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Abstract 

 

The objective of this work is solving problems of dynamic, global and global 

dynamic optimization. The first chapter deals with dynamic optimization. It consists of 

the problem formulation and description of two analytical methods of its solution – the 

calculus of variations and Pontryagin’s minimum principle. These methods are used to 

solve the time-optimal control problem of a car with and without constraints on 

velocity. The second chapter deals with static and dynamic global optimization. One of 

the spatial branch-and-bound methods, used for solving of nonconvex problems, is 

described here. Two illustrative examples are solved using these methods which are 

based on convex relaxation. 

 

 

 

Keywords: dynamic optimization, calculus of variations, minimum principle, global  

optimization, nonconvex optimization problem, convex relaxation 
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Abstrakt 

 

Cieľom tejto práce je riešenie problémov dynamickej, globálnej a globálnej 

dynamickej optimalizácie. Prvú časť sa zaoberá dynamickou optimalizáciou. Tvorí ju 

formulácia optimalizačného problému a opis dvoch analytických metód jeho riešenia – 

variačného počtu a Pontrjaginovho princípu minima. Ďalej je predstavené použitie 

týchto metód na riešenie problému časovo optimálneho riadenia auta bez 

a s obmedzením na rýchlosť. Druhá časť pojednáva o statickej a dynamickej globálnej 

optimalizácii. Podstatu tejto práce predstavuje opis jednej z priestorových metód vetiev 

a hraníc, ktorá sa používa na nájdenie riešenia nekonvexných problémov. Za pomoci 

konvexnej relaxácie, na ktorej sú tejto metódy založené, boli vyriešené dva vzorové 

príklady. 

 

 

 

Kľúčové slová: dynamická optimalizácia, variačný počet, princíp minima, globálna  

optimalizácia, nekonvexný optimalizačný problém, konvexná 

relaxácia 
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Introduction 

 

One of the most basic things in this world is the search for optimality. Even in 

our everyday life we encounter situations where there are multiple solutions for a 

problem available and naturally we want to choose the best possible one. The optimal 

control theory, which plays an important role in designing of modern systems, can for 

example serve the purpose in maximization of profits from (or minimization of 

expenses for)  the operation of physical, social or economic processes. 

Optimization problems are ever-present in the mathematical modeling of real 

systems. Differential and algebraic equations, which describe the processes, can be 

optimized using different analytical and numerical methods of dynamic optimization. 

The most important analytical methods include dynamic programming, Pontryagin’s 

minimum principle and the calculus of variations. Numerical methods can be divided 

into direct (e.g., sequential and simultaneous methods) and indirect (such as boundary 

condition iteration and control vector iteration). Each of these methods has its 

advantages and disadvantages and which one is used depends on the type of the 

problem being solved. 

In a large number of optimization problems, which are currently solved using 

algorithms of nonlinear programming (NLP), we often encounter nonconvexities in 

some functions that participate in these problems. These nonconvexities can cause that 

these problems yield several local extrema. This means that standard optimization 

methods often provide suboptimal solutions, what led to the development of global 

optimization. 

Methods of global optimization can be basically divided into deterministic (such 

as generalized Benders decomposition, branch and bound, interval analysis) and 

stochastic (e.g., multistart, variable neighborhood search and genetic algorithms) 

methods. This work is focused on deterministic methods, since they guarantee ε-

convergence to a global solution. One of the most used and most appropriate methods to 

solve global optimization problems is the deterministic branch-and-bound method (BB). 

An extension of the classical BB method is the spatial branch-and-bound method (sBB). 

Section 1 of this work deals with dynamic optimization. It starts with the 

problem formulation and with introducing the notation and nomenclature to be used in 

other parts of the work. Later, two analytical methods for solving optimization problems 
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are described. The use of these methods is shown on concrete examples, meaning the 

problem of time-optimal control of a car with and without constraints on velocity. 

Section 2 deals with static and dynamic global optimization. We describe the αBB 

method, which belongs to the sBB methods and is based on the principle of convex 

relaxation of the original nonconvex problem. This method’s algorithm is then used to 

solve two illustrative examples. The first one represents static optimization because the 

optimized variables are time independent and in the second one they depend on time 

and also parameters, what makes it a dynamic optimization problem. 
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1  Dynamic Optimization            

   

The goal of dynamic optimization (open-loop optimal control) is to determine 

a set of profiles of time dependent input (control) variables for dynamic systems that 

optimize a given objective function (cost functional or optimization criterion) in regard 

to specified constraints. Best profiles in closed-loop determine the optimal control. 

 

1.1 Problem Formulation 

 

This section deals with important aspects of problem formulation and 

introduction of the notation and nomenclature to be used in other parts of this work. 

The optimal control problem formulation requires: 

 

• Mathematical description (e.g. model) of the process to be controlled 

• Definition of constraints 

• Determination of the objective function 

 

1.1.1 Mathematical Model 

 

The modeling of the process is very important for any control problem. The 

objective is to obtain the simplest mathematical model that adequately describes the 

responses of the physical system to all assumed inputs. The process model is usually 

formed by a set of equations. These equations combine the inputs, properties and 

variables that describe the behavior and outputs of the process. This work will deal only 

with processes described by ordinary differential equations (ODEs) 

 

)),(),(()( ttutxftx =&   00 )( xtx =  [ ]fttt ,0∈∀ ,   (1.1.1) 

where 

t – represents time as an independent variable 

[ ]Tn txtxtxtx )(,...),(),()( 21=  – represents the n-dimensional vector of state variables 
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[ ]Tn txtxtxtx )(,...),(),()( 21 &&&& =  – represents their derivatives with respect to time 

[ ]Tm tutututu )(,...),(),()( 21=  – represents m-dimensional vector of control variables 

[ ]Tn tftftftf )(,...),(),()( 21= – represents the n-dimensional vector function that 

describes the process 

[ ]Tn txtxtxtx )(,...),(),()( 002010 =  – represents the initial conditions (conditions in 

time t0)  

 

1.1.2 Constraints 

 

Constraints are functions that determine the domain of admissible values of 

variables participating in the process. There are different types of constraints: 

 

• Equality constraints  

 

Point constraints 

  
0)),(),(( =ttutxh       (1.1.2) 

 
Differential equation constraints 

 
0)),(),(),(( =ttutxtxh &      (1.1.3) 

 
• Inequality constraints  

 
0)),(),(( ≤ttutxg       (1.1.4) 

 
• Isoperimetric constraints 

 

cdtttutxtxe

ft

t

≤∫
0

)),(),(),(( &      (1.1.5) 

 

These constraints can be transformed into differential equation constraints by 

introducing of the new variables 
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dtttutxtxetz

ft

t

∫=
0

)),(),(),(()( &     (1.1.6) 

 

Boundary conditions for these additional variables are z(t0) = 0 and z(tf) = c. 

Differentiating equation (1.1.5) with respect to time gives  

 

)),(),(),(()( ttutxtxetz && = ,     (1.1.7) 

 
or, 

 
0)),(),(),(()( =− ttutxtxetz &&  .    (1.1.8) 

 

1.1.3 Objective Function  

 
A functional (objective function) J is a rule of correspondence that assigns to 

each function x(t) in a certain class Ω a unique real number (a unique value). Simply 

said, a functional is actually a „function of a function“. In general it can be written in 

one of these three forms: 

 
• Bolza form 

∫+=
ft

t

ff dtttutxFttxGtuJ

0

)),(),(()),(())((     (1.1.9) 

• Lagrange form 

∫=
ft

t

dtttutxFtuJ

0

)),(),(())((    (1.1.10) 

• Mayer form 

)),(())(( ff ttxGtuJ =     (1.1.11) 

 

where 

J – represents the optimization criterion 

G – represents the component of the objective function evaluated at final conditions  
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∫
ft

t

dtF

0

– represents the component of the objective function evaluated over a time 

interval. 

 

Note that all the three forms of the functional are interchangeable and can be derived 

one from another.  

 

1.2 Analytical Methods of Dynamic Optimization 

 

There exist a lot of various analytical methods for solving an optimal control 

problem. From all of the analytical methods these three are the most important: 

 

• Dynamic Programming 

• Calculus of Variations 

• Pontryagin’s Minimum (Maximum) Principle  

 

In this section calculus of variations (Kirk, 1970) and Pontryagin’s minimum 

(Pontryagin et al., 1962) principle will be introduced. 

 

1.2.1 Calculus of variations 

 

In Section 1.1.3 the definition of functional was given. Now in order to consider 

extreme values of functionals the increment of a functional J will be introduced. In 

general it can be defined as 

 

)()( uJuuJJ −+=∆ δ        (1.2.1) 

 

It can be denoted by ),( uuJ δ∆  as to emphasize that it depends on the functions u 

and δu. Function δu is called the variation of the function u. Another way of notation is 

 

uuuguuJuuJ δδδδδ ).,(),(),( +=∆ ,     (1.2.2) 
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where Jδ  is the variation of the functional J. It is a part of the increment that is linear in 

the variation δu. The fundamental theorem of the calculus of variations says that if u*
(t) 

is an extremal then the necessary condition for the extreme of a functional is 

 

0),( * =uuJ δδ    for all admissible δu.    (1.2.3) 

 

The way to derive more concrete conditions will be shown by solving a problem 

with free final time tf  and free end point xf.  

The objective is to find the necessary conditions that the extreme u
*
(t) must 

satisfy for the functional in Lagrange form 

 

∫=
ft

t

dtttutxFtuJ

0

)),(),(())(( ;      (1.2.4) 

 

t0 and x(t0) = x0 are specified, tf and x(tf) = xf are free. Moreover, the conditions given by 

the differential equation constraints that represent the state equations must also be 

satisfied 

 

)()),(),((0 txttutxf &−= .       (1.2.5) 

 

If we add constraints (1.2.5) into the functional (1.2.4) we can form the augmented 

functional 

 

[ ]∫ −+=
ft

t

T

a dttxttutxftttutxFtuJ

0

)()),(),(()()),(),(())(( &λ ,   (1.2.6) 

 

where [ ]Tn tttt )(,...),(),()( 21 λλλλ = is the vector of Lagrange multipliers, also called 

adjoint variables. It can be clearly seen that if the constraints are satisfied then Ja = J for 

any λ(t). For further simplification we define 

 

[ ])()),(),(()()),(),(()),(),(),(),(( txttutxftttutxFtttutxtxF T

a
&& −+= λλ  

  (1.2.7) 
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such that 

∫=
ft

t

aa dttttutxtxFtuJ

0

)),(),(),(),(())(( λ& .     (1.2.8) 

 

In order to enable the use of the fundamental theorem we must at first determine the 

variation by forming the increment 

 

[ ]

(.),)()),(),(),(),((

)()),(),(),(),((

)()),(),(),(),((

)),(),(),(),((

)),(),(),(),((

)()),(),(),(),((

0

odtttttutxtx
F

tutttutxtx
u

F

txtttutxtx
x

F

dt

d

tttutxtx
x

F

ttttutxtxF

txtttutxtx
x

F
J

T

a

T

a

T

a

t

t

T

a

ffffffa

f

T

fffff
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a

f
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   (1.2.9) 

 

where o(.) denotes terms of higher than first order. 

 

Next, we must relate δx(tf) to δtf  and δxf : 

 

ffff ttxtxx δδδ )()( ∗+= & ,     (1.2.10) 
or 

ffff ttxxtx δδδ )()( ∗−= & .     (1.2.11) 
 

Substituting this in equation (1.2.9) and collecting the linear terms we obtain the 

variation  
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(1.2.12) 

 

From the non-integral terms in equation (1.2.12) the conditions (1.2.13) can be formed 

and the conditions (1.2.14) are formed from the integral terms. Equation (1.2.14a) is 

also known as the Euler equation. 

 

)(0

)),(),(),(),((0

f

fffff
a

t

tttutxtx
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F
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=
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=

λ
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&    (1.2.13a) 
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).),(),(()(

)),(),(),(),((0
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tttutxtx
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In order to simplify the notation the Hamilton function H can be used, it is also called 

the Hamiltonian and is defined as follows 

 

[ ])),(),(()()),(),(()),(),(),(( ttutxftttutxFtttutxH Tλλ += . (1.2.15) 

 

Now the necessary conditions can be written as 

 

)(0 ft∗= λ        (1.2.16a) 

)),(),(),((0 ffff tttutxH ∗∗∗= λ     (1.2.16b) 

and 

)),(),(),(()( tttutx
H

tx ∗∗∗∗

∂
∂

= λ
λ

&     (1.2.17a) 

)),(),(),(()( tttutx
x

H
t ∗∗∗∗

∂
∂

−= λλ&     (1.2.17b) 

)),(),(),((0 tttutx
u

H ∗∗∗

∂
∂

= λ      (1.2.17c) 

 

for all  >∈< fttt ,0 . 
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1.2.2 Pontryagin’s Minimum Principle 

 

This method is used for searching of the best possible control, so that the 

dynamic system can change from one state to another while considering the constraints 

on the control variables. 

By definition, the control u* causes that the functional J has a relative minimum 

if 

0)()( ≥∆=− ∗ JuJuJ      (1.2.18) 
 

for all admissible controls sufficiently close to u
*
. If ,uuu δ+= ∗

 then the increment 

can be expressed as  

 
(.)),(),( ** ouuJuuJ +=∆ δδδ     (1.2.19) 

 
δJ is linear in δu and the higher-order terms o(.) approach zero as the norm of δu 

approaches zero. Necessary conditions for the control problem are 

 
0),( ≥∗ uuJ δδ        (1.2.20) 

 

if u* lies on the boundary during any portion of the time interval >∈< fttt ,0 , and 

 
0),( =∗ uuJ δδ        (1.2.21) 

 

if u* lies within the boundary during the entire time interval >∈< fttt ,0 . 

If we assume that the state equations are satisfied, λ*
(t)  is  selected so that the 

coefficient of δx in the integral is equal to zero and the boundary conditions for final 

time are also satisfied, we can write the equation of the increment (1.2.9)  as 

 

(.))()),(),(),((),(
0

odttutttutx
u

H
uuJ

Tt

t

f

+





∂
∂

=∆ ∫ ∗∗∗∗ δλδ   (1.2.22) 

 
The integrand is the first-order approximation to the change in H caused by a change in 

u, therefore 

[

] (.).)),(),(),((

)),(),()(),((),(
0

odttttutxH

tttututxHuuJ

ft

t
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+=∆

∗∗∗

∗∗∗∗ ∫

λ

λδδ
   (1.2.23) 
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If )()( tutu δ+∗
 lies in a sufficiently small neighborhood of u

* )( βδ <u  then the 

higher-order terms o(.) are small. Thus, for u* to be a minimizing (optimal) control it is 

necessary that 

 

[ ] 0)),(),(),(()),(),()(),((
0

≥−+ ∗∗∗∗∗∗∫ dttttutxHtttututxH

ft

t

λλδ  (1.2.24) 

 

for all admissible δu, such that βδ <u .  

In order for equation (1.2.24) to be satisfied for all admissible δu in the specified 

neighborhood, the following inequality must be satisfied 

 
)),(),(),(()),(),()(),(( tttutxHtttututxH ∗∗∗∗∗∗ ≥+ λλδ  (1.2.25) 

 

for all admissible δu(t) and for all >∈< fttt ,0 . If that is the case then let us consider 

the following control 

 

);()()(

);()(

tututu

tutu

δ+=

=
∗

∗

  ,,

,

21

21

>∈<

>∉<

ttt

ttt
   (1.2.26) 

 

where >< 21, tt  is an arbitrarily small, but nonzero, time interval and δu(t) is a variation 

of an admissible control that satisfies the condition βδ <u . Let us suppose that 

inequality (1.2.25) is not satisfied for the control described in equations (1.2.26), then in 

the interval >< 21, tt  the inequality changes to 

 
)),(),(),(()),(),(),(( tttutxHtttutxH ∗∗∗∗∗ < λλ   (1.2.27) 

 
and, therefore 
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Since the interval >< 21, tt  can be anywhere in the interval >< ftt ,0 , it is clear that if 

inequality (1.2.27) is satisfied for any >∈< fttt ,0  then it is always possible to form an 

admissible control as in equation (1.2.26), which makes 0<∆J , thus contradicting the 

optimality of the control u*
. Therefore we assume that the necessary condition for u* to 

minimize functional J is 

 

)),(),(),(()),(),(),(( tttutxHtttutxH ∗∗∗∗∗ ≤ λλ   (1.2.29) 

 

for all >∈< fttt ,0  and for all admissible controls. Equation (1.2.29), which implies 

that an optimal control must minimize the Hamiltonian, is called Pontryagin’s minimum 

principle.  

Although the minimum principle was derived for controls with values in 

a closed and bounded region, it can be applied to problems in which the admissible 

controls are not bounded. This can be done by viewing the unbounded control region as 

having arbitrarily large bounds, thus ensuring that the optimal control will not be 

constrained by the boundaries. In this case, the necessary condition for minimizing the 

Hamiltonian is that 

 

0)),(),(),(( =
∂
∂ ∗∗∗ tttutx

u

H
λ .     (1.2.30) 

 

If the equality (1.2.30) is satisfied and the matrix  

 

)),(),(),((
2

2

tttutx
u

H ∗∗∗

∂
∂

λ        

 
is positive definite then we can consider condition (1.2.30) to be sufficient. 

 

1.3 Example of a Minimum-Time Problem 

 

In this section the use of the analytical methods will be shown on concrete 

examples, while searching for a time-optimal control of a car with and without 

constraints on velocity. These examples can be found in Kirk (1970) and Fikar (2007). 
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1.3.1 Time-Optimal Control of a Car 

 

The objective is to drive the car from point O to point e in the shortest possible 

time. To simplify the model, let us approximate the car by a unit point mass described 

by its position (traveled distance),  velocity )()()(2 tdtvtx &==  and acceleration 

)()()( tvtatu &== . The process then takes the form of following state equations 
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         )2.3.1(
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The objective function for minimization of time is 

 

f

t

t

tdtJ

f

== ∫
0

1         (1.3.3) 

 
where t0 is the time of leaving O and we consider it being zero, and tf is the time of 

arrival at e.  

The car starts from rest and stops upon reaching point e. In this case initial and terminal 

constraints can be expressed as follows 
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     (1.3.4) 

 

Constraints on acceleration (deceleration) are given by inequality 2)(1 ≤≤− tu .  

The first step is the composition of the Hamilton function according to the equation 

(1.2.15) 

 
)()()()(1)),(),(),(( 221 tuttxttttutxH λλλ ++=     (1.3.5) 

 

According to the minimum principle, the optimal control )(tu∗
 must satisfy the 

condition 

 

)()()()(1)()()()(1 221221 ffffffff tuttxttuttxt
∗∗∗∗∗∗∗ ++≤++ λλλλ  

  (1.3.6) 
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By differentiating the Hamiltonian with respect to u(t) we get the condition 

 

0)(2 =∗
tλ          (1.3.7) 

 

However, if there exists a time interval where 0)(2 =∗
tλ  then the equation (1.3.6) 

provides no information on the relation between )(tu∗
, )(tx∗

 and )(t∗λ .  

From equation (1.2.17b) we obtain auxiliary differential equations 
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whose solution can be written as  
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In order to satisfy the condition (1.3.7) the constants of integration c1 and c2 must be 

equal to zero and by substituting these values in the Hamiltonian we obtain  

 
1)),(),(),(( =∗∗∗ tttutxH λ     >∈<∀ fttt ,0 . (1.3.10) 

 
But since the final time is free, the equation (1.3.10) violates the necessary condition 

that 

0)),(),(),(( =∗∗∗ tttutxH λ     >∈<∀ fttt ,0 . (1.3.11) 

 

We conclude that )(2 t
∗λ  cannot be zero during a finite time interval. Isolated times 

when )(2 t
∗λ  passes through zero indicate a switching of the control. Thus, the form of 

the optimal control given by the equation (1.3.6) is 
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Equation (1.3.9) indicates that switching of the control will occur at most once since it 

is a linear equation. From a physical point of view it is obvious that at the beginning, the 
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control has the value 2 (the car is accelerating) and then switches to the value -1 (the car 

is decelerating), because the car starts from rest. An opposite combination would not 

make sense. 

Next, the conditions given by the state equations must be satisfied 
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       (1.3.13) 

 

The general solution of the state equations for 2)( =∗ tu  and 1)( −=∗ tu  is 

 

43
2

1 )( ctcttx ++=∗
,      32 2)( cttx +=∗

,  >∈< Sttfor ,0   (1.3.14) 

43
2

1 2

1
)( ctcttx ++−=∗

, 32 )( cttx +−=∗
,  >∈< fS tttfor ,  (1.3.15) 

 
where c3 and c4 are constants of integration and tS represents the switching time. By 

solving equations (1.3.14) for the initial conditions we obtain  c3 = c4 = 0 and 

by solving equations (1.3.15) for the terminal conditions we obtain c3 = 0 and c4 = e 

=300. Then the solution of the state equations is  

 
2

1 )( ttx =∗
,  ttx 2)(2 =∗

,  >∈< Sttfor ,0  (1.3.16) 

ettx +−=∗ 2
1 2

1
)( , ttx −=∗ )(2 ,  >∈< fS tttfor ,  (1.3.17) 

 
At the switching time x1

*
(t) is continuous, therefore 

 

ettt SfS +−−= 22 )(
2

1
     (1.3.18) 

 
The final time can be then expressed as a function of the switching time 

 
222 SSf tett −+=       (1.3.19) 

 
We can obtain the minimum final time by differentiating equation (1.3.19) with respect 

to tS and consider it being equal to zero. This way we can define the equation for 

calculation of  tS 
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e
tS      (1.3.20) 

 
The time profile of the control u is shown in Fig. 1. We can clearly see that it really 

switches from acceleration to deceleration after 10 seconds. 
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Fig. 1: Time profile of the control u for the unconstrained problem 

 

By substituting the equation (1.3.20) into (1.3.19), we can evaluate tf 
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The total time needed can be displayed through the time profile of the traveled distance 

which is shown in Fig. 2 
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Fig. 2: Time profile of the traveled distance  x1 for the unconstrained problem 
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The maximum achieved velocity is calculated as 

 
20)(2max,2 =−−==∗

fSS tttx     (1.3.22) 

 
How the velocity changes in time is shown in Fig. 3 

Thus, the optimal control is given by the situation where the car is driven with 

maximum acceleration for the first 100 meters (this represents one third of the total 

time) and for the next 200 meters with maximum deceleration (which represents the 

remaining two thirds of the total time). 
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Fig. 3: Time profile of the velocity x2 for the unconstrained problem 

 

1.3.2 Time-Optimal Control of a Car with Constraints on Velocity 

 

Now, let us consider the same example as before, but furthermore we add in the 

constraint on velocity, which can be expressed by the condition 

 
10)(2 ≤tx        (1.3.23) 

 
For this problem we create a new Hamilton function 

 

)10)()(()()()()(1)),(),(),(),(( 22
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          (1.3.24) 
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where µ is another auxiliary variable and based on the Kuhn-Tucker optimality 

conditions (Kuhn and Tucker, 1951) can be defined as 
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From equation (1.2.17b) we obtain auxiliary differential equations 
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In this case, the switching of the control can occur at most twice, which means that 

there can be two switching times tS1 and tS2. The state equations then take this form 
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1 )( ctcttx ++=∗
,     32 2)( cttx +=∗

, >∈< 1,0 Sttfor  (1.3.27) 

431 )( ctctx +=∗
,     32 )( ctx =∗

,  >∈< 21, SS tttfor  (1.3.28) 
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1 2

1
)( ctcttx ++−=∗

, 32 )( cttx +−=∗
, >∈< fS tttfor ,2  (1.3.29) 

 

where on the first interval 2)( =∗ tu , on the second  0)( =∗ tu  and on the third 

1)( −=∗ tu . The values for the constants of integration c3 and c4 can be obtained by 

solving these equations for the boundary conditions 

 

c3 = 0,   c4 = 0,   >∈< 1,0 Sttfor   

c3 = 2tS1,  c4 = tS1
2
,  >∈< 21, SS tttfor   

c3 = 0,   c4 = e = 300,  >∈< fS tttfor ,2   

 
The solution to the state equations is then 
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 - 29 -   

The first switching time tS1 can be now evaluated directly from the equation (1.3.31) if 

we assume that in this case 0)( =∗ tu  and the velocity is on its boundary value given by 

the constraint (1.3.23) 

 

  102)( 12 ==∗
Sttx ,   51 =St      

 
Then again x1

*
(t) is continuous in the switching times. Because we already know the 

value of tS1, we can calculate the other time tS2 by comparing of equations (1.3.31) and 

(1.3.32) 
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The final time can be then expressed as a function of the switching time tS2 from 

equation (1.3.33) 

 
2

1212 242 SSSSf tttett +−+=     (1.3.34) 

 
The minimum final time tf can be obtained by differentiating equation (1.3.34) with 

respect to tS2 and consider it being equal with zero. This way we can define the equation 

from which  tS2  is going to be calculated 
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The time profile of the control u is shown in Fig. 4. Now we can see that the 

acceleration stops after 5 seconds and the deceleration starts after 27,5 seconds. 

 

By substituting the equation (1.3.35) and the value of tS1 into (1.3.34), we can evaluate tf 
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Fig. 4: Time profile of the control u for the constrained problem 

 

 
The total time needed can be again displayed through the time profile of the traveled 

distance which is shown in Fig. 5 
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Fig. 5: Time profile of the traveled distance  x1 for the constrained problem 

 

The maximum velocity which can be achieved is clearly the velocity on the boundary 

(shown in Fig. 6) 
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Fig. 6: Time profile of the velocity x2 for the constrained problem 

 

The optimal control for this example is given by the situation where the car is 

driven with maximum acceleration for the first 25 meters, then the next 225 meters it is 

moving with constant speed (the car is neither accelerating nor decelerating) and the last 

50 meters it is maximally decelerating. The final time is naturally longer then the one 

obtained in the first example seeing that the maximum achieved velocity is reduced by a 

half. 
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2  Global Optimization 

 

Global optimization methods were developed in order to solve nonconvex 

optimization problems, i.e. problems which have several local extrema. It is clear that 

standard optimization methods can not be used to solve nonconvex problems because 

they would often lead only to suboptimal results.  

In this Section the deterministic Spatial Branch–and–Bound method (sBB) will be 

introduced. Specifically, the αBB method (Adjiman et al., 1998), which belongs to the 

sBB methods, will be described.   

 

2.1 Spatial Branch-and-Bound method 

 
This method is called “spatial” because it gradually divides the Euclidean space 

where the problem is defined into smaller and smaller regions and then solved 

recursively by generating converging sequences of upper and lower bounds of the value 

of the objective function.  

 

2.1.1 NLP Problem Formulation 

 

The NLP problem is given by the formulation: 

 
)(min xJ

x
       (2.1.1a)  

 
0)( =xh        (2.1.1b) 

0)( ≤xg        (2.1.1c) 

 
where nRCx ⊆∈  is a vector of optimized parameters of size n. Function J(x) 

represents the optimization criterion, h(x) is a set of equality constraints and  g(x) 

represents a set of inequality constraints. These functions belong to 2C , the set of 

continuously twice-differentiable functions. 
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2.1.2 The αBB Algorithm 

 

The αBB algorithm is designed to solve nonconvex minimization problems of the 

type (2.1.1). Its theoretical properties guarantee the finding of the global optimum of 

such a problem with finite ε-convergence. 

The branch and bound algorithm starts with the relaxation of the original 

nonconvex problem, whereby we acquire a new convex problem. By solving the relaxed 

problem we obtain the lower bound of the solution of the problem given which is in 

some way easier than solving the original problem. The relaxed problem is actually a 

convex optimization problem whose objective function underestimates the nonconvex 

objective function on a certain interval. Because each local minimum of such a problem 

is at the same time a global minimum, standard NLP algorithms designed to search for 

local extrema are able to find this lower bound reliably. The upper bound is obtained as 

a local solution of the original nonconvex problem on a given interval. 

If these bounds are not within some ε tolerance then the interval is divided using 

one of the branching strategies. This way we obtain two new subploblems. For each one 

of them the relaxation is constructed again and new upper and lower bounds are 

computed. If some lower bound is greater then current best upper bound on any 

subinterval then global optimum cannot exist on this interval, hence this interval is 

excluded from further calculations. Such an operation is called  fathoming.  

This whole process of branching and bounding is repeated until the lower bound 

on all active intervals is within the ε tolerance of the current best upper bound.  

 

2.1.3 Convex Relaxation 

 

As mentioned before, BB algorithms are based on the principle of convex 

relaxation. A determining step is the decomposition of the objective function into a sum 

of nonconvex terms of special type (STNT) and nonconvex terms of arbitrary type 

(ATNT). Based on this classification of the terms, the objective function J(x) can be 

written as: 

)()()( xATNTxSTNTxJ +=     (2.1.2a) 

s.t. 
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where LT(x) represents a linear term; CT(x) represents a convex term; nBT stands for the 

number of bilinear terms, xBTi,1 and xBTi,2 denote the two variables that participate in the 

i-th bilinear term and bi is its coefficient; nTT stands for the number of trilinear terms, 

xTTi,1, xTTi,2 and xTTi,3 denote the three variables that participate in the i-th trilinear term 

and ti is its coefficient; nFT stands for the number of fractional terms, xFTi,1 and xFTi,2 

denote the two variables that participate in the i-th fractional term and fi is its 

coefficient; nFTT stands for the number of fractional trilinear terms, xFTTi,1, xFTTi,2 and 

xFTTi,3 denote the three variables that participate in the i-th fractional trilinear term and fti 

is its coefficient; nUT stands for the number of univariate concave terms, UTi(xUTi) 

represents the i-th univariate concave term and xUTi  denotes the variable that participates 

in it; nNT stands for the number of nonconvex terms of arbitrary type, NTi(x) represents 

the i-th nonconvex term of arbitrary type. 

Convex underestimators are constructed for these terms, with the exception of 

linear and convex terms which do not need to be convexified.  

 

Underestimation of Bilinear Terms 

In case of a bilinear term xy, the convex lower bound over the domain 

[ ] [ ]ULUL yyxx ,, ×  can be obtained by introducing of a new variable wBT which 

replaces every occurrence of xy in the problem and by adding following four linear 

inequality constraints: 

 
LLLL

BT yxxyyxw −+≥      (2.1.3a)

 UUUU

BT yxxyyxw −+≥      (2.1.3b) 

ULUL

BT yxxyyxw −+≤      (2.1.3c) 

LULU

BT yxxyyxw −+≤      (2.1.3d) 
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where xL is the lower bound and xU is the upper bound of the variable x. The same goes 

for variable y. 

 

Underestimation of Trilinear Terms 

The trilinear term of the form xyz can be underestimated over the domain 

[ ] [ ] [ ]ULULUL zzyyxx ,,, ××  by introducing of a new variable wTT and by adding 

following eight linear inequality constraints: 

 
LLLLLLLLL

TT zyxzyxyzxzxyw 2−++≥    (2.1.4a) 

UUULLULULUUU

TT zyxzyxzyxyzxzxyw −−++≥   (2.1.4b) 

LLLUULULULLL

TT zyxzyxzyxyzxzxyw −−++≥   (2.1.4c) 

UUULULULUULU

TT zyxzyxzyxyzxzxyw −−++≥   (2.1.4d) 

LLLULULULLUL

TT zyxzyxzyxyzxzxyw −−++≥   (2.1.4e) 

UUUULLUUULUL

TT zyxzyxzyxyzxzxyw −−++≥   (2.1.4f) 

LLLLUULLLULU

TT zyxzyxzyxyzxzxyw −−++≥   (2.1.4g) 

UUUUUUUUU

TT zyxzyxyzxzxyw 2−++≥    (2.1.4h) 

 

Underestimation of Fractional Terms 

For fractional terms x/y one new variable wFT is introduced and two inequality 

constraints which depend on the sign of the bounds on the variable x are added: 
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Underestimation of Fractional Trilinear Terms 

Fractional trilinear terms of the form xy/z are underestimated by introducing one new 

variable wFTT and inequality constraints for 0,, ≥LLL zyx : 
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Underestimation of Univariate Concave Terms 

Univariate concave terms are usually underestimated by their linearization at the lower 

bound of the variable. This way no new variables or constraints are needed. The 

underestimator of the concave function UT(x) over [ ]UL xx ,  then takes the form of a 

linear function of the variable x 

 

)(
)()(

)( L

LU

LU
L xx

xx

xUTxUT
xUT −

−
−

+      (2.1.7) 

 
Underestimation of Arbitrary Type of Noncovex Terms 

The nonconvex terms of arbitrary type are underestimated over the whole domain 

[ ]UL xx ,  by the function Lα(x) which is defined as 
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where 0≥jα  corresponds to the terms j= 1,…, nNT. All nonconvexities in the original 

function J(x) can be overpowered by the convex quadratic term, given sufficiently large 

values of the αj parameters. Since the sum in equation (2.1.8) is negative over the whole 

domain [ ]UL xx , , Lα(x) is a valid underestimator of the function J(x). 

 

Overall Convex Underestimator  

Given the decomposition of the objective function J(x) in the equation (2.1.2) and the 

underestimation of individual terms, then the final underestimator L(x) to the function 

J(x) can be written as 
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(2.1.9) 

 
where αij corresponds to the i-th nonconvex terms of arbitrary type and the j-th variable 

and variables wBTi , wTTi , wFTi , wFTTi must satisfy their respective constraints. 

 

2.1.4 Calculation of Parameter α 

 

Since L(x) in equation (2.1.9) is a convex function, its Hessian matrix HL(x) is 

positive semi-definite. Moreover, matrix HL(x) is related to the Hessian matrix HJ(x) of 

the function J(x) by: 

 
∆+= 2)()( xHxH JL       (2.1.10) 
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where ∆ is a diagonal shift matrix whose diagonal elements are the parameters αi. In 

order to derive a valid convex underestimator, the set of α parameters must satisfy the 

following theorem: 

 

Theorem:   The function L(x) given by the equation (2.1.9) is convex if 

)(2)(2)()( iJJL diagxHxHxH α+=∆+=  is a positive semi-definite for all 

[ ]UL xxx ,∈ . 

 

To identify a valid diagonal shift matrix, the underestimator is re-formulated using a 

single α value: 
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All non-zero elements of ∆ are then equal to the parameter α. It can be shown that L(x)  

is a valid convex underestimator of the objective function J(x) if: 
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where λi are the eigenvalues of matrix HJ(x).  

If J(x) is convex then all eigenvalues of matrix HJ(x) are non-negative for any 

[ ]UL xxx ,∈ . Then according to equation (2.1.12) 0=α  and the original function does 

not change. On the other hand: the more nonconvex the function J(x), the smaller its 

minimum eigenvalue and the larger the parameter α.  

If we consider an interval Hessian matrix [ ] [ ]{ }UL

JJ xxxxHH ,),( ∈⊆  then a 

sufficient condition for convexity is given as: 

 

[ ]( )






 −≥ JHmin2

1
,0max λα     (2.1.13) 

 
where [ ]( )JHminλ  is the minimum eigenvalue of the interval matrix family [ ]JH . 
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2.1.5 Branching Strategies 

 

The process of branching in BB algorithms has a significant effect on the rate of 

convergence, especially in αBB algorithms since the quality of the underestimator 

depends on the variable bounds. For example, if a variable participates only in linear 

terms of the problem, branching on it will not have any effect on the accuracy of the 

convex underestimators. While considering this and also other observations, to 

implement the αBB algorithm we can choose one of four branching strategies that are 

currently available: 

 

1. Strategy:  Use a k-section on all or some of the variables.  

2. Strategy:  Use measure of the quality of each term’s underestimator, based on the 

maximum separation distance between term and underestimator. 

3. Strategy:  Use a measure of the quality of each term’s underestimator, based on the 

separation distance at the optimum point.  

4. Strategy:  Use a measure of the overall influence of each variable on the quality of 

the lower bounding problem.  

 

2.2  Example 

 

Let us illustrate the αBB algorithm by solving the nonconvex optimization 

problem (2.2.1) with a global minimum 0009.1−=x  and two local minima 

[ ]0009.1,7325.0 −−=x  
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x
2.0)3.05.14cos()(min 2 ++−=      (2.2.1) 
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01 ≤≤− x . 

 



  

 - 40 -   

-1 -0.8 -0.6 -0.4 -0.2 0
-1.5

-1

-0.5

0

0.5

1

1.5

2

x

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 J

(x
)

 

Fig. 7: Objective function J(x) for [ ]0,1−∈x  

 

The first step is the decomposition of the objective function and the classification of 

individual terms: 

 
)3.05.14cos( −x  - nonconvex term of arbitrary type (ATNT) 

2x    - convex term (CT) 

x2.0    - linear term (LT) 

 
It is apparent that only the first term of the objective function needs to be 

underestimated, the others remain unchanged. The underestimator of the nonconvex 

term  is formed based on the equation (2.1.8): 
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Then the overall underestimator from equation (2.1.9) can be written as: 
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In order to calculate the parameter α, we need to know the Hessian HJ(x) of J(x): 

 

2)3.05.14cos(25.210

2)3.05.14cos(5.14*5.14)()(
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x

xxJxH J     (2.2.4) 

 

The value of the parameter α for the interval >−∈< 0,1x  can be now easily computed 

using the equation (2.1.13): 
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After substituting it into (2.2.3) we obtain the final equation for the overall 

underestimator of the function J(x) for [ ]0,1−∈x  (shown in Fig. 8): 

 

xxxxxxL 2.0)(125.104)3.05.14cos()( 22 ++++−=    (2.2.6) 
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Fig. 8: Objective function J(x) and the overall underestimator L(x) for [ ]0,1−∈x  
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The next step is to determine the lower and upper bound on the solution of the problem. 

The lower bound is given by the minimum of the function L(x) and the upper bound by 

the minimum of J(x): 

 

25.9932)min( −=L  

1.0009)min( −=J  

 

With this we already found one of the local extrema, but evidently, there is a 

considerable distance between the bounds. In order to find the solution with the 

tolerance ε = 0.001, the original problem must be divided into two smaller problems 

and these will be solved the same way as the original. For branching on the intervals the 

first branching strategy is used. Specifically, the method used will be a bisection (the 

interval will be cut in halves). We continue this way until we obtain the solution with 

the required tolerance ε.  

 

The global optimum has been identified in six iterations. The objective function and its 

underestimators for each iteration are plotted in Fig. 9. 
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Fig. 9: Objective function and its convex underestimators for each iteration 
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3  Global Dynamic Optimization 

 

 In the previous Section static global optimization was introduced where the 

optimized variables were time independent. Now, let us show how the process of 

convex relaxation and bounding of variables change if we consider the optimized 

variables to be time and parameter dependent (Paramichail and  Adjiman, 2002; 

Paramichail and  Adjiman, 2004). 

 

3.1  Dynamic Optimization Problem 

 

The formulation of the dynamic optimization problem studied is given by: 

 
NPipptxJ i

p
...,,1,0;),,((min =   

s.t. 
[ ]NPtttpxtfx ,),,( 0∈∀=&  

)(),( 00 pxptx =         (3.1.1) 

NPipptxg ii ...,,1,0,0)),,(( =≤  
UL ppp ≤≤           

 

where J is the objective function, t represents time as the independent variable, t0 and 

tNP are the initial and final time, NP is the number of points considered additionally to 

the initial point, x and x&  are state variables and their time derivatives, p are time-

invariant parameters, p
L and p

U are bounds on the parameters, x0 denote the initial 

conditions and gi represent inequality constraints. 

The sequential approach is used for the solution of this NLP problem and 

provides an upper bound for the global optimum solution. Given values for the 

parameters p, the system can be integrated from t0 to tNP. After reaching tNP, the 

objective function and the constraints can be evaluated. The evaluation of their 

gradients requires the solution of the sensitivity equations, which are derived by 

differentiating the differential equations with respect to the parameters p: 

 

[ ]NPpp ttt
p

f
ptx

x

f
ptx ,),(),( 0∈∀
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=&     (3.1.2) 
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where 

p

x
ptx p ∂

∂
=),(          (3.1.3) 

and 
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




∂
∂

∂
∂

=
p

x

t
ptx p ),(& .        (3.1.4) 

 

The initial condition for the sensitivity equations is found by differentiating the initial 

condition of the original system with respect to the parameters p: 

 

p

x
ptx p ∂

∂
= 0

0 ),( .        (3.1.5) 

 

3.2  Bounding the Solutions of Parameter Dependent ODEs  

 

The dependence of convex relaxations on variable bounds is a common feature 

of deterministic global optimization algorithms. Since the state variables appear in the 

nonconvex objective function and constraints, a method for the derivation of rigorous 

bounds on these variables at point ti (i = 0, 1, ... , NP) is needed. This issue can be 

resolved by generating bounds on the solution space of the dynamic system. The 

following ODE is studied: 

 

[ ]NPtttptxtftx ,)),(,()( 0∈∀=&       (3.2.1) 

)()( 00 pxtx =          (3.2.2) 

 

where )(tx  and nRtx ∈)(& , f is a function of parameters [ ]UL ppp ,∈ , and can be 

considered as a set of functions. The same is true for the initial value x0 which is usually 

a function of  p and is considered as a set. The lower bounds (subfunctions) )(tx  and 

upper bounds (superfunctions) )(tx , such that )(),()( txptxtx ≤≤ , [ ]UL ppp ,∈∀ , 

It ∈∀ , must be determined for the solution of this ODE, )(tx . If f is continuous and 

satisfies a uniqueness condition on I0 × nR  × [ ]UL pp ,  then )(tx  and )(tx  are given as 

the solution of the following ODE system 

 



  

 - 46 -   

[ ] [ ]( )UL

kkkkk pptxtxtxtftx ,,)(),(),(,inf)( −−=&  

[ ] [ ]( )UL

kkkkk pptxtxtxtftx ,,)(),(),(,sup)( −−=&     (3.2.3) 

nkandIt ,...,2,10 =∈∀      
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,sup)(

,inf)(

00

00

=

=
      (3.2.4) 

 

The system described by (3.2.3) and (3.2.4) provides a practical procedure to construct 

bounding trajectories for any ODE system which satisfies the appropriate continuity and 

uniqueness conditions. 
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Fig. 1: Trajectories of the state variable for different values of parameter including 
parameter independent bounds on the state variable 

 

3.3  Formulation of the Convex Relaxation 

 

 The dynamic optimization problem (3.1.1) has been formulated as a nonconvex 

NLP problem. The solution obtained provides an upper bound for the global optimum 

solution. A convex relaxation is now formulated based on the theory introduced in 

Section 2.1. Its solution can be used as a lower bound for the global optimum of the 

nonconvex problem. A reformulation of the NLP problem is given by 

 

)(tx  

)(tx  
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  ),ˆ(min
,ˆ

pxJ
px

 

s.t. 
NPipxg ii ...,,1,0,0),ˆ( =≤       (3.3.1) 

NPiptxx ii ...,,1,0,),(ˆ ==  

[ ]UL
ppp ,∈         

 

where x̂  is a vector of new added optimized variables and the values of ),( ptx i , i = 0, 

1, ... , NP are obtained by solving the ODE system: 

 

[ ]NPtttpptxtfptx ,)),,(,(),( 0∈∀=&      (3.3.2) 

)(),( 00 pxptx =         (3.3.3) 

 

3.4  Bounds on Variables 

 

The bounds on ix̂  depend on the parameters bounds and must be derived 

automatically. As discussed in Section 3.2, bounds can be constructed for the solutions 

of ODE system (3.3.2) and (3.3.3). These bounds are for t = ti also valid for the variable 

vectors ix̂  that have been introduced in the reformulated NLP problem: 

 
NPitxxtx iii ...,,1,0,)(ˆ)( =≤≤      (3.4.1) 

 

3.5  Convex Relaxation of the Set of Equality Constraints 

 

The set of equalities ),(ˆ ptxx ii =  can be written as two sets of inequalities: 

 
NPiptxx ii ...,,1,0,0),(ˆ =≤−      (3.5.1) 

NPixptx ii ...,,1,0,0ˆ),( =≤−      (3.5.2) 

 
Their relaxation is given by: 

 
NPiptxx ii ...,,1,0,0),(ˆ =≤+ −(      (3.5.3) 

NPixptx ii ...,,1,0,0ˆ),( =≤−(
     (3.5.4) 
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where x
(

 denotes the convex underestimator of the specified function and 

),(),( ptxptx ii −=− . The function ),( ptx i

(
 is a convex underestimator of ),( ptx i  and 

the function ),( ptx i

−− (
 is a concave overestimator of ),( ptx i .  

The constant bounds given by inequalities (3.4.1) are valid convex 

underestimators and concave overestimators for ),( ptx i . This means that inequalities 

(3.5.3) and (3.5.4) can be replaced by inequalities (3.4.1). These bounds do not depend 

on the parameters p themselves, but do depend on the bounds on  p. 

Since ),( ptx i  is a twice continuously differentiable function of the parameters p 

on rR , the α-based bounds can also be used for the convex underestimation of ),( ptx i  

and ),( ptx i

−  over the domain [pL
, p

U] rR⊂ : 
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   (3.5.6) 

 
The difficulty in this approach is the calculation of the non-negative +

kijα  and −
kijα  

parameters. There is no functional form available for the Hessian matrices in order to 

use interval calculations directly.  

The values for the non-negative αi parameters are calculated using the scaled 

Gerschgorin method proposed by Adjiman et al. (1998). This method requires the use of 

a symmetric interval matrix [ ] [ ]( )ijijf hhH
NT

,=  such that [ ] )()( 2 xfxHH NTff NTNT
∇=∋  

[ ]UL xxx ,∈∀ . αi can be calculated by the following formula: 
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where max=
ij

h { ijij hh , }. These values for the αi parameters guarantee the convexity 

of the underestimator. The interval matrix [ ]
NTfH  is calculated by applying natural 

interval extensions to the analytical expression for each second-order derivative of fNT 

and is given by [ ] [ ]( )UL

ff xxHH
NTNT

,=  . The method using interval calculations 

produces an interval matrix [ ]∗H , that may be an underestimation of the space of the 

Hessian matrices, which means that there may exist  

 

[ ]UL
ppp ,∈ : [ ]∗∈=∇ HpHptx

ik txik )(),( )(
2 .     (3.5.8) 

 
The difficulties associated with the computation of valid Hessian matrices are 

resolved by constructing bounds based on equations (3.2.3) and (3.2.4) for the ODE 

system that is generated when the first and the second-order sensitivity equations are 

coupled with the original ODE system. These bounds on the second-order derivatives 

can then be used to construct each element of the interval Hessian matrices needed. 

 

3.6  Convex Relaxation of the NLP 

 

 After underestimating the objective function and overestimating the feasible 

region, the convex relaxation of the NLP problem (3.3.1) is given by 

 

),,ˆ(min
,,ˆ

wpxJ
wpx

(
 

s.t. 
NPiwpxg ii ...,,1,0,0),,ˆ( =≤

(
     (3.6.1) 

NPitxxtx iii ...,,1,0,)(ˆ)( =≤≤  

0),,ˆ( ≤wpxC  

[ ]UL
ppp ,∈     

     

where J
(

 denotes the convex underestimator of the specified function, C denotes the set 

of additional constraints arising from the convex relaxation of bilinear terms and w 

denotes the vector of new variables introduced by this relaxation. 
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3.7  Example 

 

This example, introduced in Paramichail and Adjiman (2002), is an optimal 

control problem with one constant control. The problem has at least two local minima. 

Its formulation is given by: 

 
2)1(min x

p
−  

s.t. 
[ ]1,0,)()( 2 ∈∀+−= tptxtx&       (3.7.1) 

9)0( =x  
55 ≤≤− p         

 

This problem is equivalent to: 
 

2

,ˆ
ˆmin x

px
−  

s.t.           (3.7.2) 
)1(ˆ 1xx −=  

UL ppp ≤≤         
 

where the value of )1(1x  is obtained by solving ODE from (3.7.1). When this ODE is 

differentiated with respect to the parameter p as described in equation (3.1.2), the 

following first-order sensitivity equations are produced: 

 
[ ]1,0,12)( 212 ∈∀+−= txxtx&       (3.7.3) 

0)0(2 =x          (3.7.4) 
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The second-order sensitivity equations are produced when the system of first-order 

sensitivity (3.7.3) – (3.7.6) is differentiated once more with respect to the parameter p: 

 
[ ]1,0,22)( 31
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0)0(3 =x          (3.7.8) 
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where 

p
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Based on equations (3.2.3) and (3.2.4) the following ODE system can be constructed: 
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9)0(1 =x  

0)0(2 =x         (3.7.13) 

0)0(3 =x

The solution of this system gives constant bounds for the set of solutions of the system 

consisting of the original system, the first and the second-order sensitivity: 
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Using equations (3.7.5), (3.7.9) and (3.7.14) and interval arithmetic properties we obtain 

the interval Hessians: 
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The values for the α+
 and α– parameters can be now calculated using equation (3.5.7). 

The α-based bounds are constructed based on equations (3.5.5) and (3.5.6). The convex 

relaxation of the problem for the region [ ]UL ppR ,∈ is given by: 

 
[ ]{ })1()1(ˆ)1()1(min 1111

,ˆ
xxxxx

px
++−  

s.t.         (3.7.17) 

UL

UL

UL

ppp

pppppxx

xpppppx

xxx

≤≤

≤−−+−

≤−−−+

≤≤

−

+

0))((),1(ˆ

0ˆ))((),1(

)1(ˆ)1(

1

1

11

α

α
 

 
where the value of ),1(1 px  is obtained by solving ODE from (3.7.1). Following this 

procedure we computed that the global optimum parameter is p = −5 and the value of 

the objective function for the global optimum parameter is equal to −8.23262. 
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Conclusion 

 

The main aim of this work was a theoretical introduction of various methods for 

solving dynamic optimization problems. The analytical methods of dynamic 

optimization mentioned in this work represent a way to obtain optimal profiles of 

controls and states for the control of a process described by differential equations. Using 

these methods one example of the time-optimal control problem of a car that consisted 

of two simple linear state equations with some constraints was solved. The results as 

well as their graphical interpretation are given in Sections 1.3.1 and 1.3.2. 

However, solving medium-dimensional (three or more state equations) nonlinear 

problems that, e.g., consist of nonlinear differential equations, can be difficult. Other 

complex specifications like constraints and other algebraic conditions or the 

discontinuance of profiles could cause that the problem becomes impossible to solve 

using the calculus of variations. Therefore, in present days numerical methods are rather 

preferred for solving optimization problems. 

Section 2 introduced one deterministic method of global optimization, namely 

the αBB method, which properties guarantee the convergence to the global optimum. In 

this section, an algorithm of this method was described, which is based on a process of 

branching and bounding. To find the lower bound to the global solution, the convex 

relaxation was used which was described mainly in Section 2.1.3. Different methods of 

calculating the parameter α and branching strategies are provided in Section 2.1.4 and 

2.1.5. Finally, Section 2.3 shows the process of the convex relaxation in case that the 

state variables are time and parameter dependent. To illustrate the algorithm of this 

method two problems were solved and are described in Section 2.2 and 2.4. 
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