SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE

RIADENIE VYBRANÉHO PROCESU POMOCOU RIADIACEHO SYSTÉMU FOXBORO DIPLOMOVÁ PRÁCA

FCHPT-5414-26074

Bc. Ladislav Miklovitz

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE

RIADENIE VYBRANÉHO PROCESU POMOCOU RIADIACEHO SYSTÉMU FOXBORO DIPLOMOVÁ PRÁCA

FCHPT-5414-26074

Študijný program:	Automatizácia a informatizácia v chémii a potravinárstve
Číslo a názov študijného odboru:	5.2.14 automatizácia
Školiace pracovisko:	Oddelenie informatizácie a riadenia procesov
Vedúci záverečnej práce/školiteľ:	Ing. Katarína Matejičková

Slovenská technická univerzita v Bratislave Oddelenie informatizácie a riadenia procesov

Fakulta chemickej a potravinárskej technológie Akademický rok: 2009/2010 Evidenčné číslo: FCHPT-5414-26074

ZADANIE DIPLOMOVEJ PRÁCE

Študent:	Bc. Ladislav Miklovitz
ID študenta:	26074
Študijný program:	automatizácia a informatizácia v chémii a potravinárstve
Študijný odbor:	5.2.14 automatizácia
Vedúca práce:	Ing. Katarína Vaneková
Miesto vypracovania:	Bratislava

Názov práce: Riadenie vybraného procesu v riadiacom systéme FOXBORO

Špecifikácia zadania:

Vytvorenie modelu technologického procesu v ICC v riadiacom systéme FOXBORO. Vytvorenie užívateľských obrazoviek pre vytvorený proces. Využitie nástrojov priemyselného riadiaceho systému FOXBORO na riadenie modelu technologického procesu, programovanie bezpečnostných a riadiacich prvkov systému FOXBORO.

Rozsah práce:

Riešenie zadania práce od: Dátum odovzdania práce: 15. 02. 2010 22. 05. 2010

65

Bc. Ladislav Miklovitz Študent

prof. Ing. Miroslav Fikar, DrSc. Vedúci pracoviska

prof. Ing. Miroslav Fikar, DrSc. Garant študijného programu

Pod'akovanie

Ďakujem mojej školiteľke Ing. Kataríne Matejičkovej za odborné vedenie, pomoc, trpezlivosť a cenné rady, ktoré mi poskytovala v priebehu vypracovávania diplomovej práce.

Čestné prehlásenie

Čestne prehlasujem, že som diplomovú prácu vypracoval samostatne, s použitím zdrojov, ktoré uvádzam v literatúre.

V Bratislave, 14. mája 2010

De derie

Podpis

Abstrakt

Úlohou práce bolo vytvorenie matematického modelu zariadenia, konkrétne zmiešavača kvapalín a plášťového výmenníka tepla. Toto zariadenie som modeloval pomocou riadiaceho systému FOXBORO, ktorý umožňuje zachytiť všeobecné charakteristiky systému. V riadiacom systéme som postupne aplikoval nominálne a adaptívne riadenie na jednotlivé zvolené procesy. Pomocou grafických priebehov riadenia som dokázal zistiť, ktorý regulátor bol výkonnejší. Okrem implementácie nominálneho a adaptívneho regulátora, FOXBORO slúži najmä na efektívne riadenie technologických procesov. Efektívne riadenie zlepšuje schopnosť riadiť, predvídať a reagovať na zmeny podmienok v systéme.

Kľúčové slová: nominálne riadenie, adaptívne riadenie, zmiešavač kvapalín, plášťový výmenník tepla, koncentrácia, teplota.

Abstract

The task of my project was to create a mathematical model of a device, specifically a mixer of liquids and a shell heat exchanger. This device was modelled by control system FOXBORO, which can describe general characteristics of the system. I gradually applied nominal and adaptive control for each selected process in the control system. On the basis of the graphical performance I could determine, which controller is more efficient.Besides the implementation of the nominal and adaptive controller, control system FOXBORO serves for effective control of technological processes. Effective control improves the ability to control, predict and react to changes of conditions in the controlled system.

Keywords: nominal control, adaptive control, mixer of liquids, shell heat exchanger, concentration, temperature.

Obsah

Zozi	nam syn	bolov a skratiek 8
Zozi	nam obi	zkov9
Zozi	nam tab	liek 11
Úvo	d	
1	Vybı	ný proces13
	1.1	Odvodenie matematického modelu pre zmiešavač kvapalín 14
	1.2	Odvodenie matematického modelu pre plášťový výmenník tepla 15
	1.3	Regresné priamky 17
2	Vybı	ný proces v MATLAB 20
	2.1	Návrh regulátora
	2.2	Nominálne riadenie procesu 22
3	Vybı	ný proces v riadiacom systéme FOXBORO26
	3.1	Integrovaný riadiaci konfigurátor - Compoundy a bloky 27
	3.2	Opis riadeného systému 28
	3.3	FoxDraw - vytvorenie vizualizačnej obrazovky 3
	3.4	Nominálne riadenie vybraného procesu 35
	3.5	Adaptívne riadenie vybraného procesu
		3.5.1 Predladenie a Selftuning
		3.5.2 Grafické závislosti adaptívneho riadenia
	3.6	Porovnanie riadenia
Záv	er	
Zozi	nam pou	titej literatúry 50
Príl	ohy	
	Prílo	a A
	Prílo	a B 55
	Prílo	a C 50

Zoznam symbolov a skratiek

x(t)	stĺpcový vektor stavových veličín
u(t)	stĺpcový vektor vstupných veličín
y(t)	stĺpcový vektor výstupných veličín
V	objem kvapalín [m ³]
q	objemový prietok kvapalín [m ³ .min ⁻¹]
c(t)	mólová koncentrácia kvapalín meniaca sa v čase [kmol.m ⁻³]
C ^s	mólová koncentrácia kvapalín v ustálenom stave [kmol.m ⁻³]
α	koeficient prechodu tepla [kJ. min ⁻¹ .m ⁻² .K ⁻¹]
Α	plocha prestupu tepla [m ²]
ρ	hustota kvapalín [kg.m ⁻³]
<i>C</i> _p	hmotnostná tepelná kapacita kvapalín [kJ. kg ⁻¹ .K ⁻¹]
$\vartheta(t)$	teplota kvapalín meniaca sa v čase [K]
ϑ^s	teplota kvapalín v ustálenom stave [K]
М	mólová hmotnosť [kg.kmol ⁻¹]
W	objemový hmotnostný zlomok [%]
Т	časová konštanta [min ⁻¹]
Ζ	zosilnenie

Zoznam obrázkov

Obrázok 1 – Vybraný proces
Obrázok 2 – Grafická závislosť hustoty od mólovej koncentrácie s jej regresnou
priamkou 19
Obrázok 3 – Grafická závislosť tepelnej kapacity od mólovej koncentrácie s jej
regresnou priamkou 19
Obrázok 4 – Simulinková schéma procesu 20
Obrázok 5 – Bloková schéma URO 22
Obrázok 6 – Simulačná schéma procesu s dvomi regulátormi 23
Obrázok 7 – Simulovaná grafická závislosť koncentrácie roztoku na výstupe zo
zmiešavača kvapalín a žiadanej koncentrácie od času
Obrázok 8 – Simulovaná grafická závislosť teploty roztoku na výstupe z plášťového
výmenníka tepla a žiadanej teploty od času 25
Obrázok 9 – Schéma prepojenia blokov vybraného procesu v ICC
Obrázok 10 – Schéma prepojenia blokov nominálneho riadenia v ICC
Obrázok 11 – Schéma prepojenia blokov adaptívneho riadenia v ICC 31
Obrázok 12 – Obrazovka parametrov
Obrázok 13 – Obrazovka s grafickými závislosťami
Obrázok 14 – Obrazovka aparatúry nominálneho riadenia
Obrázok 15 – Obrazovka aparatúry adaptívneho riadenia
Obrázok 16 – Nominálne riadenie vybraného procesu
Obrázok 17 – Priebeh nominálneho riadenia koncentrácie roztoku pri skokových
zmenách
Obrázok 18 – Priebeh nominálneho riadenia koncentrácie roztoku pri skokových
zmenách so zásahom poruchovej veličiny
Obrázok 19 – Priebeh nominálneho riadenia teploty roztoku pri skokových zmenách
Obrázok 20 – Adaptívne riadenie vybraného procesu
Obrázok 21 – Nastavenie parametrov FBTUNE bloku pre zmiešavač kvapalín 40

Obrázok 22 – Nastavenie parametrov FBTUNE bloku pre plášťový výmenník tepla
Obrázok 23 – Nastavenie parametrov FFTUNE bloku pre zmiešavač kvapalín
a plášťový výmenník tepla 41
Obrázok 24 – Priebeh predladenia regulátora pred adaptívnym riadením koncentrácie
roztoku
Obrázok 25 – Priebeh predladenia regulátora pred adaptívnym riadením teploty roztoku
Obrázok 26 – Priebeh adaptívneho riadenia koncentrácie roztoku pri skokových
zmenách
Obrázok 27 – Priebeh adaptívneho riadenia koncentrácie roztoku pri skokových
zmenách so zásahom poruchovej veličiny
Obrázok 28 – Priebeh adaptívneho riadenia teploty roztoku pri skokových zmenách

Zoznam tabuliek

Tabuľka 1 – Parametre vybraného procesu
Tabuľka 2 – Hodnoty potrebné na regresnú priamku 18
Tabul'ka 3 – Parametre regulátora počas adaptívneho riadenia zmiešavača kvapalín
Tabuľka 4 – Parametre regulátora počas adaptívneho riadenia plášťového výmenníka
tepla
Tabuľka 5 – Porovnanie nominálneho a adaptívneho riadenia koncentrácie roztoku
Tabuľka 6 – Porovnanie nominálneho a adaptívneho riadenia teploty roztoku

Úvod

V priemyselnej výrobe sa kladie veľký dôraz na technologickú úroveň. S rozvíjajúcou sa technologickou úrovňou výroby sa znižujú výrobcom náklady, časová náročnosť a pod., zvyšuje sa produkcia a následne aj výnosy. Ale popri zvyšujúcej sa technologickej úrovni výroby sa musí rozvíjať aj automatizácia výroby, t.j. jej riadenie.

Dôležitým aspektom je výber vhodného riadiaceho systému. Vhodného v zmysle takom, ktorý nám zjednoduší implementačné prostredie a podmienky pre rýchlu prácu s modelmi. Mojim výberom bol riadiaci systém FOXBORO, ktorý je široko komplexný, pričom je ľahko pochopiteľný, má širokú škálu funkcií a dobre sa s nim manipuluje, čo budete môcť sledovať aj v práci.

FOXBORO zabezpečuje riadenie procesov, ktoré vyžadujú napríklad nepretržitú prevádzku alebo dokonalú bezpečnosť.

Ako proces som si vybral systém jedného zmiešavača kvapalín a jedného plášťového výmenníka tepla zapojených za sebou. Takéto zapojenie sa nachádza v rôznych odvetviach priemyslu, preto všetky parametre budú nadobúdať reálne hodnoty z tabuliek.

Cieľom práce je navrhnúť riadenie zvoleného procesu a implementovať ho pomocou riadiaceho systému I/A Series FOXBORO. Uskutočnil som nominálne a adaptívne riadenie procesu, ktoré z týchto riadení je výkonnejšie som popísal ďalej v práci.

1 Vybraný proces

Riadený proces (obr. 1) predstavuje sústavu dvoch zariadení. Prvým zariadením je zmiešavač kvapalín a druhým je plášťový výmenník tepla. Úlohou zmiešavača kvapalín je zmiešať dva roztoky o rôznych koncentráciách na to, aby výstupom bola tekutina požadovanej koncentrácie. Úlohou plášťového výmenníka tepla je ohriať/ochladiť vstupujúcu kvapalinu (vystupujúcu zo zmiešavača kvapalín) pomocou teploty pary na to, aby výstupom bola tekutina požadovanej teploty. Kvapalina vstupujúca do procesu je vodný roztok NaCl. Do zmiešavača kvapalín vstupujú dve vetvy týchto vodných roztokov NaCl o rôznych koncentráciách meniacich sa v čase.

Obrázok 1 – Vybraný proces

Parametre pre zr	niešavač kvapalín	Parametre pre plášťový výmenník tepla			
Veličina Hodnota		Veličina	Hodnota		
$q_0 [m3.min^{-1}]$	0,5	$\alpha [kJ.min^{-1}.m^{-2}.K^{-1}]$	72		
$q_1 [m3.min^{-1}]$	0,5	A [m ²]	15		
$q_2=q_0+q_1 [m3.min^{-1}]$	1	V ₂ [m ³]	6		
V ₁ [m ³]	5	ρ [kg.m ⁻³]	z regresnej priamky		
c_0^{s} [kmol.m ³]	1,5	$c_{p} [kJ.kg^{-1}.K^{-1}]$	z regresnej priamky		
c_1^{s} [kmol.m ³] 4,5		$\vartheta_{v}^{s}[K]$	293		
		$\vartheta_p^{s}[K]$	373		

Tabuľka 1 - Parametre vybraného procesu

Hustotu ρ a tepelnú kapacitu c_p je treba získať z regresnej priamky. Z dôvodu, že obidve veličiny sú závislé od mólovej koncentrácie (bližšie v kapitole 1.3).

1.1 Odvodenie matematického modelu pre zmiešavač kvapalín

Z materiálovej bilancie odvodíme dynamický matematický model [1]:

$$\frac{d[V_1c_2(t)]}{dt} = -q_2c_2(t) + q_0c_0(t) + q_1c_1(t) \qquad c_2(0) = c_2^s$$
(1)

Po úprave je rovnica pre zmiešavač kvapalín (1) v tvare:

$$T_1 \frac{dc_2(t)}{dt} = -c_2(t) + Z_1 c_0(t) + Z_2 c_1(t) \qquad c_2(0) = c_2^s$$
(2)

pričom platí, že časové konštanty a zosilnenia sú v tvare:

$$T_1 = \frac{V_1}{q_0 + q_1} = 5 \text{ min}$$
 $Z_1 = \frac{q_0}{q_0 + q_1} = 0,5$ $Z_2 = \frac{q_1}{q_0 + q_1} = 0,5$ (3)

Matematický model rovnovážneho stavu:

Podmienky rovnovážneho stavu:

$$\frac{dc_2(t)}{dt} = 0 \tag{4}$$

$$c_2(0) = c_{20} = c_2^s \tag{5}$$

Po zavedení podmienok (4) a (5), platných pre rovnovážny stav, do vzťahu (2) dostávame rovnovážny stav pre zmiešavač kvapalín:

$$0 = -c_2^s + Z_1 c_0^s + Z_2 c_1^s \tag{6}$$

Výpočet koncentrácie roztoku v rovnovážnom stave:

$$c_2^s = Z_1 c_0^s + Z_2 c_1^s = 3 \, kmol.m^{-3} \tag{7}$$

Odvodenie odchýlkového modelu:

Zmiešavač kvapalín je lineárny, nevyskytuje sa v ňom žiadna nelinearita a teda nie je ho treba linearizovať. Tak pri odvodení odchýlkového modelu spravíme rozdiel dynamického matematického modelu a matematického modelu v rovnovážnom stave.

Vstupné odchýlkové veličiny:

$$u_1(t) = c_0(t) - c_0^s \tag{8}$$

$$u_2(t) = c_1(t) - c_1^s \tag{9}$$

Stavová odchýlková veličina:

$$x_1(t) = c_2(t) - c_2^s \tag{10}$$

Dynamický odchýlkový model:

$$\frac{dx_1(t)}{dt} = -\frac{1}{T_1} x_1(t) + \frac{Z_1}{T_1} u_1(t) + \frac{Z_2}{T_1} u_2(t)$$
(11)

Výstupná odchýlková veličina:

 $y_1 = x_1(t) \tag{12}$

1.2 Odvodenie matematického modelu pre plášťový výmenník tepla

Zjednodušujúce predpoklady:

• zanedbané tepelné kapacity stien plášťového výmenníka tepla

- zanedbané straty tepla do okolia (plášťový výmenník tepla je dokonale izolovaný)
- roztok v plášťovom výmenníku tepla je dokonale premiešavaný
- prietok ohrievaného roztoku je konštantný
- objem ohrievaného roztoku je konštantný
- parametre sú konštantné
- tlak v systéme je konštantný

Z entalpickej bilancie odvodíme dynamický matematický model [1]:

$$\frac{d[V_2\rho c_p \vartheta(t)]}{dt} = -q_2\rho c_p \vartheta(t) + \alpha A[\vartheta_p(t) - \vartheta(t)] + q_2\rho c_p \vartheta_v(t) \qquad \vartheta(0) = \vartheta^s$$
(13)

Po úprave je rovnica pre plášťový výmenník tepla (13) v tvare:

$$T_2 \frac{d\vartheta(t)}{dt} = -\vartheta(t) + Z_3 \vartheta_p(t) + Z_4 \vartheta_v(t) \qquad \qquad \vartheta(0) = \vartheta^s$$
(14)

pričom platí, že časové konštanty a zosilnenia sú v tvare:

$$T_{2} = \frac{V_{2}\rho c_{p}}{\alpha A + q_{2}\rho c_{p}} = 4,7185 \text{ min}$$

$$Z_{3} = \frac{\alpha A}{\alpha A + q_{2}\rho c_{p}} = 0,2136 \qquad Z_{4} = \frac{q_{2}\rho c_{p}}{\alpha A + q_{2}\rho c_{p}} = 0,7864 \qquad (15)$$

Matematický model rovnovážneho stavu:

Podmienky rovnovážneho stavu:

$$\frac{d \vartheta(t)}{dt} = 0 \tag{16}$$

$$\vartheta(0) = \vartheta_0 = \vartheta^s \tag{17}$$

Po zavedení podmienok (16) a (17), platných pre rovnovážny stav, do vzťahu (14) dostávame rovnovážny stav pre plášťový výmenník tepla:

$$0 = -\vartheta^s + Z_3 \vartheta^s_p + Z_4 \vartheta^s_v$$

Výpočet teploty roztoku v rovnovážnom stave:

$$\vartheta^{s} = Z_{3}\vartheta^{s}_{p} + Z_{4}\vartheta^{s}_{v} = 37,08 \ ^{o}C = 310,08 \ K$$
⁽¹⁹⁾

(18)

Odvodenie odchýlkového modelu:

Plášťový výmenník tepla je lineárny, nevyskytuje sa v ňom žiadna nelinearita a teda nie je ho treba linearizovať. Tak pri odvodení odchýlkového modelu spravíme rozdiel dynamického matematického modelu a matematického modelu v rovnovážnom stave.

Vstupné odchýlkové veličiny:

$$u_{3}(t) = \vartheta_{p}(t) - \vartheta_{p}^{s}$$
(20)

$$u_4(t) = \vartheta_{\nu}(t) - \vartheta_{\nu}^s \tag{21}$$

Stavová odchýlková veličina:

$$x_2(t) = \vartheta(t) - \vartheta^s \tag{22}$$

Dynamický odchýlkový model:

$$\frac{dx_2(t)}{dt} = -\frac{1}{T_2} x_2(t) + \frac{Z_3}{T_2} u_3(t) + \frac{Z_4}{T_2} u_4(t)$$
(23)

Výstupná odchýlková veličina:

 $y_2 = x_2(t) \tag{24}$

1.3 Regresné priamky

Regresné priamky je nutné robiť pre dve veličiny. Ide o hustotu ρ a tepelnú kapacitu c_p. Z dôvodu, že obidve veličiny sú závislé od mólovej koncentrácie. Keďže

vstupné veličiny riadeného procesu sú vstupné mólové koncentrácie roztokov $c_0(t)$ a $c_1(t)$, potom cez mólovú koncentráciu $c_2(t)$ na výstupe je nutné prepočítať hustotu a tepelnú kapacitu.

Hodnoty vodných roztokov NaCl na zistenie regresnej priamky z tabuliek [2]:

%hmot.	t. c [kmol.m ⁻³] ρ [kg.m ⁻³]		c _p [kJ.kg ⁻¹ .K ⁻¹]
7	1,258	1050	3,843
11	2,033	1080	3,697
13,6	2,560	1100	3,609
16,2	3,105	1120	3,534
18,8	3,667	1140	3,462
21,2	4,208	1160	3,396
23,1	4,645	1175	3,345

Tabuľka 2 - Hodnoty potrebné na regresnú priamku

Mólové koncentrácie som získal výpočtom cez objemové hmotnostné percentá vzťahom:

$$c_{NaCl} = \frac{\rho w_{NaCl}}{M_{NaCl}}$$
(25)

c_{NaCl} – mólová koncentrácia NaCl

 $\rho - hustota$

w_{NaCl} – objemový hmotnostný zlomok NaCl

M_{NaCl} – mólová hmotnosť NaCl (hodnota je 58,44 kg.kmol⁻¹)

Všetky hodnoty (tab. 2) sú uvádzané pre teplotu 20 °C. Preto budeme predpokladať, že hodnota vstupnej teploty roztoku sa nebude meniť, t.j. vstupné prúdy do zmiešavača kvapalín nebudeme ohrievať, budú vstupovať do procesu pri izbovej teplote čo je cca 20 °C.

Regresná priamka pre hustotu p je v tvare:

$$\rho = 36.9c_2(t) + 1004.8$$

V grafickej forme má takýto tvar:

Obrázok 2 – Grafická závislosť hustoty od mólovej koncentrácie s jej regresnou priamkou

Regresná priamka pre tepelnú kapacitu c_p je v tvare:

$$c_p = -0.1445c_2(t) + 3.9984$$

(27)

V grafickej forme má takýto tvar:

Obrázok 3 - Grafická závislosť tepelnej kapacity od mólovej koncentrácie s jej regresnou priamkou

(26)

2 Vybraný proces v programe MATLAB

Vybraný proces som opísal v Simulinku pomocou schémy (obr. 4). Sledoval som dynamické vlastnosti zmiešavača kvapalín aj plášťového výmenníka tepla. Schéma obsahuje S-funkciu pre zmiešavač kvapalín a S-funkciu pre plášťový výmenník tepla. Prepočet hustoty a tepelnej kapacity bol obsiahnutý priamo v S-funkcií pre plášťový výmenník tepla.

Ako prvé som overil vypočítané rovnovážne stavy. Potom som sledoval ustálenú koncentráciu roztoku na výstupe zo zmiešavača kvapalín a ustálenú teplotu roztoku na výstupe z plášťového výmenníka tepla pri skokových zmenách vstupných veličín.

Obrázok 4 – Simulinková schéma procesu

2.1 Návrh regulátora

Zvolil som si návrh PI regulátora, pretože je schopný odstrániť trvalú regulačnú odchýlku a zabezpečí dosiahnutie žiadanej veličiny. PI regulátor je opísaný vo FOXBORe rovnicou (28) [4].

$$m_b = \frac{100}{P} \left[\left(\frac{1}{Is} + A \right) r - \left(\frac{1}{Is} + 1 \right) c_f \right] f_r + b$$
(28)

$$\tau = 0 \tag{29}$$

$$c_{f} = \frac{c}{1 + \tau s + 0.5(\tau s)^{2}}$$
(30)

kde za jednotlivé premenné rovnice (28) dosadím:

 $m_b = m_f + b = (m.f_r) + b$, kde m = vstupná veličina u

$$A = 1, b = 0, f_r = 100$$

 $c_{\rm f} = c = v \acute{y}$ stupná veličina y

r = žiadaná hodnota w

a rovnica po zjednodušení má tvar:

$$u = \frac{100}{P} \left(\frac{1}{Is} + 1\right) e \tag{31}$$

kde e(t) = w(t) - y(t), je regulačná odchýlka vstupujúca do regulátora, P je pásmo proporcionality a I je integračná časová konštanta.

Keďže riadenie som robil iba pomocou MATLABu, tak vzťahy medzi rovnicami PI regulátora vo FOXBORE a v MATLABe sú v tvare:

$$G_R(s) = \frac{U(s)}{E(s)} = Z_R\left(1 + \frac{1}{T_i s}\right)$$
(32)

potom upravenou rovnicou (31) a porovnanou s (32) je výsledok:

$$\frac{100}{P} \left(\frac{1}{I_s} + 1\right) = Z_R \left(1 + \frac{1}{T_i s}\right) \tag{33}$$

kde na záver môžeme vidieť vzťahy medzi zosilneniami a integračnými časovými konštantami:

$$P = \frac{100}{Z_R} \tag{34}$$

$$I = T_o \tag{35}$$

Podľa rovnice (28) som vytvoril blokovú schému URO (obr. 5), kde za riadený systém je dosadený prenos.

Obrázok 5 – Bloková schéma URO

2.2 Nominálne riadenie vybraného procesu

Mojou snahou bolo riadiť v procese zmiešavača kvapalín výstupnú koncentráciu roztoku c_2 pomocou vstupnej koncentrácie roztoku c_0 , kde druhá vstupná koncentrácia roztoku c_1 hrala rolu poruchy. V procese plášťového výmenníka tepla som riadil zase výstupnú teplotu roztoku ϑ pomocou vstupnej teploty pary ϑ_p . Zmiešavač kvapalín bol opísaný v simulácii prenosom. Plášťový výmenník tepla bol pre zmenu v simulácií opísaný S-funkciami, v ktorých sa už teplota roztoku neaplikuje v Kelvinoch, ale v stupňoch Celzia. Na prepočet hustoty a tepelnej kapacity som v simulácií použil obyčajne funkcie.

V simulačnej schéme (obr. 6) je zmiešavač kvapalín označený modrou farbou a plášťový výmenník tepla červenou. Kde blok "regulator" je subsystém (obr. 5, ale bez bloku prenosu), ktorý obsahuje PI regulátor na riadenie výstupnej koncentrácie roztoku c_2 zo zmiešavača kvapalín pomocou vstupnej koncentrácie roztoku c_0 . Blok "regulator1" je subsystém (obr. 5, ale bez bloku prenosu), ktorý obsahuje PI regulátor na riadenie výstupnej teploty roztoku ϑ z plášťového výmenníka tepla pomocou vstupnej teploty pary ϑ_p . PI regulátory pre zmiešavač kvapalín aj pre plášťový výmenník tepla som vypočítal pomocou metódy umiestnenia pólov [5]. Póly som si zvolil tak, aby bol priebeh aperiodický.

Parametre PI regulátora riadeného zmiešavač kvapalín (ak pól s_1 =-1) sú Z_R = 18 a T_i = 1,80 min. Parametre PI regulátora riadeného plášťový výmenník tepla (ak pól s_1 =-1) sú Z_R = 39,56 a T_i = 1,79 min.

Obrázok 6 – Simulačná schéma procesu s dvomi regulátormi

Na obrázku 7 je zobrazený priebeh koncentrácie roztoku v zmiešavači kvapalín z počiatočnej koncentrácie 3 kmol.m⁻³ (koncentrácia v rovnovážnom stave) a v čase 10 minút na žiadanú koncentráciu 3,5 kmol.m⁻³. Pričom v čase 50 minút som spôsobil poruchu zmenou vstupnej koncentrácie roztoku c₀, ale proces sa za krátku chvíľu vráti späť na žiadanú hodnotu.

Obrázok 7 – Simulovaná grafická závislosť koncentrácie roztoku na výstupe zo zmiešavača kvapalín a žiadanej koncentrácie od času

Na obrázku 8 je zobrazený priebeh teploty roztoku v plášťovom výmenníku tepla z počiatočnej teploty 37,08 °C (teplota v rovnovážnom stave) a v čase 10 minút na žiadanú teplotu 47,08 °C.

Obrázok 8 – Simulovaná grafická závislosť teploty roztoku na výstupe z plášťového výmenníka tepla a žiadanej teploty od času

3 Vybraný proces v riadiacom systéme FOXBORO

FOXBORO je decentralizovaný riadiaci systém. Tento systém bol vytvorený, aby spĺňal potreby automatizácie u komplikovaných integrovaných systémov. Taktiež patrí do skupiny systémov, ktorých úlohou je efektívne riadenie technologických procesov. Efektívne riadenie zlepšuje schopnosť riadiť, predvídať a reagovať na zmeny podmienok v systéme. Zabezpečuje riadenie procesov, ktoré vyžadujú nepretržitú prevádzku a dokonalú bezpečnosť. FOXBORO I/A Series System je kombináciou flexibility, bezpečnosti a vysokej úrovne zosieť vania [3].

Časti riadiaceho systému FOXBORO [4], ktoré som využil:

- ICC Integrovaný riadiaci konfigurátor (Integrated Control Configurator) slúži na programovanie riadiaceho systému. V tomto prostredí sa uskutočňuje tvorba a spájanie blokov v štruktúre compoundu, zmena, kopírovanie a odstraňovanie compoundov a blokov.
- FoxDraw je grafický editor pre vytváranie a zmeny displejov slúžiacich na vizualizáciu dynamiky riadených procesov.
- FoxView je rozhraním medzi užívateľom a procesom.
- FoxSelect umožňuje zobrazenie zoznamu compoundov a blokov spolu so zobrazením ich stavov. Používa sa na zapnutie a vypnutie compoundov a ich priradených blokov.
- AIM AT AIM Archive Toolbox zahŕňa programy, ktoré umožňujú archiváciu sledovaných údajov v čase. Umožňuje export archivovaných údajov aj vo forme TXT, ktoré je možné ďalej spracovať v programoch (napr. MATLAB).

3.1 Integrovaný riadiaci konfigurátor – Compoundy a bloky

Compound je logický súbor blokov, ktoré uskutočňujú stratégiu riadenia. Blok je súčasťou súboru algoritmov, ktoré plnia určité riadiace úlohy v štruktúre compoundu. Vnútri tejto štruktúry môže byť hocijaký blok v compounde spojený s iným blokom v ďalšom compounde systému [3].

Blok má jeden alebo viac vstupov/výstupov a uskutočňuje preddefinovanú procesnú funkciu, ktorá je špecifikovaná algoritmom. Funkcie môžu byť spojité, ladder logic a sekvenčné, ktoré sa môžu kombinovať a prispôsobovať potrebám užívateľa [4].

Typy blokov, ktoré som vo FOXBORE použil:

- Blok CALCA poskytuje logické funkcie a aritmetické výpočty vnútri jedného integrovaného prostredia. Pracuje ako väčšina programovateľných kalkulačiek. Jednoduchý výpočet programu je definovaný ako jednoduchý postupný výpočet v každom kroku programu. Každý krok programu obsahuje operačný kód, ktorý identifikuje, aká operácia má byť použitá [4].
- Blok LLAG slúži na implementáciu diferenciálnych rovníc. Nastavenie je možné pre jednu diferenciálnu rovnicu s jedným vstupom. Takže ak mám diferenciálnu rovnicu s dvomi vstupmi, treba ju rozdeliť na dve diferenciálne rovnice pre každý vstup jednotlivo.
- Blok PIDA predstavuje regulátor so spätnou väzbou. Možno ho nastaviť ako regulátor proporcionálny (P), integračný (I), proporcionálny + derivačný (PD), proporcionálny + integračný (PI), proporcionálny + integračný + derivačný (PID), neovplyvňujúci PID (NPID), PI s dopravným oneskorením (PITAU), PID s dopravným oneskorením (PIDTAU). Pomocou vstupov (meraných veličín) dokáže vypočítať výstup a tak reaguje akčným zásahom na základe zadaného set pointu.

- Blok FBTUNE slúži na adaptívne ladenie premenných regulátora so spätnou väzbou, ale platí to iba pre regulátory zahrňujúce proporcionálnu a integračnú zložku.
- Blok FFTUNE slúži na poskytovanie náhrady pre vstup pričom ladí parametre kompenzátora. Vhodný napríklad pri poruchových veličinách.

3.2 Opis riadeného systému

Použil som štyri bloky typu CALCA (presné nastavenie parametrov týchto blokov sa nachádza v Prílohe A) s názvami:

- PARAMETRE_ZMIESAVAC slúži na výpočet časovej konštanty (T₁) a zosilnení (Z₁ a Z₂) pre zmiešavač kvapalín.
- PARAMETRE_VYMENNIK slúži na prepočet hustoty a tepelnej kapacity, závislých od mólovej koncentrácie, podľa regresnej priamky. Ďalej na výpočet časovej konštanty (T₂) a zosilnení (Z₃ a Z₄) pre výmenník.
- VYSTUP_C2 slúži na výpočet výstupnej koncentrácie roztoku c₂ zo zmiešavača kvapalín sčítaním čiastkových koncentrácií c₂₁ a c₂₂, ktoré sú výstupom z LLAG blokov predstavujúcich diferenciálne rovnice pre zmiešavač kvapalín.
- VYSTUP_T slúži na výpočet výstupnej teploty roztoku ϑ z výmenníka sčítaním čiastkových teplôt ϑ₁ a ϑ₂, ktoré sú výstupom z LLAG blokov predstavujúcich diferenciálne rovnice pre plášťový výmenník tepla.

A štyri bloky typu LLAG (presné nastavenie parametrov týchto blokov sa nachádza v Prílohe B) s názvami:

 DIF_ZMIESAVAC1 – slúži na transformáciu diferenciálnej rovnice pre zmiešavač kvapalín, týkajúcich sa vstupnej koncentrácie roztoku c₀ a prvej čiastkovej výstupnej koncentrácie c₂₁.

- DIF_ZMIESAVAC2 slúži na transformáciu diferenciálnej rovnice pre zmiešavač kvapalín, týkajúcich sa vstupnej koncentrácie roztoku c₁ a druhej čiastkovej výstupnej koncentrácie c₂₂.
- DIF_VYMENNIK1 slúži na transformáciu diferenciálnej rovnice pre plášťový výmenník tepla, týkajúcich sa vstupnej teploty roztoku θ_v a prvej čiastkovej výstupnej teploty θ₁.
- DIF_VYMENNIK2 slúži na transformáciu diferenciálnej rovnice pre plášťový výmenník tepla, týkajúcich sa vstupnej teploty pary θ_p a druhej čiastkovej výstupnej teploty θ₂.

Obrázok 9 – Schéma prepojenia blokov vybraného procesu v ICC

Ďalej dva bloky typu PIDA, jeden pre zmiešavač kvapalín a jeden pre plášťový výmenník tepla, (presné nastavenie parametrov týchto blokov sa nachádza v Prílohe C) s názvami:

 REG_C2 – slúži na implementáciu PI regulátora pre zmiešavač kvapalín, kde riadiacou veličinou je vstupná koncentrácia roztoku c₀ a riadenou veličinou je výstupná koncentrácia roztoku zo zmiešavača kvapalín c₂. • REG_T – slúži na implementáciu PI regulátora pre plášťový výmenník tepla, kde riadiacou veličinou je vstupná teplota pary ϑ_p a riadenou veličinou je výstupná teplota roztoku z plášťového výmenníka tepla ϑ .

Obrázok 10 – Schéma prepojenia blokov nominálneho riadenia v ICC

Potom dva bloky typu FBTUNE [6], jeden pre riadenie zmiešavača kvapalín a jeden pre riadenie plášťového výmenníka tepla, (presné nastavenie parametrov týchto blokov sa nachádza v Prílohe C) s názvami:

- FBTUNE_C2 slúži na predladenie a samotné adaptívne ladenie parametrov (Z_R a T_i) PI regulátora pre zmiešavač kvapalín.
- FBTUNE_T slúži na predladenie a samotné adaptívne ladenie parametrov (Z_R a T_i) PI regulátora pre plášťový výmenník tepla.

A dva bloky typu FFTUNE [6], jeden pre riadenie zmiešavača kvapalín a jeden pre riadenie plášťového výmenníka tepla, (presné nastavenie parametrov týchto blokov sa nachádza v Prílohe C) s názvami:

 FFTUNE_C1 – slúži na dopredné ladenie parametrov kompenzátora, pričom sa bude kompenzovať koncentrácia roztoku c1 druhého vstupného prúdu do zmiešavača kvapalín, ktorá vystupuje v procese ako poruchová veličina. FFTUNE_C2 – slúži na dopredné ladenie parametrov kompenzátora, pričom sa bude kompenzovať koncentrácia roztoku c₂ vystupujúca zo zmiešavača kvapalín, ktorá má vplyv na hustotu a tepelnú kapacitu vstupujúce do procesu plášťového výmenníka tepla (prepočítavané pomocou regresnej priamky).

Obrázok 11 – Schéma prepojenia blokov adaptívneho riadenia v ICC

3.3 FoxDraw – vytvorenie vizualizačnej obrazovky

Na vytvorenie vizualizačnej obrazovky slúži grafický zobrazovací editor FoxDraw. Pomocou tohto editora som vytvoril štyri obrazovky, pričom medzi tromi sa dá prepínať (obrazovka parametrov, obrazovka grafov a obrazovka aparatúry) a z jednej obrazovky (obrazovka aparatúry – nominálne riadenie) sa dá ešte prepnúť do druhej obrazovky (obrazovka aparatúry – adaptívne riadenie) a späť. Prvá obrazovka (obr. 12) predstavuje všetky parametre systému zmiešavača kvapalín a plášťového výmenníka tepla ako aj hodnoty parametrov nominálneho a adaptívneho regulátora. Priamo na obrazovke je možné vykonať zmeny a meniť hodnoty vstupných veličín, žiadaných hodnôt a parametrov nominálneho regulátora (parametre adaptívneho regulátora sú iba informatívne ukazované a nedajú sa meniť, pretože ich regulátor počíta sám).

Parametre pre zmiesavac				Riadenie koncentracie			
Zosilnenie Zl	0.500		Zia	dana hodnota	3.00 kmol	L/m3	
Zosilnenie Z2	0.500		No	minalne	Adaptij	vne	
Casova konstanta Tl	5.00	min	Ti	1 80	Ti 0	0272	
Vstup 1 - koncentracia c0	3.00	kmol/m3	7 *	18	77 3	86.25	
Vstup 2 - koncentracia cl	3.00	kmol/m3	41	10	4L 9	100.25	
Vystup - koncentracia c2	3.00	kmol/m3					
Parametre pre vym	enni	k tepl	a	Riadenie	teplot	<u>y</u>	
Zosiinenie Z3		0.214		Ziadana hodnot	a 40.00 C	3	
Zosilnenie Z4		0.786		Nominalne	Adaptiv	vne	
Casova konstanta T2		4.72	min				
Vstup 1 - teplota vstupneho	prudu	20,00	С	Ti 1.7) Ti 0	.0541	
Vstup 2 - teplota pary		113.6	С	Zr 39.5	5 Zr 3	06.94	
Vystup – teplota vystupneho	prudu	40.00	С				
Obrazovka grafov							

Obrázok 12 - Obrazovka parametrov

Druhá obrazovka (obr. 13) obsahuje grafické priebehy riadiacich veličín (aj poruchovú veličinu c_1 zmiešavača kvapalín), riadených veličín a žiadaných hodnôt pre zmiešavač kvapalín a pre plášťový výmenník tepla. Priamo na obrazovke je tiež možné vykonať zmeny žiadaných hodnôt a poruchovej veličiny zmiešavača kvapalín.

Obrázok 13 – Obrazovka s grafickými závislosťami

Tretia obrazovka (obr. 14) reprezentuje schému riadenia zmiešavača kvapalín a riadenia plášťového výmenníka tepla. Zobrazené je nominálne riadenie procesov (obr. 27 – ružový obdĺžnik). Je možne meniť žiadané hodnoty, vstupné veličiny, poruchovú veličinu a parametre PI regulátorov.

Štvrtá obrazovka (obr. 15) reprezentuje schému riadenia zmiešavača kvapalín a riadenia plášťového výmenníka tepla. Zobrazené je adaptívne riadenie procesov (obr. 28 – ružový obdĺžnik). Je možne meniť žiadané hodnoty, vstupné veličiny, poruchovú veličinu a môže sa dať spustiť aj predladenie regulátorov. Hodnoty parametrov regulátorov sú zobrazené iba pre informatívny účel, pretože regulátor si ich adaptuje sám.

Obrázok 14 – Obrazovka aparatúry nominálneho riadenia

Obrázok 15 – Obrazovka aparatúry adaptívneho riadenia

3.4 Nominálne riadenie vybraného procesu

Ako v kapitole 2.2 snahou bolo riadiť v procese zmiešavača kvapalín výstupnú koncentráciu roztoku c_2 pomocou vstupnej koncentrácie roztoku c_0 , kde druhá vstupná koncentrácia roztoku c_1 hrala rolu poruchy. V procese plášťového výmenníka tepla som riadil zase výstupnú teplotu roztoku ϑ pomocou vstupnej teploty pary ϑ_p (obr. 16).

PI regulátory pre zmiešavač kvapalín aj pre plášťový výmenník tepla som vypočítal pomocou metódy umiestnenia pólov [5]. Póly som si zvolil tak, aby bol priebeh aperiodický.

Parametre PI regulátora riadeného zmiešavač kvapalín (ak pól s₁=-1) sú $Z_R = 18$ a $T_i = 1,80$ min. Parametre PI regulátora riadeného plášťový výmenník tepla (ak pól s₁=-1) sú $Z_R = 39,56$ a $T_i = 1,79$ min.

Obrázok 16 – Nominálne riadenie vybraného procesu

Na obrázku 17 je zobrazený priebeh koncentrácie roztoku v zmiešavači kvapalín pri skokových zmenách z počiatočnej koncentrácie 3 kmol.m⁻³ na žiadané koncentrácie 2,75 kmol.m⁻³; 3,25 kmol.m⁻³ a späť na 3 kmol.m⁻³. Priebeh riadenej veličiny nevykazuje veľké odchýlky od žiadanej hodnoty a má relatívne hladký priebeh aj s maximálnym preregulovaním $\sigma_{max} = 3\%$, ale čas za ktorý sa ustáli je neprimerane dlhý.

Na obrázku 18 je zobrazený presne ten istý priebeh koncentrácie roztoku v zmiešavači kvapalín pri skokových zmenách ako z obrázku 13, ale navyše je tu zobrazené správanie riadenej koncentrácie zásahom poruchovej veličiny (približne od času 35 – 60 min). Zásah poruchovej veličiny spôsobilo vychýlenie riadenej koncentrácie od žiadanej hodnoty. PI regulátor síce dokázal dostať meranú veličinu späť na žiadanú hodnotu, ale trvalo mu to ešte dlhšie ako pri skokových zmenách. Zmena poruchy (koncentrácie roztoku c₁ druhého vstupného prúdu do zmiešavača kvapalín) v čase 36,83 min bola z 3 kmol.m⁻³ na 4,5 kmol.m⁻³ a v čase 52,83 min bola z 4,5 kmol.m⁻³ na 2 kmol.m⁻³.

Obrázok 17 – Priebeh nominálneho riadenia koncentrácie roztoku pri skokových zmenách

Obrázok 18 - Priebeh nominálneho riadenia koncentrácie roztoku pri skokových zmenách so zásahom poruchovej veličiny

Na obrázku 19 je zobrazený priebeh teploty roztoku v plášťovom výmenníku tepla pri skokových zmenách z počiatočnej teploty 40 °C na žiadané teploty 30 °C; 50 °C a späť na 40 °C. Priebeh riadenej veličiny nevykazuje veľké odchýlky od žiadanej hodnoty a má relatívne hladký priebeh aj s maximálnym preregulovaním $\sigma_{max} = 1,69\%$, ale čas za ktorý sa ustáli je neprimerane dlhý.

Obrázok 19 - Priebeh nominálneho riadenia teploty roztoku pri skokových zmenách

3.5 Adaptívne riadenie vybraného procesu

V súvislosti s nominálnym riadením sa riadiace a riadené veličiny nezmenili. Základom je ukázať rozdiel medzi nominálnym a adaptívnym riadením.

Adaptívne riadenie v riadiacom systéme FOXBORO sa dá v tomto prípade uskutočniť pridaním blokov FBTUNE a FFTUNE k hlavnému riadiacemu bloku PIDA [7]. Pôjde o samo nastavujúce sa regulátory (selftuning riadenie), ktoré zabezpečia ladenie parametrov regulátora a dopredné ladenie parametrov kompenzátora.

Obrázok 20 - Adaptívne riadenie vybraného procesu

3.5.1 Predladenie a Selftuning

Predladenie [7] (PRE-TUNE) je dej, ktorý musí adaptívny regulátor vykonať pre identifikáciu vybraného procesu na to, aby mohol na začiatku stanoviť parametre regulátora, ktoré potom počas riadenia môže meniť na ideálnejšie parametre regulátora pre vybraný proces.

Predladenie vykoná adaptívny regulátor sám pred začatím riadenia pri určitých nastaveniach v FBTUNE bloku sekcii PRE-TUNE (obr. 21 a obr. 22). Nastavenia v tejto sekcii pre riadenie zmiešavača kvapalín sú rovnaké ako pre riadenie plášťového výmenníka tepla.

- Parameter PTNREQ (môže byť nastavený na 0, 1 alebo 2) nastavený na hodnotu
 2, pretože ak bol nastavený na 1 nedokázal identifikovať vybraný proces pre nízky rozsah predladenia. Ak je nastavený na hodnotu 0, tak je tento parameter vypnutý.
- Parameter BMP nastavený na hodnotu 10. Nastavenie tohto parametra ma širokú škálu, pretože určuje vychýlenie riadiacej veličiny čo na chvíl'u vychýli aj riadenú veličinu zo žiadanej hodnoty. Táto operácia slúži potom na identifikáciu vybraného procesu, podľa ktorej regulátor navrhne optimálne parametre.

- Parameter DFCT nastavený na hodnotu 0, pretože PI regulátor neobsahuje derivačnú zložku.
- Parameter TRESH nastavený na hodnotu 1. Je to 1% riadenej veličiny a ak pri predladení dosiahne pík 2,5 násobok a viac ako prepočítaná hodnota parametru TRESH, potom je predladenie úspešné.
- V sekcii SELF-TUNE parameter STNREQ nastavený na hodnotu 1, aby sa po predladení spustil selftuning.
- V sekcii SELF-TUNE HOLD sa dajú prednastaviť parametre, ktoré sa nahrajú, ak sa sekcia SELF-TUNE vypne.

Všetky nespomenuté parametre FBTUNE bloku (obr. 21 a obr. 22) si regulátor vypočíta sám a ďalej ich rozvíja pre optimálne riadenie vybraného procesu.

PRE-TUNE	SELF-TUNE				SELF	-TUN	E HOLD
PTNREQ: 1	ITMAX :	0.2723	STNREQ: 1		STHR	EQ: 0	
вмр : 10.00	ITMIN :	0.0111	PROGLT:	0.0000	PIDR	CL: 0	
DFCT : 0.0000	PBMAX :	2.77	PROGUT:	0.0000	PM	:	1000.00
THRESH: 1.00	PBMIN :	0.1387	OVR :	0.1000	IM	:	100.00
	PR_TYP:	1.00	LIM :	80.00	DM	:	0.0000
			PR_FL :	1			

Obrázok 21 – Nastavenie parametrov FBTUNE bloku pre zmiešavač kvapalín

PRE-TUNE	SELF-TUNE				SELF	-TUN	E HOLD
PTNREQ: 1	ITMAX :	0.5412	STNREQ: 1		STHR	EQ: 0	
вмр : 10.00	ITMIN :	0.0137	PROGLT:	0.0000	PIDR	CL: 0	
DFCT : 0.0000	PBMAX :	2.65	PROGUT:	0.0000	PM	:	1000.00
THRESH: 1.00	PBMIN :	0.1326	OVR :	0.1000	IM	:	100.00
	PR_TYP:	0.9917	LIM :	80.00	DM	:	0.0000
			PR_FL :	1			

Obrázok 22 – Nastavenie parametrov FBTUNE bloku pre plášťový výmenník tepla

Na adaptívne ladenie parametrov doprednej kompenzácie slúži FFTUNE blok (obr. 23). Do tohto bloku je možné nahrať až štyri merateľné poruchy (LOAD1, LOAD2, LOAD3, LOAD4). Zmenou jednej z týchto porúch začne adaptácia parametrov regulátora, tak aby zásah poruchy mal čo najmenšie následky.

Nastavenia parametrov v tomto bloku pre riadenie zmiešavača kvapalín sú rovnaké ako pre riadenie plášťového výmenníka tepla. Pre riadenie zmiešavača kvapalín som nastavil ako merateľnú poruchu do LOAD1 koncentráciu roztoku c₁ druhého vstupného prúdu a pre riadenie plášťového výmenníka tepla do LOAD1 koncentráciu roztoku c₂.

• V sekcii SELF-TUNE parameter FTNREQ nastavený na hodnotu 1, aby sa zaplo ladenie parametrov

SELF-TUNE				SELF-TUNE HOLD
FTNREQ: 1		DTUN1 :	1.00	FTHREQ: 0
THRESH:	1.00	DTUN2 :	1.00	
PROGLT:	0.0000	DTUN3 :	1.00	
PROGUT:	0.0000	DTUN4 :	1.00	

Obrázok 23 - Nastavenie parametrov FFTUNE bloku pre zmiešavač kvapalín a plášťový výmenník tepla

Na obrázku 24 je zobrazený priebeh koncentrácie roztoku v zmiešavači kvapalín pri predladení. Regulátor si sám zmení hodnotu riadiacej veličiny, aby vychýlil riadenú veličinu od žiadanej hodnoty pre identifikáciu vybraného procesu, z čoho potom vypočíta parametre regulátora.

Na obrázku 25 je zobrazený priebeh teploty rozkotu v plášťovom výmenníku tepla pri predladení. Regulátor si sám zmení hodnotu riadiacej veličiny, aby vychýlil riadenú veličinu od žiadanej hodnoty pre identifikáciu vybraného procesu, z čoho potom vypočíta parametre regulátora.

Obrázok 24 - Priebeh predladenia regulátora pred adaptívnym riadením koncentrácie roztoku

Obrázok 25 - Priebeh predladenia regulátora pred adaptívnym riadením teploty roztoku

3.5.2 Grafické závislosti adaptívneho riadenia

Na obrázku 26 je zobrazený priebeh koncentrácie roztoku v zmiešavači kvapalín pri skokových zmenách z počiatočnej koncentrácie 3 kmol.m⁻³ na žiadané koncentrácie 2,75 kmol.m⁻³ a 3,25 kmol.m⁻³. Grafická závislosť obsahuje aj predladenie adaptívneho regulátora (od času 1 – 1,33 min). Priebeh riadenej veličiny vykazuje zanedbateľné odchýlky od žiadanej hodnoty s maximálnym preregulovaním $\sigma_{max} = 0,18\%$. Čas, za ktorý sa riadená veličina ustáli je omnoho menší ako pri nominálnom riadení.

Na obrázku 27 je zobrazený presne ten istý priebeh koncentrácie roztoku v zmiešavači kvapalín pri skokových zmenách ako z obrázku 26, ale navyše je tu zobrazené správanie riadenej koncentrácie roztoku zásahom poruchovej veličiny (približne od času 14 – 20 min). Zásah poruchovej veličiny spôsobilo zanedbateľné vychýlenie riadenej koncentrácie roztoku od žiadanej hodnoty. Zmena poruchy (koncentrácie roztoku c_1 druhého vstupného prúdu do zmiešavača kvapalín) v čase 14 min bola z 3 kmol.m⁻³ na 4,5 kmol.m⁻³ a v čase 16,17 min bola z 4,5 kmol.m⁻³.

Obrázok 26 - Priebeh adaptívneho riadenia koncentrácie roztoku pri skokových zmenách

Obrázok 27 - Priebeh adaptívneho riadenia koncentrácie roztoku pri skokových zmenách so zásahom poruchovej veličiny

Na obrázku 28 je zobrazený priebeh teploty roztoku v plášťovom výmenníku tepla pri skokových zmenách z počiatočnej teploty 40 °C na žiadané teploty 30 °C; 50 °C a späť na 40 °C. Grafická závislosť obsahuje aj predladenie adaptívneho regulátora (od času 1,5 – 2,5 min). Priebeh riadenej veličiny vykazuje zanedbateľné odchýlky od žiadanej hodnoty s maximálnym preregulovaním $\sigma_{max} = 0,01\%$. Čas, za ktorý sa riadená veličina ustáli je omnoho menší ako pri nominálnom riadení.

Obrázok 28 - Priebeh adaptívneho riadenia teploty roztoku pri skokových zmenách

Vývoj parametrov adaptívneho regulátora počas riadenia pri skokových zmenách, ktoré sú zobrazené v tabuľkách:

Zmiešavač kvapalín			
Žiadaná hodnota koncentrácie	Ti	Z _R	
3 kmol.m ⁻³	0,0272	386,25	
2,75 kmol.m ⁻³	0,0272	772,80	
3,25 kmol.m ⁻³	0,0366	772,80	
Zásah poruchy	0,0397	406,17	

Tabul'ka 3 - Parametre regulátora počas adaptívneho riadenia zmiešavača kvapalín

Plášťový výmenník tepla		
Žiadaná hodnota teploty [°C]	Ti	Z _R
40	0,0541	153,49
30	0,0541	306,94
50	0,0541	306,94
40	0,0541	306,94

Tabul'ka 4 - Parametre regulátora počas adaptívneho riadenia plášťového výmenníka tepla

3.6 Porovnanie riadenia

Na porovnanie nominálneho riadenia a adaptívneho riadenia v riadiacom systéme FOXBORO som použil ukazovatele kvality (čas regulácie t_{reg} , maximálne preregulovanie σ_{max} a čas maximálneho preregulovania t_{σ}). Tolerancia δ bude rovná jednému percentu žiadanej hodnoty. Čas regulácie je čas, od ktorého sa riadená veličina dostane na trvalo do δ okolia žiadanej veličiny. Maximálne preregulovanie získame výpočtom cez vzorec (36). Čas maximálneho preregulovania je čas, v ktorom nastane maximálne preregulovanie.

$$\sigma_{\max} = \frac{y_{\max} - y(\infty)}{y(\infty) - y(0)}.100\%$$
(36)

Z porovnania nominálneho a adaptívneho riadenia koncentrácie roztoku (tab. 5) vyplýva, že adaptívny regulátor je vo všetkých ukazovateľoch kvality lepší ako nominálny regulátor. Maximálne preregulovanie σ_{max} je veľmi malé u obidvoch riadení, avšak pri adaptívnom riadení je takmer zanedbateľné čo je dobré vidieť aj na obrázku 26.

Riadenie koncentrácie	t _{reg} [min]	σ _{max} [%]	t _σ [min]
Nominálne	18,86	3	19,67
Adaptívne	8,67	0,18	9,17

Tabul'ka 5 - Porovnanie nominálneho a adaptívneho riadenia koncentrácie roztoku

Z porovnania nominálneho a adaptívneho riadenia teploty roztoku (tab. 6) vyplýva, že adaptívny regulátor je tiež vo všetkých ukazovateľoch kvality lepší ako nominálny regulátor. Maximálne preregulovanie σ_{max} je veľmi malé u obidvoch riadení, avšak pri adaptívnom riadení je úplne zanedbateľné čo je dobré vidieť aj na obrázku 28.

Riadenie teploty	t _{reg} [min]	σ _{max} [%]	t _σ [min]
Nominálne	14,57	1,69	15,17
Adaptívne	11,4	0,01	11,67

Tabul'ka 6 - Porovnanie nominálneho a adaptívneho riadenia teploty roztoku

Záver

Cieľom projektu bolo navrhnúť a vytvoriť riadený systém. Tento systém pozostával zo zmiešavača kvapalín a plášťového výmenníka tepla. Systém zmiešavača kvapalín a plášťového výmenníka tepla som opísal pomocou diferenciálnych rovníc až po dynamický odchýlkový model. Keďže vstupné veličiny riadeného procesu sú vstupné mólové koncentrácie roztokov $c_0(t)$ a $c_1(t)$, potom cez mólovú koncentráciu roztoku $c_2(t)$ na výstupe je nutné prepočítať hustotu a tepelnú kapacitu. Z hodnôt vypísaných z tabuliek som spravil závislosť výstupnej koncentrácie roztoku od hustoty a tepelnej kapacity, pomocou ktorej som vykreslil regresnú priamku a na jej základe som získal konštanty tejto regresnej priamky.

Snahou každého riadenia v celej práci bolo v procese zmiešavača kvapalín riadiť výstupnú koncentráciu roztoku c_2 pomocou vstupnej koncentrácie roztoku c_0 , kde druhá vstupná koncentrácia roztoku c_1 hrala rolu poruchy. V procese plášť ového výmenníka tepla som riadil zase výstupnú teplotu roztoku ϑ pomocou vstupnej teploty pary ϑ_p .

Najprv som riadený proces implementoval do MATLABu, pretože tu simulácie prebiehajú rýchlo a potreboval som dopredu vedieť ako sa takýto vybraný proces bude správať a akú má dynamiku. Riadenie vybraného procesu som uskutočnil PI regulátormi. Parametre PI regulátorov som vypočítal pomocou metódy umiestenia pólov. Riadenie prebehlo cez jednu zložitejšiu simulačnú schému, pričom riadené veličiny mali hladké priebehy bez trvalých regulačných odchýlok.

Riadený proces som implementoval do riadiaceho systému I/A Series FOXBORO. V prostredí Integrovaného riadiaceho konfigurátora som vytvoril dva compoundy (prvý pre nominálne riadenie a druhý pre adaptívne riadenie).

Do prvého compoundu som vložil štyri bloky typu CALCA, štyri bloky typu LLAG a dva bloky typu PIDA. Bloky typu CALCA slúžia na výpočet časových konštánt, zosilnení, prepočet hustoty a tepelnej kapacity, výpočet výstupných veličín a prepočet teplôt zo stupňov Celzia na Kelviny. Bloky typu LLAG reprezentujú diferenciálne rovnice systému zmiešavača kvapalín a plášťového výmenníka tepla. Bloky typu PIDA slúžia ako riadiace jednotky, ktoré som nastavil

ako PI regulátory. Bloky sú prepojené pomocou vstupno/výstupných parametrov (obr. 10).

Druhý compound obsahoval presne tie isté bloky ako prvý, ale navyše som sem vložil dva bloky typu FBTUNE a dva bloky typu FFTUNE. Pomocou týchto dvoch typov blokov som už vedel uskutočniť adaptívne riadenie. Bloky typu FBTUNE slúžia na predladenie regulátora a samotný selftuning riadenie. Blok typu FFTUNE slúži na adaptívne ladenie parametrov doprednej kompenzácie a využíva sa najme pri zásahoch poruchových veličín. Bloky sú prepojené pomocou vstupno/výstupných parametrov (obr. 11).

V prostredí FoxDraw som vytvoril štyri užívateľské obrazovky, pričom medzi tromi sa dá prepínať a z jednej obrazovky sa dá ešte prepnúť do ďalšej a späť. Prvá obrazovka zobrazuje parametre systému, kde je možné zadávať aj meniť určité hodnoty. Druhá obrazovka zobrazuje grafické závislosti riadiacich veličín, riadených veličín, žiadaných hodnôt a poruchovej veličiny od času. Tretia a štvrtá obrazovka zobrazuje zapojenie aparatúry (nominálne a adaptívne riadenie), kde je tiež možné zadávať aj meniť určité hodnoty parametrov.

Po numerickom aj grafickom porovnaní som zistil, že adaptívny regulátor bol bez pochýb výkonnejší ako nominálny regulátor. Všetky ukazovatele kvality pri adaptívnom riadení koncentrácie roztoku aj adaptívnom riadení teploty roztoku boli vyhovujúcejšie ako pri nominálnom riadení.

Zoznam použitej literatúry

- [1] Monika Bakošová: prednášky z predmetu Modelovanie v procesnom priemysle,
 2007
- Bafrncová Soňa, Šefčíková Milica, Vajda Milan: Chemické inžinierstvo.
 Tabuľky a grafy, Slovenská technická univerzita v Bratislave, 2000
- [3] I/A Series Electronic Documentation V7.0, Invensys Systems, Inc., 2002
- [4] Radka Doležalová: bakalárska práca, Riadiaci systém FOXBORO, 2008
- [5] Monika Bakošová, Miroslav Fikar, Ľuboš Čirka: Základy automatizácie, Slovenská technická univerzita v Bratislave, 2006
- [6] H.L.C.M. Stapper: Manual for COURSE ON I/A SERIES CONTROLLERS, 2004
- [7] Mário Briš: semestrálny projekt, Adaptívne riadenie v priemyselnom riadiacom systéme FOXBORO, 2009

Prílohy

Elektronická verzia diplomovej práce sa nachádza na priloženom CD.

Príloha A

Parametre Adresa **Popis RI01** 0.5 \mathbf{q}_0 **RI02** 0.5 q_1 5 **RI03** V_1 STEP01 ADD RI01 RI02 $q_0 + q_1$ STEP02 OUT M01 q_2 STEP03 DIV RI03 M01 V_1/q_2 STEP04 OUT RO01 T_1 STEP05 DIV RI01 M01 q_0/q_2 STEP06 OUT RO02 Z_1 STEP07 DIV RI02 M01 q_1/q_2 STEP08 OUT RO03 Z_2

CALCA blok PARAMETRE_ZMIESAVAC

CALCA blok PARAMETRE_VYMENNIK

Parametre	Adresa	Popis
RI01	72	α
RI02	15	А
RI03	6	V_2
RI04	1	q_2
RI05	:VYSTUP_C2.RO03	c ₂
M01	36.9	k - hustota

M03 0.1445 k - tepelná kapacita M04 3.9984 q - tepelná kapacita M05 0.0 q - tepelná kapacita M04 SUB M05 M03 0 - 0.1445 STEP02 OUT M06 q . STEP03 MUL M01 RI05 $36.9c_2$ + 1004.8 STEP04 OUT M07 q . STEP05 ADD M07 M02 $36.9c_2$ + 1004.8 STEP06 OUT M08 ρ STEP07 MUL M06 RI05 $-0.1445c_2$ STEP08 OUT M09 c_p STEP10 OUT M10 c_p STEP11 MUL RI01 RI02 $a.A$ STEP12 OUT M11 $q_2.\rho. c_p$ STEP13 MUL M12 M10 $q_2.\rho. c_p$ STEP16 OUT M13 $a.A + q_2.\rho. c_p$ STEP17 ADD M11 M13 $a.A + (a.A + q_2.\rho. c_p)$ STEP18 OUT	M02	1004.8	q - hustota
M04 3.9984 q - tepelná kapacita M05 0.0 STEP01 SUB M05 M03 0 – 0.1445 STEP02 OUT M06 STEP03 MUL M01 RI05 36.9c2 STEP04 OUT M07 STEP05 ADD M07 M02 36.9c2 + 1004.8 STEP06 OUT M08 ρ STEP07 MUL M06 RI05 -0.1445c2 STEP08 OUT M09 -0.1445c2 + 3.9984 STEP09 ADD M09 M04 -0.1445c2 + 3.9984 STEP10 OUT M10 cp STEP10 OUT M10 cp STEP11 MUL R101 R102 α.A STEP12 OUT M11 - STEP13 MUL R104 M08 q2.ρ STEP14 OUT M12 - STEP15 MUL M12 M10 q2.ρ. cp STEP16 OUT M13 - STEP17 ADD M11 M13 α.A + q2.ρ. cp) STEP18 OUT M14 - STEP19 DIV M11 M14 q2.ρ. cp/ (α.A + q2.ρ. cp)	M03	0.1445	k - tepelná kapacita
M05 0.0 STEP01 SUB M05 M03 0 – 0.1445 STEP02 OUT M06	M04	3.9984	q - tepelná kapacita
STEP01 SUB M05 M03 0 - 0.1445 STEP02 OUT M06 36.9c2 STEP03 MUL M01 R105 36.9c2 STEP04 OUT M07 36.9c2 + 1004.8 STEP05 ADD M07 M02 36.9c2 + 1004.8 STEP06 OUT M08 ρ STEP06 OUT M08 0.0.1445c2 STEP07 MUL M06 R105 -0.1445c2 STEP08 OUT M09 -0.1445c2 + 3.9984 STEP09 ADD M09 M04 -0.1445c2 + 3.9984 STEP10 OUT M10 cp STEP11 MUL R101 R102 α.A STEP12 OUT M11 - STEP13 MUL R104 M08 q2.p STEP14 OUT M12 - STEP15 MUL M12 M10 q2.p. cp STEP16 OUT M13 α.A + q2.p. cp STEP18 OUT M14 - STEP19 DIV M11 M14 α.A / (α.A + q2.p.cp) STEP20 OUT R001 Z3 STEP21 DIV M13 M14 q2.p((α.A + q2.p.cp)) <	M05	0.0	
STEP02 OUT M06 STEP03 MUL M01 RI05 36.9c2 STEP04 OUT M07 STEP05 ADD M07 M02 36.9c2 + 1004.8 STEP06 OUT M08 p STEP07 MUL M06 RI05 -0.1445c2 STEP08 OUT M09 -0.1445c2 + 3.9984 STEP09 ADD M09 M04 -0.1445c2 + 3.9984 STEP10 OUT M10 cp STEP11 MUL RI01 RI02 α.A STEP12 OUT M11 STEP13 MUL RI04 M08 q2.p STEP14 OUT M12 STEP15 MUL RI04 M08 q2.p. cp STEP16 OUT M12 STEP16 STEP17 ADD M11 M13 α.A + q2.p. cp STEP18 OUT M14 STEP19 STEP19 DIV M11 M14 α.A / (α.A + q2.p.cp) STEP20 OUT RO01 Z3 STEP21 DIV M13 M14 q2.p.Cp / (α.A + q2.p.Cp) STEP23 MUL RI03 M08 V2.p STEP24 OUT M15 STEP25 M	STEP01	SUB M05 M03	0 - 0.1445
STEP03 MUL M01 R105 36.9c2 STEP04 OUT M07 36.9c2 + 1004.8 STEP05 ADD M07 M02 36.9c2 + 1004.8 STEP06 OUT M08 ρ STEP07 MUL M06 R105 -0.1445c2 STEP08 OUT M09 -0.1445c2 + 3.9984 STEP09 ADD M09 M04 -0.1445c2 + 3.9984 STEP10 OUT M10 cp STEP11 MUL R101 R102 α.A STEP12 OUT M11 STEP13 STEP13 MUL R104 M08 q2.ρ STEP14 OUT M12 - STEP15 MUL M12 M10 q2.ρ. cp STEP16 OUT M13 - STEP17 ADD M11 M13 α.A + q2.ρ. cp STEP18 OUT M14 - STEP19 DIV M13 M14 q2.ρ. cp / (α.A + q2.ρ. cp) STEP21 DIV M13 M14 q2.ρ. cp / (α.A + q2.ρ. cp) STEP22 OUT RO02 Z4 STEP23 MUL R103 M08 V2.ρ STEP24 OUT M15 - <td>STEP02</td> <td>OUT M06</td> <td></td>	STEP02	OUT M06	
STEP04 OUT M07 STEP05 ADD M07 M02 36.9c ₂ + 1004.8 STEP06 OUT M08 ρ STEP07 MUL M06 R105 -0.1445c ₂ STEP08 OUT M09 -0.1445c ₂ + 3.9984 STEP09 ADD M09 M04 -0.1445c ₂ + 3.9984 STEP10 OUT M10 cp STEP11 MUL R101 R102 α.A STEP12 OUT M11 - STEP13 MUL R104 M08 q ₂ .ρ STEP14 OUT M12 - STEP15 MUL M12 M10 q ₂ .ρ. cp STEP16 OUT M13 α.A + q ₂ .ρ. cp STEP17 ADD M11 M13 α.A + q ₂ .ρ. cp STEP18 OUT M14 - STEP19 DIV M11 M14 α.A / (α.A + q ₂ .p. cp) STEP20 OUT R001 Z ₃ STEP21 DIV M13 M14 q ₂ .ρ.cp / (α.A + q ₂ .p.cp) STEP23 MUL R103 M08 V ₂ .ρ STEP24 OUT M15 -	STEP03	MUL M01 RI05	$36.9c_2$
STEP05 ADD M07 M02 $36.9c_2 + 1004.8$ STEP06 OUT M08 ρ STEP07 MUL M06 R105 $-0.1445c_2$ STEP08 OUT M09 $-0.1445c_2 + 3.9984$ STEP09 ADD M09 M04 $-0.1445c_2 + 3.9984$ STEP10 OUT M10 c_p STEP11 MUL R101 R102 $\alpha.A$ STEP12 OUT M11 Z STEP13 MUL R104 M08 $q_2.\rho$ STEP14 OUT M12 Z STEP15 MUL M12 M10 $q_2.\rho. c_p$ STEP16 OUT M13 $\alpha.A + q_2.\rho. c_p$ STEP17 ADD M11 M13 $\alpha.A + (\alpha.A + q_2.\rho. c_p)$ STEP18 OUT M14 Z_3 STEP20 OUT R001 Z_3 STEP21 DIV M13 M14 $q_2.\rho.c_p / (\alpha.A + q_2.\rho.c_p)$ STEP22 OUT R002 Z_4 STEP23 MUL R103 M08 $V_2.\rho.c_p$ STEP24 OUT M15 Z_2	STEP04	OUT M07	
STEP06 OUT M08 ρ STEP07 MUL M06 RI05 $-0.1445c_2$ STEP08 OUT M09 $-0.1445c_2 + 3.9984$ STEP09 ADD M09 M04 $-0.1445c_2 + 3.9984$ STEP10 OUT M10 c_p STEP11 MUL RI01 RI02 $\alpha.A$ STEP12 OUT M11 $\alpha.A$ STEP13 MUL RI04 M08 $q_2.\rho$ STEP14 OUT M12 $-0.1445c_2 + 3.9984$ STEP15 MUL RI01 RI02 $\alpha.A$ STEP16 OUT M11 $-0.1445c_2 + 3.9984$ STEP11 MUL RI01 RI02 $\alpha.A$ STEP12 OUT M11 $-0.1445c_2 + 3.9984$ STEP13 MUL RI01 RI02 $\alpha.A$ STEP14 OUT M12 $-0.1445c_2 + 3.9984$ STEP15 MUL M12 M10 $q_2.\rho. c_p$ STEP16 OUT M13 $\alpha.A + q_2.\rho. c_p$ STEP17 ADD M11 M14 $\alpha.A / (\alpha.A + q_2.\rho. c_p)$ STEP18 OUT M10 Z_3 STEP20 OUT RO01 Z_3 STEP22 OUT RO02 Z_4 STEP23 MUL RI03 M08 <td>STEP05</td> <td>ADD M07 M02</td> <td>$36.9c_2 + 1004.8$</td>	STEP05	ADD M07 M02	$36.9c_2 + 1004.8$
STEP07 MUL M06 R105 -0.1445c ₂ STEP08 OUT M09 -0.1445c ₂ + 3.9984 STEP09 ADD M09 M04 -0.1445c ₂ + 3.9984 STEP10 OUT M10 cp STEP11 MUL R101 R102 α.A STEP12 OUT M11 a.A STEP13 MUL R104 M08 q ₂ .ρ STEP14 OUT M12 - STEP15 MUL M12 M10 q ₂ .ρ. cp STEP16 OUT M13 α.A + q ₂ .ρ. cp STEP18 OUT M14 . STEP19 DIV M11 M13 α.A + q ₂ .ρ. cp STEP18 OUT M14 . STEP19 DIV M11 M14 α.A / (α.A + q ₂ .ρ.cp) STEP20 OUT RO01 Z ₃ STEP21 DIV M13 M14 q ₂ .ρ.cp / (α.A + q ₂ .ρ.cp) STEP23 MUL R103 M08 V ₂ .ρ STEP24 OUT M15 .	STEP06	OUT M08	ρ
STEP08 OUT M09 STEP09 ADD M09 M04 -0.1445c ₂ + 3.9984 STEP10 OUT M10 cp STEP11 MUL R101 R102 α.A STEP12 OUT M11 a.A STEP13 MUL R104 M08 q2.ρ STEP14 OUT M12 a.A STEP15 MUL M12 M10 q2.ρ. cp STEP16 OUT M13 a.A + q2.ρ. cp STEP17 ADD M11 M13 a.A + q2.ρ. cp STEP18 OUT M14 step19 STEP19 DIV M11 M14 a.A / (a.A + q2.p. cp) STEP20 OUT R001 Z3 STEP21 DIV M13 M14 q2.ρ.cp / (a.A + q2.ρ.cp) STEP22 OUT R002 Z4 STEP23 MUL R103 M08 V2.ρ STEP24 OUT M15 step25	STEP07	MUL M06 RI05	$-0.1445c_2$
STEP09 ADD M09 M04 -0.1445c ₂ + 3.9984 STEP10 OUT M10 cp STEP11 MUL RI01 RI02 α.A STEP12 OUT M11	STEP08	OUT M09	
STEP10 OUT M10 c _p STEP11 MUL RI01 RI02 α.A STEP12 OUT M11	STEP09	ADD M09 M04	$-0.1445c_2 + 3.9984$
STEP11 MUL RI01 RI02 α.A STEP12 OUT M11 STEP13 MUL RI04 M08 q2.ρ STEP14 OUT M12 STEP15 MUL M12 M10 q2.ρ. cp STEP16 OUT M13 α.A + q2.ρ. cp STEP17 ADD M11 M13 α.A + q2.ρ. cp STEP18 OUT M14 STEP19 STEP19 DIV M11 M14 α.A / (α.A + q2.ρ. cp) STEP20 OUT RO01 Z3 STEP21 DIV M13 M14 q2.ρ. cp / (α.A + q2.ρ. cp) STEP22 OUT RO02 Z4 STEP23 MUL RI03 M08 V2.ρ STEP24 OUT M15 V2.ρ.cp	STEP10	OUT M10	c _p
STEP12 OUT M11 STEP13 MUL RI04 M08 q2.ρ STEP14 OUT M12 STEP15 MUL M12 M10 q2.ρ. cp STEP16 OUT M13 α.A + q2.ρ. cp STEP17 ADD M11 M13 α.A + q2.ρ. cp STEP18 OUT M14 STEP19 DIV M11 M14 α.A / (α.A + q2.ρ. cp) STEP20 OUT RO01 Z3 STEP21 DIV M13 M14 q2.ρ. cp / (α.A + q2.ρ. cp) STEP23 MUL RI03 M08 V2.ρ STEP24 OUT M15 V2.ρ.cp	STEP11	MUL RI01 RI02	a.A
STEP13 MUL RI04 M08 q2.ρ STEP14 OUT M12 STEP15 MUL M12 M10 q2.ρ. cp STEP16 OUT M13 α.A + q2.ρ. cp STEP17 ADD M11 M13 α.A + q2.ρ. cp STEP18 OUT M14	STEP12	OUT M11	
STEP14 OUT M12 STEP15 MUL M12 M10 q2.ρ. cp STEP16 OUT M13 α.A + q2.ρ. cp STEP17 ADD M11 M13 α.A + q2.ρ. cp STEP18 OUT M14 STEP19 STEP19 DIV M11 M14 α.A / (α.A + q2.ρ. cp) STEP20 OUT RO01 Z3 STEP21 DIV M13 M14 q2.ρ. cp / (α.A + q2.ρ. cp) STEP22 OUT RO02 Z4 STEP23 MUL R103 M08 V2.ρ STEP24 OUT M15 V2.ρ.cp	STEP13	MUL RI04 M08	q2.p
STEP15 MUL M12 M10 q2.ρ. cp STEP16 OUT M13	STEP14	OUT M12	
STEP16 OUT M13 STEP17 ADD M11 M13 α.A + q ₂ .ρ. c _p STEP18 OUT M14 STEP19 DIV M11 M14 α.A / (α.A + q ₂ .ρ.c _p) STEP20 OUT RO01 Z ₃ STEP21 DIV M13 M14 q ₂ .ρ.c _p / (α.A + q ₂ .ρ.c _p) STEP22 OUT RO02 Z ₄ STEP23 MUL RI03 M08 V ₂ .ρ STEP24 OUT M15 V ₂ .ρ.c _p	STEP15	MUL M12 M10	q ₂ .ρ. c _p
STEP17 ADD M11 M13 α.A + q_2.ρ. c_p STEP18 OUT M14 STEP19 DIV M11 M14 α.A / (α.A + q_2.ρ.c_p) STEP20 OUT RO01 Z ₃ STEP21 DIV M13 M14 q_2.ρ.c_p / (α.A + q_2.ρ.c_p) STEP22 OUT RO02 Z ₄ STEP23 MUL RI03 M08 V_2.ρ STEP24 OUT M15 V_2.ρ.c_p	STEP16	OUT M13	
STEP18 OUT M14 STEP19 DIV M11 M14 α.A / (α.A + q_2.ρ.c_p) STEP20 OUT RO01 Z ₃ STEP21 DIV M13 M14 q_2.ρ.c_p / (α.A + q_2.ρ.c_p) STEP22 OUT RO02 Z ₄ STEP23 MUL RI03 M08 V ₂ .ρ STEP24 OUT M15 V ₂ .ρ.c_p	STEP17	ADD M11 M13	α .A + q ₂ .p. c _p
STEP19 DIV M11 M14 α.A / (α.A + q_2.ρ.c_p) STEP20 OUT RO01 Z ₃ STEP21 DIV M13 M14 q_2.ρ.c_p / (α.A + q_2.ρ.c_p) STEP22 OUT RO02 Z ₄ STEP23 MUL RI03 M08 V ₂ .ρ STEP24 OUT M15 V ₂ .ρ.c_p	STEP18	OUT M14	
STEP20 OUT RO01 Z ₃ STEP21 DIV M13 M14 q ₂ .ρ.c _p /(α.A + q ₂ .ρ.c _p) STEP22 OUT RO02 Z ₄ STEP23 MUL RI03 M08 V ₂ .ρ STEP24 OUT M15 V ₂ .ρ.c _p	STEP19	DIV M11 M14	$\alpha.A / (\alpha.A + q_2.\rho.c_p)$
STEP21 DIV M13 M14 q2.ρ.cp / (α.A + q2.ρ.cp) STEP22 OUT RO02 Z4 STEP23 MUL RI03 M08 V2.ρ STEP24 OUT M15 STEP25 MUL M15 M10 V2.ρ.cp	STEP20	OUT RO01	Z_3
STEP22 OUT RO02 Z4 STEP23 MUL RI03 M08 V2.ρ STEP24 OUT M15 STEP25 MUL M15 M10 V2.ρ.cp	STEP21	DIV M13 M14	$q_2.\rho.c_p / (\alpha.A + q_2.\rho.c_p)$
STEP23 MUL RI03 M08 V2.ρ STEP24 OUT M15 STEP25 MUL M15 M10 V2.ρ.cp	STEP22	OUT RO02	Z_4
STEP24 OUT M15 STEP25 MUL M15 M10 V2.ρ.cp	STEP23	MUL RI03 M08	V ₂ .ρ
STEP25 MUL M15 M10 V ₂ .ρ.c _p	STEP24	OUT M15	
	STEP25	MUL M15 M10	V ₂ .ρ.c _p

STEP26	OUT M16		
STEP27	DIV M16 M14	$V_2.\rho.c_p / (\alpha.A)$	$+ q_2.\rho.c_p)$
STEP28	OUT RO03	T_2	
	CALCA blok VYSTUP	_C2	
Parametre	Adresa		Popis
RI01	:PARAMETRE_ZMIESAV	AC.RO02	Z_1
RI02	:PARAMETRE_ZMIESAV	AC.RO03	Z_2
RI03	1.5		c ₀
RI04	4.5		c_1
RI05	:DIF_ZMIESAVAC1.OUT		c ₂₁
RI06	:DIF_ZMIESAVAC2.OUT		c ₂₂
STEP01	MUL RI01 RI03		$Z_1.c_0$
STEP02	OUT RO01		
STEP03	MUL RI02 RI04		$Z_2.c_1$
STEP04	OUT RO02		
STEP05	ADD RI05 RI06		$c_{21} + c_{22}$
STEP06	OUT RO03		c ₂

CALCA blok VYSTUP_T

Parametre	Adresa	Popis
RI01	:PARAMETRE_VYMENNIK.RO01	Z_3
RI02	:PARAMETRE_VYMENNIK.RO02	Z_4
RI03	100	$\vartheta_P v {}^o\!C$
RI04	20	$\vartheta_v v \ ^oC$
RI05	:DIF_VYMENNIK1.OUT	ϑ_1
RI06	:DIF_VYMENNIK2.OUT	ϑ_2
M01	273	
STEP01	ADD M01 RI03	273 + 100

STEP02	OUT M02	$\vartheta_{\mathrm{P}} \mathrm{v} \mathrm{K}$
STEP03	ADD M01 RI04	273 + 20
STEP04	OUT M03	$\vartheta_v v K$
STEP05	MUL RI01 M02	$Z_3.\vartheta_p$
STEP06	OUT RO01	
STEP07	MUL RI02 M03	$Z_4.\vartheta_v$
STEP08	OUT RO02	
STEP09	ADD RI05 RI06	$\vartheta_1+\vartheta_2$
STEP10	OUT M04	ϑvK
STEP11	SUB M04 M01	ϑ - 273
STEP12	OUT RO03	ϑv°C

Príloha B

LLAG blok DIF_ZMIESAVAC1

Parametre	Adresa	Popis
MEAS	:VYSTUP_C2.RO01	$Z_1.c_0$
LAGTIM	:PARAMETRE_ZMIESAVAC.RO01	T_1

LLAG blok DIF_ZMIESAVAC2

Parametre	Adresa	Popis
MEAS	:VYSTUP_C2.RO02	$Z_2.c_1$
LAGTIM	:PARAMETRE_ZMIESAVAC.RO01	T_1

LLAG blok DIF_VYMENNIK1

Parametre	Adresa	Popis
MEAS	:VYSTUP_T.RO01	$Z_3.\vartheta_p$
LAGTIM	:PARAMETRE_VYMENNIK.RO03	T_2

LLAG blok DIF_VYMENNIK2

Parametre	Adresa	Popis
MEAS	:VYSTUP_T.RO02	$Z_4.\vartheta_v$
LAGTIM	:PARAMETRE_VYMENNIK.RO03	T_2

Príloha C

PIDA blok REG_C2

Parametre	Adresa	Popis
MEAS	:VYSTUP_C2.RO03	c ₂
MODOPT	4	PI regulátor
HSCI1	3.75	horné ohraničenie SP
LSCI1	2.25	dolné ohraničenie SP
HSCO1	1.5	horné ohraničenie c_0
LSCO1	4.5	dolné ohraničenie c_0

PIDA blok REG_T

Parametre	Adresa	Popis
MEAS	:VYSTUP_T.RO03	ϑ
MODOPT	4	PI regulátor
HSCI1	65	horné ohraničenie SP
LSCI1	0	dolné ohraničenie SP
HSCO1	250	horné ohraničenie ϑ_p
LSCO1	0	dolné ohraničenie ϑ_p

FBTUNE blok FBTUNE_C2

Parametre	Adresa
PIDBLK	:REG_C2.BLKSTA

FBTUNE blok FBTUNE_T

Parametre	Adresa
PIDBLK	:REG_T.BLKSTA

FFTUNE blok FFTUNE_C1

Parametre	Adresa	Popis
PIDBLK	:REG_C2.BLKSTA	
LOAD1	:VYSTUP_C2.RI04	c ₁

FFTUNE blok FFTUNE_C2

Parametre	Adresa	Popis
PIDBLK	:REG_T.BLKSTA	
LOAD1	:VYSTUP_C2.RO03	c ₂