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Abstract

The topic of this thesis is bilevel optimization. Bilevel optimization problems are op-

timization problems where some variables in one optimization problem (the upper level

problem) are constrained to be optimal in a second optimization problem (the lower level

problem). Recent research has shown that several important problems in for example au-

tomatic control can be formulated as bilevel optimization problems. Unfortunately, the

bilevel problems are known to often be very hard to solve in practice and the main focus

in this thesis is therefore to investigate different algorithms to solve them efficiently. In

the thesis, several common types of bilevel problems are discussed. Furthermore, differ-

ent algorithms to solve these kinds of problems are compared theoretically. Finally, some

promising ones are selected to be more thoroughly investigated in numerical experiments

on a large number of randomly generated test problems with the purpose to evaluate the

computational performance and reliability. In these experiments, bilevel problems with

convex quadratic programming problems at the lower level and convex, as well as non-

convex, quadratic programming problems at the upper level are considered. Finally, also

an automatic control related problem is used as a benchmark problem.



Abstrakt

Predmetom tejto práce je dvoj-úrovňová (bilevel) optimalizácia. Problémy dvoj-úrovňovej

optimalizácie sú také problémy, kde niektoré premenné v jednom optimalizačnom probléme

(optimalizačný problém hornej úrovne) musia byt’ optimálne v druhom optimalizačnom

probléme (optimalizačný problém dolnej úrovne). Výskum nedávno ukázal, že niekol’ko

dôležitých optimalizačných problémov, napŕıklad v oblasti automatického riadenia, môže

byt’ formulovaných ako dvoj-úrovňový problém. Naneštastie, dvoj-úrovňové problémy sa v

praxi považujú za výpočtovo vel’mi náročné a teda hlavným ciel’om tejto práce je preskú-

mat’ rozdielne algoritmy, ktoré ich riešia efekt́ıvne. V tejto práci je rozobraných niekol’ko

bežných typov dvoj-úrovňových problémov. Následne, sú v teoretickej rovine rozobraté

a porovnané rôzne algoritmy pre riešenie tohto typ problému. Nakoniec, vybrané slub-

neǰsie vyzerajúce algoritmy sú vyskúšané na vel’kom množstve náhodných numerických

pŕıkladov s ciel’om ukázat’ efekt́ıvnost’ z hl’adiska výpočtového času a spol’ahlivosti. Pre

tieto výpočty boli použité dvoj-úrovňové problémy s konvexnými kvadratickými funkciami

v probléme dolnej úrovne a konvexnými ako aj nekonvexnými kvadratickými funkciami v

probléme hornej úrovne. Nakoniec boli algoritmy odskúšané na štandardnom probléme

riadenia.
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Introduction

Bilevel optimization problems are optimization problems where some variables in one op-

timization problem (the upper level problem) are constrained to be optimal in a second

optimization problem (the lower level problem). They involve a hierarchy of two optimiza-

tion problems. Their application design optimization in process systems engineering or

management and in automatic control, what is important for us. Unfortunately, bilevel

problems are hard to solve by common algorithms which requires development of new ones

which are able to solve these problem. An important property of these algorithms is the

ability to reach a global optimum which is often very hard in these problems. Many algo-

rithms are able to reach only a local optimum. It is enough for some problems but some

of them require a globally optimal solution. In the automatic control one can find convex

problems, which means that both objective functions, in the lower and upper problem

are convex quadratic functions. Moreover, many important problems exist in non-convex

form where the upper level optimization problem consists of a nonconvex quadratic objec-

tive function with linear constraints while the lower level problem has a convex quadratic

objective function.

Many algorithms to solve bilevel problems have been developed and published in the liter-

ature. They were compared with some well-known algorithms, e.g. the algorithm of Bard

and Moore [20]. It is necessary to compare the type of the problem which they are able to

solve, way they deal with the problem, how they transform it with aim to make problem

easier, efficiency of the algorithm in term of the computation time and if they are able to

compute solutions that are guaranteed to be globally optimal. It is also interesting to test

the algorithms in numerical experiments which has been done as a part of this thesis.

ix



Chapter 1

Optimization Preliminaries

This chapter will be opened with basic definitions for optimization. Furthermore, descrip-

tions of typical optimization problems will be given.

1.1 Optimization

Optimization, from the mathematical point of view, is a procedure which focuses on choos-

ing the best element from a set of possibly good alternatives. The objective is to minimize

or maximize a function by repeatedly choosing the values of proper type within an al-

lowed set. In other words, the objective is to find an optimal solution for the objective

function within the set given by restrictions called constraints. Depending on the formula-

tion of the problem one can divide optimization problems into different types, e.g. convex

optimization, non-convex optimization, linear programming, etc. see Fig. 1.1.

1.2 Basic Concepts

In this section will important concepts in the convex and non-convex optimization as convex

functions and sets will be presented.

1



1.2 Basic Concepts 2

Figure 1.1: Division of the optimization problems

1.2.1 Definitions

Definition 1.1 (Convex set) [39] A set Rc ⊂ En is said to be convex if for every pair of

points x1,x2 ⊂ Rc and for every real number α in the range 0 ≤ α ≤ 1, the point

x = αx1 + (1 − α)x2

is located in Rc , i.e., x ∈ Rc.

In other words, set Rc is convex when any two points x1,x2 ∈ Rc are connected by a straight

line and each segment of this line lies within the set Rc. If some points of the line are not

in the Rc, this set is called non-convex. Convexity of the sets is depicted in the Fig. 1.2.

Definition 1.2 (Convex function) [39] A function f(x) defined over a convex set Rc is

said to be convex if for every pair of points x1,x2 ∈ Rc and every real number α in the

range 0 < α < 1, the inequality

f [αx1 + (1 − α)x2] ≤ αf(x1) + (1 − α)f(x2)

holds. If x1 6= x2 and

f [αx1 + (1 − α)x2] < αf(x1) + (1 − α)f(x2)



1.2 Basic Concepts 3

Figure 1.2: Convexity of the sets

then f(x) is said to be strictly convex.

Definition 1.3 (Concave function) [39] If φ(x) is defined over a convex set Rc and

f(x) = −φ(x) is convex, then φ(x) is said to be concave. If f(x) is strictly convex, φ(x) is

strictly concave.

Definition 1.4 (Smooth function) If the second derivative of the function f(x) exists

and is continuous at every point x, the function f(x) is smooth.

1.2.2 General Problem Description

In this thesis, an optimization problem in the form

min
x

f(x) (1.1a)

s.t. gi(x) ≤ 0 i = 1, . . . ,m (1.1b)

hj(x) = 0 j = 1, . . . , p (1.1c)

where f(x) : Rn → R, gi(x) : Rn → R and hj(x) : Rn → R is said to be in a standard form.

The function f(x) is called the cost function, or objective function, gi(x), i = 1, . . . ,m

represent the inequality constraint functions and hi(x), i = 1, . . . ,p denote the equality

constraint functions. If m = p = 0 the problem is said to be unconstrained. The domain

of the optimization problem is given by an intersection of the domains of the objective
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function and constraint functions [5].

D =
m⋂

i=1

dom gi ∩

p⋂

j=1

dom hj (1.2)

If a point x ∈ D satisfies all the equalities and inequalities in (1.1), it is said to be a feasible

point. If there exists one such point then the problem is said to be feasible, otherwise the

problem is said to be infeasible. The feasible point x∗ is an optimal solution of the problem

(1.1). It can be a local minimizer if there is a neighborhood N of x∗ such that f(x∗) ≤ f(x)

for all x ∈ N . A point x∗ is global minimizer if f(x∗) ≤ f(x) for all feasible x [37].

A special case of (1.1) is when the objective function (1.1a) and inequality constraint

functions (1.1b) are convex and the equality constraint functions (1.1c) are affine, that is,

hi(x) = aT
i x− bi. In that case the problem in (1.1) is called a convex optimization problem.

For this kind of problems the fundamental property is that a local minimizer is also a global

minimizer. In other words a locally optimal solution is also a globally optimal solution.

The set in which the problem (1.1) have a feasible solutions is called the feasible set

P = {x ∈ Rn : gi(x) ≤ 0, hj(x) = 0} (1.3)

In a case of empty set we are speaking about an infeasible set. This means, that no

solution for the problem (1.1) can be obtained. The problem is said to be unbounded when

the objective function is unbounded below on the feasible set. This gives evidence that

solution for the problem can not be found. Size of the problem must be strictly proper

(p < n) otherwise system (1.1c) contains redundant rows or is infeasible [37]. In the other

case (p ≥ n) some kind of factorization, e.g. QR or LU [34], has to be used to obtain a

system (1.1c) with full row rank matrices.

1.3 Optimality Conditions

The Karush-Kuhn-Tucker (KKT) optimality conditions are fundamental for many algo-

rithms for constrained optimization problems. They can also be called first-order conditions

because in their derivation properties of the gradients are used.
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The Lagrangian function L : Rn ×Rm ×Rp → R associated with (1.1) plays an important

role in the derivation of the KKT conditions. The Lagrangian is defined as

L(x, λ, µ) = f(x) +
m∑

i=1

λigi(x) +

p∑

j=1

µjhj(x) (1.4)

where λi and µj are Lagrangian multipliers associated with the ith inequality constraint

and jth equality constraint, respectively. The vectors of Lagrangian multipliers λ ∈ Rm

and µ ∈ Rp are called the dual variables for the problem in (1.1). For the optimal triple

(x∗,λ∗,µ∗) Theorem 1.1 must be satisfied.

Theorem 1.1 [5] Assume that the problem (1.1) is convex, gi(x), i = 1, . . . ,m and hj(x), j =

1, . . . ,p are differentiable and strong duality holds (see Theorem 1.2). Then the so-called

KKT conditions are necessary and sufficient conditions for x∗ and (µ∗, λ∗) to be primal

and dual optimal points

∇f(x∗) +
m∑

i=1

λ∗

i∇gi(x
∗) +

p∑

j=1

µ∗

i∇hi(x
∗) = 0 (1.5a)

gi(x
∗) ≤ 0 i = 1, . . . ,m (1.5b)

hj(x
∗) = 0 j = 1, . . . , p (1.5c)

λ∗

i gi(x
∗) = 0 i = 1, . . . ,m (1.5d)

λ∗

i ≥ 0 i = 1, . . . ,m (1.5e)

Proof: See [37, p.329]

In Theorem 1.1, the equation (1.5a) represents stationarity condition, (1.5e) represents

dual feasibility, the last two equations (1.5b)- (1.5c) represent primal feasibility and the

equation (1.5d) is complementarity slackness. In (1.5d) either λi = 0 or gi(x) = 0 satisfies

the equality. If gi(x) < 0 we are speaking about inactive constraint i, in the other case,

gi(x) = 0, we are speaking about active constraint i.

If the objective function is a convex function and the feasible set is convex, the KKT

conditions are sufficient to reach a global minimizer. In the case of a non-convex problem

sufficiency of the KKT conditions is no longer guaranteed.
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1.4 Linear Programming

Linear programming (LP) is a special case of the convex optimization. The problem is

defined as to minimize a linear objective function subject to linear equality and inequality

constraints. The standard form of the problem

min
x

cT x (1.6a)

s.t. AEx = bE (1.6b)

x ≥ 0 (1.6c)

where c,x ∈ Rn×1, bE ∈ Rm×1 and AE ∈ Rm×n. Graphical representation of the LP problem

is depicted in the Fig. 1.3.

Figure 1.3: Optimal solution x∗ in a two dimensional linear programming problem

While there are different kinds of linear problems, each of them can be written in the

form in (1.6). Even if the problem contains inequalities, slack variables z can be used to

transform the problem into the form:

min
x

cT x (1.7a)

s.t. AEx + z = bE (1.7b)

z ≥ 0 (1.7c)
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Assuming the matrix Aǫ from (1.6b) has full row rank, it can be divided as Aǫ = [B,N ]

where B is a matrix with linearly independent columns. Then the linear system Bxb = bǫ

has a unique solution. If x = (xb, 0) then Ax = b and x = (xb, 0) is called a basic

solution. Then components of x which belongs to the matrix B are called basic variables

[34]. However, if one or more basic variables in the basic solution are zeros, the solution of

the problem (1.6) is said to be a degenerate solution. Finally, the basic feasible solution is

a basic solution which takes place in the feasible set, i.e. solution is feasible (x ≥ 0).

1.4.1 Optimality and Duality

Relaxation of the problem in (1.6) can be derived using Lagrangian relaxation. Considering

convexity of the problem, optimality conditions are sufficient for reaching a global minimum

[37]. Using the definition in (1.4) the Lagrangian function of (1.6) is in the form

L(x, µ, λ) = cT x − µT (AEx − bE) − λT x (1.8)

and then necessary conditions for x∗ to be a solution of (1.6) are that there exist vectors

λ and µ such that

AT
E µ + λ = c (1.9a)

AEx = bE (1.9b)

x ≥ 0 (1.9c)

λ ≥ 0 (1.9d)

xiλi = 0 i = 1,2, . . . ,m (1.9e)

Consider a vector triple (x∗,µ∗,λ∗) that satisfies (1.9). Then it holds that

cT x∗ = (AT
E µ∗ + λ∗)T x∗ = (AEx

∗)T µ∗ = bT
E µ∗ (1.10)

which brings us to the dual problem where the objective functions cT x∗ and bT
E µ∗, for the

primal and dual problem respectively, have the same optimal value. The dual problem is
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closely related to the primal one and can be written as

max
µ

bT
E µ (1.11a)

s.t. AT
E µ ≤ c (1.11b)

and by introducing slack variables s problem (1.11) can be reformulated as

max
µ

bT
E µ (1.12a)

s.t. AT
E µ + s = c (1.12b)

s ≥ 0 (1.12c)

The Lagrangian function to the problem in the problem (1.11) is

L(µ, x) = −bT
E µT − xT (c − AEµ) (1.13)

where x ∈ Rn denotes the Lagrange multipliers for the inequality constraints in the dual

problem. The necessary conditions (or KKT conditions) are in the form

AEx = bE (1.14a)

AT
E µ ≤ c (1.14b)

x ≥ 0 (1.14c)

xi(c − AT
E µ)i = 0 i = 1,2, . . . ,n (1.14d)

With the primal-dual problem, there are connected terms “weak ”and “strong ”duality.

Weak duality means that for cT x ≥ bT
E µ (that is, the dual objective is a lower bound on the

primal objective) when both the primal and dual variables are feasible [37]. Strong duality

is fundamental to the theory of LP and is described by the Theorem 1.2

Theorem 1.2

(i) If either problem (1.6) or (1.11) has a (finite) solution, then so does the other, and

the objective values are equal.

(ii) If either problem (1.6) or (1.11) is unbounded, then the other problem is infeasible.
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Proof: See [37, p.361]

In the complementarity conditions (1.9e) and (1.14d) it is easy to see that at least one

of the components xi and si or xi and (c − AT
E µ)i must be equal to zero to satisfy the

condition.

The most commonly used methods are the Simplex Method and Interior Point Methods.

These methods are deeply described and discussed in [37, 34].

1.5 Quadratic Programming

Quadratic programming (QP) is a class of problems belonging to the class of constrained

nonlinear optimization problems. The problem is described by the quadratic objective

function subject to linear constraints in a form of equalities and inequalities. For the

quadratic programming a standard form is stated as

min
x

1

2
xT Hx + cT x (1.15a)

s.t. AEx = bE (1.15b)

AIx ≤ bI (1.15c)

where c,x ∈ Rn×1, H is symmetric Hessian matrix of dimension n × n, rows in AE ∈ Rp×n

are given by {ai ∈ R1×n|i ∈ E} and rows in AI ∈ Rm×n are given by {ai ∈ R1×n|i ∈ I}.

The vectors bE and bI are defined in the same way. The sets E and I represent finite sets

of indices. A graphical representation of the problem (1.15) is depicted in the Fig. 1.4.

Depending on the definiteness of the matrix H, QP problems can be divided into two

classes. The first class is convex QP (strictly convex QP) when H � 0 (H ≻ 0) and the

second one is non-convex QP when H � 0.

The Lagrangian for the problem in (1.15) is defined as

L(x, µ, λ) =
1

2
xT Hx + cT x + λT (AIx − bI) + µT (AEx − bE) (1.16)

Then necessary conditions for x∗ to be a solution of (1.15) are that there exist vectors



1.6 Mixed Integer Linear Programming 10

Figure 1.4: Optimal solution x∗ in a two dimensional quadratic programming problem

µ ∈ Rm and λ ∈ Rp such that the following conditions are satisfied

Hx + AT
E µ + AT

I λ = −c (1.17a)

AEx = bE (1.17b)

AIx ≤ bI (1.17c)

λ ≥ 0 (1.17d)

λi(AIx − bI)i = 0 ,i = 1, . . . ,m (1.17e)

Also in this case active set methods can be employed. For solving QPs there exist methods

like Interior points method or Active-set methods which are described in [37].

1.6 Mixed Integer Linear Programming

In mixed-integer programming (MIP) problems some of the variables are real-valued and

some of them are integer valued. Therefore the model is “mixed”. If the objective function

and constraints are in a linear form, the problem is called a mixed-integer linear program-



1.7 Mixed Integer Quadratic Programming 11

ming (MILP) problem. After introducing binary variables into the LP problem (1.6), the

standard form of an MILP is given as

min
x

cT x (1.18a)

s.t. AEx = bE (1.18b)

x ≥ 0, xi ∈ {0,1},∀i ∈ B (1.18c)

where n = nc + nb and c ∈ Rn×1, AE ∈ Rm×n, bE ∈ Rm×1 and x ∈ Rn×1 and B denotes the

set of indices for the binary variables.

MILP problems are usually solved using branch-and-bound algorithms [22]. There exist

several software for solving MILP problems, e.g. free software like Yalmip or milp.m in

MATLAB and commercial software like CPLEX.

1.7 Mixed Integer Quadratic Programming

The mixed-integer quadratic programming (MIQP) problem is a special case of mixed-

integer nonlinear programming (MINLP). Like in the MILP problem, the MIQP problem

is allowed to contain integer variables as well as the real-valued ones. Then the MIQP can

be derived from (1.15) involving binary variables, which leads to the standard form

min
x

1

2
xT Hx + cT x (1.19a)

s.t. AEx = bE (1.19b)

AIx ≤ bI (1.19c)

xi ∈ {0, 1},∀i ∈ B (1.19d)

where n = nc + nb, c ∈ Rn×1 and x ∈ Rn×1. There B denotes the set of indices for

binary variables. Let AE ,AI ,bE and bI to be defined as in (1.15). The most commonly used

methods for this kind of problems are, [23]:

• Cutting plane methods

• Decomposition methods
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• Logic-based methods

• Branch and bound methods

where branch-and-bound methods are the most commonly used methods. Example of

software that can be used to solve MIQP problems in MATLAB is, mpqp.m or the free

software Yalmip. A well-known commercial software is CPLEX.



Chapter 2

Bilevel Programming

This chapter is opened with a description of bilevel programming problem and its basics.

Furthermore, a theoretical comparison of different algorithms from the literature will be

done.

2.1 Problem Description

An optimization problem constrained by another optimization problem is called a bilevel

programming problem (BLPP). From the mathematical point of view it is a problem with

hierarchical structure where two independent decision-makers appear. One can consider

this problem as a sequential game, which has its origin in the Stackelberg game theory

[38]. That is, optimal reaction vector y of the second player (“follower”) is included in the

decision making of the first player (“leader”). Leader’s reaction vector is denoted as x. This

13
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rule can be represented in a mathematical form of the bilevel program

min
x

F (x, y(x)) (2.1a)

s.t. G(x, y(x)) ≤ 0 (2.1b)

H(x, y(x)) = 0 (2.1c)

y(x) = argmin
y

f(x, y) (2.1d)

s.t. g(x, y) ≤ 0 (2.1e)

h(x, y) = 0 (2.1f)

Equations (2.1a) - (2.1c) describe the leader’s decision subproblem, while (2.1d) - (2.1f) rep-

resent the follower’s decision subproblem. For the comprehensive description, F (x, y) and

f(x, y) are the leader’s and follower’s objective functions, respectively. Further, G(x, y) and

g(x, y) represent inequality constraint functions in the leader’s and follower’s subproblem,

respectively, and H(x, y) and h(x, y) are equality constraint functions in leader’s and fol-

lower’s subproblem, respectively. To build up a complete picture of the problem, it is neces-

sary to define some more terms which will be used for what follows. The relaxed feasible set

for BLPP is defined as Ω = {(x,y) : G(x,y) ≤ 0,H(x,y) = 0,g(x,y) ≤ 0,h(x,y) = 0}.

The follower’s feasible set for the decision variables x of the leader’s problem defined for

every x ∈ X is specified as Ω(x) = {y : y ∈ Y ,h(x,y) = 0,g(x,y) ≤ 0} while the rational

follower’s reaction set for every x ∈ X is defined as M(x) = {y : y ∈ argmin{f(x,y) : y ∈

Ω(x)}}. Finally, it is essential to define the inducible region or feasible set for BLPP as

IR = {(x,y) : (x,y) ∈ Ω,y ∈ M(x)}. This is the set over which the leader may optimize.

All the definitions assume a bounded space, where the optimal solution can be found.
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2.1.1 Relaxation of Bilevel Programming Problems

Using necessary optimality conditions (1.5) and assuming validity of a certain regularity

assumption the BLPP can be replaced with

min
x,y,λ,µ

F (x, y) (2.2a)

s.t. G(x, y) ≤ 0 (2.2b)

H(x, y) = 0 (2.2c)

∇yf(x, y) + λT∇yg(x, y) + µT∇yh(x, y) = 0 (2.2d)

λigi(x, y) = 0, i = 1, . . . ,m (2.2e)

λ ≥ 0 (2.2f)

g(x, y) ≤ 0 (2.2g)

h(x, y) = 0 (2.2h)

Problem (2.1) is said to be relaxed in a form (2.2) when the optimality conditions are not

necessary and sufficient but strong duality still holds. The problem (2.1) is said to be

equivalent with a form (2.2) for linear or convex quadratic follower’s problems.

By inserting (1.6) into (2.1) we obtain convex BLPP with the linear objective function

min
x

cT x + dT y (2.3a)

s.t. AIx − EIy − bI ≤ 0 (2.3b)

x ≥ 0 (2.3c)

min
z

eT y + fT x (2.3d)

s.t. FIy − GIx − hI ≤ 0 (2.3e)

y ≥ 0 (2.3f)

while inserting (1.15) into (2.1) results in BLPP with quadratic objective function where

H1 can be H1 � 0 or H1 � 0 and H2 � 0 for non-convex and convex problem, respectively.
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min
x

1

2
xT H1x + cT x + dT y (2.4a)

s.t. AIx − EIy − bI ≤ 0 (2.4b)

AEx − EEy − bE = 0 (2.4c)

min
z

1

2
yT H2y + eT y + fT x (2.4d)

s.t. FIy − GIx − hI ≤ 0 (2.4e)

FEy − GEx − hE = 0 (2.4f)

Bilevel programming belongs to the class of NP-hard problems, which loosely means that

no polynomial time algorithm exist for solving it unless P = NP [17]. It was proven

that linear bilevel programming [35] and quadratic bilevel programming [14] are NP-hard

as well as finding their local optimum. This is the reason why there do not exist many

effective algorithms for solving these problems. Effectivity of reaching the optimal solution

depends on the form of the problem (2.1). If (2.3) or (2.4) with H1, H2 ≻ 0 is employed,

bilevel problem is said to be convex problem with linear constraints. In case of (2.4) with

H1 � 0 and H2 ≻ 0, bilevel problem is non-convex with linear constraints. In this thesis

both convex problems with linear constraint functions and non-convex problem with linear

constraints in the leader’s subproblem will be considered. However, the follower’s problem

will always be assumed convex.

For solving linear and convex BLPP you can find different algorithms. One possible par-

tition of these algorithms is, [36]:

• Branch-and-bound algorithms

• Cutting plane algorithms

• Barrier and penalty functions algorithms

• Descent algorithms

• Trust region algorithms
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• SQP algorithms

• Heuristics algorithms

• Algorithms for solving follower’s subproblem explicitly (e.g. mp-LP, mp-QP)

• DC programming

• Genetic algorithms

Algorithms based on these methods will be compared in the sequel.

2.1.2 Big-M Formulation

One way of modeling that a constraint can be active or inactive is a so-called big-M for-

mulation. In this approach, a large positive value (scalar variable M) is added in each

constraint (2.2f) and (2.2f) and is multiplied with a binary variable δ. Equations for one

line of (2.2e) are as follows

0 ≤ λi ≤ Mδi (2.5a)

−M(1 − δi) ≤ gi(x) ≤ 0 (2.5b)

where i denotes actually computed constraint and δi ∈ {0,1}. Now one can describe this

as an IF-THEN-ELSE relation

IF δi = 1 THEN

0 ≤ λi and gi(x) = 0 ⇒ constraint i is active

ELSE

λi = 0 and gi(x) ≤ 0 ⇒ constraint i is inactive

This method belongs to those that are used very often, and its drawback is in including

many new binary variables, one for each constraint. Another disadvantage is the selection

of the value for M . Especially dual variables are extra hard since bounds are not known like

in the case of inequality constraints (2.1e) which often can be computed from the problem
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formulation. If one chooses a very small value (e.g. M = 10), the optimal solution in the

original problem has been cut away and is not feasible anymore after the big M formulation.

On the other side, with very large value (e.g. M = 109) one can get numerical problems

and not obtain the solution or the time necessary to obtain the solution could be very long.

Proper value of M is determined by experiments.

2.2 Survey of Bilevel Programming Algorithms

In this section some of the algorithms will be briefly described and compared in a theoretical

way. The main objective is to find similarities and differences between them.

2.2.1 Branch-and-Bound Algorithms

In this group of algorithms, the branch-and-bound (B&B) method is employed to system-

atically enumerate all candidate solutions, where large subsets of fruitless candidates are

discarded by using upper and lower bounds on the objective function value, [40]. A closer

description of the B&B algorithm can be found in [4, 9, 22]

Algorithm 1: [10]

The algorithm described in [10] is applicable to the linear BLPP (2.3). The main principle of

the method is an introduction of binary variables α connected to each inequality constraint

in the follower problem’s constraints (e.g. page 1204 in [10]). These boolean variables

determine whether the constraint holds with equality or not.

Concrete steps can be found on the page 1202 in [10]. The numerical results and computa-

tion times were compared with those obtained by the algorithms of Bard and Moore [20]

and Judice and Faustino [1]. Bard’s algorithm was outperformed by Algorithm 1. In the

latter the same result was obtained in roughly the same computation time but on a less

powerful computer.



2.2 Survey of Bilevel Programming Algorithms 19

Algorithms 2 and 3: [18]

The algorithms described in [18] are used to solve nonlinear BLPP and can guarantee a

global solution only if the follower’s objective function (2.1d) is strictly convex in y for

all y ∈ Ω(x) and also all functions (2.1d) - (2.1f) are twice continuously differentiable.

Furthermore, the leader’s objective function (2.1a) must be continuous and convex in x

and y. To make problem solvable, the KKT conditions (1.5) are used for reformulation and

in this case conditions are changed. The final form of the problem is a one-level problem

with constraints in non-linear and non-convex form like in (2.2).

In Algorithm 2 a combination of depth-first-search and breath-first-search is used to enu-

merate solution possibilities (nodes in a tree) which are then reduced by using implicit

enumeration (e.g. B&B method). Concrete steps can be found on the page 85 in [18]. This

algorithm performed well in terms of CPU time (less than 400 CPU s).

Algorithm 3 finds an ǫ-optimal solution to the general nonlinear BLPP using bisection

method [34]. The steps can be found on the page 86 in [18]. It is necessary for the follower’s

subproblem to be convex. Numerical studies showed that Algorithm 3 performed better

without lower bounds on the follower’s variables because numerical difficulties appeared

when bounds were included. Next drawback is that the algorithm is time consuming in

sense that it attempts to solve subproblems even if they are infeasible.

Algorithm 4: [3]

In the algorithm in [3], f and g are assumed to be smooth and convex, h is linear in y at

fixed x and smooth. The following problem types can be solved by the algorithm:

• linear follower’s problem

• convex follower’s problem

• fractional bilevel problem with constraints ⇒ non-convex follower’s problem

• nonlinearities and non-convexities in both subproblems
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Using the KKT conditions (1.5), the problem is changed into an equivalent one described by

(2.2). Note that the problem is nonlinear and non-convex due to the stationarity conditions

(2.2d) and the complementarity constraints (2.2e).

To solve the problem, first an underestimation is necessary to make, afterwards implicit

enumeration methods,e.g. B&B, can be employed. The one-level problem (2.2) is assumed

to satisfy a linear independence condition. An active set strategy is used for discrete de-

cisions on the set of active constraints. For global optimization of nonlinear mixed-integer

problems the Special Structure Mixed Integer Nonlinear αBB, SMIN-αBB algorithm (a de-

terministic global optimization method based on a B&B framework) or the Global Structure

Mixed Integer Nonlinear αBB, GMIN-αBB algorithm can be used. Detailed description of

both algorithms is in [2].

Examples of such problems can be found on the pages 15-23 in [3] and concrete steps of

the algorithm are described on the page 11.

Algorithm 5: [16]

The algorithm described in [16] is applicable to a convex BLPP. Functions F is assumed to

be convex and H, G are assumed to be non-convex in all their arguments, g is non-convex

and f is strictly convex in y for fixed x and all the functions are smooth. The problem

should be solved after reformulation of the KKT conditions in (1.5) and employing an

active set strategy. Steps can be found on the page 20 in [16]. A global optimal solution is

guaranteed only when F is strictly convex in (x, y), f is quadratic in (x, y) and g is affine.

The numerical results were compared with the barrier method of Aiyoshi and Shimizu [21]

and GRG2 of Lasdon et al. [25]. Both algorithms were outperformed by Algorithm 5 in

the amount of solved problems. An example of the problem and its solution can be found

on page 23 in [16].
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2.2.2 Cutting Plane Algorithms

Cutting-plane methods are optimization methods which iteratively refine a feasible set

or objective function by means of linear inequalities, called cuts. Such procedures are

commonly used to find integer solutions to MILP problems (section 1.6), as well as to solve

general, not necessarily differentiable convex optimization problems [41].

Algorithm 6: [31]

You can find a thorough description of this cutting plane algorithm in [31]. The main

principle is that the original problem is relaxed by ignoring the follower’s minimization.

Introducing new slack variables, the feasible set is defined by a new marginal function which

stands to be concave on M(x) and is constructed by the complementarity conditions (2.2e)

for given values x and y. One of the steps of the algorithm on the page 130 in [31] is the

use of the Tuy’s cut and the Valid cut. During the procedure each cut should eliminate

as much as possible of the unnecessary part of the feasible region and new vertices are

generated. This continues until an optimal solution is found.

Numerically, the algorithm was tested only on small examples found in articles. No com-

parison with other algorithms was made.

2.2.3 Barrier and Penalty Function Algorithms

Barrier and penalty methods are a certain classes of algorithms for solving constrained

optimization problems. A penalty method replaces a constrained optimization problem by

a series of unconstrained problems whose solutions ideally converge to the solution of the

original constrained problem. The unconstrained problems are formed by adding a term

to the objective function that consists of a penalty parameter and a measure of violation

of the constraints. The measure of violation is nonzero when the constraints are violated

and is zero in the region where constraints are not violated, [42]. Basics of these methods

can be found in [37].
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Algorithm 7: [11]

The algorithm described in [11] is applicable to a multi-decision making, multi-level, non-

linear problem. The fact that the duality gap for the follower’s problem is zero for any

specific x ∈ X plays the main role. Using the dual form it is easy to find an interval in which

the optimal value of the follower’s objective function lies. Including the penalty parameter

K a new problem can be defined as minimization of objective function (2.1a) penalized

by duality gap multiplied by parameter K. The main principle is further described on the

page 404 in [11].

In a comparison with other methods, the algorithm easily outperformed the Kth-best

algorithm but does worse than the Bard’s B&B [20] for larger problems. A disadvantage is

that the penalty parameter K is chosen by experiments. This drawback can be eliminated

by increasing the penalty parameter K by small discrete steps α at every iteration. The

algorithm in [6] is using this approach which makes it different from the first algorithm.

2.2.4 Descent Method Algorithms

In the descent methods for finding a local minimum of a function using gradient descent, one

takes steps proportional to the negative of the gradient (or of the approximate gradient) of

the function at the current point. If instead one takes steps proportional to the gradient, one

approaches a local maximum of that function. This procedure is then known as gradient

ascent. Gradient descent is also known as steepest descent, or the method of steepest

descent [43].

Algorithm 8: [36]

The algorithm described in [36] needs F , f, g to be linear functions and the problem is

bounded from below on the M(x). Using the KKT conditions (1.5) one obtains a non-

convex problem in general. A new problem is solved by storing indices of λi for which

a feasible solution satisfy the inequalities in (2.2g) as an equalities. Even if the solution

satisfy the inequalities it does not have to be the optimal one if there exist reduced cost
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values for which the obtained solutions are less than 0 (property of the Simplex tableau).

The algorithm is able to solve the problem to a locally optimal solution but an improved

version can reach a globally optimal solution called “strong locally optimal solution”. Such

solution is reached when there are no neighboring vertices of set Ω which are feasible points

and have smaller function values [36]. That means the global solution is not guaranteed.

An example can be found on the page 383 in [36] and steps of the algorithms can be found

on the page 381. No comparison with other methods was made.

2.2.5 Trust Region Algorithms

The idea in trust region methods is that the algorithm approximates only a certain region

(the so-called trust region) of the objective function with a model function. When an

adequate model of the objective function is found within the trust region then the region

is expanded. Conversely, if the approximation is poor then the region is contracted. Trust

region methods are also known as restricted step methods, [44]. A book about the trust-

region methods is [32].

Algorithm 9: [7]

The principle of the algorithm in [7] is the computation of the affine approximation of the

original bilevel model (2.1) obtained by replacing f and F by their respective first-order

approximations f and F around the current iterate (x,y). Then the upper level decision

vector x is forced to lie within some distance ǫ (the radius of the trust region) of the current

iterate. Distance ǫ is changed every iteration according to a ratio, which represents how

good the trust region model approximates the original model. If the ratio is big ǫ increases,

for the ratio in some ranges ǫ remains and for a small ratio ǫ decreases.

The algorithm behaves like a descent algorithm by construction, but by using the KKT

conditions (1.5) one can obtain an equivalent primal-dual one-level program with the big

M formulation constraints (section 2.1.2). In some occasions a globally optimal solution

can be found by implicit enumeration techniques (e.g. B&B) and this makes the algorithm
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“semi-global”.

A difference between this algorithm and the one in [27] is that the latter one use a penalty

function defined from the duality gap in the objective function after reformulation of the

problem by the KKT conditions.

2.2.6 Explicit Solution Algorithms

This method belongs to those where a multi-parametric approach is used. The main idea is

to first solve the follower’s subproblem for every possible value within the follower’s feasible

set Ω(x). That means to explicitly compute a parametrized solution y(x) for the follower’s

subproblem which leads to a piecewise-affine description of the optimizer. After plugging

this expression into the leader’s subproblem a mixed integer quadratic problem arises.

Algorithm 10: [8]

With the algorithms described in [8], linear BLPP (1.6), quadratic BLPP (1.15), BLPP

with a mixed form of the objective functions (LP| QP) and mixed integer BLPP, also with

disturbances can be solved. In all the cases linear constraints are considered. The main idea

is to divide the follower’s feasible set Ω(x) into K rational follower’s reaction sets M(x),

and search for the global optimum of a simple quadratic (or linear) programming problem

in each area, [8]. It can be done by considering the optimizer of the leader’s subproblem

as a parameter in the follower’s subproblem. Then the follower’s subproblem is recast into

the mp-QP form which is solved by the algorithm described on the page 621 in [8] (mp-QP

algorithm). Similarly an mp-LP algorithm is used to solve follower’s subproblems mp-LP

form. That is, problem (2.1d) - (2.1f) is replaced by a piecewise-affine linear functions

define over K regions due to the problem. When mp-QP or mp-LP problem is formulated,

the algorithm continues in steps describe on the page 614 to finish computations and reach

the globally optimal solution.

Numerical results of the linear BLPP were compared with ones presented in [19]. For

quadratic BLPP results were compared with those in [30] and for a mixed integer BLPP
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comparison was performed by those in [46]. In all cases results were the same but compar-

ison in efficiency of the algorithms or solving time was not done.

2.2.7 DC Programming Algorithms

DC programming is an optimization problem which deals with minimizing of a difference

between convex functions. This approach can be used in non-convex optimization, which

makes it very important and interesting.

Algorithm 12: [15]

Problem adequate for the algorithm in [15] is transformed into DC programming problem,

when the follower’s problem is replaced by its primal-dual optimality constraints (KKT

conditions). In this case the objective function is represented by the linear function where

the penalty function is included. This function is then decompose into the difference of

two convex functions. A heuristic algorithm for solution of the newly defined problem can

be found on the page 219 in [15].

In [29] one can find algorithms for solving DC programming:

• classic B&B on the page 19

• combination of B&B scheme and Outer-Approximation Method on the page 27

• classic Cutting plane algorithm on the page 34

Numerical experiments were not performed for any of the proposed algorithms.

2.2.8 Genetic Algorithms

A genetic algorithm is a search technique used to find exact or approximate solutions to

optimization and search problems. Genetic algorithms are categorized as global search

heuristics and they are a particular class of evolutionary algorithms that use techniques

inspired by evolutionary biology such as inheritance, mutation, selection, and crossover,

[45].
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Algorithm 13: [33]

The algorithm described in [33] combines the underlying structure of genetic algorithms

with some kind of extreme point enumeration. The main idea is to associate chromosomes

with extreme points of the polyhedron S which solves the BLPP. This algorithm provides

optimal or near-optimal solutions. The fitness of a chromosome will evaluate its quality,

penalizing the fact that the associated extreme point is not in an inducible region. After

constructing the first population of chromosomes, the genetic algorithm proceeds by per-

forming crossover, mutation, evaluation and selection, until the stopping condition is met.

In each generation a population of extreme points of S in maintained [33]. The algorithm

can be found on page 17 in [33].

Numerically, the Algorithm 13 was compared with the Kth-best algorithm and with a

different genetic algorithm proposed by Hajezi [28]. The algorithm outperformed the Kth-

best algorithm in terms of CPU time, size of the computed problems and number of the

reached best solutions.

The results from the genetic algorithm of Hajezi and Algorithm 13 were the same. Both

algorithms were able to compute large-size problems. However, Hajezi’s algorithm needed

twice as much computation time to solve the same problem.

2.3 Implemented Algorithms

This section is oriented on a description of implemented algorithms and how they work.

These algorithms guarantee a globally optimal solution.

In this section, the form in (2.4) is restricted to problem in a form

min
x

1

2
xT Qx + cT x + dT z (2.6a)

s.t. AIx − EIz − bI ≤ 0 (2.6b)

min
z

1

2
zT Hz + eT z + fT x (2.6c)

s.t. FIz − GIx − hI ≤ 0 (2.6d)
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All the algorithms rely on the KKT conditions (1.5) for the follower’s subproblem, but they

are addressed in different ways. To solve this problem is hard, because the convex follower’s

problem becomes non-convex in the complementarity conditions. As it was mentioned

before, in the complementarity constraint (2.2e) only one element can be equal to zero

(multiplier or corresponding constraint) for each constraint.

2.3.1 Direct MIQP Approach

This approach is called “direct”, because the complementarity conditions in the follower’s

KKT conditions are “directly” modeled using binary variables (big-M formulation). Better

to say, each equation for complementarity constraints (2.2e) is modeled separately as λi or

gi(x) (noted as slack(i) in (2.3.1)) is equal to zero

i = 1 : length(h) (2.7)

KKT = [KKT, ((lambda(i) == 0)|(slack(i) == 0))]; (2.8)

end (2.9)

It is easy to define these conditions but harder to compute. The way how the algorithm

deals with this problem is by introducing one binary variable for each complementarity

constraint. This approach is called a big-M formulation (Section 2.1.2). When the so-

called IF-THEN-ELSE relation is defined for each line of the complementarity conditions

in (2.8) and MILP or MIQP problem is obtained. Formulation of these problems is defined

in the Section 1.6 and 1.7. Typical procedure to solve mixed integer problem and find and

optimal solution is branch-and-bound. This algorithm also requires to set boundaries of

minimal and maximal reachable value on the variables x and y and also a maximal value

for dual variable λ must be given.

KKT = [KKT, lambda <= 100,−100 <= [x; y] <= 100]; (2.10)

For the code see file with name bil kkt direct.m on CD. If the objective function in (2.6a) is

non-convex, the direct MIQP approach can not be immediately used since MIQP schemes
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require a convex objective function However, this can be achieved by using the method

described in [24]. As a result, problems where the leader’s objective function is a difference

of quadratic function can be used.

2.3.2 Global Nonlinear Solver

In this algorithm the global “BMIBNB”solver is used to solve BLPP reformulated by the

KKT conditions. This solver is an implementation of a standard branch-and-bound (B&B)

algorithm for non-convex problems, based on linear programming relaxation and convex

envelope approximations, [13]. Solving non-convex problem by spatial B&B rely on some

default steps which will be describe in details.

The first is, for each node in a search tree, a nonlinear solver (e.g. SNOPT or fmincon)

is used to compute a feasible and locally optimal solution. This solution represents an

upper bound on the achievable objective function value. In the second step, for each node,

a convex relaxation of the problem (2.2) is derived. In this case “Linear relaxation for

bilevel and quadratic problems” is used. That means, every bilinear and quadratic term is

replaced with a newly introduced linear variable. Based on the bounds on the variables in

original terms, constraints on the new variables must be defined with the aim to make the

relaxation as tight as possible. Based on [12] quadratic terms x2 and y2 are replaced by

linear variables wx and wy, respectively. As an example, every bilinear term xy is replaced

by a new linear variable wxy . Then with the given variables x,y and their upper and lower

bounds xU ,yU and xL,yL, respectively, the following inequalities are added to the original

constraints

wxy ≥ xyL − xLyL + xLy ⇔ (x − xL)(y − yL) ≥ 0 (2.11a)

wxy ≤ xyU − xLyU + xLy ⇔ (x − xL)(yU − y) ≥ 0 (2.11b)

wxy ≤ xyL − xUyL + xUy ⇔ (xU − x)(y − yL) ≥ 0 (2.11c)

wxy ≥ xyU − xUyU + xUy ⇔ (xU − x)(yU − y) ≥ 0 (2.11d)

This procedure is made for every nonlinear term in the problem. The resulting convex

optimization problem (a linear program) is solved and the solution represents a lower bound
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on the achievable objective. Using the obtained lower and upper bounds, a standard B&B

algorithm is used to select a branch variable, branch, prune and finally navigate the global

search. For the code see file bil kkt bmibnb.m on CD.

2.3.3 Multi-Parametric Programming

In this algorithm, a multi-parametric programming approach is used. To begin with, the

follower’s subproblem is parametrized by the leader’s variable x and is solved explicitly

which results into a parametrized solution y(x). During the procedure the follower’s feasible

set is further restricted into the K small subsets where each of them is described by linear

function

yk(x) = mk + nkx; Hkx ≤ hk, k = 1, 2, . . . , K (2.12)

where Hk ∈ Rm×n and hk ∈ Rm×1 are matrices which describe the follower’s kth feasible

subset and mk,nk ∈ R are coefficients of a kth piecewise affine function. To limit the

set where the parametric solution has been computed, bounds on the vector of parametric

variables x are added. The parametric solution of the follower’s subproblem can be inserted

into the leader’s subproblem using a big-M formulation (section 2.1.2). Every subset is

given by big value of a constant M and corresponding binary variable δi, i = 1, . . . ,K. To

be sure that only one subset is an active condition
∑k

i=1
δi = 1 is added to the problem.

Then the algorithm loops through all subsets and solves the problem with corresponding

inner optimal parametrization. For the code see file bil explicit.m on CD.

2.3.4 Branch-and-Cut

This algorithm only applies to BLPP with the convex quadratic or linear follower’s sub-

problem. Moreover, there are no convexity restrictions on the leader’s subproblem. The

algorithm is based on a B&B procedure [22] where the follower’s subproblem is replaced by

the KKT conditions.In contrast to the direct MIQP approach in section 2.3.1 branching is

done directly on the non-convex complementarity conditions, as a result we avoid the use

of problematic big-M formulation. The selection of the outer solver depends on the type
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of upper problem and on if we require a globally optimal solution or not. When locally

optimal solution for a non-convex problem is enough e.g. the“fmincon” solver can be used,

while for a globally optimal solution “bmibnb“ solver is required. Then procedure of the

convex relaxation described in section (2.3.2) is applied.

The algorithm can be improved by adding disjunctive cuts in root node. The aim is to

find an inequality which is already included in the problem and in the same time is not

satisfied with in the current convex relaxation. Such inequality is called a violated cut

which is added to the original constraints. A reason for generating these cutting planes is

to remove an optimal ”fractional” solution of the problem after the convex relaxation. The

main points in the generation of the cutting planes for any 0-1 problem are:

• disjunction - division of inequality conditions into two parts with the same matrices,

where one creates plane for the lower value of currently computed value ⌊x⌋ and the

second one for the upper value ⌈x⌉ by the evaluation of the inequalities

• creation of the convex hull of the union of disjuncted planes

• cut off non-integer solution by facet of the convex hull

When there does not exist more violated cuts, B&B method can proceed. In this algorithm

the number of added cuts can be defined by user.



Chapter 3

Comparison of the Algorithms in

Numerical Experiments

This chapter focuses on comparison of the algorithms in numerical experiments in terms of

solution quality, numerical stability, computational performance, etc. All the results which

will be presented in this chapter were computed on computers with 32-bit Intel Xeon CPU

2.80GHz and 32-bit Intel Pentium CPU 3.20GHz. Softwares used for computations were

MATLAB 7.10, Yalmip R20100507 and solvers CPLEX 11.1 and BPMPD 2.21. Presented

algorithms will be given by names as follows, Algorithm A is described in Section 2.3.1,

Algorithm B is one described in Section 2.3.2, Algorithm C is described in Section 2.3.3

and the last one Algorithm D in Section 2.3.4. Algorithm E is a special case of Algorithm

A with difference of QP functions

3.1 Convex Bilevel Problems

The focus in this section is computational performance. Each implemented algorithm were

run on the same set of 100 convex test problems. This set consist of 4 subsets of 25 problems

with different size. A reason for this was to investigate if all the algorithms attain the same

results with the same message (exit-flag) from solvers. Also comparison of a time necessary

for computations was made.

31
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3.1.1 Generation of Test Problems

The problems used for computations were generated as problems in the form in (2.6). Ran-

dom matrices Q and H in (2.6a) and (2.6c), respectively, were generated by the command

randn(n, n). To ensure positivity of the eigenvalues, the matrix is squared and to avoid

zeros in the eigenvalues a small value is added to each of the elements on a diagonal of the

newly obtained matrix. The result is a matrix with strictly positive eigenvalues. This is,

Q and H were computed as

Q = randn(n, n); Q = Q ∗ Q′ + 0.1 ∗ eye(n); (3.1)

H = randn(m,m); H = H ∗ H ′ + 0.1 ∗ eye(m); (3.2)

where n and m represents number of the x and y variables, respectively. The linear terms

in the objective functions of the problem (2.6) were generated as

c = randn(n, 1)); d = randn(m, 1); (3.3)

e = randn(m, 1)); f = randn(n, 1); (3.4)

For the concrete steps see file gener.m on CD.

3.1.2 Computation time

Each of the algorithms use different methods to solve the problem. Depending on the

method, different computation time is necessary to perform the computations which also

depend on the number of variables presented in the problem. As it can be seen from

the Figures 3.1(a),3.2(a) and 3.3(a) the computation time is increasing with every new

introduced variable. The largest time was measured for the BMIBNB solver algorithm.

The performance of this algorithm is similar with the next two algorithms only in problems

with small total number of variables. The computation time spent in the Algorithm B for
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problems with a total number of 7 variables is approximately the same as the computation

time of the Algorithm A for 14 variables. The computation time for the Algorithm D

for a problem consisting of 14 variables is almost the same as a time for the algorithm

with BMIBNB solver to solve a problem with 6 variables. The algorithms depicted in the

Figures 3.1(a) and 3.3(a) are of the same efficiency due to the computation time.

Now, look closer on the graphs 3.2(a) and 3.2(b). In 3.2(a), fix the total number of

variables to for example 10. Then one can find 5 dots representing different computation

times. This is a result of that the generated problems consist of different combinations of

the follower’s and leader’s number of variables which sum up to the same total number

of variables. In Fig. 3.2(b) the connection between the computation time and number

of variables y in the follower’s subproblem is depicted. Each line there represents how

the computation time changes when the number of the leader’s variables is fixed and the

number of the follower’s variables is changing. As it can be seen from the Figures 3.1(b) -

3.3(b) the computation time is an increasing with the increasing number of the follower’s

variables. As mentioned before, all three algorithms are similar in terms of computation

time for small problems. This is confirmed by Fig. 3.4(d) where the normalized times are

the same. By the term normalized it is meant the obtained times for one combination of

variables are divided by their maximal value. In this way it is easier to compare times

when there are large differences between them. But it doesn’t mean that the original times

are the same. Normalized time represents computating speed in comparison to the slowest

algorithm From the rest of the figures in Fig. 3.4 it can be seen that the computation times

depend on the ratio of x and y variables. The Algorithm A (Direct MIQP in the graph) is

better when the number of the leader’s variables is larger than the number of the follower’s

variables. This is not true for the Algorithm with nonlinear solver for complementarity

constraints (BMIBNB solver in the graph) where the ratio between the number of variables

does not effect time needed for computations. It is changing without clear or dependences.

The Algorithm D (Branch-and-Cut in the graph) shows more-or-less the same computation

time for each ratio. Description of the Algorithm C is missing, because the computation

time is not comparable with the other algorithms. The algorithm spends a large amount



3.1 Convex Bilevel Problems 34

of time when computing the explicit solution. The explicit solution for the follower’s

subproblem was computed in the box −100 ≤ x ≤ 100. This means, the algorithm is

comparable in term of the computation time only for very small problems.
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3.1.3 Choice of Solvers in Branch-and-Cut

In this part the main focus will be given on the behavior of the Algorithm D when two

different solvers are used to solve the subproblems. The question is, what is the influence

of the method used by the solver on the computation time and number of nodes of the

tree which is necessary to explore. The used solvers were CPLEX and BPMPD. CPLEX

can be used to solve LP, QP, MILP and MIQP problems while BPMPB represents an

interior point solver. The computational times are presented in Fig. 3.5(a). In most cases

the computation times are the same, but in some the BPMPD solver performs better.

It can be seen from Fig. 3.5(b) that the normalized computation time is the same for

small problems. For the huger ones (see Fig. 3.5(d)) the computation times depend on the

number of variables in the leader’s and follower’s subproblem. To conclude, it is better to
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have less leader’s than follower’s variables in the problem and as it was mentioned before

BPMPD solver performs slightly better than CPLEX, which can be clearly seen in the

graphs.
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3.1.4 Branch-and-Cut and Cuts

By adding cuts to the root node, one can get rid of needless solutions at the beginning.The

purpose is to solve the problem quicker and also explore less nodes in a tree. Experimental

results depicted in Fig. 3.6 were obtained for the problem with ten x and ten y variables.

In Fig. 3.6(b) it can be seen that the number of the investigated nodes was changing

rapidly until the number of additional cuts was equal to total number of variables, i.e., 20.

Thereafter, the number of nodes was changing linearly. Note that, according to Fig. 3.6(b)

the number of explored nodes was always bigger than in the case without additional cuts.

Influence of the cuts is notable in term of the computation time which is increasing with

the number of added cuts. A large amount of time is spent on adding cuts not on the B&B

procedure. Graph 3.6(a) shows that difference between time for adding cuts and entire

algorithm’s procedure is very small.

Collecting information about the number of nodes and the computation time results in

knowledge, that it is more efficient to use Algorithm D without additional cuts.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Number of added cuts

C
om

pu
ta

tio
n 

tim
e 

[C
P

U
 s

]

Computation time for adding cuts and entire procedure

 

 

Adding cuts

Entire procedure

(a) Computation time

0 10 20 30 40 50 60 70 80 90 100
80

90

100

110

120

130

140

150

160

170

180

Number of added cuts

N
um

be
r 

of
 in

ve
st

ig
at

ed
 n

od
es

Dependance of number of nodes on the number of added cuts

(b) Number of investigated nodes

Figure 3.6: Number of investigated nodes and computation time depending on the number

of added cuts



3.1 Convex Bilevel Problems 39

3.1.5 Reliability of the Algorithms

The algorithms were applied to the problems with different number of the leader’s and

follower’s variables. The number of variables varies from 4 to 8 and from 2 to 6 for the

leader’s and follower’s subproblem, respectively. The results are expected to be the same

and globally optimal for the all algorithms.

The comparison was based on the optimal value of the leader’s objective function. Values

from the Algorithm A were chosen as a reference (fref ). These values were then subtracted

from the results of the other algorithms (ftest) for the same problems. In a mathematical

representation ftest − fref . Zero difference then means the solutions are the same. If a

difference is positive, the solution from the algorithm is only a local optimum because

the objective function value is bigger that one from reference algorithm. If a difference is

negative, this predicates the result from reference alhorithm is not globally optimal. This

means that a lower objective function value for the minimization problem was obtained by

the second algorithm and not by a reference one. The gap between the upper and lower

bound plays important role in the algorithms with B&B procedure. In Fig. 3.7(a) can be

seen that same values are not reached every time .

Consider the problem in Fig. 3.7(a), where the largest difference is 0.05. This means,

that either, Algorithm A or Algorithm B may reached the solution which does not satisfy

follower’s or leader’s conditions or a locally optimal solution. From Fig. 3.7(d) it follows

that Algorithm D reached a solution of the same as the Algorithm A due to zero difference,

Algorithm D with a zero gap between upper and lower bound. For the Algorithm B, 0.64%

gap between bounds indicates a locally optimal solution as a result. To determine whether

the solution is feasible, the follower’s and leader’s constraints are tested for feasibility.

Constraints for this problem were satisfied that results in the feasible, but a locally optimal

solution for Algorithm B. Since the difference is positive, the solution is a local optimum.

Regarding the reliability of the algorithms, different optimal values were reached only in 9

tested problems out of 100. Most of the times all three algorithms reach the same optimal

obejctive value. When one algorithm obtained different solution and difference is positive
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the remaining two reched the global optimum. If a difference between the objective values

is negative the algorithm perform better and thus remaining two reached only a local

optimum. These remarks hold only when the solutions satisfay both, the follower’s and

leader’s constraints. In case of Algorithm B if difference appeard it was of possitive value,

that is only the locally optimal solution was reached. The Algorithm D performed better

because the globally optimal solution was reached since the negative value of the difference

(see Fig. 3.7(c)). In fact, the best performance was shown by the Algorithm D, which

reached a global optimum for each problem. The corresponding objective function values

are depicted in Fig. 3.7(b) where each point represent the objective value for one of the

problems. The second most reliable approach was by the Algorithm A and finally, the

worst performed the Algorithm B. Regarding computation time, the best was Algorithm

D followed by Algorithm A. The Algorithm B gave the largest computation time. Here it

should be noted that the Algorithm D was under development at the time of this project.

Many bugs were found and corrected and also time of performance improved significantly.

The Algorithm C was able to reach the same results only for a small subset of problems

i.e., the algorithm failed for problems with more than 10 variables. This means, the algo-

rithm can not be used for solving large problems. It should be noted though, that in the

explicit approach might be possible to improve the performance by solving the follower’s

subproblem for a smaller box than −100 ≤ x ≤ which is more carefully selected for the

given problem.

3.2 Non-convex Bilevel Problems

This section gives an overview in the performance of the algorithms. Each implemented

algorithm was run on the same set of 100 non-convex test problems with the aim to inves-

tigate the computational times and the reliability of the different algorithms.
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3.2.1 Generation of Test Problems

Test problems have been generated with a nonconvex leader’s objective function. More

exactly the steps in the program for generation are the same as in the Section 3.1.1 except

for the generation of the Q matrix (see file gener nonconvex on CD). Nonconvexity means

that at least one eigenvalue is negative. This was achieved by inserting two negative values

in the diagonal of the Q matrix.

Q(2, 2) = −Q(2, 2); Q(n, n) = −Q(n, n); (3.5)

where n represents number of x variables.

3.2.2 Computation time

Since the non-convex problems are harder to compute, different algorithms than in the

convex case are used for solving them and larger computation times are to be expected.

This section describes the performance of the Algorithm B and the Algorithm E. The

computation times are approximately the same as it can be seen from the Figs. 3.8(a) and

3.8(b) but Algorithm B perform a bit faster. Fig. 3.8(b) shows many dots on the time

1200 [CPU s] which was chosen as the maximum computation time for CPLEX. Each dot

in the vertical line belongs to problem with the same total number of the variables but

different ratio between the leader’s and follower’s variables. Changing the ratio of these

variables results in different computation times as depicted in Fig. 3.9. Both algorithms

give the same computation time for small problems. For larger problems with more than

12 variables the normalized times are the same because both algorithms reached their

maximum computation times. The computation time is decreasing in the smaller problems

for the Algorithm E with increasing number of leader’s variables (see Fig. 3.9(b)).

The influence of the number of the follower’s variables for the fixed number of the leader’s

variables is depicted in the Figures 3.8(c) and 3.8(d).
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3.2.3 Reliability of the Algorithms

The gap between upper and lower bound plays an important role for reliability of algo-

rithms. When the gap is 0% a solution proven to be globally optimal has been found.

However, for the larger values of this gap, the solution can represent only a locally optimal

solution. This information is useful to confirm the globality of the solutions for 100 non-

convex random test problems. The comparison is based on the optimal objective function

values obtained from the Algorithm B and Algorithm E. The first objective function value

was set as a reference and its values were subtracted from the second objective value for

each problem. This results in the difference of the objective function values depicted in

Fig. 3.10. A free space in the graph represents an infeasible solution due to infeasibility of

the original problem. In a place where peaks appear the solutions differ.

We will now look at the influence of the size of the gaps for the outputs from the algorithms

in these problems. It can be considered that better solution was reached by the Algorithm

B because the gaps are maximally of the size 0.03% which is less then for Algorithm E.

This shows that the solution from the Algorithm B is close global.

To conclude, both algorithm attain the same results in 96 problems out of 100. Solution of

one problem was infeasible due to the infeasibility of the original problem. The Algorithm

B performs better in the remaining three problems because values reached by the Algorithm

E (109) are too far to be an optimal solution. Since the Algorithm E reached maximamum

computation time, then the best computed value is given as a solution which most likely

is not optimal.

3.3 MPC Bilevel Test Problem

In this section a comparison of the algorithms on a Model Predictive Control (MPC)

problem is performed.
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Figure 3.10: Comparison of the solutions for nonconvex problems

3.3.1 Problem Description

Consider the MPC optimization problem in [26] that uses a linear model of the plant and

quadratic type of the objective function for the states xk ∈ R4×1, k = 1, . . . , N and the

control inputs uk ∈ R2×1, k = 1, . . . , N − 1.

J∗

N(x) = min
1

2
xT

NPxN +
1

2

N−1∑

k=0

xT
k Qxk + uT

k Ruk (3.6a)

s.t. xk+1 = Axk + Buk, k = 0, 1, . . . , N − 1 (3.6b)

uk ∈ U, k = 0, 1, . . . , N − 1 (3.6c)

x0 = x (3.6d)

where the constraints in (3.6) arise naturally in practice and x is the measured state.
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If the system is linear, the problem in (3.6) can be written in the form

J∗

N(x) = min
1

2
UT

T U + xT
L U +

1

2
Mx (3.7a)

s.t.U ∈ UN (3.7b)

where U is sequence of inputs over the control horizon defined as U = (u0, u1, . . . , uN−1)

and constrained to be in the set UN = U×. . . U ⊂ RNm with Hessian matrix T ∈ RNm×Nm

and matrices L ∈ Rn×Nm and M ∈ Rn×n being easily derived from the problem (3.6).

This problem is used to minimize number of iterations in during the optimization procedure.

Then bilevel optimization problem appears for the least conservative lower bound on the

number on iterations in a form

max
1

2
U∗(x)T (LI − T )U∗(x) (3.8a)

s.t. xmin ≤ x ≤ xmax (3.8b)

U∗(x) = arg min
U∈UN

JN(U ; x) (3.8c)

where U = {u|Hu ≤ K} and L and I metrices came from definition of a lower bound [26].

The follower’s subproblem is reformulated by the KKT conditions (1.5) into a form

T U∗ + L
T x + H

T λ∗ = 0 (3.9a)

H U∗ ≤ K (3.9b)

λ∗ ≥ 0 (3.9c)

λ∗T (H U∗ − K ) = 0 (3.9d)

where H = IN×N ⊗ H and K = 1N×1 ⊗ K.

However, algorithm are able to solve only minimization problems, the problem (3.8) be-

comes a noncovnex one-level problem in a form
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min −
1

2
U∗(x)T (LI − T )U∗(x) (3.10a)

s.t. xmin ≤ x ≤ xmax (3.10b)

T U∗ + (L)T x + H
T λ∗ = 0 (3.10c)

H U∗ ≤ K (3.10d)

λ∗ ≥ 0 (3.10e)

λ∗T (H U∗ − K ) = 0 (3.10f)

3.3.2 Results

Four algorithms were applied to this problem, concretely Algorithm B, Algorithm D, Al-

gorithm E and Algorithm B used BMIBNB solver.
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Figure 3.11: Results for MPC example

Fig. 3.11(a) shows the optimal value of the objective function in (3.10a) as a function of

the prediction horizon. As can be seen in the plots Algorithm D with BMIBNB solver

(B&C in graph) and Algorithm C (explicit in graph) reached a similar objective function

value. However, the Algorithm B (BMIBNB in graph) and Algorithm E (Difference QP
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in graph) gave different results. From the Fig. 3.11(a) one could expect that the result

for the Algorithm E is the global optimum because it obtained the lowest value. This is

not true, because a further investigation of the solution showed that the solution of the

follower’s problem is not optimal. The problem might be connected with the choice of

the big-M values. The Algorithm B neither gave an optimal solution for the follower’s

subproblem. If the solution for the follower’s subproblem is not optimal, then the solution

for the entire bilevel problem is infeasible, and hence, better objective function values might

be attained.The result is that the best feasible results were obtained by the Algorithm D

and Algorithm C and we believe that these are the globally optimal ones. However, the

second one only for smaller problems.

Since only two algorithms were able to compute a usful solution, their computation time

will be examined. The time used by Algorithm C was increasing slowly with the size of the

prediction horizon (see Fig. 3.11(b)). The computation time for ALgorithm D increased

dramatically as a length of the prediction horizon grew. In Fig. 3.11(b) only prediction

horizon lengths shorter than 5 are considered for the Algorithm D because larger problems

became intractable.

From the results above one can conclude that the best algorithm for this non-convex

problem is Algorithm C using BMIBNB solver. It reached a globally optimal solution

in a reasonable amount of time.



Conclusions

The bilevel optimization problems belong to the class of NP-hard problems,which loosely

means that no polynomial time algorithm exist for solving it unless P = NP [17]. They

can be described as an optimization problem constrained by another optimization problem

is called a bilevel programming problem (BLPP). From the mathematical point of view it

is a problem with hierarchical structure where two independent decision-makers appear.

Nowadays, this problem becomes useful to define problems in an engineering or automatic

control. Unfortunately, these problems are known to often be very hard to solve in practice.

The main focus in this thesis was therefore to investigate different algorithms to solve

them efficiently. At the beginning the forms of bilevel programming problem were briefly

described and a literature overview of the algorithms was made. Afterwards, the algorithms

were briefly described with a focus on the type of the solved problems and computation

procedure. Regarding the methods, more than 10 groups of algorithms were obtained,[36]:

• Branch-and-bound algorithms

• Cutting plane algorithms

• Barrier and penalty functions algorithms

• Descent algorithms

• Trust region algorithms

• SQP algorithms

• Heuristics algorithms

50
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• Algorithms for solving follower’s subproblem explicitly (e.g. mp-LP, mp-QP)

• DC programming

• Genetic algorithms

From these algorithms some promising ones (algorithm with direct MIQP approach, algo-

rithm with global nonlinear solver, branch-and-cut and algorithm with explicit solution)

were selected to be more thoroughly investigated in numerical experiments on a large num-

ber of randomly generated test problems with the purpose to evaluate the computational

performance and reliability. In these experiments, bilevel problems with convex quadratic

programming problems at the lower level and convex, as well as non-convex, quadratic

programming problems at the upper level were considered.

Firstly the algorithms were run on a set of random convex problems and the results were

iinvestigated in terms of computation times and reliability. It was shown that the com-

putation times depend on the distribution of the variables for the follower’s and leader’s

subproblem and on the number of additional cuts in a case of branch and cut. For the

convex bilevel problem the algorithm with BMIBNB solver performed worst in terms of

computation time and reaching the globally optimal solution. The best was branch-and-cut

without adding any cuts. In experiments for non-convex problems, only branch-and-cut,

algorithm with explicit solution using BMIBNB solver and algorithm with BMIBNB solver

could be used. Also special form of the algorithm with direct MIQP approach can be

used, where the objective function is in a form of a non-convex quadratic function. The

compared algorithms required nearly the same computation times but they differed in the

values of a globally optimal solution. Also in this case branch-and-cut performed best.

Also a test problem from real world were considered. This problem arises in an application

of evaluation of the performance of an on-line MPC algorithm. The correct results were

reached only by branch-and-cut and algorithm with explicit solution. In a case of algorithm

with BMIBNB solver and algorithm with difference of QP function results could not be

considered correct because the returned solution was not feasible.
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To conclude, the algorithm which performed best in terms of computation time and reli-

ability for both the convex and non-convex problems was branch-and-cut. The algorithm

one could also trust to reach a global optimum was algorithm with explicit solution but it

required more computation time and could be used only for a subset of small problems.



Resumé

Dvoj-úrovňový (bilevel) optimalizačný problém predstavuje dva optimalizačné problémy,

kde premenné v jednom optimalizačnom probléme (problém hornej úrovne) musia byt’

optimálne v druhom optimalizačnom probléme (problém dolnej úrovne). Tento druh prob-

lémov sa môže objavit’ ako v procesnom inžinierstve tak aj pri plánovańı v hospodárstve.

Nedávne výskumy ukázali, že týmto spôsobom sa dajú definovat’ a riešit’ aj problémy v

oblasti automatického riadenia.

Dvoj-úrovňový problém predstavuje dva hierarchicky usporiadané optimalizačné problémy

v nasledujúcej forme

min
x

F (x, y(x)) (3.11a)

s.t. G(x, y(x)) ≤ 0 (3.11b)

H(x, y(x)) = 0 (3.11c)

y(x) = argmin
y

f(x, y) (3.11d)

s.t. g(x, y) ≤ 0 (3.11e)

h(x, y) = 0 (3.11f)

kde podl’a typu účelových funkcíı F (x, y) a f(x, y) rozoznávame viacero pŕıpadov. Prvým je

pŕıpad, kedy sú obe účelové funkcie lineárne. Vtedy sa hovoŕı o lineárnom bilevel probléme.

Ak jedna s nich nadobúda kvadratickú formu, jedná sa o kvadratický bilevel problém.

Pridańım neurčitost́ı sa z daných typov stáva bilevel problém s neurčitost’ami. Nakoniec

zahrnut́ım celých č́ısel sa dopracujeme k zmiešanému celoč́ıselnému bilevel problému.

Hlavný dôraz v tejto práci bol daný na dvoj-úrovňové problémy, kde v hornom probléme sa
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nachádzala konvexná alebo nekonvexná kvadratická účelová funkcia a pre dolný problém

to bola iba konvexná kvadratická funkcia. Do úvahy boli brané iba ohraničenia lineárneho

tvaru pre obe úrovne. Algoritmy pre tento typ problémov boli rozobrané a porovnané v

teoretickej rovine. Vačšina algoritmov bola vhodná na riešenie konvexných problémov a

niektoré iba na nekonvexné. Najväčšia množina algoritmov bola založená na metóde vetiev

a hrańıc. Ďaľsie algoritmy boli založené na metódach ako sú metóda rezných nadrov́ın

(Cutting plane method), metóda bariér a pokutových funkcíı, gradientové metódy, metóda

dovoleného priestoru (Trust region method), heuristické metódy, genetické algoritmy ako

aj metódy DC programovania.

Základným prinćıpom riešenia dvoj-úrovňového problému bola reformulácia dolného prob-

lému pomocou nutných a postačujúcich podmienok optimality, takzvaných Karush-Kuhn-

Tuckerových podmienok. Týmto krokom sa dvoj-úrovňový problém (3.11) zmenil na prob-

lém jednej úrovne v tvare

min
x,y,λ,µ

F (x, y) (3.12a)

s.t. G(x, y) ≤ 0 (3.12b)

H(x, y) = 0 (3.12c)

∇yf(x, y) + λT∇yg(x, y) + µT∇yh(x, y) = 0 (3.12d)

λigi(x, y) = 0, i = 1, . . . ,m (3.12e)

λ ≥ 0 (3.12f)

g(x, y) ≤ 0 (3.12g)

h(x, y) = 0 (3.12h)

V tomto probléme sa však nachádza nekonvexný člen v rovnici (3.12a). Hovoŕı o tom, že

aby bola splnená daná podmienka, bud’ λ = 0 alebo g(x, y) = 0. Toto je ošetrené pomocou

metódy, ktorá sa nazýva big-M formulácia. Jej prinćıpom je, že každému z členov je

pridaná nová skalárna premenná M s vel’kou hodnotou a tiež binárna premmená. Binárna

premenná hovoŕı o tom, ktorá z podmienok je v aktuálnom momente akt́ıvna. Takto sa
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źıska zmiešaný celoč́ıselný problém, ktorý sa môže riešit’ napŕıklad metódou vetiev a hrańıc.

V práci boli na 100 náhodných testovaćıch problémoch, konvexných aj nekonvexných,

testované 4 algoritmy. Konkrétne, algoritmus s priamym pŕıstupm k riešeniu zmiešaného

celoč́ıselného kvadratického problému, algoritmus s globálnym nelineárnym solverom, algo-

ritmus vetiev a rezov a nakoniec algoritmus s multi-parametrickým pŕıstupom. V d’aľsom

bolo sledované ako sa algoritmy správajú na súbore pŕıkladov z hladiska výpočtoveho času

a spol’ahlivosti riešenia.

Výsledkom bolo, že vplyv na výpočtový čas má tak celkový počet premenných v dvo-

júrovňovom probléme ako aj v rozložeńı daného počtu premmných medzi problém hornej

a dolnej úrovne. Pri metóde vetiev a rezov, sa zistilo, že pridanie rezov do hlavného uzlu

stromu zvýši čas potrebný na výpočet a nezńıži počet uzlov, ktoré je potrebné preskú-

mat’ pri dosiahnut́ı rovnakého výsledku. Najvhodneǰsie je teda rešit’ problém bez nepri-

daných rezov. V oboch pŕıpadoch, pre konvexné aj nekonvexné problémy, vyšiel najlepšie

z hl’adiska výpočtového času ako aj dosiahnutia globálneho riešenie algoritmus založený

na metóde vetiev a rezov, pričom pri nekonvexných problémoch bol použitý globálny ne-

lineárny solver BMIBNB. Tento výsledok sa potvrdil aj na probléme źıskanom v oblasti

predikt́ıvneho riadenia.
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