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Abstract

The objective of this work is solving problems of dynamic, global and global
dynamic optimization. The first chapter deals with dynamic optimization. It consists of
the problem formulation and description of two analytical methods of its solution — the
calculus of variations and Pontryagin’s minimum principle. These methods are used to
solve the time-optimal control problem of acar with and without constraints on
velocity. The second chapter deals with static and dynamic global optimization. One of
the spatial branch-and-bound methods, used for solving of nonconvex problems, is
described here. Two illustrative examples are solved using these methods which are

based on convex relaxation.

Keywords: dynamic optimization, calculus of variations, minimum principle, global

optimization, nonconvex optimization problem, convex relaxation



Abstrakt

Cielom tejto prace je rieSenie problémov dynamickej, globalnej a globalnej
dynamickej optimalizécie. Prvl Cast’ sa zaobera dynamickou optimalizaciou. Tvori ju
formulacia optimalizatného problému a opis dvoch analytickych metdd jeho rieSenia —
variaéného poétu a Pontrjaginovho principu minima. Dalej je predstavené pouZitie
tychto metdod na rieSenie problému cCasovo optimalneho riadenia auta bez
a s obmedzenim na rychlost. Druha Cast’ pojednava o statickej a dynamickej globalne;j
optimalizacii. Podstatu tejto prace predstavuje opis jednej z priestorovych metdd vetiev
a hranic, ktora sa pouziva na najdenie rieSenia nekonvexnych problémov. Za pomoci
konvexnej relaxacie, na ktorej s tejto metddy zalozené, boli vyrieSené dva vzorové

priklady.

KPacové slova: dynamickd optimalizacia, variacny pocet, princip minima, globdlna
optimalizacia, nekonvexny optimalizatny problém, konvexna

relaxacia
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Introduction

One of the most basic things in this world is the search for optimality. Even in
our everyday life we encounter situations where there are multiple solutions for a
problem available and naturally we want to choose the best possible one. The optimal
control theory, which plays an important role in designing of modern systems, can for
example serve the purpose in maximization of profits from (or minimization of
expenses for) the operation of physical, social or economic processes.

Optimization problems are ever-present in the mathematical modeling of real
systems. Differential and algebraic equations, which describe the processes, can be
optimized using different analytical and numerical methods of dynamic optimization.
The most important analytical methods include dynamic programming, Pontryagin’s
minimum principle and the calculus of variations. Numerical methods can be divided
into direct (e.g., sequential and simultaneous methods) and indirect (such as boundary
condition iteration and control vector iteration). Each of these methods has its
advantages and disadvantages and which one is used depends on the type of the
problem being solved.

In a large number of optimization problems, which are currently solved using
algorithms of nonlinear programming (NLP), we often encounter nonconvexities in
some functions that participate in these problems. These nonconvexities can cause that
these problems yield several local extrema. This means that standard optimization
methods often provide suboptimal solutions, what led to the development of global
optimization.

Methods of global optimization can be basically divided into deterministic (such
as generalized Benders decomposition, branch and bound, interval analysis) and
stochastic (e.g., multistart, variable neighborhood search and genetic algorithms)
methods. This work is focused on deterministic methods, since they guarantee e-
convergence to a global solution. One of the most used and most appropriate methods to
solve global optimization problems is the deterministic branch-and-bound method (BB).
An extension of the classical BB method is the spatial branch-and-bound method (sBB).

Section 1 of this work deals with dynamic optimization. It starts with the
problem formulation and with introducing the notation and nomenclature to be used in

other parts of the work. Later, two analytical methods for solving optimization problems
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are described. The use of these methods is shown on concrete examples, meaning the
problem of time-optimal control of a car with and without constraints on velocity.
Section 2 deals with static and dynamic global optimization. We describe the aBB
method, which belongs to the sBB methods and is based on the principle of convex
relaxation of the original nonconvex problem. This method’s algorithm is then used to
solve two illustrative examples. The first one represents static optimization because the
optimized variables are time independent and in the second one they depend on time

and also parameters, what makes it a dynamic optimization problem.
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1 Dynamic Optimization

The goal of dynamic optimization (open-loop optimal control) is to determine
a set of profiles of time dependent input (control) variables for dynamic systems that
optimize a given objective function (cost functional or optimization criterion) in regard

to specified constraints. Best profiles in closed-loop determine the optimal control.

1.1 Problem Formulation

This section deals with important aspects of problem formulation and
introduction of the notation and nomenclature to be used in other parts of this work.

The optimal control problem formulation requires:

e Mathematical description (e.g. model) of the process to be controlled
e Definition of constraints

e Determination of the objective function

1.1.1 Mathematical Model

The modeling of the process is very important for any control problem. The
objective is to obtain the simplest mathematical model that adequately describes the
responses of the physical system to all assumed inputs. The process model is usually
formed by aset of equations. These equations combine the inputs, properties and
variables that describe the behavior and outputs of the process. This work will deal only

with processes described by ordinary differential equations (ODEs)

3(1) = £ (x(0),u(t),1) xt) =% Y rely.t, ], (L1

where

t — represents time as an independent variable

T . . .
x(1) =[x, (0, x,(0), ... ,x, (O] - represents the n-dimensional vector of state variables
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. . . . T . . . . .
(0 =[x, %,(0), .. ,x,0] - represents their derivatives with respect to time
T . . .
u(t) = [“1 (®),u, (1), ... ,u, (f)] — represents m-dimensional vector of control variables

S (t):[fl(t),fz(t), ,f,,(f)]T— represents the n-dimensional vector function that

describes the process
x(t)) = [x1 (), x,(%), ... X, (to)]T — represents the initial conditions (conditions in

time #))

1.1.2 Constraints

Constraints are functions that determine the domain of admissible values of

variables participating in the process. There are different types of constraints:
e Equality constraints

Point constraints
h(x(1),u(t),1) =0 (1.1.2)
Differential equation constraints
h(x(1), x(2), u(t),1) = 0 (1.1.3)
e Inequality constraints
g(x(1),u(?),1) <0 (1.1.4)

e Isoperimetric constraints
1

[ (), i), u(t), ) de < (1.1.5)

)

These constraints can be transformed into differential equation constraints by

introducing of the new variables
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2(t) = [ e(x(0), %(t),u(0),1) dt (1.1.6)

Boundary conditions for these additional variables are z(#)) = 0 and z(t) = c.

Differentiating equation (1.1.5) with respect to time gives

z(1) = e(x(2), x(2), u(?),1) | (1.1.7)
or,

(1) = e(x(1), X(2),u(?),1) = 0 | (1.1.8)

1.1.3 Objective Function

A functional (objective function) J is arule of correspondence that assigns to
each function x(?) in a certain class Q aunique real number (a unique value). Simply
said, a functional is actually a ,,function of a function®. In general it can be written in

one of these three forms:

e Bolza form

J(u(®) = G(x(t,),t,) + IF(X(f),u(f),f) dt (1.1.9)

fy

e Lagrange form

J(u(t) = [ F(x(0),u(2),2) dt (1.1.10)
e Mayer form
J(u(1)) = G(x(t,),t,) (1.1.11)

where
J — represents the optimization criterion

G — represents the component of the objective function evaluated at final conditions
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ty

IF dt represents the component of the objective function evaluated over a time

fo

interval.

Note that all the three forms of the functional are interchangeable and can be derived

one from another.

1.2 Analytical Methods of Dynamic Optimization

There exist a lot of various analytical methods for solving an optimal control

problem. From all of the analytical methods these three are the most important:
e Dynamic Programming
e Calculus of Variations

e Pontryagin’s Minimum (Maximum) Principle

In this section calculus of variations (Kirk, 1970) and Pontryagin’s minimum

(Pontryagin et al., 1962) principle will be introduced.

1.2.1 Calculus of variations

In Section 1.1.3 the definition of functional was given. Now in order to consider
extreme values of functionals the increment of a functional J will be introduced. In

general it can be defined as

AJ =J(u+ou)—J(u) (1.2.1)

It can be denoted by AJ(4,dU) a5 to emphasize that it depends on the functions u

and ou. Function du is called the variation of the function u. Another way of notation is

AJ (u, G = & (1, Si) + g (u, SO (122)
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where 9 is the variation of the functional J. It is a part of the increment that is linear in
the variation du. The fundamental theorem of the calculus of variations says that if u*(t)

is an extremal then the necessary condition for the extreme of a functional is

& (u",6u)=0 for all admissible du. (1.2.3)

The way to derive more concrete conditions will be shown by solving a problem
with free final time #; and free end point xz.
The objective is to find the necessary conditions that the extreme u*(t) must

satisfy for the functional in Lagrange form
l
J () = [ F(x(0),u(0),0) dt , (1.2.4)
)

to and x(ty) = xy are specified, trand x(#) = xrare free. Moreover, the conditions given by
the differential equation constraints that represent the state equations must also be

satisfied
0= f(x(2),u(t),t)— x(t)_ (1.2.5)

If we add constraints (1.2.5) into the functional (1.2.4) we can form the augmented

functional
T, @(®) = [ FOe(0),u0),0)+ A (0 f (x(0), u(0),0) = 3()] dt (1.2.6)

where A(0)=[4,(1), 4,t), ... ,2,(0] is the vector of Lagrange multipliers, also called
adjoint variables. It can be clearly seen that if the constraints are satisfied then J, = J for

any A(t). For further simplification we define

F,(x(0), 2(0),u(2), A(0),£) = F(x(2), u(t),£) + A" () f (x(2), u(2), £) — 3(¢)]
(1.2.7)
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such that

J () = [ F, (0, 5(0),u(0), A1), 1) dit (12.8)

In order to enable the use of the fundamental theorem we must at first determine the

variation by forming the increment

E

HE G )3 ) (). 2 1)) &,

wu o]

AJ,

() A (), tf)} (1)

J T (1.2.9)
_E[ XN(0),u (1), A (1), t)} }5360)
T
[ } ou(r)
T
[ } 5/1(t)} dt+o(.),
where o(.) denotes terms of higher than first order.
Next, we must relate dx(y to ot; and dx;:
o, =é§c(tf)+5c*(tf)5tf’ (1.2.10)
or
H(t,) =, —x'(t,)o, (1.2.11)

Substituting this in equation (1.2.9) and collecting the linear terms we obtain the

variation

-17 -



oF, PREAARN DA )tf):l S,

&, u)=0= {

+F,(x7 (), x7(t ) u"(2,), A (), ,)

[ OF,
8

{

)t )} X (tf)}

0]

} }5)6(0

“'_0\

[

&|&

} Su(t)

} 5,1@)} dt

(1.2.12)

From the non-integral terms in equation (1.2.12) the conditions (1.2.13) can be formed

and the conditions (1.2.14) are formed from the integral terms. Equation (1.2.14a) is

also known as the Euler equation.

(1.2.13a)

0=2'(t,)

0=F,(x"(t,),X"(t,),u’(¢,), A (t,).t,)

_[8F
o

0= F(x'(¢,),u"(t,),1,) + AT U DO (2 ) (2, ),,)]

’ _,»),x"(t_,»),u*(tf),/l*(tf),tf)} X'(t,) (1.2.13b)
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0= % (e (00,5 (O (1), 4°(0).1)
Oox

d aFa % . % * %
0 =- S w0 0.0 - [@ (x*(t),u*(t),n} X (1)
X ox

0= e (e (00,5 (O (0, 4°(0).0)
ou

. (1.2.14b)
0= 8—F(x*(r),u*(t), 1)+ [@(x*(t),u*(t), t)} A (1)

ou ou
0= e (e (00,5 (O (00, 4°(0).0)

oA (1.2.14¢)

X0 = f(x7(0),u"(1),0).

In order to simplify the notation the Hamilton function A can be used, it is also called

the Hamiltonian and is defined as follows

H(x(0),u(t), A1), 1) = F(x(t),u(t),0) + A (O f(x(@),u(t),0)].  (1.2.15)

Now the necessary conditions can be written as

0=2'(t,) (1.2.16a)

0=H(x"(t,),u"(t,),A(t,)t,) (1.2.16b)
and

(1) = ‘Z—’j(x*(z),u*om(t), ) (12.172)

i) = —%—Z(x*<r>,u*<r>, PO (12.17b)

0= ‘Z—Zu*(z),u*(z),ﬂ*m, ) (12.170)

forall f€<ilyl, >

-19-



1.2.2 Pontryagin’s Minimum Principle

This method is used for searching of the best possible control, so that the
dynamic system can change from one state to another while considering the constraints
on the control variables.

By definition, the control u" causes that the functional J has a relative minimum
if

Jw)-Jw)=AJ >0 (1.2.18)

for all admissible controls sufficiently close to u". If # = u" + du, then the increment

can be expressed as

AJ(u",0u) =T (u",ou) +o(.) (1.2.19)

0J is linear in ou and the higher-order terms o(.) approach zero as the norm of du

approaches zero. Necessary conditions for the control problem are

A (u",0u)=0 (1.2.20)

if " lies on the boundary during any portion of the time interval £ €<Z>%; > and
A (u,ou)=0 (1.2.21)

if " lies within the boundary during the entire time interval €< %>, >
If we assume that the state equations are satisfied, A'(1) is selected so that the
coefficient of Jx in the integral is equal to zero and the boundary conditions for final

time are also satisfied, we can write the equation of the increment (1.2.9) as

T
ty

AJ(u”,ou) = j [%—Zl(x*(t),u*(t),i*(t), t)} ou(t) dt+o(.) (1.2.22)

fo

The integrand is the first-order approximation to the change in H caused by a change in

u, therefore
AJ(u", i) = f[H(x*(t), ' (£) + Su(0), A (£), 1)

" (1.2.23)
— H(x (8,07 (0, 2 (6),8)] dt +0(.).
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If u (£)+ou(t) lies in a sufficiently small neighborhood of u' (”5”” <pB) then the
higher-order terms o(.) are small. Thus, for u" to be a minimizing (optimal) control it is

necessary that

[[H G 0. 0+ u0). 2 (0.0~ B (0" (0. 2 (01.0)] de 20 (1204

to

for all admissible Ju, such that ”5“” <pB.
In order for equation (1.2.24) to be satisfied for all admissible ou in the specified

neighborhood, the following inequality must be satisfied
H(x™(0),u” () + ou(t), A (1),0) 2 H(x"(0),u” (1), A'(1),1) ~ (1.2.25)

for all admissible du(?) and for all /! €<%, > If that is the case then let us consider

the following control

u(t) =u’(t) + ou(t); te<t,t, >, (1.2.26)

where <%,%, > is an arbitrarily small, but nonzero, time interval and Ju(?) is a variation
of an admissible control that satisfies the condition ”5“” <pB. Let us suppose that
inequality (1.2.25) is not satisfied for the control described in equations (1.2.26), then in

the interval <Z;;%, > the inequality changes to

H(x"(0),u(t), A (),) < H(x"(2),u” (1), X (1),1) (1.2.27)

and, therefore

ty

[ @), 2@~ Hx 0.0 (0. 2 (0).0)] d

. (1.2.28)
= [[HG 0.u(0). 2 (0.0~ Hx 0.0 (0. 2 (0).0)] de < 0.

2]
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Since the interval <?%,% > can be anywhere in the interval <Z%-f; > it is clear that if

inequality (1.2.27) is satisfied for any ! €<Zy>!; > then it is always possible to form an

admissible control as in equation (1.2.26), which makes AJ <0 thus contradicting the
optimality of the control u". Therefore we assume that the necessary condition for u' to

minimize functional J is

Hx (0, (0),2°(0),0) < H(x (1), u(), 2 (0), 1) (1.2.29)

for all L €<%, > and for all admissible controls. Equation (1.2.29), which implies
that an optimal control must minimize the Hamiltonian, is called Pontryagin’s minimum
principle.

Although the minimum principle was derived for controls with values in
a closed and bounded region, it can be applied to problems in which the admissible
controls are not bounded. This can be done by viewing the unbounded control region as
having arbitrarily large bounds, thus ensuring that the optimal control will not be
constrained by the boundaries. In this case, the necessary condition for minimizing the

Hamiltonian is that
6H * * *
a(x (D), u" (1), A (),1)=0, (1.2.30)

If the equality (1.2.30) is satisfied and the matrix

aai’ & (" (0, 2 (0).1)
u

is positive definite then we can consider condition (1.2.30) to be sufficient.

1.3 Example of a Minimum-Time Problem

In this section the use of the analytical methods will be shown on concrete
examples, while searching for atime-optimal control of acar with and without

constraints on velocity. These examples can be found in Kirk (1970) and Fikar (2007).
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1.3.1 Time-Optimal Control of a Car

The objective is to drive the car from point O to point e in the shortest possible

time. To simplify the model, let us approximate the car by a unit point mass described
by its position (traveled distance), velocity X,(#)=v(?)= d(t) and acceleration

u(t) =a(t) =v(t)  The process then takes the form of following state equations

x,(8) = x,(t) (1.3.1)
i, () = u(?) (1.3.2)

The objective function for minimization of time is

I
szl dt=t, (1.3.3)

ty

where #y is the time of leaving O and we consider it being zero, and # is the time of
arrival at e.
The car starts from rest and stops upon reaching point e. In this case initial and terminal

constraints can be expressed as follows

x,(0)=0 x,(t,)=e=300

x,(0)=0 X,(t,)=0 (1.3.4)

Constraints on acceleration (deceleration) are given by inequality —1 < u(f) <2
The first step is the composition of the Hamilton function according to the equation

(1.2.15)

H(x(),u(t), A1), 1) = 1+ 4, (6)x, (1) + A, ()u(?) (1.3.5)

According to the minimum principle, the optimal control # () must satisfy the

condition

T A7), (1) + 2T (1w () < 14 2700, (2,) + 24 (2 )
(1.3.6)
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By differentiating the Hamiltonian with respect to u(?) we get the condition
A, (1)=0 (1.3.7)

However, if there exists a time interval where 4, (1)=0 then the equation (1.3.6)

provides no information on the relation between % (¢), x™(¢) and A'(?) .

From equation (1.2.17b) we obtain auxiliary differential equations

A" (1) =0
., . (1.3.8)
whose solution can be written as
/11*(1‘) =
(1.3.9)

A (t)=—ct+c,

In order to satisfy the condition (1.3.7) the constants of integration ¢; and ¢, must be

equal to zero and by substituting these values in the Hamiltonian we obtain
H(x™(),u (1), A (1),1) =1 Vie<tyt, >. (1.3.10)

But since the final time is free, the equation (1.3.10) violates the necessary condition

that

H(x™(0),u” (), 4 (2),) =0 Vie<ty,t, >. (1.3.11)

We conclude that 4, (f) cannot be zero during a finite time interval. Isolated times

when 4, (¢) passes through zero indicate a switching of the control. Thus, the form of

the optimal control given by the equation (1.3.6) is

u*(t):{_ Lo for A (H>0 (13.12)

+2,  for A,()<0

Equation (1.3.9) indicates that switching of the control will occur at most once since it

is a linear equation. From a physical point of view it is obvious that at the beginning, the
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control has the value 2 (the car is accelerating) and then switches to the value -1 (the car
is decelerating), because the car starts from rest. An opposite combination would not
make sense.

Next, the conditions given by the state equations must be satisfied

xl*(t) = xz*(t)

O =0 (1.3.13)

The general solution of the state equations for # (£)=2 and u (1) =-1 is

x1*(t):t2+cgt+c4, xz*(t):2t+c3, for te< 0,y > (1.3.14)

. 1 .
X, (t):—Etz oty x, () =—t+c,, for te<igt, > (1.3.15)

where c¢; and ¢, are constants of integration and fs represents the switching time. By
solving equations (1.3.14) for the initial conditions we obtain c¢; =c; = 0 and
by solving equations (1.3.15) for the terminal conditions we obtain ¢; = 0 and c¢; = e

=300. Then the solution of the state equations is
xl*(t):tz, x, () =21, for te<0,t, > (1.3.16)
. 1 .
%(0=—5ﬁ+e, x, (1) =—t, Jor te<tg,t, > (13.17)
At the switching time x; (2) is continuous, therefore

2

|
t =—50f—&f+e (1.3.18)

The final time can be then expressed as a function of the switching time

t, =ts++2e— 2t (1.3.19)

We can obtain the minimum final time by differentiating equation (1.3.19) with respect
to tg and consider it being equal to zero. This way we can define the equation for

calculation of #g
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The time profile of the control u is shown in Fig. 1. We can clearly see that it really

switches from acceleration to deceleration after 10 seconds.
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Fig. 1: Time profile of the control u for the unconstrained problem

By substituting the equation (1.3.20) into (1.3.19), we can evaluate ¢

3 V 3

The total time needed can be displayed through the time profile of the traveled distance

(1.3.21)

which is shown in Fig. 2
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Fig. 2: Time profile of the traveled distance x; for the unconstrained problem
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The maximum achieved velocity is calculated as
x;,max = 2tS = _(tS - tf) = 20 (1322)

How the velocity changes in time is shown in Fig. 3

Thus, the optimal control is given by the situation where the car is driven with
maximum acceleration for the first 100 meters (this represents one third of the total
time) and for the next 200 meters with maximum deceleration (which represents the

remaining two thirds of the total time).

25

Fl e

10 15 20 25 30

Fig. 3: Time profile of the velocity x; for the unconstrained problem

1.3.2 Time-Optimal Control of a Car with Constraints on Velocity

Now, let us consider the same example as before, but furthermore we add in the

constraint on velocity, which can be expressed by the condition
lx,(0)| < 10 (13.23)
For this problem we create a new Hamilton function

H (x(2),u(t), A1), (1), 1) = 1+ A, (0)x, (1) + A, (Du(t) + pa(1)(x,” (£) = 10%) |
(1.3.24)
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where u i1s another auxiliary variable and based on the Kuhn-Tucker optimality

conditions (Kuhn and Tucker, 1951) can be defined as

=0 if x°()-10*<0
1(1) : i (1.3.25)
>0 if x,7(t)-10"=0
From equation (1.2.17b) we obtain auxiliary differential equations
A1) =0
(1.3.26)

A0 = =47 (O + 24 (D)x,"(2)

In this case, the switching of the control can occur at most twice, which means that
there can be two switching times fs; and zs,. The state equations then take this form
X ()=t +ct+e,,  x, ()=2+c,, for te<0ty>  (1327)
xl*(t):c3t+c4’ xz*(t)=c3, Jor te< Loirlgy > (1.3.28)

x 1 .
X, (t):—5t2+c3t+c4’x2 ()=—t+cy, Jor te<ig,t,> (1329)

where on the first interval # (£)=2_ on the second % (£)=0 and on the third

u'(t)=—-1. The values for the constants of integration c¢; and ¢, can be obtained by

solving these equations for the boundary conditions

c; =0, ci =0, for te<O0,t, >
c3 = 2ts; cs=ts/) for te<tg,ty, >
c; =0, cs=e = 300, Jor te<tg,,t, >

The solution to the state equations is then

x () =1 , x, (1)=2t, for te<0,tg > (1.3.30)

X, (f) = t512 +2t, x, (1) =2t for te<tg,tg, > (1.3.31)

. 1 .
xl(t)=—5t2+e, x, (t)y=—t, Jor te<tg.t,> (1332)
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The first switching time #5; can be now evaluated directly from the equation (1.3.31) if

we assume that in this case ¥ (t) =0 and the velocity is on its boundary value given by

the constraint (1.3.23)
x, (£) =2t5, =10, tg =5

Then again x; (¢) is continuous in the switching times. Because we already know the
value of #5;, we can calculate the other time #5; by comparing of equations (1.3.31) and

(1.3.32)

1
te + 2t (tg, —tg) = —E(tf —t5,) +e (1.3.33)

The final time can be then expressed as a function of the switching time 5> from

equation (1.3.33)

£ =ty +12e — Aty tg, + 21y (1.3.34)

The minimum final time # can be obtained by differentiating equation (1.3.34) with
respect to ts; and consider it being equal with zero. This way we can define the equation

from which fs, is going to be calculated

_e—ty’ 300-25
2t

Isy =275 (1.3.35)
The time profile of the control u is shown in Fig. 4. Now we can see that the

acceleration stops after 5 seconds and the deceleration starts after 27,5 seconds.

By substituting the equation (1.3.35) and the value of #s; into (1.3.34), we can evaluate #,

2
_e- 1y

300-25
t,= =
: 2t

+ 2t =

+10=375 (1.3.36)
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Fig. 4: Time profile of the control u for the constrained problem

The total time needed can be again displayed through the time profile of the traveled

distance which is shown in Fig. 5
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Fig. 5: Time profile of the traveled distance x; for the constrained problem

The maximum velocity which can be achieved is clearly the velocity on the boundary

(shown in Fig. 6)

(1.3.37)

—(tg, —1,)=10

2, =

*
x2,max
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Fig. 6: Time profile of the velocity x; for the constrained problem

The optimal control for this example is given by the situation where the car is
driven with maximum acceleration for the first 25 meters, then the next 225 meters it is
moving with constant speed (the car is neither accelerating nor decelerating) and the last
50 meters it is maximally decelerating. The final time is naturally longer then the one
obtained in the first example seeing that the maximum achieved velocity is reduced by a

half.
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2 Global Optimization

Global optimization methods were developed in order to solve nonconvex
optimization problems, i.e. problems which have several local extrema. It is clear that
standard optimization methods can not be used to solve nonconvex problems because
they would often lead only to suboptimal results.

In this Section the deterministic Spatial Branch—and—Bound method (sBB) will be
introduced. Specifically, the aBB method (Adjiman et al., 1998), which belongs to the
sBB methods, will be described.

2.1 Spatial Branch-and-Bound method

This method is called “spatial” because it gradually divides the Euclidean space
where the problem is defined into smaller and smaller regions and then solved
recursively by generating converging sequences of upper and lower bounds of the value

of the objective function.

2.1.1 NLP Problem Formulation

The NLP problem is given by the formulation:

min J(x) (2.1.1a)
h(x)=0 (2.1.1b)
g(x)<0 (2.1.1¢)

where x € C c R" is a vector of optimized parameters of size n. Function J(x)
represents the optimization criterion, A(x) is a set of equality constraints and g(x)

represents a set of inequality constraints. These functions belong to C*, the set of

continuously twice-differentiable functions.
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2.1.2 The aBB Algorithm

The aBB algorithm is designed to solve nonconvex minimization problems of the
type (2.1.1). Its theoretical properties guarantee the finding of the global optimum of
such a problem with finite e-convergence.

The branch and bound algorithm starts with the relaxation of the original
nonconvex problem, whereby we acquire a new convex problem. By solving the relaxed
problem we obtain the lower bound of the solution of the problem given which is in
some way easier than solving the original problem. The relaxed problem is actually a
convex optimization problem whose objective function underestimates the nonconvex
objective function on a certain interval. Because each local minimum of such a problem
is at the same time a global minimum, standard NLP algorithms designed to search for
local extrema are able to find this lower bound reliably. The upper bound is obtained as
a local solution of the original nonconvex problem on a given interval.

If these bounds are not within some ¢ tolerance then the interval is divided using
one of the branching strategies. This way we obtain two new subploblems. For each one
of them the relaxation is constructed again and new upper and lower bounds are
computed. If some lower bound is greater then current best upper bound on any
subinterval then global optimum cannot exist on this interval, hence this interval is
excluded from further calculations. Such an operation is called fathoming.

This whole process of branching and bounding is repeated until the lower bound

on all active intervals is within the ¢ tolerance of the current best upper bound.

2.1.3 Convex Relaxation

As mentioned before, BB algorithms are based on the principle of convex
relaxation. A determining step is the decomposition of the objective function into a sum
of nonconvex terms of special type (STNT) and nonconvex terms of arbitrary type
(ATNT). Based on this classification of the terms, the objective function J(x) can be
written as:

J(x)=S8STNT(x)+ ATNT(x) (2.1.2a)

s.t.
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STNT(x) = LT(x)+CT(x)+ ZbixBTi,l‘xBTi,Z + ZtixTTi,leTi,2xTTi,3

i=1 i=1
npr X nprr X X yr
FTi,1 FTTi 1 X FTTi 2
+Zfz +Zﬁi +ZUTI'(XUT1')
=l Xpria =l XrrTi 3 i=1

(2.1.2b)

ATNT (x) = niNTl.(x) (2.1.2¢)

i=1

where LT(x) represents a linear term; C7(x) represents a convex term; npr stands for the
number of bilinear terms, xz7;; and xp7; > denote the two variables that participate in the
i-th bilinear term and b; is its coefficient; nrr stands for the number of trilinear terms,
Xrri1, X2 and x77; 3 denote the three variables that participate in the i-th trilinear term
and ¢; is its coefficient; npr stands for the number of fractional terms, xpr;; and xpr; 2
denote the two variables that participate in the i-th fractional term and f; is its
coefficient; nprr stands for the number of fractional trilinear terms, xgrr; 7, XFrri2 and
xrrri. 3 denote the three variables that participate in the i-th fractional trilinear term and f#;
is its coefficient; nyr stands for the number of univariate concave terms, UT;(xyr;)
represents the i-th univariate concave term and xy7; denotes the variable that participates
in it; nyr stands for the number of nonconvex terms of arbitrary type, NT;(x) represents
the i-th nonconvex term of arbitrary type.

Convex underestimators are constructed for these terms, with the exception of

linear and convex terms which do not need to be convexified.

Underestimation of Bilinear Terms

In case of a bilinear term xy, the convex lower bound over the domain
[xL, xU]x[yL, yU] can be obtained by introducing of a new variable wgr which

replaces every occurrence of xy in the problem and by adding following four linear

inequality constraints:

wyr = x y+xpt —xtyt (2.1.3a)
wyr 2 xVy+xp? —x¥yY (2.1.3b)
wyr <xty+xp? —xty? (2.1.3¢)
wyr <xUy+xpt —xUyt (2.1.3d)
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where x" is the lower bound and x" is the upper bound of the variable x. The same goes

for variable y.

Underestimation of Trilinear Terms

The trilinear term of the form xyz can be underestimated over the domain
[xL, xU]x[yL, yU]x[zL, ZU] by introducing of a new variable wyr and by adding

following eight linear inequality constraints:

w2 xytzh 4 xtyzt + xtytz - 2xtytt (2.1.4a)
w2 xyVzY + 1Yyt + Uyt = Uyt = xVyvY (2.1.4b)
w2 xyizh+ xtyzY + xt Uz —xt VsV = xtytst (2.1.4¢)
w2 xpUzh 4 xV Y + xtyYz - xt Uzt - XYY (2.1.44d)
w2 xytzY + xtyzt 4 xUytz =XVt = xtytet (2.1.4e)
w2 xy 2%+ xtyz + xVyYz—xt Y —xVytsY (2.1.41)
w2 Uzt +xVyzt + xtytz —xY Uzt - xtytst (2.1.4g)
w2 xpVz% + x4 xVyYz—2xY Y2 (2.1.4h)

Underestimation of Fractional Terms
For fractional terms x/y one new variable wpy is introduced and two inequality

constraints which depend on the sign of the bounds on the variable x are added:

L L
LLE X s
Wy > xy ;:Ly ny (2.1.5a)
W TRTE HEso
U U
S if xV>0
Wy > xy nyy ny (2.1.5b)
FAN A A
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Underestimation of Fractional Trilinear Terms

Fractional trilinear terms of the form xy/z are underestimated by introducing one new

variable wgrr and inequality constraints for x*, yL , zF>0:

L L L_ L L_ L
W 222X I Y _H 2D (2.1.6a)
z z zZ zZ
L L L_U L_U L_ L
Xyt o xy Xy Xy xy
Wepp 2 o+ =+ —Se (2.1.6b)
z zZ z zZ zZ
U U U_ L U_ L Uu_U
Xy X'y xy b X
Werp 2t + —— T I (2.1.6¢)
z z z z z
U U L_ U L_U Uu_.U
XL Xy xy xy xy
Werp 2=t =+ - (2.1.6d)
z z z z z
L L U_ L U_ L L_ L
XyT Xy Xy Xy xy
Wepp 2~ +——+ - (2.1.6e)
z zZ z zZ zZ
U U L L_U U_ U
XyL Xy xy xy Xy
Wepp 2 =5 +——+ ——— = (2.1.6f)
zZ zZ zZ z zZ
L L U_ L U_ L L_L
XL Xy Xy xy xy
Werp 2~ +—+ ——— (2.1.6g)
z z z z z
U U U_U Uu_U
Wepp 222X EY XY (2.1.6h)
z z z z

Underestimation of Univariate Concave Terms
Univariate concave terms are usually underestimated by their linearization at the lower

bound of the variable. This way no new variables or constraints are needed. The
underestimator of the concave function UT(x) over [xL, xU] then takes the form of a

linear function of the variable x

ur(ty+ ZT (XUU) - ULT (%) (x —x") 2.1.7)
X —X

Underestimation of Arbitrary Type of Noncovex Terms

The nonconvex terms of arbitrary type are underestimated over the whole domain

", x”] by the function Ly(x) which is defined as
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T

La(x):J(x)+Zaj(x§.]—xj)(ij.—xj) (2.1.8)

where a; > 0 corresponds to the terms j= 1,..., nyr. All nonconvexities in the original

function J(x) can be overpowered by the convex quadratic term, given sufficiently large

values of the a; parameters. Since the sum in equation (2.1.8) is negative over the whole

domain [xL, xY ], L,(x) is a valid underestimator of the function J(x).

Overall Convex Underestimator
Given the decomposition of the objective function J(x) in the equation (2.1.2) and the
underestimation of individual terms, then the final underestimator L(x) to the function

J(x) can be written as

nBr. nrr Nt nprr

L(x)=LT(x)+CT(x)+ ZbiWBTi + ZtiWTTi + ZfiWFTi + ZﬁiWFTTi
i=1 i1 i1 i=1

nyr U N\ _ L
+3 UT (k) + 1) UT’“UT”(x,-—xéT,-)}
i=1

U L
uri ~ Xuri

NNt

+> Nﬁ(x)+iaij(x7 —x,)(x; —x_,.)}

(2.1.9)

where a;; corresponds to the i-th nonconvex terms of arbitrary type and the j-th variable

and variables wgr; , wrri, Wrri, Werry must satisfy their respective constraints.

2.1.4 Calculation of Parameter a

Since L(x) in equation (2.1.9) is a convex function, its Hessian matrix H;(x) is
positive semi-definite. Moreover, matrix H;(x) is related to the Hessian matrix H,(x) of

the function J(x) by:

H,(x)=H,(x)+2A (2.1.10)

-37 -



where A is a diagonal shift matrix whose diagonal elements are the parameters a;. In
order to derive a valid convex underestimator, the set of o parameters must satisfy the

following theorem:

Theorem: The function L(x) given by the equation (2.1.9) is convex if

H,(x)=H,(x)+2A=H,(x)+2diag(ca;;) 1s a positive semi-definite for all

L U
xe[x , X ]

To identify a valid diagonal shift matrix, the underestimator is re-formulated using a

single o value:
L(x,a) =J(x)+a) (x! —x;)(x} —x)) (2.1.11)
j=l

All non-zero elements of A are then equal to the parameter a. It can be shown that L(x)

is a valid convex underestimator of the objective function J(x) if:

a> max(O,—l min V/Ii(x)) (2.1.12)

LxLéxbe

where A; are the eigenvalues of matrix Hj(x).

If J(x) is convex then all eigenvalues of matrix H,(x) are non-negative for any
X € [xL, xU]. Then according to equation (2.1.12) & =0 and the original function does

not change. On the other hand: the more nonconvex the function J(x), the smaller its

minimum eigenvalue and the larger the parameter a.

If we consider an interval Hessian matrix [H J]g{ H,(x), xe [xL , xU] } then a

sufficient condition for convexity is given as:

a> max(O,—%/lmin( (7] )) (2.1.13)

where lmin( [H J] ) is the minimum eigenvalue of the interval matrix family [H J].
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2.1.5 Branching Strategies

The process of branching in BB algorithms has a significant effect on the rate of

convergence, especially in aBB algorithms since the quality of the underestimator

depends on the variable bounds. For example, if a variable participates only in linear

terms of the problem, branching on it will not have any effect on the accuracy of the

convex underestimators. While considering this and also other observations, to

implement the aBB algorithm we can choose one of four branching strategies that are

currently available:

1. Strategy:  Use a k-section on all or some of the variables.

2. Strategy:  Use measure of the quality of each term’s underestimator, based on the
maximum separation distance between term and underestimator.

3. Strategy:  Use a measure of the quality of each term’s underestimator, based on the
separation distance at the optimum point.

4. Strategy:  Use a measure of the overall influence of each variable on the quality of
the lower bounding problem.

2.2 Example

Let us illustrate the aBB algorithm by solving the nonconvex optimization

problem (2.2.1) with a global minimum x=-1.0009 andtwo local minima

x=[-0.7325, —1.0009]

such that

minJ(x) = cos(14.5x —0.3) + x* +0.2x (2.2.1)

-1<x<0.
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Fig. 7: Objective function J(x) for x € [— 1, O]

The first step is the decomposition of the objective function and the classification of

individual terms:

cos(14.5x - 0.3) - nonconvex term of arbitrary type (ATNT)
x - convex term (CT)
0.2x - linear term (LT)

It is apparent that only the first term of the objective function needs to be
underestimated, the others remain unchanged. The underestimator of the nonconvex

term is formed based on the equation (2.1.8):

L,(x)=ATNT(x) + a(x” — x)(x" — x)
=cos(14.5x —0.3) + a(x” —x)(x* —x)
—cos(14.5x —0.3) + a(0— x)(—1 — x)
=cos(14.5x — 0.3) + a(x + x?)

(2.2.2)

Then the overall underestimator from equation (2.1.9) can be written as:

L(x)=L,(x)+CT(x)+ LT(x)
=cos(14.5x - 0.3) + a(x” —x)(x" —x) + x* +0.2x (2.2.3)

=cos(14.5x —0.3) + a(x + x*) + x* + 0.2x
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In order to calculate the parameter o, we need to know the Hessian H,(x) of J(x):

H,(x)=J"(x)=-14.5%14.5cos(14.5x — 0.3) + 2

(2.2.4)
=-210.25c0s(14.5x - 0.3) +2

The value of the parameter a for the interval x e<—1, 0> can be now easily computed

using the equation (2.1.13):

wemar( 022 (1)

a> max(O;—%(—208.25)) = max(0;104.125) (2.2.5)

a2>104.125

After substituting it into (2.2.3) we obtain the final equation for the overall

underestimator of the function J(x) for x € [— 1, O] (shown in Fig. 8):

L(x) = cos(14.5x — 0.3) + 104.125(x + x> ) + x> + 0.2x (2.2.6)

-
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Fig. 8: Objective function J(x) and the overall underestimator L(x) for x € [— 1, 0]
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The next step is to determine the lower and upper bound on the solution of the problem.
The lower bound is given by the minimum of the function L(x) and the upper bound by

the minimum of J(x):

min(L) = —25.9932
min(J) = —1.0009

With this we already found one of the local extrema, but evidently, there is a
considerable distance between the bounds. In order to find the solution with the
tolerance ¢ = 0.001, the original problem must be divided into two smaller problems
and these will be solved the same way as the original. For branching on the intervals the
first branching strategy is used. Specifically, the method used will be a bisection (the
interval will be cut in halves). We continue this way until we obtain the solution with

the required tolerance e.

The global optimum has been identified in six iterations. The objective function and its

underestimators for each iteration are plotted in Fig. 9.
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Fig. 9: Objective function and its convex underestimators for each iteration
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3 Global Dynamic Optimization

In the previous Section static global optimization was introduced where the
optimized variables were time independent. Now, let us show how the process of
convex relaxation and bounding of variables change if we consider the optimized
variables to be time and parameter dependent (Paramichail and Adjiman, 2002;

Paramichail and Adjiman, 2004).

3.1 Dynamic Optimization Problem

The formulation of the dynamic optimization problem studied is given by:

minJ(x(¢,p),p ; i=0, 1, .., NP
14

S.t.
i=f(txp)  Viely,t,]
x(ty, p) = %,(P) (3.1.1)
g,(x(t,p),p)<0, i=0,1, .., NP
pi<p<p’

where J is the objective function, ¢ represents time as the independent variable, #) and
typ are the initial and final time, NP is the number of points considered additionally to
the initial point, x and X are state variables and their time derivatives, p are time-
invariant parameters, p~ and p” are bounds on the parameters, x, denote the initial
conditions and g; represent inequality constraints.

The sequential approach is used for the solution of this NLP problem and
provides an upper bound for the global optimum solution. Given values for the
parameters p, the system can be integrated from 7, to #yp. After reaching #yp, the
objective function and the constraints can be evaluated. The evaluation of their
gradients requires the solution of the sensitivity equations, which are derived by

differentiating the differential equations with respect to the parameters p:

)&p(t,p):%xp(t,p)+% Vielty,ty] (3.1.2)

-44 -



where
ox

xp(t,p)za (3.1.3)
and

o 2 fox

x,(t p)= &(ap]. (3.1.4)

The initial condition for the sensitivity equations is found by differentiating the initial

condition of the original system with respect to the parameters p:

ox
xp(to,p)=a—p°. (3.1.5)

3.2 Bounding the Solutions of Parameter Dependent ODEs

The dependence of convex relaxations on variable bounds is a common feature
of deterministic global optimization algorithms. Since the state variables appear in the
nonconvex objective function and constraints, a method for the derivation of rigorous
bounds on these variables at point #; (i = 0, 1, ... , NP) is needed. This issue can be
resolved by generating bounds on the solution space of the dynamic system. The

following ODE is studied:

()= ftx(t),p)  Vtelty,ty] (3.2.1)
x(t)) = xy(p) (3.2.2)

where x(¢#) and x(¢) e R", f is a function of parameters p e [pL, pU], and can be
considered as a set of functions. The same is true for the initial value xy which is usually

a function of p and is considered as a set. The lower bounds (subfunctions) x(¢) and
upper bounds (superfunctions) x(¢), such that x(¢) < x(z,p) < x(¢), V pe[pL,pU],
V t € I, must be determined for the solution of this ODE, x(z). If fis continuous and

satisfies a uniqueness condition on Iy x R" X[pL, pU] then x(¢) and x(¢) are given as

the solution of the following ODE system
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i, =inf f( Lx,0x 0.5 O] .[p"0"])
s =sup f,( %0 0.5 0] " p"]) (3.2.3)

Vtel, and k=12, .. ,n

E(to):inf xo( [pLapU] ) (3.2.4)
%) =sup xo( [p.p"] )

The system described by (3.2.3) and (3.2.4) provides a practical procedure to construct
bounding trajectories for any ODE system which satisfies the appropriate continuity and

uniqueness conditions.

10

Fig. 1: Trajectories of the state variable for different values of parameter including
parameter independent bounds on the state variable

3.3 Formulation of the Convex Relaxation

The dynamic optimization problem (3.1.1) has been formulated as a nonconvex
NLP problem. The solution obtained provides an upper bound for the global optimum
solution. A convex relaxation is now formulated based on the theory introduced in
Section 2.1. Its solution can be used as a lower bound for the global optimum of the

nonconvex problem. A reformulation of the NLP problem is given by
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minJ(%, p)
x,p

s.t.
g (%,p)<0, i=0,1, .., NP (3.3.1)
% =x(t,p), i=0,1, .., NP
pelpt.p’]

where X is a vector of new added optimized variables and the values of x(¢,p), i =0,

1, ..., NP are obtained by solving the ODE system:

i(t,p) = f(t.x(t,p).p)  Vie[t.ty] (33.2)

x(ty, p) = x,(p) (3.3.3)

3.4 Bounds on Variables

The bounds on X, depend on the parameters bounds and must be derived

automatically. As discussed in Section 3.2, bounds can be constructed for the solutions
of ODE system (3.3.2) and (3.3.3). These bounds are for ¢ = #; also valid for the variable

vectors X, that have been introduced in the reformulated NLP problem:

x(t)<% <%(t), i=0, 1, .., NP (3.4.1)

3.5 Convex Relaxation of the Set of Equality Constraints

The set of equalities X, = x(,, p) can be written as two sets of inequalities:

£ -x(t,p)<0, i=0, 1, .., NP (3.5.1)

x(t,p)-x <0, i=0, 1, ., NP (3.5.2)
Their relaxation is given by:

£4X(t,p)<0, i=0, 1, .., NP (3.5.3)

X(t,p)—% <0, i=0, 1, .., NP (3.5.4)
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where x denotes the convex underestimator of the specified function and
x (¢, p)=-x(¢, p). The function x(¢,, p) is a convex underestimator of x(¢,p) and
the function — x"(¢,, p) 1s a concave overestimator of x(z,, p).

The constant bounds given by inequalities (3.4.1) are wvalid convex

underestimators and concave overestimators for x(¢,p). This means that inequalities

(3.5.3) and (3.5.4) can be replaced by inequalities (3.4.1). These bounds do not depend

on the parameters p themselves, but do depend on the bounds on p.

Since x(t, p) is a twice continuously differentiable function of the parameters p
on R", the a-based bounds can also be used for the convex underestimation of x(¢,, p)

and x" (¢, p) over the domain " pY1c R":

X (1, p)=x,(t,p)+ D s (ph —p)PY = b)),
=1

i=0, 1, ... NP (3.5.5)
k=1, 2, .., n

X (t,p) = x, (1, p)+ Y (Pl — p)(p) = p)),

J=1

i=0, 1, .., NP (3.5.6)
k=1, 2, .., n
The difficulty in this approach is the calculation of the non-negative «; and a,;

parameters. There is no functional form available for the Hessian matrices in order to
use interval calculations directly.
The values for the non-negative @; parameters are calculated using the scaled

Gerschgorin method proposed by Adjiman et al. (1998). This method requires the use of
a symmetric interval matrix [H or ]: ([@ij,}zj ) such that [H P ] >H, (x)= V2 for (%)

Vx e [xL ,xY ] a; can be calculated by the following formula:

o, = max{O,—%(ﬁﬁ — Z|h|”]} (3.5.7)
J#
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where |h|y = max {‘@ . Ej‘ }+. These values for the a; parameters guarantee the convexity

of the underestimator. The interval matrix [H f;wJ is calculated by applying natural

interval extensions to the analytical expression for each second-order derivative of fyr

and is given by [Hf,w]:Hf.w ([xL ,xU]) . The method using interval calculations

produces an interval matrix [H *], that may be an underestimation of the space of the

Hessian matrices, which means that there may exist
pelpt. p'l: Vix,(top) = H, () e|H"]. (3.5.8)

The difficulties associated with the computation of valid Hessian matrices are
resolved by constructing bounds based on equations (3.2.3) and (3.2.4) for the ODE
system that is generated when the first and the second-order sensitivity equations are
coupled with the original ODE system. These bounds on the second-order derivatives

can then be used to construct each element of the interval Hessian matrices needed.

3.6 Convex Relaxation of the NLP

After underestimating the objective function and overestimating the feasible

region, the convex relaxation of the NLP problem (3.3.1) is given by

minJ (X, p, w)

X,pW

S.t.
g (G,pw)<0, i=0, 1, .., NP (3.6.1)

x(t)<x, <x(), i=0,1 .. NP
C(x,p,w)<0

pelpt ']

where J denotes the convex underestimator of the specified function, C denotes the set
of additional constraints arising from the convex relaxation of bilinear terms and w

denotes the vector of new variables introduced by this relaxation.
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3.7 Example

This example, introduced in Paramichail and Adjiman (2002), is an optimal
control problem with one constant control. The problem has at least two local minima.

Its formulation is given by:

min ~ —x(1)°
s.t.
i(t)=—x(t) +p, Vielo, 1] (3.7.1)
x(0)=9
-5<p<5

This problem is equivalent to:

min - X

s.t. (3.7.2)

where the value of x,(1) is obtained by solving ODE from (3.7.1). When this ODE is

differentiated with respect to the parameter p as described in equation (3.1.2), the

following first-order sensitivity equations are produced:

5 (t) =-2xx,+1,  Vielo, 1] (3.7.3)
x,(0)=0 (3.7.4)
where
X (6) = 2L (3.7.5)
p
and
. 0 ( Ox,
t)=—|— 3.7.6
x,(2) or [ apj ( )

The second-order sensitivity equations are produced when the system of first-order

sensitivity (3.7.3) — (3.7.6) is differentiated once more with respect to the parameter p:

() =-2x," —2xx,, Vie|o, 1] (3.7.7)

x,(0)=0 (3.7.8)
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where

x;(t) = % (3.7.9)
op
and
o2
x;(t) = at( o J (3.7.10)

Based on equations (3.2.3) and (3.2.4) the following ODE system can be constructed:

i =inf (—x,0° +[pt.p"] )=—x,0) + p*
i) =inf ( =2[x, 0. 5Ok @)+ )=-25x,0O)x,O)+1  (3.7.11)

iy(ny=inf (=2, (0.5 OF —2[x, (0.5 Ol () )
= 2%, (1) — 25, (1), (0)

50 =sup (-5 +[p".p"] )=-5(0) +p"
%0 =sup ( —2[x,(0.5OFK,O+1 )=-2x,(0%,0O+1  (3.7.12)

0 =sup ( —2[x,(0.%OF —2[x, (0.5 (0]%, (1) )
=21, (1) ~ 22, ()% (1)

x,(0)=9 %(0)=9
x,(0)=0 %,(0)=0 (3.7.13)
%,(0)=0 %,(0)=0

The solution of this system gives constant bounds for the set of solutions of the system

consisting of the original system, the first and the second-order sensitivity:

x(N<x,(t,p) <X(0), Vpelpt,p']

3.7.14
veelo,1], i=1,2,3 ( )

Using equations (3.7.5), (3.7.9) and (3.7.14) and interval arithmetic properties we obtain

the interval Hessians:

Vix, (1, p) e lx, (1), %), Vpelpt,p] (3.7.15)

V2 (=x)(1, p) e [- 5,()—xs (D], Vpelpt pY] (3.7.16)
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The values for the o and a parameters can be now calculated using equation (3.5.7).

The a-based bounds are constructed based on equations (3.5.5) and (3.5.6). The convex

relaxation of the problem for the region R [pL ,pY ]is given by:

min- {[x, (1) + 5, (D + 2, (D5, (D}
s.t. (3.7.17)
x, () <<% (1)
x(L,p)+a(pt = p)p” —p)-1<0
t-x,(Lp)+a (p" —p)p" -p)<0
pr<p<p’

where the value of x,(1, p) is obtained by solving ODE from (3.7.1). Following this

procedure we computed that the global optimum parameter is p = —5 and the value of

the objective function for the global optimum parameter is equal to —8.23262.
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Conclusion

The main aim of this work was a theoretical introduction of various methods for
solving dynamic optimization problems. The analytical methods of dynamic
optimization mentioned in this work represent a way to obtain optimal profiles of
controls and states for the control of a process described by differential equations. Using
these methods one example of the time-optimal control problem of a car that consisted
of two simple linear state equations with some constraints was solved. The results as
well as their graphical interpretation are given in Sections 1.3.1 and 1.3.2.

However, solving medium-dimensional (three or more state equations) nonlinear
problems that, e.g., consist of nonlinear differential equations, can be difficult. Other
complex specifications like constraints and other algebraic conditions or the
discontinuance of profiles could cause that the problem becomes impossible to solve
using the calculus of variations. Therefore, in present days numerical methods are rather
preferred for solving optimization problems.

Section 2 introduced one deterministic method of global optimization, namely
the aBB method, which properties guarantee the convergence to the global optimum. In
this section, an algorithm of this method was described, which is based on a process of
branching and bounding. To find the lower bound to the global solution, the convex
relaxation was used which was described mainly in Section 2.1.3. Different methods of
calculating the parameter a and branching strategies are provided in Section 2.1.4 and
2.1.5. Finally, Section 2.3 shows the process of the convex relaxation in case that the
state variables are time and parameter dependent. To illustrate the algorithm of this

method two problems were solved and are described in Section 2.2 and 2.4.
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