 5.3.2. The approach uses an
algorithm which first designs a control invariant set around the origin and subsequently
iteratively constructs the control law which steers the system to such set in a minimal
number of steps. A drawback of such approach stems from the fact that it can only be
used for regulation problems, i.e. for tasks of driving the system states to the origin.
However, from practical reasons it is often required for states to converge to non-zero time-

89

90 7 Explicit MPC for PWA Systems

varying reference signals. Such requirement differs from a standard setup in control theory
and one is therefore motivated to extend the existing results of [46] to cover this case. The
corresponding MPC problem can be formulated as follows

min
U

J(U) = N (7.1a)

s.t. xk+1 = fPWA(xk,uk) (7.1b)

xk ∈ X (7.1c)

uk ∈ U (7.1d)

xN = xref(t) (7.1e)

x0 = x(t) (7.1f)

which requires that the predicted states must equal the given time-varying reference signal
xref (7.1e) at the end of prediction horizon N . Objective function (7.1a) expresses the num-
ber of steps to reach the reference xref to be minimized. Sets X , U denote the state/input
constraints, usually given as polytopes with lower/upper bounds (cf. (5.1), (5.2)). PWA
model (7.1b) corresponds to the hybrid model of the form (4.12) with regions defined in
the joint x–u space (4.13). In order to establish a feasible solution to (7.1), PWA model
must be well-defined as given by Assumption 4.1. It is further assumed that the constraint
sets X , U are linear in x and u in the problem (7.1), thus it is possible to employ the
multiparametric techniques presented in Section 5.2.3 to obtain an explicit solution in the
form of (5.25). Once such a solution is computed, it can be implementable in real-time
and with very fast sampling rates as shown in Section 5.4.
In the next section the modification of the algorithm by [46] is performed, which relies on
design of a stabilizing terminal set. Once the suitable terminal set is found, the rest of the
Algorithm 5.2 remains unchanged.

7.1.2 Design of the Stabilizing Terminal Set

The aim of this part is to construct the stabilizing terminal set Ω, which drives the states
to desired reference in a dead-beat fashion. The terminal set has to be designed such that
once states x ∈ R

n are contained in such set, there is a control law which drives them to the
time varying reference xref ∈ R

n in a finite number of steps. One possibility of including
the time varying reference for the use in multiparametric programming is to augment the
state vector as follows

x̃ =

(

x

vref

)

(7.2)

where vref ∈ R
r are time dependent elements of the vector xref with r ≤ n. Here can be

mentioned that not all elements of xref must be included as only time varying elements are
of interest. Augmentation (7.2) causes reformulation of PWA model (4.12) to

x̃k+1 = f̃PWA(x̃k,uk) (7.3a)

= Ãix̃k + B̃iuk + c̃i if

(

x̃k

uk

)

∈ D̃i (7.3b)

7.1 Time Optimal Tracking of a Varying Reference 91

where

Ãi =

(

Ai 0
0 I

)

, B̃i =

(

Bi

0

)

, c̃i =

(

ci

0

)

, (7.4)

are the augmented state update matrices with i = 1, . . . , nD̃. Additionally, one has to
consider also extended state constraint set

X̃ := {x̃ ∈ R
n+r | x̃ ≤ x ≤ x̃}. (7.5)

The suitable terminal set Ω should contain a terminal control law κ(x̃) ∈ U which fulfills
the condition (7.1e) for all possible states within X̃ . To obtain such a set, it is suggested
to solve the following feasibility problem:

find U (7.6a)

s.t. xk+N = xref (7.6b)

x̃k+1 = f̃PWA(x̃k,uk) (7.6c)

x̃k ∈ X̃ (7.6d)

uk ∈ U (7.6e)

where (7.6b) points to a terminal equality constraint (7.1e). By solving the problem (7.6)
parametrically, according to Theorem 5.1, one obtains the feasible set Ω of parameters x̃0

which satisfy given constraints. The set takes a form of a (possibly non-convex) union of
finite number of convex polytopes, i.e. Ω =

⋃

i Pi over which a PWA feedback function
u = F ix̃0 + gi if x̃0 ∈ Pi with, i = 1, . . . , nP is defined as in (5.25). The equality
constraint (7.6b) assures that the control law will be in a form such that once the state
resides in the set Ω, it will be steered to the respective reference in, at most, N steps. It is
therefore desired to choose the minimal value of N in order to attain dead-beat properties.
Selection of N depends on the dimension n for the original PWA system (7.1b). For N = 1
the set Ω will automatically guarantee that in one time step ahead the reference xref will
be reached. In a general case where n > 1, the dead-beat controller requires at least n
steps to reach the reference. As N > 1 it is required that the target set Ω must satisfy the
invariance property, as given by Definition 4.1.
To achieve the invariance property, it is suggested to calculate an invariant subset Ωinv ⊆ Ω
using the algorithm of [88] presented in section 4.6. Basically, this approach uses reachabil-
ity tools to iteratively remove subsets of states from the set Ω which may drive the states
away from this region and the result is the control invariant set Ωinv.

7.1.3 The Time Optimal Algorithm for Reference Tracking

Once the control invariant set Ωinv is available from (7.6), it can be used to design a
time optimal controller according to Algorithm 5.2. In fact, the skeleton of Algorithm 5.2
remains unchanged, only the target set is replaced with Ωinv. To recapitulate the principle

92 7 Explicit MPC for PWA Systems

of Algorithm 5.2, the problem (7.1) is partitioned into N subproblems with horizon one
which are solved sequentially. At each stage of the Algorithm, the control law is constructed
by solving the following problem parametrically

min
uk

‖Ruk‖p + ‖Qx̃k‖p + ‖P x̃k+1‖p (7.7a)

s.t. x̃k+1 = f̃PWA(x̃k,uk) (7.7b)

x̃k+1 ∈ Sk (7.7c)

x̃k ∈ X̃ (7.7d)

uk ∈ U (7.7e)

where (7.7c) represents terminal set constraint (4.20f) for the augmented system (7.7b).
The modified algorithm of [46] can now be reformulated in order to steer the states toward
reference as follows:

Algorithm 7.1 (Time Optimal Algorithm for Reference Tracking)

1. For given P , R, Q solve the problem (7.7) parametrically and denote by Ω the set
of states for which the problem is feasible.

2. Apply the procedure of [88] to find a subset Ωinv ⊆ Ω which is invariant according to
Definition 4.1.

3. Set the iteration counter k = 0 and set Sk = Ωinv.

4. Solve (7.7) parametrically by considering x̃ as the parameter. Denote the feasible set
of the problem (7.7) by Sk+1.

5. If Sk+1 = Sk, stop, the algorithm has converged. Otherwise, increase k by 1 and jump
back to Step 4.

6. The total number of iterations is given by k∗ = k.

At every run of Step 4 of the Algorithm 7.1, a control law of the form uk = F k,ix̃k + gk,i

is generated according to Theorem 5.1. Since the dynamics in (7.7b) is hybrid, the feasible
set at the iteration k, Sk =

⋃

i Pk,i, will be a non-convex union of finite number of convex
polytopes. The set is then used at the next iteration as a new target set constraint. The
algorithm terminates if at two subsequent iterations no new states have been added to Sk

and total number of iterations k∗ denotes the number of steps needed for states x̃ to enter
the terminal set Ωinv.

Theorem 7.1 The feedback laws u(x̃k), k = {0, . . . , k∗} calculated by Algorithm 7.1 are
such that PWA system (7.1b) is pushed towards reference xref in, at most, k∗ + N steps
for any x̃ ∈ ⋃k Sk.

7.1 Time Optimal Tracking of a Varying Reference 93

PROOF: At iteration k for any x̃0 ∈ Sk the feedback law obtained in Step 1 of Algo-
rithm 7.1 is such that the one-step prediction x̃1 = fPWA(x̃0,uk(x̃0)) is pushed into Sk−1

in one time step. The iterative nature of the algorithm guarantees that for any x̃1 ∈ Sk−1

we have x̃2 = fPWA(x̃1,uk−1(x̃1)) ∈ Sk−2. By consecutively applying the feedback laws
uk−2(x̃2),uk−3(x̃3), . . . , ũ0(x̃k∗) one therefore get x̃k∗ ∈ S0 (note that S0 = Ωinv). Hence
all states of PWA system (7.1b) are pushed towards S0 in, at most, k∗ due to the stopping
criterion in Step 5. Inside S0 there are N steps required to reach the reference xref, as given
by feasible solution of (7.6). Hence, the maximum number of steps to reach the reference
is k∗ + N . �

Iterative property of Algorithm 7.1 causes that the generated sets Sk are overlapping, that
is, there exist multiple control laws uk(x̃0) with different indices k. In order to guarantee
the time optimal property, one has to select the lowest index from an available set. This
is ensured by the following implementation algorithm:

Algorithm 7.2 (On-line implementation)

1. Find the minimal value of the index kmin for which x̃0 ∈ Skmin
.

2. From the kmin-th feedback law of the form (5.25) find the region index r for which
x̃0 ∈ Pr.

3. Calculate the control action u∗ = F kmin,rx̃0 + gkmin,r.

Theorem 7.2 The time optimal controller calculated by Algorithm 7.1 and applied to PWA
system (7.1b) in a receding horizon fashion according to Algorithm 7.2 guarantees that all
states are pushed towards reference xref in the minimal possible number of steps.

PROOF: Assume that the initial state x̃0 is contained in the set Sk from which it takes
at most k + N steps to reach the reference xref according to Theorem 7.1. The control
law identified by Algorithm 7.1 will drive the states into the set Sk−1 in one time step.
Therefore, the states will enter Ωinv in k steps when Algorithm 7.2 is called repeatedly at
each sampling instance. Inside Ωinv there exist controller which requires N steps to reach
the reference xref, as given by feasible solution of (7.6). �

7.1.4 The Robust Time Optimal Algorithm for Reference Track-
ing

The Algorithm 7.1 together with on-line implementation of Algorithm 7.2 guarantees that
the reference will be reached with minimal number of steps. However, this result is valid
only with the assumption that PWA model (7.1b) exactly matches with the real plant
which is not always true in practice. Therefore, in order to include possible uncertainties
in PWA model, [88] proposed a robust modification of the algorithm by [46]. The plant

94 7 Explicit MPC for PWA Systems

to be controlled (7.7b) is affected by additive disturbances of the form (4.9). For the case
here, the formulation of the robust time optimal control is as follows

min
U

J(U) = N (7.8a)

s.t. xk+1 = fPWA(xk,uk) +wk (7.8b)

xk ∈ X (7.8c)

uk ∈ U (7.8d)

wk ∈ W (7.8e)

xN = xref(t) (7.8f)

x0 = x(t) (7.8g)

where w ∈ W is additive noise bounded by the polytopic set W , i.e.

W := {w ∈ R
n | w ≤ w ≤ w}. (7.9)

Instances of xk, uk, wk are supposed to belong to their respective sets X , U , W for all
prediction time k = 0, . . . , N . As the aim is to obtain reference tracking, the model (7.8b)
is augmented as in (7.3), i.e.

x̃k+1 = f̃PWA(x̃k,uk) + w̃k (7.10a)

= Ãix̃k + B̃iuk + c̃i + w̃k if

(

x̃k

uk

)

∈ D̃i (7.10b)

where the set W̃ is an augmented form of (7.9). Though the time varying reference might
not be affected with additive noise but due to computational reasons it is assumed so. Oth-
erwise, the Pontryagin difference could not be obtained which is required by the approach
[88].
Overall principle of the robust time optimal algorithm is the same as Algorithm 5.2 but
the invariant set Ωinv has be computed for all possible realizations of w̃k in the sense of
the following definition.

Definition 7.1 (Robust Control Invariant Set, [88]) A set Ψ ∈ X̃ is said to be a
robustly controlled invariant set for PWA system (7.10) subject to constraints x̃ ∈ X̃ ,
u ∈ U , w̃ ∈ W̃ if for every x̃ ∈ Ψ there exist u ∈ U such that f̃PWA(x̃,u) + w̃ ∈ Ψ,
∀w̃ ∈ W̃.

The robust control invariant set can be computed with the help of geometric operations
over polytopes. To get an insight, one has to interpret the evolution of (7.10) under
constraints (7.8c), (7.8d), (7.8e) as affine transformation of polytopes (Definition 1.27).
Consider a reachable set R as a set of states for which evolution of (7.10) in one time step
can be obtained under set constraints X̃ and closed loop control U and disturbance W̃ .
In general, the reachable set R can be expressed as a nonconvex union of polytopes which

7.1 Time Optimal Tracking of a Varying Reference 95

are affected by disturbances w̃ from the set W̃ . As the disturbance enters PWA function
(7.10) linearly, by subtracting the set W̃ from R using the Pontryagin difference operation
in Definition 1.23 an robustly invariant subset can be obtained. This idea is elaborated in
the robust time optimal algorithm by [88] and the extension for reference tracking can be
summarized as follows:

Algorithm 7.3 (Robust Time Optimal Algorithm for Reference Tracking)

1. For given P , R, Q solve the problem (7.7) parametrically and denote by Ω the set
of states for which the problem is feasible.

2. Apply the procedure of [88] to find a subset Ωinv ⊆ Ω which is invariant according
to Definition 4.1. Compute the robust invariant subset Ψ = Ωinv ⊖ W̃ using the
Pontryagin difference operation according to Definition 1.23.

3. Set the iteration counter k = 0 and set Sk = Ψ.

4. Solve (7.7) parametrically by considering x̃ as the parameter. Denote the feasible set
of the problem (7.7) by Sk+1.

5. If Sk+1 = Sk, stop, the algorithm has converged. Otherwise, increase k, Sk = Sk⊖W̃,
and jump back to Step 4.

6. The total number of iterations is given by k∗ = k.

The Algorithm 7.3 generates at each run of the step 4 a nonconvex union of sets Sk which
is shrunken by the disturbance set W̃ using Pontryagin difference operation. To each of
the set Sk a control law uk = F k,ix̃k + gk,i is computed according to Theorem 5.1. If the
Algorithm 7.3 is implemented on-line according to Algorithm 7.2, then the time optimal
controller robustly drives the states toward reference in the time optimal fashion. Argu-
mentation follows the proof concept for Theorem 7.1 with that difference that algorithm
for computing maximal robustly controlled invariant set of [88] is used for convergence to
Ψ which is already computed from (7.6).

7.1.5 Examples

One Dimensional Case

For illustration of Algorithm 7.1 for reference tracking, consider the following 1D PWA
system:

xk+1 =

{

−0.5xk + 0.5uk if xk ≤ 0,

0.9xk + 0.5uk if xk ≥ 0.
(7.11)

The control objective is to follow a time-varying reference xref in the least number of steps
while −5 ≤ uk ≤ 5 and −10 ≤ xk ≤ 10 for all k must be satisfied. PWA model (7.11) has
been augmented with varying reference and the time optimal algorithm has been applied.

96 7 Explicit MPC for PWA Systems

Figure 7.1: Solution of the time optimal algorithm for 1D example (7.11).

Illustration of the algorithm is depicted in Fig. 7.1 for 5 iterations. Regions associated to
each iteration are equally shadowed, the darkest region S0 corresponds to the terminal set.
Since one-step problems are solved at each step, the controller guarantees that all states
will enter the initial terminal set Ω in the least possible number of steps. Subsequently,
once the states arrive to the set Ω, the control laws which have been obtained as a solution
to (7.6) will drive them to the respective reference in a dead-beat fashion.
Figures 7.2 and 7.3 show the state and input trajectories of the closed loop control from
initial condition x0 = 10. The reference signal xref varies in discrete time instances k as
follows:

xref =

{

5 sin (0.4k − π/2) + 5 for k ≤ 30

6 for k > 30.

From the simulation on discrete PWA model (7.11) in Fig. 7.2 is evident that evolution
of the state x follows the desired reference in time optimal manner and the imposed state
constraints are fulfilled for all time. Similarly, the control profile in Fig. 7.3 satisfy input
constraints and behaves in a dead-beat fashion.

Two Dimensional Case

For illustration of the robust time optimal Algorithm 7.3 for reference tracking, consider
the example “car on the road” shown in Fig. 4.1. Assume that the car is perfectly described
by the following equations of motion [99]

ẋ1 =
v

l
tan u, (7.12a)

ẋ2 = v sin x1 (7.12b)

7.1 Time Optimal Tracking of a Varying Reference 97

0 10 20 30 40 50

−10

−5

0

5

10

samples

x
x
x

ref

x
min

/x
max

Figure 7.2: State profiles for the closed loop time optimal control.

0 10 20 30 40 50
−6

−4

−2

0

2

4

6

samples

u

u
u

min
/u

max

Figure 7.3: Input profile for the closed loop time optimal control.

98 7 Explicit MPC for PWA Systems

x1

x2

u

Figure 7.4: Coordinate system of a car example.

where x1 is the angle of the car, x2 is the vertical position of the rear end, u is the steering
angle, v is constant speed, and l is the truck length. The coordinate system is shown
in Fig. 7.4. Equations (7.12) are described in continuous time and are nonlinear due to
trigonometric terms tanu, sin x1.
In order to design explicit solution, it is required to construct an equivalent model in
discrete-time. It is obtained by applying finite difference approximation to time derivations
in (7.12), i.e.

x1,k+1 = x1,k +
vTs

l
tan uk, (7.13a)

x2,k+1 = x2,k + vTs sin x1,k (7.13b)

where Ts = 1 s is the sampling time and k denotes the discrete time. Consequently, the
linear model is derived from (7.13) by first order Taylor series approximation of nonlinear
terms around origin. In particular tanuk ≈ uk for |uk| ≤ 0.5, sin x1,k ≈ x1,k if x1,k is close
to 0, and the model reads

x1,k+1 = x1,k +
vTs

l
uk, (7.14a)

x2,k+1 = x2,k + vTsx1,k. (7.14b)

PWA model is obtained by approximating the sinx1 function with three lines y1(x1), y2(x1),
y3(x1), as shown in Fig. 7.5, and by collecting the linear models (7.14). The resulting model
gives

x1,k+1 = x1,k +
vTs

l
uk, (7.15a)

x2,k+1 =











x2,k − 0.6vTsx1,k − 1.94vTs if − π ≤ x1,k ≤ −π/2

x2,k + 0.64vTsx1,k if − π/2 ≤ x1,k ≤ π/2

x2,k − 0.6vTsx1,k + 1.94vTs if π/2 ≤ x1,k ≤ π

(7.15b)

7.1 Time Optimal Tracking of a Varying Reference 99

x1

sin x1

y1(x1)

y2(x1)

y3(x1)

Figure 7.5: Linear approximations of sinx1 function.

where the operator ”if” represents the switching function. Depending on the location of
state x1,k the corresponding local approximation is chosen and PWA model thus acts as
selection from table (7.15) of local models.
To verify the accuracy of PWA model, the following scenario is considered. The car starts
from a zero initial position and the driver performs a full right turn of a driving wheel,
then immediately turns left and consequently returns to zero position. The corresponding
profile of the steering angle is shown in Fig. 7.6. Applying this maneuver to different car
models gives prediction of state trajectories depicted in Figs. 7.7(a), 7.7(b). A comparison
of trajectories for x1 in Fig. 7.7(a) does not say much, except that PWA model is accurate
only at the very beginning of prediction. As the prediction horizon increases, PWA models
suffer from finite difference approximation and do not copy the behavior of continuous time
models precisely. This observation is more visible in Fig. 7.7(b) where bigger differences
between trajectories are present. This fact is due to rough approximation, as shown in
Fig. 7.5. PWA models could be constructed with higher precision if sin x1 nonlinearity
would be approximated with more lines which corresponds to more switching rules.
As shown in Figs. 7.7(a), 7.7(b) PWA model is not perfect and there is some uncertainty
present. To account for this inaccuracy, additive uncertainty is assumed on both states,
i.e.

W := {w ∈ R
2 | ‖w‖∞ ≤ 0.02}.

To recall the physical meaning of states, the first state x1 represents the speed of the car
and the state x2 is the position. Both states are constrained

X := {x ∈ R
2 | |x1| ≤ π, |x2| ≤ 1}

and the objective is to drive the position of a car to a time-varying reference xref =
(x1,ref, x2,ref)

T , where x1,ref = 0 and x2,ref = x2,ref(t). The manipulated input (steering
angle) must remain within the constraint set

U := {u ∈ R | |u| ≤ 0.5}.

100 7 Explicit MPC for PWA Systems

0 5 10 15 20 25 30 35 40 45 50
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t (s)

u

Figure 7.6: Maneuver for testing accuracy.

0 5 10 15 20 25 30 35 40 45 50
−2

−1.5

−1

−0.5

0

0.5

1

t (s)

x 1

exact trajectory

PWA model

(a)

0 5 10 15 20 25 30 35 40 45 50
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

t (s)

x 2

exact trajectory

PWA model

(b)

Figure 7.7: State predictions of x1 (a) and x2 (b) obtained with PWA model of a car.

7.2 Adaptive Time Optimal Control 101

In the first step, PWA system is augmented with the reference −1 ≤ x2,ref ≤ 1 to get (7.3).
Consequently, the disturbance set W is enlarged to account for possible uncertainty in xref

W̃ := {w̃ ∈ R
3 | |w̃1| ≤ 0.02, |w̃2| ≤ 0.02, |w̃3| ≤ 0.001 }.

The augmented set W̃ is introduced in order to compute the Pontryagin difference at
Step 2 of the Algorithm 7.3 which requires the dimensions of Ωinv and W̃ to be equal.
The stabilizing terminal set has been computed with N = 2 and the procedure of [88]
for computing maximal invariant set has been applied. Executing the Algorithm 7.3 with
weights P = 0, Q = I, R = 1 one obtains the explicit solution in the form of (5.25). The
control law has been applied in the closed loop simulation for the continuous-time model
(7.15). State trajectories are shown in Figs. 7.8(a), 7.8(b) with the time varying reference
xref given as the testing maneuver on Fig. 7.6. Car’s position is steered to the reference,
even if the simulation is performed on a continuous time model. Input profile is shown in
Fig. 7.9 and it is evident that input constraints are satisfied.

Conclusions

The section addresses the goal of finding the explicit solution to time optimal tracking
problem for PWA systems. It has been shown that the proposed approach comprises of
two steps. First, the control invariant set Ωinv has to be designed by solving the feasibil-
ity problem (7.6). Secondly, the set Ωinv is deployed as a terminal set constraint in the
recursive Algorithm 7.1 that generates explicit solution to the time optimal tracking MPC
problem. For a proper implementation of the explicit solution, Algorithm 7.2 is applied. In
case that given PWA model is affected by additive disturbances, the robust time optimal
Algorithm 7.3 for reference tracking is suggested. The approach has been demonstrated
on two examples and the real-time application will be studied in Part III.

7.2 Adaptive Time Optimal Control

The objective of this section is to present an adaptive approach for time optimal control
of PWA systems. Contrary to previous section, where the goal was to attain reference
tracking in the minimum number of steps, the objective here is to drive the system states
toward given terminal set. Thus, the overall task is considered as a regulation problem.
The reasoning beyond the adaptive approach is to enhance the closed loop performance for
the cases where the information about PWA model is uncertain or, it changes throughout
the operation of closed loop control. Thus, the argumentation follows the classical concept
of robust control where the controller is calculated such that it robustly stabilizes the whole
family of PWA models.

102 7 Explicit MPC for PWA Systems

0 20 40 60 80

−3

−2

−1

0

1

2

3

t (s)

x 1
x

1

x
1,ref

x
1,min

/x
1,max

(a)

0 20 40 60 80

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (s)

x 2

x
2

x
2,ref

x
2,min

/x
2,max

(b)

Figure 7.8: State profiles of x1 (a) and x2 (b) obtained under time optimal control toward
reference xref.

7.2 Adaptive Time Optimal Control 103

0 20 40 60 80

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

t (s)

u
u
u

min
/u

max

Figure 7.9: Input profile for the closed loop time optimal control of a car example.

7.2.1 Problem Formulation

The problems with uncertain models have been introduced in Section 4.4.2 where two cases
are distinguished: models with additive uncertainties (4.9) and models with parametric
uncertainties (4.10). Time optimal control of PWA systems with additive uncertainties
has been resolved in [88] for convergence to a desired target set and a modified algorithm
for reference tracking is presented in Section 7.1.4. The problem considered here concerns
PWA systems affected with parametric uncertainties of the form

xk+1 = fPWA(λk,xk,uk) (7.16a)

= Ai(λk)xk +Biuk + ci if xk ∈ Di (7.16b)

where λk ∈ Λ is convex and compact set and Di, i = 1, . . . , nD, is a partition of the state
space, D =

⋃

i Di. The relation Ai(λk) is given by

Ai(λk) =

nλ
∑

l=1

λk,jAi,l (7.17)

where 0 ≤ λk,l ≤ 1 and vertices Ai,l can be obtained by evaluating Ai(λk) for all vertices
λk,l ∈ vert(Λ), i.e. Ai,l = Ai(λk,l). Expression (7.17) is a general form of convex hull as
given by Definition 1.4. The related problem of time optimal control for PWA systems

104 7 Explicit MPC for PWA Systems

affected with parametric uncertainties can be formulated as follows

min
U

J = N (7.18a)

s.t. xk+1 = fPWA(λk,xk,uk) (7.18b)

xk ∈ X (7.18c)

uk ∈ U (7.18d)

λk ∈ Λ (7.18e)

xN = Ω (7.18f)

x0 = x(t) (7.18g)

where Ω is the desired terminal set defined as polytope. Sets X , U represent the state and
input constraints usually given as (5.1) and (5.2). Solution to the problem (7.18) follows
the max-min concept of [6] and utilizes the notion of information vector z(xk,λk) which
gives actual knowledge about the plant. The variables xk, λk are assumed to be known at
the current time k, thus the adaptive feedback law must respect these in the form of u(zk).
These considerations are elaborated by the adaptive time optimal algorithm presented in
the next section.

7.2.2 Adaptive Time Optimal Algorithm

The adaptive time optimal algorithm is constructed in such a manner that it iteratively
pushes the states towards desired target set in time optimal fashion. If there is additive dis-
turbance present as in (7.10) which enters PWA dynamic equations linearly, the algorithm
is modified to account for the uncertainty set by Pontryagin difference operation. However,
as PWA system is affected with parametric uncertainty of the form (7.17), equation (7.16)
contains a product Ai(λk)xk. To retain the linearity of PWA model, [6, 18] suggests to
employ the information vector

zk = Ai(λk)xk (7.19)

which aggregates the knowledge of local PWA mode i, uncertain parameter λk and state
vector xk in one. Such modification transforms the equation (7.16) to

xk+1 = zk +Biuk + ci (7.20)

which is now linear in variables zk and uk for a given mode i. Transformation of (7.16) to
(7.20) is especially suited for use in adaptive control since information about all instances
of vector (7.19) will be known at the time of executing the feedback law. Reformulation
of (7.16) has immediate advantage for the use in multiparametric programming, as (7.19)
enters the equation (7.18b) linearly and can be treated as parameter. To account for
all variations of the information variable (7.19), it is suitable to include this term in the
objective function directly, or via relation (7.20). Now the task is to express the 1-step
horizon subproblem which should be solved at each iteration of Algorithm 5.2. This can

7.2 Adaptive Time Optimal Control 105

be done by considering extremal variations of (7.17) into account as follows

min
uk

‖Qxk+1‖p + ‖Ruk‖p (7.21a)

s.t. xk+1 = zk +Biuk + ci (7.21b)

xk+1 ∈ Sk (7.21c)

λk ∈ Λ (7.21d)

xk ∈ X (7.21e)

uk ∈ U (7.21f)

where p = {1,∞} and i = 1, . . . , nD. Note that constraints (7.21c), (7.21d) are given as

Ai,1xk +Biuk + ci ∈ Sk (7.22a)

...

Ai,nλ
xk +Biuk + ci ∈ Sk (7.22b)

which accounts all vertices of the convex hull (7.17) for fixed local dynamics i. If the
terminal set Sk is given as one polytope, the problem (7.21) is given as mpLP for fixed
i. Thus, for nD dynamics of PWA model (7.16) one has to solve nD-times mpLP. Explicit
solution to the problem (7.21) for fixed i is expressed according to Theorem 5.1 and is
given by

uk = F i,jzk + gi,j if zk ∈ Pk,i,j, (7.23a)

Jk = Φi,jzk + Γi,j if zk ∈ Pk,i,j, (7.23b)

where j = 1, . . . , nPi
and Pk,i,j is the polytope defined in the z-space. Subscript notation

should be interpreted as the one step prediction (7.20) for the current value of z at time
k is driven by the feedback law uk toward terminal set Ω for i-th dynamics of uncertain
PWA model (7.16). In addition, the feedback law is given as PWA function defined over
j = 1, . . . , nPi

regions. For the whole model, the optimal feedback law u∗(zk) is given as
the one with minimum cost [23], i.e.

u∗(zk) = arg min
i,j

J(zk) (7.24)

and is defined as PWA function in the form

u∗(zk) = F rzk + gr if zk ∈ Pk,r (7.25)

where r = 1, . . . , nPk
. Note that the explicit solution is defined over a collection of polytopes

Pk,r defined in the z-space. However, for the iterative use according to Algorithm 5.2 these
sets must be given in x-space as required by the terminal set constraint (7.21c). This can
be achieved by geometric projection of the sets

Sk =

nPk
⋃

r=1

nD
⋃

i=1

projx(Zk,r,i) (7.26)

106 7 Explicit MPC for PWA Systems

onto the x-space of according to Definition 1.25 where

Zk,r,i :=



























(

xk

uk

)

uk ∈ U ,
xk ∈ Di,

Ai,1xk +Biuk + ci ∈ Sk,
...

Ai,nλ
xk +Biuk + ci ∈ Sk



























(7.27)

The set Sk, which is given as a union

Sk =

nS
⋃

r=1

Sk,r, (7.28)

is used as a target set for subsequent iteration according to general principle of Algo-
rithm 5.2. However, (7.28) is frequently a non-convex set. Therefore only a convex subset
can be given as terminal set constraint in (7.21). This can be explained by looking at
Figures 7.10(a) and 7.10(b) where an example of a target set with tree polytopes S1, S2,
and S3 is depicted. Assume that the initial point x0 is contained in a mode i of the un-
certain PWA model (7.16) with two extremal realizations Ai,1 and Ai,2. The point x0

can be driven using local dynamics 1 to the point x1 and using dynamics 2 to the point
x2. Figure 7.10(a) shows the possibility when the target set is built by a convex subset of
{S2,S3} and x1 ∈ S2, x2 ∈ S3. Due to convexity of {S2,S3} all possible combinations of
x1 and x2, represented by the connecting line, lie inside this set, thus a control law can
be found which stabilizes all combinations of dynamics 1 and 2. However, Figure 7.10(b)
shows the case when the target set is a nonconvex, i.e. {S1,S3}. Here, the connecting line
between x1 and x2 does not remain inside the set {S1,S3}, thus there cannot be found
controller which can stabilize all combinations of dynamics 1 and 2.
Taking the aforementioned ideas into consideration, the adaptive time optimal algorithm
is given as follows.

Algorithm 7.4 (Time Optimal Adaptive Algorithm)

1. Given optimization weights Q, R, a stabilizing terminal set Ω, denote this set by S0

and set the iteration counter k = 0.

2. (a) For each local dynamics i = 1, . . . , nD of PWA system (7.16) and for each
combination of indices r = 1, . . . , nS which built convex terminal set constraint
Sk in (7.28) solve the optimization problem (7.21) parametrically.

(b) Store the optimizer u∗
k = F k,rzk + gk,r if zk ∈ Pk,r by taking the minimum

per (7.24).

(c) Compute next terminal constraint by (7.26) and denote their union as Sk+1 =
⋃

r Sk,r.

3. If Sk+1 = Sk, abort, the algorithm has converged.

7.2 Adaptive Time Optimal Control 107

S1

S2 S3

x0

x1

x2

(a)

S1

S2 S3

x0

x1

x2

x(λ)

(b)

Figure 7.10: Convex combination of polytopes (a) and non-convex combination of polytopes
(b) for specification of a target set.

4. Otherwise increment the iteration counter k = k + 1 and jump back to Step 2.

5. The total number of iterations is given by k∗ = k.

Theorem 7.3 The feedback laws u∗(zk), k = (0, . . . , k∗) calculated by Algorithm 7.4 are
such that the PWA system (7.16) can robustly be pushed to Ω ∀λ ∈ Λ in, at most, k∗

steps for any x ∈ Sk∗. Moreover, measurements of λ are taken into account by u∗(zk) via
(7.21a) to further optimize for performance.

PROOF: At iteration k for any x0 ∈ Sk the feedback law obtained in Step 2(b) is
such that the one-step prediction x1 = fPWA(x0,λ0,u(x0)) is pushed into Sk−1 in one
time step ∀λ0 ∈ Λ. Robustness is ensured by taking Sk as given by (7.26) and (7.28).
The iterative nature of the algorithm guarantees that for any x1 ∈ Sk−1 we have x2 =
fPWA(x1,λ1,uk−1(x1)) ∈ Sk−2, ∀λ1 ∈ Λ. By consecutively applying the feedback laws
uk−2(x2),uk−3(x3), . . . ,u0(xk) we therefore get xk+1 ∈ S0 (note that S0 = Ω by Step 1).
Hence all states of PWA system (7.16) are pushed towards Ω in, at most, k∗ steps due to
the stopping criterion in Step 3. By employing (7.19) in the performance objective (7.21a)
the knowledge of λk is taken into account when optimizing for u∗

k at each iteration. �

The regions Sk may overlap due to iterative property of Algorithm 7.4. For a proper
implementation of PWA control law, one has to identify at which iteration the information
variable zk lies, then the control law is taken as the one where zk ∈ Pk,r. This routine is
specified by the following algorithm

Algorithm 7.5 (On-line implementation)

1. Given the state vector x0, identify the mode i of PWA dynamics (7.16).

108 7 Explicit MPC for PWA Systems

2. Find all regions where x0 ∈ Sk and take the one with minimal index kmin.

3. For given x0, λ0 and i evaluate z0 per (7.19).

4. For given kmin find the region index r where z0 ∈ Pkmin,r.

5. Evaluate control action u = F kmin,rz0 + gkmin,r.

Theorem 7.4 The time optimal adaptive controller calculated by Algorithm 7.4 and ap-
plied to PWA system (7.16) in a receding horizon control fashion according to Algorithm 7.5
guarantees that all states are pushed towards Ω in the minimal possible number steps.

PROOF: Assume the initial state x0 is contained in the set Sk from which it takes k steps
to reach Ω according to Theorem 7.3. The control law identified by Algorithm 7.5 will
drive the states into the set Sk−1 in one time step. Therefore, the states will enter Ω in k
steps when Algorithm 7.5 called repeatedly at each sampling instance. �

The control law calculated by Algorithm 7.4 is interpreted as the adaptive controller,
because the effect of varying λk is taken into account via (7.19) and the control law is given
by (7.25). Since the result is given as PWA function, it can be stored and implemented in
the real-time control.

7.2.3 Example

In this section adaptive time optimal Algorithm 7.4 is applied to a modified version of the
periodic PWA system of [15]. The dynamics of such a system is given by

xk+1 =

{

A1xk +Buk if x1,k < 0

A2xk +Buk if x1,k ≥ 0,
(7.29)

where x1,k denotes the first coordinate of the state vector xk. State-update matrices for
each of the two modes of the PWA system are given by

Ai = λ

(

cos(αi) − sin(αi)
sin(αi) cos(αi)

)

, B =

(

0
1

)

, (7.30)

with α1 = −π/3 and α2 = π/3, respectively. It is assumed that the value of the parameter λ
is unknown at the time of the synthesis of the control law, but it is bounded by 0.7 ≤ λ ≤ 1.
The vertices Ai,1, Ai,2 in (7.17) can be obtained by evaluating Ai from (7.30) for boundary
values of this interval. The objective of the control design is to drive states of the model
(7.29) to the terminal set

Ω = {x ∈ R
2 | − 0.5 ≤ x ≤ 0.5} (7.31)

while satisfying state/input constraints

X = {x ∈ R
2 | − 5 ≤ x ≤ 5}, U = {u ∈ R | − 1 ≤ u ≤ 1}. (7.32)

7.2 Adaptive Time Optimal Control 109

The adaptive time optimal Algorithm 7.4 has been implemented using routines from MPT
Toolbox [64] and YALMIP [67]. Algorithm 7.4 has converged at iteration 8, generating 5
PWA feedback laws of the form (7.25), which are parametrized in the information variable
z. Regions over which these control laws are defined are depicted in Fig. 7.11.
The adaptive time optimal controller has been applied in the closed loop simulation for
varying uncertainty λ. For simplicity, the parameter λ is not estimated on-line from the
process, but it is assumed that the value is perfectly known at each sampling instant. A
random sequence of λk has been generated and it is depicted in Fig. 7.12.
The initial condition for closed loop simulation has been set to x0 = (0, − 5)T . Corre-
sponding evolution of adaptive control actions is shown in Fig. 7.14, and the state profiles
are shown in Fig. 7.13. As can be seen from the plots, the time optimal controllers adapts
itself to the current measurements of the parameter λ and robustly drives all system states
towards the given terminal set Ω.

−5 0 5
−6

−4

−2

0

2

4

6

z
1

z 2

Figure 7.11: Regions of the PWA feedback laws u(zk). By the same colors are depicted
regions from the same iteration k.

Conclusions

The section proposes the explicit solution to time optimal MPC problem for PWA systems
where the parameters of the dynamical matrix model are allowed to vary in a given bounded
set Λ. The approach is based on the adaptive time optimal Algorithm 7.4 which solves at
each step the optimal control problem (7.21) explicitly by considering (7.19) as parameter.
The control law is characterized in the parameter z and the implementation mechanism is
given by Algorithm 7.5. Since the whole information from the plant is given by the variable

110 7 Explicit MPC for PWA Systems

0 5 10 15 20
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

k

λ k

λ
k

Figure 7.12: Time-varying fluctuations of the value of the uncertainty λk.

Figure 7.13: Closed-loop profiles of x.

7.3 Time Optimal Control of Takagi-Sugeno Fuzzy Systems 111

0 5 10 15 20

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

k

u* k(z
)

u*(z)
u

min
 / u

max

Figure 7.14: Closed-loop profiles of u(z).

z, the adaptive time optimal controller is capable to compensate the varying uncertainties
from the set Λ. The approach is shown on a simple example which indicates the robust
nature of the controller. Furthermore, the uncertain characteristic of the process can be
applied to design a time optimal controller for the class of Takagi-Sugeno models which
will be presented in the next section.

7.3 Time Optimal Control of Takagi-Sugeno Fuzzy

Systems

The class of Takagi-Sugeno (TS) models can be viewed as universal approximators of
general nonlinear systems [101]. Since the original contribution by [98], the attraction of
fuzzy systems has gained much attention in the control society as the way of expressing
the complex nonlinear behavior can be done in a human-friendly way. Because the TS
model was easily understood and more precise, it was then consequently deployed in the
model-based control strategies. An excellent survey [41] offers a detailed insight on recent
developments in control of TS fuzzy systems.
This section is aimed to establish a bridge between the fuzzy TS models and uncertain
PWA models. The main motivation lies in the explicit solutions to PWA model as this
approach might nicely avoid the computational burden involved in on-line optimization.
Although efficient on-line optimization of fuzzy MPC is suggested in [75], the solution
might still suffer from suboptimality and reliability of the solver. Secondly, the stability
guarantees can be given for the class of PWA systems by construction, as proved in [46].
This is simpler than derivation of stability constraints [76] or exploring the interaction
between local fuzzy sets [112].

112 7 Explicit MPC for PWA Systems

The initial connection between TS and PWA models has been investigated in [56] where
the authors distinguish between operating and interpolating regions. The operating regions
are those, where only one local model is valid and interpolating regions refer to areas where
the system dynamics is given by convex combination of numerous local models. Following
these ideas an initial transformation procedure appeared in [51] and consequently, it was
applied to a time optimal control [50]. However, the main disadvantage of the proposed
approach is that the uncertainty, which stems from modeling the interpolating regions, may
become high and the controller acts conservatively. In this section an extension of these
ideas is elaborated and the transformation of TS fuzzy systems to uncertain PWA systems
is presented. Based on the uncertain PWA model, the explicit time optimal controller is
constructed which provides stability and feasibility guarantees.

7.3.1 Relation Between TS Model and PWA Model

Both, discrete-time Takagi-Sugeno model (4.19) and PWA model (4.12) have been intro-
duced in Section 4.4.2. To link these models together, assume that switching in PWA
model is driven only by change in states, i.e.

xk+1 = Aixk +Biuk + ci if xk ∈ Di (7.33)

where the set Di ⊂ R
n is a polytopic partition of the state space D =

⋃

i Di. The switching
rule is associated with a binary variable δi,k = {0, 1} which is true if xk ∈ Di, as shown in
(5.19). Using δi,k, PWA model (7.33) can be written as

xk+1 =

nD
∑

i=1

δi,k(Aixk +Biuk + ci) (7.34)

where the condition
nD
∑

i=1

δi,k = 1 (7.35)

ensures that only one local dynamics i is selected.
TS model can be described using the fuzzy membership functions αi(xk) ∈ [0, 1] which are
defined in (4.18). Actually, the membership functions αi represent the switching condition
between the local dynamics given in fuzzy logic. Since the fuzzy logic is defined over the
whole interval [0, 1], TS model is given as interpolation between local models, i.e.

xk+1 =

nD
∑

i=1

αi(xk)(Aixk +Biuk + ci). (7.36)

The common factor for the models (7.34), (7.36) is the structure of the dynamical equation
and the difference appears in the multiplication factors δi = {0, 1}, αi ∈ [0, 1]. The
immediate answer is, that both models give the same update if δi = αi, which can only
happen when αi takes any of the boundary value from the interval [0, 1]. Investigation

7.3 Time Optimal Control of Takagi-Sugeno Fuzzy Systems 113

(a) (b)

Figure 7.15: Interpolating regions (dark gray) and operating regions (gray) for linear (a)
and trapezoidal (b) type of membership functions.

of the boundary values for αi leads to the analysis of the membership functions µij. The
analysis shows that the exact shape of the membership functions µij is not important as the
space over which the function is defined (i.e. support of the function supp(µij(x)) := {x ∈
R

n | µij(x) > 0}). From (4.17) it follows that interpolation between local models takes
place only if the supports of the fuzzy membership functions intersect, otherwise only one
local model is valid. This principle suggests to partition the space to interpolation regions
and operating regions as shown in [56]. This idea is nicely illustrated in Fig. 7.15 using
three rules with triangular and trapezoidal membership functions. The support is denoted
as supp(µi) = Pi and interpolating regions are colored by dark gray. The reason why the
linear or trapezoidal types of membership functions are preferred is because the support
can be expressed as a polytope given by Definition 1.19, i.e.

Pi := {xk ∈ R
n |H ixk ≤ li} (7.37)

where H i ∈ R
q×n and li ∈ R

q are matrices with q defining the number of half-spaces
surrounding P [47].

Distinction between the operating and interpolating regions gives an answer where both
models are equal or not. In the operating regions, only one model is active, thus both
models are equal. In the interpolation regions, the update is given as linear combination
of active dynamics, hence it acts as PWA systems with a parametric uncertainty. Hence,
the main idea lies in translating TS system to PWA model with parametric uncertainties
and to use explicit MPC to control the original TS system. As it will be seen in the next
section, all involved operations in the transformation procedure will consist of geometry of
polyhedral sets, hence the approach is more geometrical-based.

114 7 Explicit MPC for PWA Systems

7.3.2 Transformation to Uncertain PWA System

The aim of this section is to transform TS model (7.36) to PWA model of the form (4.12).
In the first step of the transformation one has to determine crisp boundaries between the
interpolating regions and operating regions. This can be done a straightforward manner, by
defining new regions for each intersection of the neighboring supports of fuzzy sets (7.37),
i.e.

Da = Pi \
⋃

j 6=i

Pj (7.38)

where \ is the set-difference operation given by Definition 1.22. Because the supports Pi are
polytopes, their intersection will be also a polytope. Searching through the whole universe
P =

⋃

i Pi one finds a number of polytopes. The remaining regions can be obtained again
by a set-difference operation

Db = P \ Da. (7.39)

The resulting partitioning is given as union of Da and Db, i.e.

D = Da ∪ Db =

nD
⋃

j

Dj. (7.40)

The partitioning is illustrated in Fig. 7.16 and Fig. 7.17. Fig. 7.16 illustrates the member-
ship functions µi(xk) for TS model with their supports Pi. The polytopes Pi in Fig. 7.16
do overlap, hence the set-difference operation (7.38) is performed, which gives regions D1,
D3, and D5 in Fig. 7.17. By performing the second set-difference operation (7.39) the
regions D2, D4 are generated. Important is, that the generated regions Dj have crisp
boundaries and do not intersect. In addition, since the supports Pi are represented as
polytopes (7.37), the overall calculation of intersections can be performed using standard
algebraic manipulations for which efficient routines exist [64].
Once the strictly separated regions Dj are obtained, the second step is to associate one
local model to each such region. This step requires introduction of the following two
assumptions:

Assumption 7.1 The membership functions in (4.17) are trapezoidal functions, i.e.

nD
∑

i

αi(xk) = 1. (7.41)

Assumption 7.2 In TS model (4.15), the matrices Bi and ci are constant ∀i = 1, . . . , nD,
i.e. (4.19) can be written as

xk+1 =
(

nD
∑

i

αi(xk)Ai

)

xk +Buk + c (7.42)

7.3 Time Optimal Control of Takagi-Sugeno Fuzzy Systems 115

µ1 µ2 µ3

P1 P2 P3

xk

µ(xk)

Figure 7.16: Fuzzy membership functions and their supports Pi.

µ1 µ2
µ3

D1 D2 D3 D4 D5

xk

µ(xk)

Figure 7.17: Intersections between supports of membership functions defines PWA parti-
tioning.

116 7 Explicit MPC for PWA Systems

Assumption 7.1 is stated in order to obtain a combination of interpolating dynamics given
as convex hull. Assumption 7.2 is more restrictive because it requires matrices B and c
to be constants. It is imposed in order to obtain PWA model suitable for adaptive time
optimal scheme in explicit MPC.
Association of local dynamics to given partitions Dj is done for each j, by rewriting (7.42)
into the form of (7.16) in such a way that the cross-term αj(xk)Aj is replaced by the linear
combination of the form of (7.17). The vertices Aj,1, . . . ,Aj,nα of the uncertainty set (7.17)
can be easily obtained from (7.42) by evaluating αj(xk)Aj for xk being the vertices of the
region Dj, i.e.

Aj,t = α(vt)Aj ∀vt ∈ vert(Dj). (7.43)

Simply speaking, using this procedure the original TS model (7.42) is over-approximated by
a PWA system with parametric uncertainties in a way such that the set of state evolutions
governed by the PWA model (7.16) is in fact a superset of the evolutions of the original
TS model.
Once the non-overlapping regions Dj and the corresponding verticesAj,1, . . . ,Aj,nα of (7.17)
are computed, the connection between PWA form (7.16) and the TS description (4.19) can
be established by the following lemma.

Lemma 7.1 PWA model (7.16) is equivalent to the TS model (7.42) if

λj,k = αj(xk) (7.44)

is known (can be measured or estimated) at each time k.

PROOF: Follows directly from Assumptions 7.1, 7.2, and from the definition of Dj and
Aj,t as in (7.40) and (7.43), respectively. �

Once TS model has been expressed in uncertain PWA form, it is possible to apply tech-
niques for synthesis of predictive controlled based on robust control approaches. In particu-
lar, if TS model is transformed to PWA system with parametric uncertainties, the adaptive
time optimal Algorithm 7.4 described in Section 7.2.2 can be employed. Explicit solution
in both cases ensures the real-time implementation with very low computational effort.

7.3.3 Example

Transformation procedure to PWA system with parametric uncertainty has been applied
to design a time optimal controller for a continuously stirred tank reactor (CSTR), where
the reaction A → B takes place. By considering the normalized conversion rate as x1 and
the normalized mixture temperature as x2, and the coolant temperature as the system
input u, the model of the reactor is given by [27]

ẋ1 = f1(x) +

(

1

η
− 1

)

x1 (7.45a)

ẋ2 = f2(x) +

(

1

η
− 1

)

x2 + βu (7.45b)

7.3 Time Optimal Control of Takagi-Sugeno Fuzzy Systems 117

where

f1(x) = − 1

η
x1 + Dα(1 − x1)e

“

x2
1+x2/γ0

”

f2(x) = −
(

1

η
+ β

)

x2 + HDα(1 − x1)e

“

x2
1+x2/γ0

”

γ0 =20, H = 8, β = 0.3, Dα = 0.072, η = 0.8.

The states are subject to constraints 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 10, respectively. The
control signal is bounded by −20 ≤ u ≤ 20.
The nonlinear model (7.45) is approximated by a Takagi-Sugeno fuzzy system with three
membership functions. Assuming the sampling time Ts = 0.1 minutes, the TS model is
given by

xk+1 =

(

3
∑

i=1

αi(xk)Ai

)

xk +Buk (7.46)

where αi(xk) can be calculated from µi(xk) by (4.18). The numerical values of Ai and B
are given by

A1 =

(

0.8665 0.0067
−0.1260 0.9094

)

, A2 =

(

0.8029 0.0388
−0.6278 1.1623

)

,

A3 =

(

0.6041 0.0265
−2.1938 1.0652

)

, B =

(

0.0001
0.0286

)

.

Dynamics A1 and A3 capture the stable operating points of the CSTR, while dynamics A2

corresponds to the unstable mode of the reactor. The membership functions µ1(x), µ2(x),
and µ3(x) are given as trapezoidal functions with centers around respective linearization
points:

µ1(x) =











1 if 0 ≤ x2 ≤ 2.5

1 − x2−2.5
2.652−2.5

if 2.5 ≤ x2 ≤ 2.652

0 otherwise

µ2(x) =



















x2−2.5
2.652−2.5

if 2.5 ≤ x2 ≤ 2.652

1 if 2.652 ≤ x2 ≤ 2.852

1 − x2−2.852
3−2.852

if 2.852 ≤ x2 ≤ 3

0 otherwise

µ3(x) =











1 if x2 ≥ 3
x2−2.852
3−2.852

if 2.852 ≤ x2 ≤ 3

0 otherwise.

In order to synthesize the time optimal controller for such a TS system, TS model (7.46)
needs to be converted to a corresponding PWA form (7.16) by using the procedure de-
scribed in Section 7.3.2. The partitioning Dj results directly from the respective domains

118 7 Explicit MPC for PWA Systems

of individual µi’s, i.e.

D1 :={x ∈ R2 | 0 ≤ x2 ≤ 2.5}
D2 :={x ∈ R2 | 2.5 ≤ x2 ≤ 2.652}
D3 :={x ∈ R2 | 2.652 ≤ x2 ≤ 2.852} (7.48)

D4 :={x ∈ R2 | 2.852 ≤ x2 ≤ 3}
D5 :={x ∈ R2 | 3 ≤ x2 ≤ 10}.

What remains to be done is to assign dynamics to each element of Dj. This can be
performed by (7.43) and results in

xk+1 =































A1xk +Buk if x2 ∈ D1

{A1,A2}xk +Buk if x2 ∈ D2

A2xk +Buk if x2 ∈ D3

{A2,A3}xk +Buk if x2 ∈ D4

A3xk +Buk if x2 ∈ D5

(7.49)

where {A1,A2} represents a system matrix A as a convex combination of the vertices A1

and A2.
To perform the controller synthesis, the Algorithm 7.4 has been implemented using the
MPT Toolbox [64] and YALMIP [67]. The control objective was to drive the system states
towards the terminal set Ω = {x | 2.652 ≤ x2 ≤ 2.852} in the minimal possible number
of time steps, while minimizing the objective function J = |uk| + |10(xk+1 − 2.751)| at
each step k. This operating range corresponds to the unstable mode of the reactor. The
implementation of Algorithm 7.4 resulted in PWA feedback law of the form (7.25) defined
over 483 regions in the two-dimensional z space, which are depicted in Figure 7.18. The
proposed Algorithm 7.4 was compared with a standard parallel distributed compensation
(PDC) approach of [111]. Input constraints have been incorporated into PDC design
using and PDC controller was computed via YALMIP interface. For the initial condition
x0 = (0.6, 9)T , Figure 7.19 shows the closed-loop evolution of system state x2 for both
controllers (TOC refers to time optimal control). While PDC controller reacts on the
initial condition conservatively, time optimal controller is significantly faster and utilizing
the on-line measurements of µi’s it drives system states towards the chosen terminal set in
the minimum number of steps. The corresponding values of the control actions are shown
in Figure 7.20.

Conclusions

The multiparametric approach for computing explicit solution to time optimal MPC prob-
lem for the class of TS models has been presented. This novel way of controlling TS models
comprises of two steps. Firstly, TS model with fuzzy logical rules is over-approximated by

7.3 Time Optimal Control of Takagi-Sugeno Fuzzy Systems 119

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

6

7

8

9

10

z
1

z 2

Figure 7.18: Regions of the time-optimal control law u(z). Regions depicted by the same
color denote regions, from where it takes the same number of steps to reach the initial
terminal set. The more red the color is, the lower is the number of required steps.

Figure 7.19: Closed-loop evolutions of the dimensionless temperature.

120 7 Explicit MPC for PWA Systems

Figure 7.20: Values of the control actions.

PWA model with uncertain dynamical matrix. Secondly, the theory of adaptive time op-
timal control for PWA systems presented in Section 7.2.2 is applied which results in the
explicit MPC controller characterized in the given parameter. The controller obtained in
this way guarantees convergence toward desired terminal set in the minimal number of
steps while satisfying the state and input constraints. The approach has been investigated
in CSTR case study where the results show the desired performance.

7.4 Polynomial Approximation of MPC

Although the explicit solution to MPC possesses very appealing properties from the imple-
mentation point of view, the sole implementation task might not be as trivial as is seems.
Especially, when it comes to fast sampling rates (i.e. order of microseconds) and low com-
putational resources one has to take a closer look on the complexity of the implementation
scheme. In particular, there are two aspects to be considered:

1. Memory consumption.

2. Evaluation time for the control law (floating point operations - FLOPS).

The time needed to evaluate the lookup table limits the minimal admissible sampling
time of the control system. The simplest, but also the least efficient way of processing is
a sequential search, in which all elements of the table are inspected sequentially for the
location of the actual measurement of the plant’s state. It can be shown that the time
complexity and memory requirements of a sequential search procedure depend linearly on
the number of controller regions. However, there are applications where the processing

7.4 Polynomial Approximation of MPC 121

power needed to perform a sequential search can be prohibitive; e.g. controlling dc-to-dc
converters [8, 43] where sampling rates are in the range of microseconds and controller
partitions comprising several thousands of regions. In order to decrease the processing and
memory requirements, one may use the binary search tree approach of [106], which allows
to search the lookup tables in time logarithmic in the number of regions of the table. The
approach has been also presented in Section 5.4.

However, the number of operations needed to traverse the binary tree, as well as the memory
requirement to store the tree itself, can still be prohibitive either because of a high number
of controller regions, or due to the lack of processing power. Therefore, in this section it
is proposed to approximate the optimal control law by a single polynomial, which can be
evaluated more efficiently compared to binary search trees, while maintaining stability and
performance loss guarantees. Specifically, it will be illustrated that the approximation-
based scheme can be evaluated in a constant number of CPU1 operations, regardless of
the complexity of the parametric solution. Similarly, the memory requirement is only a
constant function of the degree of the approximation polynomial and does not depend on
the complexity of the lookup table or underlying partition.

7.4.1 Stability Analysis

Stability analysis for PWA systems has been addressed in many publications, (see for in-
stance [33] for references) where geometric properties of the explicit solutions to CFTOC
problem (5.25) are exploited to certify stability of the closed loop. The common denom-
inator of these approaches is to attain a set invariance and to get rid of unstable parts.
One of the algorithms, which generates the maximum invariant set for PWA systems, has
been proposed by [88]. The interest here is to introduce the approach by [32] which uses
Lyapunov stability theory to find sets of stabilizing controllers. Given the explicit solution
to CFTOC problem (5.25), the knowledge of (5.26) can be employed for construction of
Lyapunov function [32]. Consequently, the notion of stability tubes needs to be introduced.

Definition 7.2 (Stability tube [32]) Let V (xk) be a Lyapunov function for the closed-
loop system (5.18b) under stabilizing control (5.25) and constraints (5.18c), (5.18d), (5.18e)
for some small number 0 < β ≪ 1. Then the set

S(V, β) :=
{

(

xk

uk

)

∈ R
n+m V (xk+1) − V (xk) ≤ −β||xk||∞

}

(7.50)

is called stability tube.

Simply speaking, the stability tube is a set in the x-u space where the Lyapunov function
V (xk) decreases with a factor β||xk||∞, hence, it denotes the set of stabilizing controllers
for given explicit solution. Important is, that for PWA systems, the stability tubes can

1central processing unit

122 7 Explicit MPC for PWA Systems

be computed using geometric operations with polyheral regions. Since the whole opera-
tions are performed with polyhedrals, resulting stability tubes are given as a collection of
polytopes

S(V, β) =
{

(

xk

uk

)

∈ R
n+m HS

j

(

xk

uk

)

≤ lSj , j = 1, . . . , nS

}

. (7.51)

By constructing the stability tubes, the control law is replaced with a set and it depends on
the selection of parameter β. As β is close to zero, these sets are large and as β approaches
one, the stability tubes totally shrink to the control law. This parameter can be used as
tuning parameter for bounding the closed loop performance.
Simply speaking, stability tubes create implicit boundaries for possible perturbations of
the control law. As long as these perturbations remain in this set, the closed loop will
be stable. Thus, the main idea of the polynomial approximation is to find a polynomial
control law, which is as close as possible to optimal solution (5.25), while respecting the
boundaries of the stability tubes. For more details about the stability tubes, the reader is
referred to original contribution [32].

7.4.2 Polynomial Approximation

The objective of this section is to find a polynomial control law which maintains similar
properties as optimal solution (5.25), but is very cheap to implement (i.e. requires less
memory and evaluation time). The approximated polynomial takes the following form

µ(xk)r = a1xk + . . . + arx
r
k (7.52)

where r denotes the degree and a1, . . . ,ar are the coefficients of the polynomial µ(xk)r.
This form of the polynomial is specifically of interest because it does not contain cross
products (e.g. x1x2) and the evaluation of this type of polynomial is very fast. Furthermore,
the polynomial (7.52) does not contain affine term otherwise the closed loop system would
be unstable around origin.
To ensure stabilizing properties of the polynomial control law (7.52), it must hold

(

xk

µ(xk)r

)

∈ S(V, β) ∀xk ∈ P (7.53)

for guaranteeing desired decrease β for given Lyapunov function V . Expression P =
⋃

i Pk,i

corresponds to feasible domain of explicit solution to CFTOC problem (5.25). Secondly, to
maintain some performance of the polynomial, it is required that the polynomial remains
as close as possible to the optimal solution. These conditions can be met by formulating
the optimization problem as follows:

min
a0,...,ar

∑

j

‖µ(xk)r − u(xk)‖2 (7.54a)

s.t.

(

xk

µ(xk)r

)

∈ S(V, β) (7.54b)

7.4 Polynomial Approximation of MPC 123

where the difference between the approximated polynomial (7.52) and optimal PWA func-
tion (5.25) is minimized such that both states and inputs lie in the interior of stability
tubes. As the stability tubes (7.51) are given as collection of polytopes, the condition
(7.54b) can be put into matrix form, i.e.

HS
j

(

xk

µ(xk)r

)

≤ lSj (7.55)

for j = 1, . . . , nS . Problem (7.54) is a non-convex because of the union of polytopes (7.51),
but can be solved efficiently by transformation to SDP problem (2.4). To do this, following
lemmas are needed:

Lemma 7.2 ([95]) The system of polynomial inequalities

h(x) ≥ 0, ∀x ∈ R
n, gi(x) ≥ 0, (7.56)

with h(x) =
∑

α aαx
α and gi(x) =

∑

α bα,ix
α is satisfied for all x from the set gi(x) ≥ 0

if there exist non-negative polynomials si(x) =
∑

α cα,ix
α such that

h(x) −
∑

i

si(x)gi(x) ≥ 0, (7.57a)

si(x) ≥ 0. (7.57b)

Lemma 7.3 ([82]) A real valued polynomial P (x) is non-negative for all x if there exists
a sum of squares (SOS) decomposition of the form

P (x) =
∑

i

p2
i (x), pi(x) ∈ R. (7.58)

The Lemmas 7.2 and 7.3 allows reformulation of the approximated problem (7.54) into SOS
problem, for which efficient solvers exist [67, 96, 104]. By Lemma 7.2 equation (7.54b) (cf.
(7.53)) can be expressed as

h(xk) = lSj −HS
j

(

xk

µ(xk)r

)

, (7.59a)

gi(xk) = [lPi]c − [HP
i]cxk, (7.59b)

where [·]c is to be interpreted row-wise. Consequently, Lemma 7.3 is used to form (7.58)
by merging (7.59) to

P (xk) = lc −Hc

(

xk

µ(xk)r

)

−
∑

i

si(xk)(li,c −H i,cxk). (7.60)

Hence, the approximated problem (7.54) can be expressed as SOS problem, i.e.

min
a0,...,ar

∑

j

‖µ(xk)r − u(xk)‖2 (7.61a)

s.t. P (xk) in (7.60) is sum of squares (7.61b)

si(xk) in (7.57b) are sum of squares (7.61c)

124 7 Explicit MPC for PWA Systems

and solved using e.g. YALMIP [67]. Procedure for computing the approximated polynomial
stems from the assumption, that there exist feasible solution to SOS problem (7.61) because
conditions in (7.61) are merely sufficient. The approximated polynomial can still exist, even
if the problem (7.61) is infeasible. The main result of this section is stated by the following
theorem.

Theorem 7.5 (Polynomial approximation) There exists a state feedback µ(x)r of the
form (7.52) which stabilizes PWA system (5.18b) if the polynomials si(xk) in (7.57b) and
polynomial P (xk) in (7.60) given by (7.58) are sum-of-squares. Moreover, the coefficients
a1, . . . ,ar, of the polynomial µ(xk)r in (7.52) can be found by solving (7.61) as a semi-
definite program.

PROOF: By definition of stability tubes 7.2, any control law µ(xk)r with (xT
k ,µ(xk)

T
r)T ∈

S(V, β), stabilizes system (5.18b) while satisfying the system constraints (5.18c), (5.18d),
(5.18e). The polynomial µ(xk)r fulfills this condition for all admissible states x ∈ ⋃i Pi

if and only if (7.51) is fulfilled. According to Lemma 7.2 and (7.59), the satisfaction
of (7.60) is implied by the existence of polynomials si(xk) ≥ 0 and the non-negativity
of (7.57a). By substituting (7.59a) and (7.59b) into (7.57a) equation (7.60) is obtained.
It follows from Lemma 7.3 that (7.60) will be globally non-negative if there exists a set
of coefficients a1, . . . ,ar of the polynomial µ(xk)r defined by (7.52) such that (7.60) is a
sum-of-squares and, simultaneously, there exists a SOS decomposition of the polynomials
si(xk). Finally, results from [81] shows that the SOS decomposition can be found using
semi-definite programming. �

7.4.3 Complexity Analysis

This section compares the complexity of the polynomial approximation scheme with the
binary search tree approach presented in Section 5.4.

Memory Requirement

In the case of the binary search tree, one has to allocate at least D(n + 3) + Num(n + 1)
elements, where m and n denote the dimension of system inputs and states, respectively,
D is the depth of the tree and Nu stands for the number of unique control laws. In [106],
D = 1.7 log2 nP is given as a realistic estimate, where nP is the total number of controller
regions and Nu ≈ 1

4
nP . The total memory requirement for the binary search tree is therefore

1.7(n+3) log2 nP + 1
4
nPm(n+1) elements. It is clear that the number of controller regions

nP is a decisive factor which determines the maximal storage requirements of the binary
search approach.
For memory requirements required by the polynomial (7.52), one has to store r coefficients
a1, . . . ,ar of size m×n, thus it gives rnm elements to be allocated. It is worth noting that
the memory storage for this approach does not depend on the number of controller regions.
As can be seen from Figure 7.21, the memory requirements of the polynomial controller is
significantly lower compared to the one of a binary search tree approach.

7.4 Polynomial Approximation of MPC 125

0 20 40 60 80 100 120
0

50

100

150

200

250

regions

by
te

s

Memory requirements

0 20 40 60 80 100 120
0

20

40

60

80

regions

F
LO

P
S

CPU evaluation time

binary tree
r = 3
r = 6

binary tree
r = 3
r = 6

Figure 7.21: Memory and processing requirements needed to store and evaluate the binary
search tree and the polynomial controller (7.52).

126 7 Explicit MPC for PWA Systems

Evaluation

The number of CPU instructions which are needed to evaluate a binary search tree for a
particular state measurement is a function of the total number of controller regions nP .
Specifically, one has to perform 1.7(2n+1) log2 nP +2nm mathematical operations (multi-
plications, additions and comparisons) to traverse the tree and calculate the corresponding
control action.
In the case of polynomial controllers of the form (7.52), the number of operations that need
to be performed in order to evaluate the polynomial at the given measured state is, again,
independent of the number of regions nP . Specifically, if the Horner’s scheme [39] is used
for the evaluation, one needs at most 1

2
mn(3r + 5) operations to obtain the control input.

The CPU requirements for both approaches are illustrated in Figure 7.21 for the case of
m = 1 and n = 2.

7.4.4 Example

Consider the example from [15]

xk+1 =
4

5

(

cos α(xk) − sin α(xk)
sin α(xk) cos α(xk)

)

xk +

(

1
0

)

uk (7.62a)

α(xk) =

{

π
3

if x1,k ≥ 0,

−π
3

if x1,k < 0,
(7.62b)

which is subject to constraints

X = {x ∈ R
2 | x ∈ [−10, 10] × [−10, 10], U = {u ∈ R | u ∈ [−4, 4]}. (7.63)

CFTOC Problem (5.18) was solved with the parameters Q = I, R = 1, N = 3, P = 0,
p = ∞ using the MPT Toolbox [64] yielding PWA control law defined over a partition
comprising of 26 regions. Subsequently the stability tubes S have been calculated with the
choice of the performance tuning parameter β = 1·10−5. The approximation problem (7.61)
was then successfully solved for different degrees of the approximation polynomial (7.52)
using YALMIP [67]. Figure 7.22 depicts the approximation polynomial with degree 6 (red)
along with the optimal feedback law (blue) in 3D.

Conclusions

The section presents the polynomial approximation approach to explicit MPC which aims
at reducing the complexity of explicit solutions in MPC. The proposed alternative solution
takes form of the polynomial (7.52) which has similar properties as the exact optimal
solution but it is cheap to implement. Concretely, the most significant is the decrease
in memory requirements which is evident in Fig. 7.21. The scheme uses the concept of
stability tubes to find sets of possibly all stabilizing controllers. Subsequently, the controller

7.4 Polynomial Approximation of MPC 127

Figure 7.22: 3D representation of the closed-form PWA control law (blue) and correspond-
ing polynomial approximation (red) with degree 6.

is selected from this set which has the least deviation from the optimal one by solving the
approximation problem (7.61). The experimental validation of the scheme will be presented
in Part III.

Part III

APPLICATIONS

Chapter 8

Servo Engine

Servo engine represents one of the typical elements frequently used in the industry. Basi-
cally, it comprises of an inductance motor which is used to transform the input electrical
energy into a into a mechanical load e.g. for flow control. Due to the presence of mechani-
cal elements, the servo engine is affected by friction forces and exhibits so called deadzone
effect. Deadzone effect can be viewed as an uncontrollable mode of a plant, where there’s
no response on plant outputs to inputs applied within the deadzone limits. If the effect
of the deadzone is not directly considered in the control design, it may cause unwanted
performance loss and may lead to chattering control around the deadzone limits. Gener-
ally these properties are neglected in the control design and treated rather afterwards, as
an implementation issue [113]. If the controller is synthesized in this way, control actions
actually applied to a plant may differ from the calculated ones and this ideal assumption
may lead to seriously degraded performance or even instability [30, 108].
The initial research around the deadzone was propagated by [91] and continued by [102,
103]. The solution in these cases relies on adaptive control with construction of so called
deadzone-inverse. Similar idea is employed in other control approaches, involving artificial
neural network [60], fuzzy logic [26] or model predictive control (MPC) [22, 30, 113]. It will
be shown in the sequel that the deadzone can naturally be modeled using PWA models
and that such models are suitable for design of control policies which take the deadzone
behavior into account. Consequently, the time optimal control problem will be formulated
and solved using multiparametric methods. Furthermore, the explicit solution will be
applied in real time, and experimental results are provided. The results in this chapter
have been published in [52].

8.1 Physical Setup

The laboratory servo engine is a mechanical device which represents a valve opening mech-
anism. It consist of a rotational flywheel attached to an electric engine. The manipulated
variable is a voltage ranging from −15 V to +15 V generated by an actuator, which drives
the rotation of the flywheel counterclockwise (when negative voltage is applied) or in the
opposite direction (positive voltage). The angular velocity of the flywheel is the output sig-

131

132 8 Servo Engine

Figure 8.1: Front view of the laboratory servo engine.

nal which can be measured. The flywheel is connected to a circular pointer which indicates
the position of the valve. The position of the wheel is the secondary output which ranges
from the position “fully open” (0 degrees) to “fully closed” (360 degrees). A front view of
the servo engine is illustrated in Fig. 8.1. Notice the two circular pointers with red triangles
in the foreground of the two discs. The left one is the position indicator and the right one
represents the setpoint which can be manipulated manually. Under the left pointer there is
a magnetic brake whose force can be adjusted by turning the red colored switch. The brake
is considered to be an external disturbance. The laboratory servo engine is connected to a
personal computer via three devices: an actuator, a transducer and the connector CP1102.
The devices actually convert the operating range of the dSPACE input-output card (−10 V,
+10 V) to the actuator voltage range (−15 V, +15 V). MATLAB’s Real Time Workshop
(RTW) serves as a tool for implementing the control policy.

8.2 Hybrid Model and Experimental Validation

This section reviews the modeling issues of the deadzone. In the first part it is investigated
how the deadzone is present in the mathematical model and how this phenomenon is
traditionally neglected in control design. Secondly, a hybrid model based on experimental
identification is presented and its validation with real plant is provided.

Construction of the plant model including deadzone has been studied by [30, 102] and
the authors compose the controlled model by interconnection of a static nonlinearity block
(representing deadzone) and a linear model, as shown in Fig. 8.2. Signals u, y represent

8.2 Hybrid Model and Experimental Validation 133

upu yStatic
Nonlinearity

Linear
Model

Figure 8.2: Standard model of a plant with deadzone.

plant’s inputs, outputs, respectively, and up is the control input actually transmitted to
the plant. The output up from a deadzone block is given by

up =











md(u − c) if u > c

0 if − c ≤ u ≤ c

md(u + c) if u < −c

(8.1)

where, md denotes the slope and c the break points of the deadzone, respectively. The
deadzone characteristics (8.1) is illustrated in Fig. 8.3. Control desing and analysis of the

up

u

−c

c

Figure 8.3: Theoretical model of a deadzone.

closed-loop behavior is difficult with the use of deadzone model (8.1), because for a real-
time implementation it requires compensation via deadzone inverse approach. In order
to avoid efforts involved in deadzone inverse approach, [73] proposed to model the plant

134 8 Servo Engine

u yPWA
Model

Figure 8.4: PWA model naturally incorporates the deadzone nonlinearity.

with deadzone via PWA approach where the related analysis turns to be a relatively simple
task. The underlying idea is to incorporate the deadzone characteristics directly into linear
model by considering the switching conditions in (8.1) as internal modes of PWA model.
Such model now inherently relates the plant inputs u directly to outputs y (Fig. 8.4) and its
immediate advantage is that control theory for hybrid systems can be applied for synthesis
and analysis.

In the sequel a measurement of the deadzone is provided and based on the experimental
data, an appropriate PWA model of the servo engine is constructed.

8.2.1 Deadzone Measurement

Experimental measurement proved the presence of the deadzone with symmetrical limits
c = ±1.3 V. Interestingly, the measurement confirmed the specificity of the deadzone. In
particular, this effect is different for the acceleration phase and for the braking phase, as
shown in Fig. 8.5. Values in Fig. 8.5 were collected measuring the velocity in the steady
state with respect to applied input. This behavior can be explained by friction forces which
influence the rotation. In the acceleration phase, the deadzone is caused by the initial load
to be conquered, and in the braking phase, by the friction. What is important to notice,
is that the boundaries of the deadzone are varying. Moreover, if the flywheel starts up
with the turned brake, deadzone limits are enlarged to c = ±1.5 V. Thus, to consider the
whole possible widths of the deadzone in the feedback control, the worst case realization is
adopted, hence c = ±1.5 V. Fig. 8.5 also indicates the hybrid nature of the servo engine, in
the sense of differentiating between two different modes: accelerating and braking mode.
It is then worth to describe such behavior using a hybrid model.

8.2.2 PWA Model

The motivation to use PWA system to model the deadzone effect is in a natural separation
principle between two operating modes. In the first mode the plant operates normally,
and in the second mode the deadzone is active. In this approach, as suggested by [73, 74],
these modes are distinguished by polyhedral partitions of the state space, defined as a set of
linear inequalities and in the dynamics is linear each mode. However, in this case the model
of the deadzone is not obvious, due to its specific type. To be able to exactly capture its
characteristics, one would require to partition the state space with respect to information
about the measured velocity at the current time vk, at the previous time vk−1, and with

8.2 Hybrid Model and Experimental Validation 135

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

 input (V)

 v
el

oc
ity

 (
V

)

acceleration phase
braking phase

Figure 8.5: Experimental measurement of the deadzone clearly indicates two phases and
varying boundaries.

v

u

−c

c

ǫv

−ǫv

Figure 8.6: The deadzone is modeled as the PWA system with help of speed tolerance ǫv.

136 8 Servo Engine

respect to current input uk. This would lead to PWA model defined in the extended state
space, for which the parametric MPC approach would seem computationally expensive.
These problems can be avoided by introducing a tolerance on the velocity ǫv, which will
specify the boundary of the deadzone. In fact, a zone of steady state will be defined,
where the deadzone forbids any movement and thus this region is inherently invariant.
Objective of the control design then becomes to drive the engine to this zone, because here
the position should be equal to its reference. By this way the sensitivity of the controller
can be adjusted, since the position is coupled by integral from the velocity. Hence, the
deadzone can be straightforwardly modeled as PWA system with three modes:

xk+1 =











Axk +Buk if |vk| ≥ ǫv (braking phase)

Axk +Buk if |vk| < ǫv and |uk| ≥ c (acceleration phase)

Axk if |vk| < ǫv and |uk| < c (steady state)

(8.2)

Here c and ǫv denote the breakpoints of the deadzone. The state vector xk = (vk, yk)
T is

composed of the measured angular velocity of the flywheel and its position, respectively.
The numerical values of the matrices describing the state-space dynamics xk+1 = Axk +
Buk were obtained in [49] using experimental identification. The response of the velocity
has been identified as a first-order system

Tvv̇(t) + v(t) = Ku(t), (8.3)

with the time constant Tv = 6.7057 s and the gain K = 0.1271. Position is added to the
model (8.3) as an additional state which is an integral of the velocity and values of A and
B are then calculated by discretizing the model with sampling time Ts = 0.7 s. Graphically
is the model of the deadzone illustrated in Fig. 8.6 and formally it is captured by the PWA
model (8.2). Note that the tolerance ǫv does not have to be necessarily equal the value
from Fig. 8.5, since it represents steady state value, but it can be used as a tuning factor
to adjusts the boundaries of steady state (invariant) zone, i.e. to specify the sensitivity of
the controller. The value of ǫv = 0.01 V was chosen.
Furthermore, notice that the PWA description (8.2) is defined over a non-convex domain.
In order to convert the model into a form where each mode is valid over a convex region,
the non-convex domains |vk| ≥ ǫv and |uk| ≥ c each have to be split in two parts. The
resulting PWA model is then given by following 5 modes:

xk+1 =































Axk +Buk if vk ≥ ǫv

Axk +Buk if vk ≤ ǫv

Axk +Buk if − ǫv ≤ vk ≤ ǫv ∧ uk ≥ c

Axk +Buk if − ǫv ≤ vk ≤ ǫv ∧ uk ≤ −c

Axk if − ǫv ≤ vk ≤ ǫv ∧ −c ≤ uk ≤ c.

(8.4)

Furthermore, the manipulated voltage is constrained by hard limits of the input-output
card in the interval −10 V ≤ uk ≤ 10 V. Similarly, state constraints restrain the variables

8.2 Hybrid Model and Experimental Validation 137

to operate within intervals −0.5 V ≤ vk ≤ 0.5 V for velocity and 0 V ≤ yk ≤ 1.6 V for
position. Expressing the constraints in the form of (9.9) and combining with modes of the
deadzone (8.4) the PWA model takes a compact form of (4.12).

8.2.3 Experimental Validation

A test scenario was used to validate PWA model (8.4) versus measured data. By imposing
a known control profile, output from the model was compared with the data collected from
the device. As can be seen from Fig. 8.7, the model approximates the real behavior of the
plant with sufficient accuracy. Successful modelling of the deadzone is clearly seen from
the first 6 seconds of the comparison. Since voltage inputs ranging from −1 V to +1 V have
been applied during that period, the deadzone forbids the flywheel to start moving. This is
correctly captured by the model. Once the input voltage exceeds deadzone threshold, the
model correctly switches to a different operating mode where the input starts to influence
the angular velocity of the flywheel. Even though some visible discrepancies are obvious
in Fig. 8.7 no further improvement of PWA model is needed, since the deadzone effect is
captured. Basically, the plant/model mismatch will be treated using MPC feedback control
policy, as outlined in the next section.

0 5 10 15 20 25 30

−0.4

−0.2

0

0.2

0.4

0.6

 time (s)

 v
el

oc
ity

 (
V

)

0 5 10 15 20 25 30

−10

−5

0

5

10

 time (s)

 in
pu

t (
V

)

simulation

experiment

Figure 8.7: Comparison between the model behavior and measured signals.

138 8 Servo Engine

8.3 Real-Time Implementation

In this section the time optimal tracking of a varying reference approach, presented in
Section 7.1, is implemented in real-time on the servo engine. The objective is to minimize
the number of steps needed to reach the time-varying reference signal while avoiding the
control to be chattering around deadzone. Furthermore, state and input constraints must
be satisfied for all time.
Since PWA model already contains one invariant mode (steady state), this mode can be
used as the stabilizing terminal set with specified tolerances. Despite this, one would like
to use PWA model to design the stabilizing target set instead. Notice, that every time, as
the reference changes, the initial conditions become non-zero, and before the states reach
the target set, the servo engine will be always in the braking phase. Thus, the terminal
set based can be designed on the local model in the braking phase, or on the overall PWA
model (8.4) according to the scheme presented in section 7.1.3. The terminal set was
calculated for N = 2, which means that the reference will be reached in 2 time steps.
Secondly, by applying the algorithm of [88] the invariant set Ωinv was obtained.
Starting from this set the time optimal controller was calculated using Algorithm 7.1 in 11
iterations as a look-up table consisting of 622 regions in the three dimensional state space.
Using MPT toolbox the controller was subsequently exported to C code and compiled
with the help of RTW to dSPACE platform. The closed loop control using time optimal
MPC approach was measured and the data are shown in Fig. 8.8. The deadzone effect is
effectively compensated with help of the PWA model and whenever a setpoint change is
made, controller generates inputs greater than the deadzone limits. This is obvious around
140s when even despite small change in reference, the tracking goal is attained. Moreover,
closed loop behavior is not chattering around the deadzone limits. One can notice that
input and state constraints are respected for the whole time which is especially important
for valves, which operate under hard constraint.

8.3 Real-Time Implementation 139

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

 time (s)

 p
os

iti
on

 (
de

g)

0 20 40 60 80 100 120 140 160 180

−10

−5

0

5

10

 time (s)

 in
pu

t (
V

)

position

reference

Figure 8.8: Position tracking using the time optimal approach.

Chapter 9

Thermo-Optical Device

This chapter presents a real-time control of a thermo-optical device using the polynomial
approximation scheme presented in Section 7.4. The scheme is applied to obtain an alterna-
tive solution to the explicit MPC controller. Such an approximate controller enjoys the key
benefits of MPC schemes, namely it provides all-time constraint satisfaction and closed-
loop stability guarantees. The main advantage of the proposed approximation scheme is
that it can be implemented in real time using very limited computational resources. The
results in this chapter have been published in [53].

9.1 Device Description

The uDAQ28/LT thermal-optical system is an experimental device aimed primarily for ed-
ucation purposes [54]. The device allows real time measurement and control of temperature
and light intensity. It can be connected to a personal computer via an universal serial bus
without requiring an input-output card (Fig. 9.1). Data acquisition and real-time control
of the uDAQ28/LT device is carried out in the Matlab/Simulink environment which allows
very easy manipulation with the device.
The plant represents a dynamical system which combines slow and fast dynamics. The
slow process is characterized by a heat transfer and the fast process corresponds to light
emission. Both processes are caused by an embedded light bulb which is controlled by an
input voltage signal. In general, the plant is characterized by five inputs and eight outputs
whereas only three controlled inputs and three measured outputs are of interest. A precise
description of these signals is given in Tab. 9.1.
The construction of the device suggests two main control loops. The primal loop regulates
the light bulb intensity by manipulating the input voltage (or input voltage to LED1

diode). The second loop maintains the inner temperature in safety limits by manipulating
the revolutions of a cooling fan. Presence of physical constraints on manipulated and
controlled variables makes the control task challenging and the device has often been used
for benchmark of constrained PID control approaches [55].

1Light Emitting Diode

141

142 9 Thermo-Optical Device

Figure 9.1: Front view on a thermo-optical device uDAQ28/LT.

Table 9.1: Description of measured and controlled signals.
Signal Name Range

Input voltage to light bulb 0-5 V
Input voltage to cooling fan 0-5 V

Input voltage to LED 0-5 V
Inner temperature 0-100 deg C

Light intensity not given
Revolutions of the cooling fan 0-6000 rpm

9.2 Identification and PWA Modelling 143

9.2 Identification and PWA Modelling

In the sequel, only the optical channel of the light-bulb is considered. This decision is
motivated by the fact that this channel is represented by a fast dynamics, which makes
real-time implementation of a control system a challenging task. Due to very fast responses
of the light channel, the sampling rate was selected the lowest admissible by Windows, i.e.
Ts = 0.05 s. As the optical channel is sampled, it immediately suggests identification of
input-output relations in discrete time.
Input-output relations of the optical channel have been identified with the help of IDTOOL
Toolbox [34] as a second order discrete transfer function

G(z−1) =
bz−2

1 + a1z−1 + a2z−2
(9.1)

where b, a1, a2 are constant parameters and z−1 is a discrete time delay operator [72]. ID-
TOOL toolbox contains the recursive least squares method of [62] which provides very good
estimates of the unknown parameters. However, as transfer function is valid only locally,
the identification was performed over four operating points and the results are summarized
in Tab. 9.2. For the use in explicit MPC scheme, the input-output representation (9.1) is

Table 9.2: Identification data over four operation points.
input output b a1 a2

(1) 1.3 6.84 2.03 -1.07 0.46
(2) 2.5 19.46 3.56 -0.97 0.43
(3) 3.5 32.09 4.51 -0.91 0.41
(4) 4.5 45.86 5.39 -0.87 0.40

transformed to a discrete state-space model. It is achieved by introducing state variables
with discrete time instant k, i.e. v1,k = yk−1, v2,k = yk−2 and the state space model reads

v1,k+1 = −a1v1,k − a2v2,k + bwk (9.2a)

v2,k+1 = v1,k (9.2b)

yk = v2,k. (9.2c)

In (9.2) wk represents the input voltage applied directly to the plant and yk is the measured
output. Voltage input is constrained

wk ∈ [0, 5] V (9.3)

and the measured output lies inside the interval

yk ∈ [0, 55] (9.4)

of light intensity units (are not given in the reference manual). The overall input-output
behavior of the optical channel can be recovered by aggregation of the local linear models

144 9 Thermo-Optical Device

(9.2) which forms PWA model. Here, the operating area is first split into regions and local
linear models are assigned to each such region. The overall behavior of PWA model is
then driven by switching between the locally valid models using logical IF-THEN rules.
To perform partitioning of the operating area according to linearization points in Tab. 9.2,
a Voronoi diagram [2] is constructed, which directly returns partitions of the state space
as a sequence of convex polytopes. This operation was executed using one of the routines
included in MPT toolbox [64] and it returned following regions:

D1 = {vk ∈ R
2 | 0 ≤ v2,k < 13.15} (9.5a)

D2 = {vk ∈ R
2 | 13.15 ≤ v2,k < 25.77} (9.5b)

D3 = {vk ∈ R
2 | 25.77 ≤ v2,k < 38.97} (9.5c)

D4 = {vk ∈ R
2 | 38.97 ≤ v2,k < 55} (9.5d)

To each of the regions (9.5), a corresponding local linear dynamics (9.2) is assigned, and
it forms overall PWA model.

The output from PWA model has been compared to the real measured output from the
plant and the result is depicted in Fig. 9.2. For the given scenario PWA model follows
correctly the plant’s output, thus the accuracy of the model is verified. It can be noticed
that at the beginning there is larger mismatch between the plant and the model. It is caused
by physical properties of a filament in bulb which requires certain time to incandesce from
a cold startup. As this phase is over, PWA model correctly captures the optical channel of
the plant and it can be employed for MPC design.

0 5 10 15
−5

0

5

10

15

20

25

30

35

40

45

50

 time [s]

 o
ut

pu
t

 measurement
 PWA model

Figure 9.2: Verification of PWA model.

9.3 Control Design 145

Table 9.3: Matrices of the normalized model (9.8).

A1 B1 c1

A2 B2 c2

A3 B3 c3

A4 B4 c4

=

1.072 -0.464 0.277 -1.492
1 0 0 0

0.969 -0.431 0.485 -0.642
1 0 0 0

0.913 -0.410 0.616 0
1 0 0 0

0.868 -0.402 0.735 0.471
1 0 0 0

9.3 Control Design

9.3.1 Prediction Model

In order to prevent numerical issues when employing the PWA model for MPC synthesis, it
is advised to perform coordinate transformation and normalization. This can be achieved
by introducing normalized variables x1, x2 and u as follows:

x1,k+1 =
v1,k − v1,ref

v̄1

, (9.6a)

x2,k+1 =
v2,k − v2,ref

v̄2

, (9.6b)

uk =
wk − wref

w̄
. (9.6c)

The suffix “ref” represent the desired steady state value, i.e.

v1,ref = 32.09, v2,ref = 32.09, wref = 3.5 (9.7)

which is basically the linearization point of the third dynamics (see Tab. 9.2) and v̄1 = 3.67,
v̄2 = 3.67, v̄ = 0.5 are constants. Applying the normalization, the transformed PWA model
yields

fPWA(xk, uk) = Aixk +Biuk + ci (9.8)

where i = 1, 2, 3, 4 and state update matrices are given in Tab. 9.3. The state space model
(9.8) is associated with the following regions

D1 = {xk ∈ R
2 | − 8.75 ≤ x2,k ≤ −5.16} (9.9a)

D2 = {xk ∈ R
2 | − 5.16 ≤ x2,k ≤ −1.72} (9.9b)

D3 = {xk ∈ R
2 | − 1.72 ≤ x2,k ≤ 1.88} (9.9c)

D4 = {xk ∈ R
2 | 1.88 ≤ x2,k ≤ 6.25} (9.9d)

Besides the dynamics as in (9.8), the following constraints are assumed to be imposed on
the behavior of the prediction model:

X = {xk ∈ R
2 | − 8.75 ≤ x1,k ≤ 6.25, −8.75 ≤ x2,k ≤ 6.25} (9.10a)

U = {uk ∈ R | − 7 ≤ uk ≤ 3}. (9.10b)

146 9 Thermo-Optical Device

State constraints X are derived from the operating range of light intensity (9.4) and input
constraints U represent the saturation limits (9.3).

9.3.2 Control Problem

The aim of the control strategy is to find an optimal sequence of control inputs such that
all system states are driven to a desired equilibrium. The equilibrium is given by the
linearization point for the third PWA dynamics (9.8) and in the transformed coordinates
(9.6) it is exactly the origin, i.e. x1,k = 0, x2,k = 0, uk = 0. Mathematically, the problem
can be formulated as to find a sequence of future control moves U = (u0, u1, . . . , uN−1)

T

up to horizon N ∈ N
+ which steer the system states/input to the origin while satisfying

constraints (9.10). More precisely,

min
U

∞
∑

k=0

‖Qxk‖1 + ‖Ruk‖1 (9.11a)

s.t. xk+1 = fPWA(xk, uk) (9.11b)

xk ∈ X (9.11c)

uk ∈ U (9.11d)

where xk = (x1,k, x2,k)
T represents the state vector, the function fPWA(·) describes the

PWA model defined in (9.8) and the sets X , U are the constraints on input and state
variables given by (9.10). Due to the presence of switching rules in PWA model (9.8), the
overall optimization problem (9.11) is cast using additional binary variables as mpMILP.
The problem is consequently solved using MPT toolbox [64].

9.3.3 Explicit Solution

Solving problem (9.11) in a multiparametric fashion a closed form solution uk as PWA
function which maps xk onto U . In particular, as was shown by [23], it is given by PWA
function u = F ix+Gi if x ∈ Pi for i = 1, . . . , nP . Here, Pi = {x |H ix ≤ li} are polytopic
regions of the state-space. Similarly, a closed-form expression for the optimal cost function
(9.11a) is again PWA function of the state, i.e. V = Φix+ Γi if x ∈ Pi.
The problem (9.11) has been solved with parameters Q = I, R = 0.5. The infinite choice
of prediction horizon guarantees that the obtained MPC feedback law will provide closed-
loop stability [5]. The resulting PWA control law builds a look-up table divided into 118
regions, defined in variables x1, x2, and these regions are plotted in Fig. 9.3(a). Over each
one of these regions a local feedback law is defined as illustrates Fig. 9.3(b). Similarly,
the cost function is shown in Fig. 9.3(c). Note that in the case of multiparametric MILP
solutions, the resulting PWA control law can be discontinuous (Fig. 9.3(b)) and defined over
a nonconvex set. This is a consequence of using binary variables to encode the IF-THEN
rules which describe behavior of the PWA prediction model.
To implement the resulting look-up table in the on-line experiment, one has to store and
evaluate the data. While storing part is limited by the available memory, the evaluation

9.3 Control Design 147

(a) Regions of the look-up table. (b) Local control laws over each region.

(c) Value function. (d) Stability tubes.

Figure 9.3: Explicit solution to Problem (9.11) consists of PWA map defined over 118
regions.

148 9 Thermo-Optical Device

task is limited by the sampling time. The complexity of both tasks depend on the number of
regions nP . Even with the use of binary search tree algorithm, where the evaluation time is
logarithmic in nP [106], the scheme can still be prohibitive for implementation. Motivated
by this fact, the goal is to apply the approximation scheme presented in section 7.4 where
the whole look-up table is replaced by one polynomial, which is very cheap to implement.
To do so, one has to find the set of all perturbations of the control law under which the
closed loop renders stability. This will be explained in the next section.

9.3.4 Polynomial Approximation

Using the approximation scheme (Section 7.4) the goal is to find a polynomial control law
of the form

µ(x)3 = (a11, a12)

(

x1

x2

)

+ (a21, a22)

(

x2
1

x2
2

)

+ (a31, a32)

(

x3
1

x3
2

)

which, when applied as a state feedback, guarantees closed-loop stability and constraint
satisfaction. The choice for the polynomial (9.12) is driven by needs to have the low
memory consumption and fast evaluation as explained in Section 7.4.2.
Theorem 7.5 provides a sufficient condition for existence of such a polynomial feedback law
in the sense that if (xT , µ(x)3)

T ∈ S(V, β), ∀x ∈ ⋃i Pi, then µ(x)3 will provide closed-
loop stability and constraint satisfaction. Therefore the search for suitable polynomial
coefficients of (9.12) can be cast as the following optimization problem:

min
a11,...,a32

∑

j

‖(u(x) − µ(x))‖2 (9.12a)

s.t.

(

x

µ(x)3

)

∈ S(V, β). (9.12b)

From all possible choices of µ(x)3 which satisfy (9.12b), cost function (9.12a) is used to
select the coefficients which provide best approximation of the optimal feedback law u(x).
As was shown in section 7.4, optimization problem (9.12) can be formulated as a SOS
problem, which can be solved using off-the-shelf tools.
The approximation scheme has been applied to obtain polynomial control law of type
(9.12) with the help of YALMIP [67]. Computed coefficients are given in Tab. 9.4. It
should be noted that the polynomial control law (9.12) has been searched for different
degrees r = {2, 3, 4, 5} and due to implementation simplicity, the polynomial with degree
r = 3 has been selected. Graphical representation of the computed polynomial of order
3 is shown in Fig. 9.4(b). To visibly see the differences comparing to optimal controller
(shown in Fig. 9.4(a)), a cross-section through x2 = 0 is provided in Fig. 9.5. Illustration of
the approximation scheme is shown in Fig. 9.5 which represents a cross-section in stability
tubes along the coordinate x2 = 0. The polyhedral sets in Fig. 9.5 demonstrate the space
of the stability tubes where there exists a stabilizing control law according to Theorem 7.5.
Inside this space the approximated polynomial (9.12) has been fitted and it is shown in
Fig. 9.5 with a dashed line while the optimal control law is depicted with solid line.

9.3 Control Design 149

Table 9.4: Coefficients of the approximated polynomial (9.12).
a11, a12 -0.8718, -0.0007
a21, a22 -0.0519, 0.0004
a31, a32 0.0019, 0.0001

−10
−5

0
5

10 −10
−5

0
5

10
−8

−6

−4

−2

0

2

4

x
2x

1

u

(a) Optimal control law.

−10
−5

0
5

10 −10
−5

0
5

10

−10

−5

0

5

x
2x

1

µ

(b) Polynomial with order 3.

Figure 9.4: Optimal control law and polynomial approximation.

150 9 Thermo-Optical Device

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

x
1

u,
µ

optimal
approximation

Figure 9.5: Cross-section of the control laws through x2 = 0.

9.4 Real-Time Implementation

In this section computational requirements are evaluated for the optimal and approxi-
mated controller. Both controllers are applied in the real-time experiment and measured
performance is discussed.

9.4.1 Computational Demands

Implementation of the optimal controller in the on-line experiment is limited by the sam-
pling time Ts = 0.05 s. If the look-up table, obtained previously and consisting of 118
regions, is stored and evaluated using the binary search tree algorithm [105], the number
of FLOPS which are required to evaluate such a controller for a given initial condition is
at most 41. The memory requirements are 2832 bytes for the control law and 1536 bytes
for the search tree which gives a total of 4368 bytes.

In the polynomial approximation scheme, the number of FLOPS depend on the degree of
approximated polynomial and on the polynomial degree. By considering the polynomial
(9.12) with degree of three, the upper bound for evaluation FLOPS is 14, less than a half
of the runtime for the binary search tree. More prominent, however, is the drop in memory
consumption. As state above, the explicit MPC solution with 118 regions requires 4368
bytes of memory storage, while to store the polynomial feedback law (9.12), mere 24 bytes
of memory are required (6 polynomial coefficients, each of them consuming 4 bytes when
represented as floating point numbers).

9.4 Real-Time Implementation 151

9.4.2 Experimental Data

The optimal explicit MPC controller as well as the polynomial feedback strategy have been
implemented in real time and obtained results are shown in Figs. 9.7(a), 9.7(b) and 9.6. The
plots represent the transition from the initial condition x0 = (−8.7,−8.7)T to the origin.
Input signal generated by the optimal controller immediately jumps to the upper limit and
then gently approaches the origin. In the polynomial controller this effect is different, the
controller is slightly slower, but the same stabilizing effect is achieved. State and input
profiles converge to desired steady state, hence the control objective was met with both
approaches. It is interesting to note that a polynomial controller acts better (in the sense
of the selected performance criterion (9.11a)) than the optimal one. In particular, (9.11a)
evaluates to 146.34 when the optimal MPC controller is used as a feedback, compared
to value of (9.11a) amounting to 142.96 for the case where the polynomial controller was
used. This small difference can be attributed to the fact that the optimal controller is more
sensitive to changes of the states. Nevertheless, the difference is small enough to say that
both controllers share roughly the same performance while the approximated controller is
significantly cheaper than the optimal one.

0 0.2 0.4 0.6 0.8 1
−8

−6

−4

−2

0

2

4
u, µ

time [s]

approximation

optimal

Figure 9.6: Input profiles for optimal and polynomial controller.

152 9 Thermo-Optical Device

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8
x1

time [s]

approximation

optimal

(a) Profiles of the state variable x1.

0 0.2 0.4 0.6 0.8 1
−10

−8

−6

−4

−2

0

2

4

6

8
x2

time [s]

approximation

optimal

(b) Profiles of the state variable x2.

Figure 9.7: State profiles for optimal and polynomial controller.

Chapter 10

Conclusions

The thesis deals with the explicit MPC for processes on both theoretical as well as prac-
tical sides of the problematics. The essentials for understanding the concepts of MPC are
explained in the Part I that also reviews the current state of the art in the field. Formula-
tion of multiparametric problems are derived and methods for solving constrained control
problems are presented. Part II is devoted to modeling and control of hybrid systems which
builds the main part of the thesis. Some of the proposed approaches have been tested in
the real-time experiments and the results are given in Part III. The concrete contributions
of the thesis are summarized in the sequel.

The first main contribution is the software implementation for modeling of hybrid systems.
The developed software HYSDEL 3.0 offers flexible modeling language which also supports
the use of symbolic variables. The tool is thus suitable for advanced modeling and compo-
sition of systems in a user-friendly way. It allows automated generation of well-conditioned
models from simple logical statements which has a strong application for the use in MPC,
as well as for further analysis.

The second main result is the explicit solution for time optimal tracking of a varying
reference for PWA systems. The approach proposes systematic algorithms for the design
and the implementation phase which have been experimentally verified in the laboratory.
The explicit MPC controller guarantees constraint satisfaction and ensures that the desired
setpoint will be reached in the minimal number of steps. Obtained experimental results
comply with theoretical background and show the suitability of the approach for practical
problems.

The third main result, which has been experimentally tested, is the polynomial approxi-
mation approach to explicit MPC. This scheme offers suboptimal, but very cheap solutions
for a real-time implementation. The approach is especially suitable for cases, when there
is only limiting computational power available and the sampling time is very small, e.g.
for control of DC-DC converters in power electronics.

The fourth main contribution of the thesis is the explicit solution to time optimal control
for uncertain PWA systems and Takagi-Sugeno systems. The importance of the result
is that uncertainties in the process model can be directly considered in the design phase
which allows the explicit controller to be resistant against small model-plant mismatch

153

154 10 Conclusions

while respecting all design constraint. This result is significant for Takagi-Sugeno fuzzy
systems where the multiparametric approach is applied for the first time. The time optimal
control approach has been tested on various examples which shows the applicability in the
real-time experiments.

Bibliography

[1] A. Antoniou and W.-S. Lu. Practical Optimization: Algorithms and Engineeging
Applications. Springer Science+Business Media, LLC, New York, 2007.

[2] F. Aurenhammer. Voronoi diagramns – survey of a fundamental geometric data
structure. ACM Computing Surverys, 3(23):345–405, 1991.

[3] M. Baotic. Optimal Control of Piecewise Affine Systems – a Multi-parametric Ap-
proach. PhD thesis, ETH Zurich, Switzerland, March 2005.

[4] M. Baotić, F. J. Christophersen, and M. Morari. A new algorithm for constrained
finite time optimal control of hybrid systems with a linear peformance index. In Proc.
of the European Control Conference, Cambridge, U.K., September 2003.

[5] M. Baotić, F. J. Christophersen, and M. Morari. Constrained optimal control of
hybrid systems with a linear performance index. IEEE Transactions on Automatic
Control, 51(12):1903–1919, December 2006.

[6] M. Barič, S. V. Raković, T. Besselman, and M. Morari. Max-min optimal control of
constrained discrete-time systems. In Proc. of the 17th IFAC World Congress, pages
8803–8808, Seoul, South Korea, July 2008.

[7] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming, Theory
and Algorithms. Wiley-Interscience, 3rd edition, 2006.

[8] A. G. Beccuti, G. Papafotiou, and M. Morari. Optimal control of the buck dc-dc
converter operating in both the continuous and discontinuous conduction regimes. In
Proc. of the Conf. on Decision & Control, pages 6205–6210, San Diego, California,
USA, December 2006.

[9] R. Bellman. Dynamic Programming. Princeton University Press, New York, 1957.

[10] A. Bemporad. Efficient conversion of mixed logical dynamics systems into an equiv-
alent piecewise affine form. IEEE Trans. on Aut. Control, 49(5):832–838, 2004.

[11] A. Bemporad, F. Borrelli, and M. Morari. The explicit solution of constrained LP-
based receding horizon control. In Proc. of the 39th IEEE Conf. on Decision and
Control, pages 632–637, 2000.

155

156 BIBLIOGRAPHY

[12] A. Bemporad, F. Borrelli, and M. Morari. The explicit solution of constrained LP-
based receding horizon control. In Proc. of the 39th IEEE Conf. on Decision and
Control, pages 1810–1815, 2000.

[13] A. Bemporad, F. Borrelli, and M. Morari. Optimal controllers for hybrid systems:
Stability and piecewise linear explicit form. In Proc. of the 39th IEEE Conference of
Decision and Control, pages 1810–1815, Sydney, Australia, 2000.

[14] A. Bemporad, F. Borrelli, and M. Morari. Model predictive control based on linear
programming – the explicit solution. IEEE Transactions on Automatic Control,
47(12):1975–1985, December 2002.

[15] A. Bemporad and M. Morari. Control of Systems Integrating Logic, Dynamics, and
Constraints. Automatica, 35(3):407–427, march 1999.

[16] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38:3–20, 2002.

[17] D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd edition, 2004.

[18] T. Besselmann, J. Löfberg, and M. Morari. Explicit model predictive control for
systems with linear parameter-varying state transition matrix. In Proc. of the 17th
IFAC World Congress, pages 13163–13168, Seoul, South Korea, July 2008.

[19] W. L. Bialkowski. Dreams vs. reality: a view from both sides of the gap. In Proc. of
Control Systems Conference, pages 283–294, Whistler, Canada, 1992.

[20] R. R. Bitmead, M. Gevers, and V. Wertz. Adaptive optimal control – The thinking
man’s GPC. Prentice-Hall, Englewook Cliffs, NJ, 1990.

[21] F. Blanchini. Ultimate boundedness control for uncertain discrete-time systems via
set-induced lyapunov functions. IEEE Tran. on Aut. Control, 39(2):428–433, Feb.
1994.

[22] V. Bobál, M. Kubalč́ık, P. Chalupa, and P. Dostál. Adaptive predictive control of
nonlinear system with constraint of manipulated variable. In K. M. Hangos, editor,
Proc. of the IASTED International Conference Modelling, Identification and Control,
pages 349–354, Innsbruck, Austria, 2009.

[23] F. Borrelli. Constrained Optimal Control of Linear and Hybrid Systems. In Lecture
Notes in Control and Information Sciences, volume 290. Springer, 2003.

[24] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[25] E. F. Camacho and C. Bordons. Model Predictive Control. Springer Verlag, 1st.
edition, 1999.

BIBLIOGRAPHY 157

[26] J. Campos and F.L. Lewis. Deadzone compensation in discrete time using adaptive
fuzzy logic. In Proc. of the 37th IEEE Conf. on Decision and Control, pages 2920–
2926, Tampa, FL, USA, December 1998.

[27] Y.-Y. Cao and P. M. Frank. Analysis and synthesis of nonlinear time-delay systems
via fuzzy control approach. IEEE Transactions on Fuzzy Systems, 8(2):200–211,
April 2000.

[28] H. Chen and F. Allgöwer. A quasi-infinity horizon nonlinear model predictive control
scheme with guaranteed stability. Automatica, 34(10):1205–1217, 1998.

[29] W.-H. Chen, J. O’Reilly, and D. J. Ballance. On the terminal region of model
predictive control for non-linear systems with input/state contraints. International
Journal of Adaptive Control and Signal Processing, 17:195–207, 2003.

[30] C.-M. Chow and D. W. Clarke. Actuator nonlinearities in predictive control. In
Advances in Model-Based Predition Control, Conf. Proc., volume II, pages 79–91,
Oxford, UK, Sept. 1993. Dep. of Eng. Sc., University of Oxford.

[31] F. J. Christophersen. Optimal Control and Analysis for Constrained Piecewise Affine
Systems. PhD thesis, ETH Zurich, Switzerland, August 2006.

[32] F. J. Christophersen. Optimal Control of Constrained Piecewise Affine Systems. In
Lecture Notes in Control and Information Sciences, volume 359. Springer-Verlag,
2007.

[33] F. J. Christophersen, M. Baotić, and M. Morari. Stability Analysis of Hybrid
Systems with a Linear Performance Index. In Proc. of the Conf. on Decision &
Control, pages 4589–4594, Atlantis, Paradise Island, Bahamas, December 2004.
http://control.ee.ethz.ch/index.cgi?page=publications&action=details&

id=1836.

[34] L’. Čirka, M. Fikar, and P. Petruš. IDTOOL 4.0 - A Dynamical System Identification
Toolbox for MATLAB/Simulink. In 14th Annual Conference Proceedings: Technical
Computing Prague 2006, pages 29–29. The MathWorks, Inc. & HUMUSOFT s.r.o.
& Institute of Chemical Technology in Prague, October 2006.

[35] D. W. Clarke, C. Mohtadi, and P. S. Tuffs. Generalized predictive control – Parts
I-II. Automatica, 23(2), 1987.

[36] C. R. Cutler and B. L. Ramaker. Dynamic matrix control – a computer control algo-
rithm. In Proceedings, Joint American Control Conference, San Francisco, California,
USA, 1980.

[37] E. de Klerk, C. Roos, and T. Terlaky. Nonlinear optimization, 2004.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2146.

http://control.ee.ethz.ch/index.cgi?page=publications&action=details&
id=1836
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.2146

158 BIBLIOGRAPHY

[38] S. L. de O. Kothare and M. Morari. Contractive Model Predictive Control for Con-
strained Nonlinear Systems. IEEE Transactions on Automatic Control, 45(6):1053–
1071, June 2000.

[39] J. Eve. The Evaluation of Polynomials. Numerische Mathematik, 6:17–21, 1964.

[40] G. Feng. A Survey on Analysis and Design of Model-Based Fuzzy Control Systems.
IEEE Transactions on Fuzzy Systems, 14(5):676–697, Oct. 2006.

[41] G. Feng. A Survey on Analysis and Design of Model-Based Fuzzy Control Systems.
IEEE Transactions on Fuzzy Systems, 14(5):676–697, Oct. 2006.

[42] C. E. Garcia and M. Morari. Internal model control. a unifying review and some
new results. Industrial & Engineering Chemistry Process Design and Development,
21(2):308–323, 1982.

[43] T. Geyer, G. Papafotiou, and M. Morari. Model Predictive Control in Power Elec-
tronics: A Hybrid Systems Approach. In Proc. of the Conf. on Decision & Control,
Seville, Spain, December 2005.

[44] E. G. Gilbert and K. T. Tan. Linear systems with state and control constraints: The
theory and application of maximal output admissible sets. IEEE Transactions on
Automatic Control, 36(9):1008–1020, Sept. 1991.

[45] P. Grieder. Efficient Computation of Feedback Controllers for Constrained Systems.
PhD thesis, ETH Zurich, Switzerland, October 2004.

[46] P. Grieder, M. Kvasnica, M. Baotic, and M. Morari. Stabilizing low complexity feed-
back control of constrained piecewise affine systems. Automatica, 41, issue 10:1683–
1694, Oct. 2005.

[47] B. Grünbaum. Convex Polytopes. Springer-Verlag, 2nd edition, 2000.

[48] W. P. M. H. Heemels, B. De Schutter, and A. Bemporad. Equivalence of hybrid
dynamical models. Automatica, 37:1085–1091, 2001.

[49] M. Herceg and M. Fikar. Constrained Predictive Control of Laboratory Servoengine.
In Proc. of 15th Int. Conference on Process Control 2005, Štrbské Pleso, Slovakia,
June 7-10 2005.

[50] M. Herceg, M. Kvasnica, and M. Fikar. Stabilizing Predictive Control of Fuzzy Sys-
tems Described by Takagi-Sugeno Models. In J. Mikleš, M. Fikar, and M. Kvasnica,
editors, Proceedings of the 16th Int. Conf. on Process Control, page 223f.pdf. Slovak
University of Technology in Bratislava, 2007.

BIBLIOGRAPHY 159

[51] M. Herceg, M. Kvasnica, and M. Fikar. Transformation of Fuzzy Takagi-Sugeno
Models into Piecewise Affine Models. In M. Kryszkiewicz, J.F. Peters, H. Rybinski,
and A. Skowron, editors, Rough Sets and Intelligent Systems Paradigms, Proceedings,
volume 4585 of Lecture Notes in Computer Science, pages 211–220, Warsaw, Poland,
June 28-30 2007. Springer.

[52] M. Herceg, M. Kvasnica, and M. Fikar. Minimum-time predictive control of a servo
engine with deadzone. Control Engineering Practice, 17(11):1349–1357, 2009.

[53] M. Herceg, M. Kvasnica, M. Fikar, and L’. Čirka. Real-time control of a thermo-
optical device using polynomial approximation of mpc scheme. In M. Fikar and
M. Kvasnica, editors, Proceedings of the 17th International Conference on Process
Control ’09, pages 332–340, Štrbské Pleso, Slovakia, June 9– 12, 2009 2009. Slovak
University of Technology in Bratislava. 082.pdf.

[54] M. Huba, P. Kurč́ık, and M. Kamenský. Thermo-optical device uDAQ28/LT. STU
Bratislava, Illkovičova 3, Bratislava, 2006. In Slovak.

[55] M. Huba and D. Vrančič. Constrained control of the plant with two different modes.
In J. Mikleš, M. Fikar, and M. Kvasnica, editors, 16th Int. Conf. Process Control,
pages paper Le–Tu–5, 205p.pdf, 2007.

[56] M. Johansson, A. Rantzer, and K.-E. Årzén. Piecewise Quadratic Stability of Fuzzy
Systems. IEEE Transactions on Fuzzy Systems, 7(6):713–722, December 1999.

[57] C. N. Jones and M. Morari. Multiparametric Linear Complementarity Problems.
In IEEE Conference on Decision and Control, pages 5687–5692, San Diego, USA,
December 2006.

[58] A. Karas, B. Rohal’-Ilkiv, and C. Belavý. Praktické aspekty predikt́ıvneho riadenia
(Practical aspects of model predictive control). Slovak University of Technology Press,
Slovenská e-akadémia n.o., Bratislava, Slovakia, 2007. In Slovak.

[59] S. S. Keerthi and E. G. Gilbert. Optimal, infinite horizon feedback laws for a general
class of constrained discrete time systems: Stability and moving-horizon approxima-
tions. Journal of Optimization Theory and Applications, 57:265–293, 1988.

[60] T. Knohl and H. Unbehauen. Adaptive position control of electrohydraulic servo
systems using ANN. Mechatronics, 10:127–143, 2000.

[61] I. Kolmanovsky and E. G. Gilbert. Theory and computation of disturbance invari-
ant sets for discrete-time linear systems. Mathematical Problems in Engineering,
4(4):317–367, 1998.

[62] R. Kulhavý and M. Kárný. Tracking of slowly varying parameters by directional
forgetting. In Proceedings of the 9th IFAC World Congres, Budapest, Hungary, 1984.

160 BIBLIOGRAPHY

[63] M. Kvasnica. Efficient software tools for control and analysis of hybrid systems. PhD
thesis, ETH Zurich, Switzerland, February 2008.

[64] M. Kvasnica, P. Grieder, M. Baotic, and M. Morari. Multi-Parametric Toolbox
(MPT). In Hybrid Systems: Computation and Control, pages 448–462, March 2004.
http://control.ee.ethz.ch/~mpt.

[65] M. Lazar. Model predictive control of hybrid systems: Stability and robustness. PhD
thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2006.

[66] J. T. Linderoth and T. K. Ralphs. Noncommercial software for mixed-integer lin-
ear programming, pages 253–303. CRC Press Operations Research Series, 2005.
http://www.lehigh.edu/~jtl3/papers/MILP04.pdf.

[67] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MAT-
LAB. In Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.
http://control.ee.ethz.ch/~joloef/yalmip.php.

[68] J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

[69] D. Q. Mayne and H. Michalska. Receding Horizon Control of Nonlinear Systems.
IEEE Transactions on Automatic Control, 35(7):814–824, July 1990.

[70] D. Q. Mayne, J. B. Rawlings C. V. Rao, and P. O. M. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36:789–814, 2000.

[71] H. Michalska and D. Q. Mayne. Robust Receding Horizon Control of Constrained
Nonlinear Systems. IEEE Transactions on Automatic Control, 38(11):1623–1633,
Nov. 1993.

[72] J. Mikleš and M. Fikar. Process Modelling, Identification, and Control. Springer
Verlag, Berlin Heidelberg, 2007.

[73] B. E. A. Milani. Ultimate boundedness sets for continuous-time linear systems with
deadzone feedback controls. In Proc. of the 44th IEEE Conf. on Decision and Control
and European Control Conf., pages 6853–6858, Seville, Spain, December 2005.

[74] B. E. A. Milani and A. D. Coelho. Ultimate boundedness sets for discrete-time
linear systems with deadzone feedback controls. In Proc. of the 40th IEEE Conf. on
Decision and Control, pages 2163–2164, Orlando, FL, USA, December 2001.

[75] S. Mollov, R. Babuška, J. Abonyi, and H.B. Verbruggen. Effective Optimization for
Fuzzy Model Predictive Control. IEEE Transactions on Fuzzy Systems, 12(5):661–
675, Oct. 2004.

[76] S. Mollov, T. van den Boom, F. Cuesta, A. Ollero, and R. Babuška. Robust Sta-
bility Constraints for Fuzzy Model Predictive Control. IEEE Transactions on Fuzzy
Systems, 10(1):50–64, Feb. 2002.

http://control.ee.ethz.ch/~mpt
http://www.lehigh.edu/~jtl3/papers/MILP04.pdf
http://control.ee.ethz.ch/~joloef/yalmip.php

BIBLIOGRAPHY 161

[77] M. Morari and J. H. Lee. Model predictive control: Past, present and future. In 6th
International Symposium on Process Systems Engineering and 30th European Sym-
posium on Computer Aided Process Engineering ESCAPE-7, Trondheim, Norway,
May 1997.

[78] V. Nevistic and J. A. Primbs. Constrained nonlinear optimal control: a con-
verse HJB approach. Technical report, ETH Zürich, 1996. Available at:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.2763.

[79] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer-Verlag, 1999.

[80] P. Parillo. Structured Semidefinite Programs and Semialgebraic Geometry Methods
in Robustness and Optimization. PhD thesis, California Institute of Technology,
Pasadena, California, USA, May 2000.

[81] P. A. Parrilo. Sums of squares of polynomials and their applications. In ISSAC
’04: Proceedings of the 2004 international symposium on Symbolic and algebraic
computation, pages 1–1, New York, NY, USA, 2004. ACM Press.

[82] P. A. Parrilo and S. Lall. Semidefinite programming relaxations and algebraic opti-
mization in Control. European Journal of Control, 9(2-3), 2003.

[83] E. Pistikopoulos, M. Georgiadis, and V. Dua, editors. Multi-Parametric Model-Based
Control, volume 2 of Process Systems Engineering. WILEY-VCH Verlag, 2007.

[84] E. Pistikopoulos, M. Georgiadis, and V. Dua, editors. Multi-Parametric Program-
ming, volume 1 of Process Systems Engineering. WILEY-VCH Verlag, 2007.

[85] D. M. Prett and C. E. Garcia. Fundamental Process Control. Butterworths, Boston,
1988.

[86] J. A. Primbs, V. Nevistic, and J. Doyle. Nonlinear optimal control: A control lya-
punov function and receding horizon perspective. Asian Journal of Control, 1(1):14–
24, March 1999.

[87] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control tech-
nology. Control engineering Practice, 11:733–764, 2003.

[88] S. V. Raković, P. Grieder, M. Kvasnica, D. Q. Mayne, and M. Morari. Computation
of Invariant Sets for Piecewise Affine Discrete Time Systems subject to Bounded
Disturbances. In Proceeding of the 43rd IEEE Conference on Decision and Control,
pages 1418–1423, Atlantis, Paradise Island, Bahamas, December 2004.

[89] S. V. Raković, E. C. Kerrigan, D. Q. Mayne, and K. I. Kouramas. Optimized ro-
bust control invariance for linear discrete–time systems: Theoretical foundations.
Automatica, 43(5):831–841, 2007.

162 BIBLIOGRAPHY

[90] J. R. Rawlings and K. R. Muske. The Stability of Constrained Receding Horizon
Control. IEEE Transactions on Automatic Control, 38(10):1512–1516, Oct. 1993.

[91] D. Recker, P.V. Kokotović, D. Rhode, and J. Winkelman. Adaptive nonlinear control
of systems containing a dead-zone. In Proc. of the 30th IEEE Conf. on Decision and
Control, pages 2111–2115, 1991.

[92] A. Richards and J. How. Mixed-integer programming for control. In American
Control Conference, pages 2676–2683, 2005.

[93] P. O. M. Scokaert, D. Q. Mayne, and J. B. Rawlings. Suboptimal Model Predictive
Control (Feasibility Implies Stability). IEEE Transactions on Automatic Control,
44(3):648–654, March 1999.

[94] E. D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Transac-
tions on Automatic Control, 26(2):346–358, April 1981.

[95] G. Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry .
Math. Ann., 207:87–97, 1974.

[96] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optimization Methods and Software, pages 625–653, Oct. 1999.

[97] R. Suard, J. Löfberg, P. Grieder, M. Kvasnica, and M. Morari. Efficient Computation
of Controller Partitions in Multi-Parametric Programming. In IEEE Conference on
Decision and Control, Bahamas, December 2004.

[98] T. Takagi and M. Sugeno. Fuzzy identications of fuzzy systems and its applications
to modelling and control. IEEE Trans. Systems Man and Cybernetics, 15:116–132,
1985.

[99] K. Tanaka and M. Sano. Trajectory stabilization of a model car via fuzzy control.
Fuzzy Sets and Systems, 70:155–170, 1995.

[100] K. Tanaka and H. O. Wang. Fuzzy Control Systems Design and Analysis: A Linear
Matrix Inequality Approach, chapter 14. John Wiley & Sons, Inc., 2001.

[101] K. Tanaka and H. O. Wang. T-S Fuzzy Model as Universal Approximator. Fuzzy
Control Systems Design and Analysis, pages 277–289, 2002.

[102] G. Tao and P.V. Kokotović. Adaptive control of plants with unknown dead-zones.
IEEE Transactions on Automatic Control, 39(1):59–68, Jan. 1994.

[103] G. Tao and P.V. Kokotović. Discrete-time adaptive control of systems with unknown
deadzones. International Journal of Control, 61(1):1–17, 1995.

BIBLIOGRAPHY 163

[104] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3 – a Matlab software package
for semidefinite programming. Optimization Methods and Software, 11/12:545–581,
1999.

[105] P. Tøndel, T. A. Johansen, and A. Bemporad. An algorithm for multi-parametric
quadratic programming and explicit MPC solutions. Automatica, 39(3):489–497,
2003.

[106] P. Tøndel, T. A. Johansen, and A. Bemporad. Evaluation of Piecewise Affine Control
via Binary Search Tree. Automatica, 39(5):945–950, May 2003.

[107] F. D. Torrisi and A. Bemporad. HYSDEL – A Tool for Generating Computational
Hybrid Models for Analysis and Synthesis Problems. IEEE Transactions on Control
Systems Technology, 12(2):235–249, march 2004.

[108] T. T. C. Tsang and D. W. Clarke. Generalised predictive control with input con-
straints. IEE Proc. Pt. D, 6(135):451–460, 1988.

[109] http://www.elsevier.com/wps/find/journaldescription.cws_home/270/

description#description.

[110] R. J. Vanderbei. Linear Programming: Foundations and Ex-
tensions. Kluwer Academic Publishers, 2nd edition, 2001.
http://www.princeton.edu/~rvdb/LPbook/onlinebook.pdf.

[111] H. O. Wang, K. Tanaka, and M. F. Griffin. An Approach to Fuzzy Control of Non-
linear Systems: Stability and Design Issues. IEEE Transactions on Fuzzy Systems,
4(1), Feb. 1996.

[112] W.-J. Wang, Y.-J. Chen, and C.-H. Sun. Relaxed Stabilization Criteria for Discrete-
Time T-S Fuzzy Control Systems Based on a Switching Fuzzy Model and Piecewise
Lyapunov Function. IEEE Transactions on Systems, Man, and Cybernetics–Part B:
Cybernetics, 37(3):551–559, June 2007.

[113] H. Zabiri and Y. Samyudia. A hybrid formulation and design of model predictive con-
trol for systems under actuator saturation and backlash. Journal of Process Control,
16:693–709, 2006.

[114] L. A. Zadeh. Fuzzy sets. Inform. Control, 8:338–353, 1965.

[115] M. Zeilinger, C. N. Jones, and M. Morari. Real-time suboptimal model predictive
control using a combination of explicit mpc and online optimization. In Proc. of
the 47th IEEE Conf. on Decision and Control, pages 4718–4723, Cancun, Mexico,
December 2008.

http://www.elsevier.com/wps/find/journaldescription.cws_home/270/
description#description
http://www.princeton.edu/~rvdb/LPbook/onlinebook.pdf

Publication List

Chapter or pages in book

1. Herceg, M., Kvasnica, M., and Fikar, M.: Parametric Approach to Nonlinear Model
Predictive Control, In Nonlinear Model Predictive Control, Editor(s): Magni, L. and
Raimondo, D. M. and Allgöwer, F., Springer Berlin / Heidelberg, pp. 381–389, 2009.

2. Herceg, M., Kvasnica, and M. Fikar, M.: Transformation of Fuzzy Takagi-Sugeno
Models into Piecewise Affine Models. Editor(s): M. Kryszkiewicz, J. F. Peters, H. Ry-
binski, A. Skowron, In Lecture Notes in Artificial Intelligence, vol. 4585, Proceedings
of the International Conference on Rough Sets and Intelligent Systems Paradigms,
Springer, Warsaw, Poland, pp. 211–220, 2007.

3. Herceg, M. Fikar, M.: Constrained Predictive Control of a Laboratory Servoengine,
In Selected Topics in Modelling and Control, Editor(s): Mikleš, J., Veselý, V., Slovak
University of Technology Press, vol. 5, pp. 115–120, 2007.

Article in CC journal

1. Herceg, M., Kvasnica, M., Fikar, M.: Minimum-time predictive control of a servo
engine with deadzone, Control Engineering Practice, 17(11):1349–1357, 2009.

Article in journal

1. Herceg, M., Kvasnica, M., Fikar, M., Čirka, L’.: Real-time Control of a Thermo-
Optical Device Using Polynomial Approximation of MPC Scheme. AT&P Journal
Plus, no. 2, pp. 36–42, 2009.

2. Herceg, M., Kvasnica, M., Čirka, L’., and Fikar, M.: Real-Time Predictive Control
of a Servo Engine. AT&P Journal, no. Plus2, pp. 124–130, 2007.

3. Herceg, M., Kvasnica, M., and Fikar, M.: Stabilizing Predictive Control of Fuzzy
Systems Described by Takagi-Sugeno Models. AT&P Journal, no. Plus2, pp. 105–
111, 2007.

165

166 BIBLIOGRAPHY

Article in conference proceedings

1. Kvasnica, M., Herceg, M., Čirka, L’, Fikar, M.: Robust Adaptive Minimum-Time
Control of Piecewise Affine Systems, 48th IEEE Conference on Decision and Control,
Shanghai, China, 2009. Accepted.

2. Kvasnica, M., Herceg, M., Čirka, L’., and Fikar, M.: Time-Optimal Control of
Takagi-Sugeno Fuzzy Systems. In Proceedings of the 10th European Control Confer-
ence, Budapest, Hungary, 2009.

3. Herceg, M., Kvasnica, M., Fikar, M., and Čirka, L’.: Real-Time Control of a
Thermo-Optical Device Using Polynomial Approximation of MPC Scheme. Edi-
tor(s): Fikar, M., Kvasnica, M., In Proceedings of the 17th International Conference
on Process Control ’09, Slovak University of Technology in Bratislava, Štrbské Pleso,
Slovakia, pp. 332–340,2009.

4. Kvasnica, M., Herceg, M., Čirka, L’., and Fikar, M.: Time Optimal Control of Fuzzy
Systems: a Parametric Programming Approach. In Proceedings of the 28th IASTED
Conference on Modelling, Identification and Control, pp. 640-805.pdf, 2009.

5. Herceg, M., Kvasnica, M., and Fikar, M.: Stabilization of an Inverted Pendulum via
Fuzzy Explicit Predictive Control. In Proceedings of the 8th International Scientific
- Technical Conference Process Control 2008, University of Pardubice, Kouty nad
Desnou, Czech Republic, pp. C021 b-1–C021 b-5, 2008.

6. Herceg, M., Mikleš, J., Fikar, M., Kvasnica, M., and Čirka, L’.: Real-time 2DoF
Control of a Quadruple Tank System with Integral Action. In Proceedings of the 17th
World Congress of the International Federation of Automatic Control, Seoul, Korea,
pp. 8666–8671, 2008.

7. Kvasnica, M., Christophersen, F. J., Herceg, M., and Fikar, M.: Polynomial Ap-
proximation of Closed-form MPC for Piecewise Affine Systems. In Proceedings of the
17th World Congress of the International Federation of Automatic Control, Seoul,
Korea, pp. 3877–3882, 2008.

8. Herceg, M., Kvasnica, M., and Fikar, M.: Parametric Approach to Nonlinear Model
Predictive Control. Editor(s): L. Magni, D. Raimondo, F. Allgöwer, In International
Workshop on Assessment and Future Directions of Nonlinear Model Predictive Con-
trol, Pavia, Italy, pp. PI1-1–PI1-8, 2008.

9. Čirka, L’., Fikar, M., Kvasnica, M., and Herceg, M.: Experimental Identification
– an Interactive Online Course. In Proceedings of the 17th World Congress of the
International Federation of Automatic Control, Seoul, Korea, pp. 9812–9816, 2008.

10. Fikar, M.,Čirka, L’., Herceg, M., and Podmajerský, M.: E-learning in Course Op-
erating Systems. Editor(s): M. Huba, In Proceedings of the 9th International Con-
ference Virtual University 2008, E-academia Slovaca, fid000091.pdf, 2008.

BIBLIOGRAPHY 167

11. Kvasnica, M., Herceg, M., Čirka, L’, and Fikar, M.: Adaptive Model Predictive
Control of Piecewise Affine Systems. Editor(s): L. Magni, D. Raimondo, F. Allgöwer,
In International Workshop on Assessment and Future Directions of Nonlinear Model
Predictive Control, Pavia, Italy, pp. PIV3-1–PIV3-8, 2008.

12. Mariethoz, S., Herceg, M., and Kvasnica, M.: Model Predictive Control of buck
DC-DC converter with nonlinear inductor. In Proceedings of the Eleventh IEEE
Workshop on Control and Modeling for Power Electronics, Zurich, Switzerland, pp.
1–8, 2008.

13. Kvasnica, M., Herceg, M., Čirka, L’., and Fikar, M.: Model Predictive Control of a
CSTR: a Hybrid Modelling Approach. In Proceedings of the 8th International Sci-
entific - Technical Conference Process Control 2008, University of Pardubice, Kouty
nad Desnou, Czech Republic, pp. C021 a-1–C021 a-9, 2008.

14. Herceg, M., Kvasnica, M., Čirka, L’, and Fikar, M.: Real-time Predictive Control
of a Servo Engine. Editor(s): J. Mikleš, M. Fikar, M. Kvasnica, In Proceedings of the
16th International Conference Process Control ’07, Slovak University of Technology
in Bratislava, pp. 222f.pdf, 2007.

15. Herceg, M., Kvasnica, M., and Fikar, M.: Stabilizing Predictive Control of Fuzzy
Systems Described by Takagi-Sugeno Models. Editor(s): J. Mikleš, M. Fikar, M.
Kvasnica, In Proceedings of the 16th International Conference Process Control ’07,
Slovak University of Technology in Bratislava, pp. 223f.pdf, 2007.

16. Čirka, L’., Fikar, M., Kvasnica, M., and Herceg, M.: New Features in Course on
Experimental Identification. Editor(s): Huba, M., In Proceedings of 8th International
Conference Virtual University, Bratislava, pp. 182–187, 2007.

17. Čirka, L’., Bakošová, M., Fikar, M., and Herceg, M.: Dynamic Simulations of Chem-
ical Processes via the MATLAB Web Server. In Proceedings of the 15th Annual
Conference Technical Computing Prague 2007, ČVUT Praha, pp. 34, 2007.

18. Herceg, M., Raff, T., Findeisen, R., and Allgöwer, F.: Nonlinear Model Predictive
Control of a Turbocharged Diesel Engine. In Proceedings of the 2006 IEEE Interna-
tional Conference on Control Applications, Munich, Germany, pp. 2766–2771, 2006.

19. Herceg, M. and Fikar, M.: Constrained Predictive Control of a Laboratory Ser-
voengine. Editor(s): M. Vitek, In Proceedings of the international Interdisciplinary
Student Competition and Conference. Honeywell EMI conference and competition
2005, VUT Brno, Brno, Czech Republic, pp. 93–97, 2005.

Article in collection

1. Kvasnica, M., Herceg, M., and Fikar, M.: Polynomial Approximation of Polytopic
Regions. In Proceedings IAM 2007 - Workshop on Informatics, Automation and

168 BIBLIOGRAPHY

Mathematics, Editor(s): Fikar, M., Kolesárová, A., Bakošová, M., STU Press, pp.
59–63, 2007.

Diploma thesis

1. Herceg, M.: Nonlinear Model Predictive Control of a Diesel Engine with Exhaust
Gas Recirculation and Variable Geometry Turbocharger. Diploma thesis IST-0021,
University of Stuttgart, 2006.

Bachelor’s thesis

1. Herceg, M.: Control of a Laboratory Fan Heater (in Slovak). Bachelor’s thesis,
OIRP FCHPT STU, Bratislava, 2004.

Curriculum Vitae

Martin Herceg

born on November 22, 1982 in Šal’a, Slovakia

09/2006–09/2009 Doctorate studies, Slovak University of Technology in Bratislava, Slo-
vakia

11/2007–08/2008 Visiting researcher, Automatic Control Laboratory, ETH Zürich,
Switzerland

11/2005–06/2006 Visiting student, Institute for Systems Theorie and Automatic Control,
University of Stuttgart, Germany

09/2001–06/2006 Graduate studies, Slovak University of Technology in Bratislava, Slovakia
09/1993–06/2001 Grammar School, Šal’a, Slovakia

169

	Introduction
	Main Goals

	I BACKGROUND
	1 Mathematical Basics
	1.1 Basic Definitions
	1.1.1 Sets
	1.1.2 Functions

	1.2 Polytopes
	1.3 Geometric Operations with Polytopes

	2 Optimization Problems
	2.1 General Formulation
	2.2 Convex Problems
	2.2.1 Linear Programming
	2.2.2 Quadratic Programming
	2.2.3 Semidefinite Programming
	2.2.4 Sum of Squares Decomposition

	2.3 Non-convex Problems
	2.3.1 Mixed Integer Linear Programming

	3 Multiparametric Programming
	3.1 Multiparametric Problems
	3.1.1 Multiparametric Linear Programming
	3.1.2 Multiparametric Quadratic Programming
	3.1.3 Multiparametric Mixed Integer Linear Programming

	3.2 Solving Multiparametric Problems
	3.3 Properties of the Explicit Solutions

	4 Model Predictive Control
	4.1 Predicting the Future
	4.2 Formulation of a General Optimal Control Problem
	4.3 Closed-Loop Implementation of MPC
	4.4 Ingredients of MPC
	4.4.1 Cost Function
	4.4.2 Process Models
	4.4.3 Constraints

	4.5 Stability Requirements
	4.6 Methods for Computing Terminal Sets

	5 Explicit MPC
	5.1 Main Features
	5.2 Multiparametric Forms of Optimal Control Problems
	5.2.1 Linear Model, 1/-Norm
	5.2.2 Linear Model, 2-Norm
	5.2.3 PWA Model, 1/-Norm

	5.3 Multiparametric Problems in MPC for PWA Systems
	5.3.1 Constrained Finite Time Optimal Control
	5.3.2 Time Optimal Control

	5.4 On-line Implementation

	II MODELING AND CONTROL OF HYBRID SYSTEMS
	6 Modeling of Hybrid Processes
	6.1 HYSDEL
	6.1.1 General Properties
	6.1.2 HYSDEL Language Syntax

	6.2 HYSDEL 3.0
	6.2.1 MLD System Formulation
	6.2.2 Using HYSDEL 3.0
	6.2.3 Language Elements
	6.2.4 Compiler
	6.2.5 Graphical Modeling

	6.3 Translation to PWA System

	7 Explicit MPC for PWA Systems
	7.1 Time Optimal Tracking of a Varying Reference
	7.1.1 Problem Formulation
	7.1.2 Design of the Stabilizing Terminal Set
	7.1.3 The Time Optimal Algorithm for Reference Tracking
	7.1.4 The Robust Time Optimal Algorithm for Reference Tracking
	7.1.5 Examples

	7.2 Adaptive Time Optimal Control
	7.2.1 Problem Formulation
	7.2.2 Adaptive Time Optimal Algorithm
	7.2.3 Example

	7.3 Time Optimal Control of Takagi-Sugeno Fuzzy Systems
	7.3.1 Relation Between TS Model and PWA Model
	7.3.2 Transformation to Uncertain PWA System
	7.3.3 Example

	7.4 Polynomial Approximation of MPC
	7.4.1 Stability Analysis
	7.4.2 Polynomial Approximation
	7.4.3 Complexity Analysis
	7.4.4 Example

	III APPLICATIONS
	8 Servo Engine
	8.1 Physical Setup
	8.2 Hybrid Model and Experimental Validation
	8.2.1 Deadzone Measurement
	8.2.2 PWA Model
	8.2.3 Experimental Validation

	8.3 Real-Time Implementation

	9 Thermo-Optical Device
	9.1 Device Description
	9.2 Identification and PWA Modelling
	9.3 Control Design
	9.3.1 Prediction Model
	9.3.2 Control Problem
	9.3.3 Explicit Solution
	9.3.4 Polynomial Approximation

	9.4 Real-Time Implementation
	9.4.1 Computational Demands
	9.4.2 Experimental Data

	10 Conclusions
	Bibliography
	Publication List
	Curriculum Vitae

