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ABSTRACT

Given diploma thesis deals with the systematic method for analysis of performance loss
when using simplified model predictive control formulations. Aim of this thesis is to
analyze and compare system response using model predictive control (MPC)
implemented on a reference and simplified controller. To find the maximum difference
between these controllers and to solve this problem we use bilevel programming. The
main drawback of MPC is in increasing of the complexity in both cases (off-line and
on-line) as the size of the system model grows larger as well as the control horizon and
the number of constraints are increasing. One part of the thesis deals with introduction
into MPC and with techniques how to make MPC faster. There are some techniques as
model reduction, move blocking, changing the prediction horizon and changing the
sampling time, which can be used for simplify MPC problem that makes the
optimization problem easier to solve and thus make MPC faster. Using the model
reduction to reduce model state variables is important, e.g. the more states variables
model contains, the more complex the regulator must be. This fact is very important
especially for explicit MPC. Using input blocking we fix the inputs to be constant and
using delta-input blocking we fix the difference between two consecutive control inputs
to be constant over a certain number of time-steps which reduce degrees of freedom.
Reducing prediction horizon we make MPC problem easier to solve. As an example of
controlling a typical chemical plant we here consider MPC for a distillation column.
Using a bilevel program and model of distillation column we compare these simplify
techniqgues and we focus on the connection between control performance and
computational effort. Finally, results are compared and the best way of simplification

for our example of plant is found, which turns out to be delta input blocking.

Keywords: analysis of MPC, simplified MPC formulations, analysis of MPC

performance



ABSTRAKT

Diplomova praca sa zaoberd metddou na analyzu zniZenia kvality riadenia pri pouziti
zjednodusenych formulacii prediktivneho riadenia s modelom. Ciel'om tejto diplomove;j
prace je analyzovat a porovnat odozvy systému pri pouziti prediktivneho riadenia
(MPC) na referencnom reguldtore a na zjednoduSenom regulatore. Na vyrieSenie
problému najdenia maximalneho rozdielu medzi tymito regulatormi pouzivame bilevel
programovanie. Hlavnou nevyhodou MPC je Ze s narastom velkosti modelu systému
ako aj snarastom predikéného horizontu a potu obmedzeni sa zvySuje zloZitost
regulatora a to v oboch pripadoch (off-line aj on-line) MPC. Cast’ prace sa zaobera
uvodom do problematiky MPC a technikami ako urobit MPC rychlejsie. Existuje
niekol’ko technik ako redukcia modelu, blokovanie pohybu, zmena predikéného
horizontu, zmena periody vzorkovania, ktoré¢ mozu byt pouzité na zjednodusenie MPC
problému, ¢o zabezpeci jednoduchsiu riesitelnost’ optimaliza¢ného problému a tym aj
zvysi rychlost MPC. Pouzitie redukcie modelu za ucelom redukcie poctu stavov je
Ztohto hladiska dolezité, pretoze ¢im viac stavov model obsahuje tym zlozitejsi
regulator musi byt. Tento fakt je vel'mi do6lezity najmé pre explicitné MPC. Pouzitim
blokovania vstupov fixujeme vstupy na konstantnu hodnotu a pouzitim blokovania
zmeny vstupov fixujeme zmenu medzi dvoma po sebe nasledujicimi vstupmi na
konstantni hodnotu a tym znizujeme pocet stupiiov vol'nosti. Redukciou predikéného
horizontu urobime MPC problém jednoduchSie rieSitelny. Ako priklad riadenia
typického chemického zariadenia uvazujeme MPC pre destilacni kolonu. PouZitim
bilevel programu a modelu destila¢nej koldny porovnavame zjednodusSujuce techniky
a zameriavame sa na vztah medzi kvalitou riadenia a vypoctovou naro¢nostou. Na
uvedenom  priklade destilacnej kolony  porovnavame  vysledky  rdznych
zjednodusujucich technik a prezentujeme najlepSie rieSenie, ktorym sa ukdzalo byt

blokovanie zmeny vstupov.

KTlucove slova: analyza MPC, zjednoduSené formulacie MPC, analyza kvality riadenia

MPC
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1 INTRODUCTION

Model predictive control (MPC) is advanced control technique that has a significant
impact on industrial control engineering. Mathematical model of the system is used to
calculate predictions of the future outputs and the control inputs are used to optimize the
future response of the system. Because of this, it is very important to have model of the

system that adequately describes its dynamic properties.

One of the greatest strength of the MPC is the possibility of effectively involving
constraints on inputs, states and output variables. On the other hand in both cases (off-
line MPC and on-line MPC) as the size of the system model grows larger as well as the
control horizon and the number of constraints is increasing then the complexity of MPC
is increasing. This means more time to compute optimal control action and bigger
hardware requirements.

The first chapter is devoted to MPC introduction and possibilities of simplifying MPC
problem. There are some simplification methods, such as Model Reduction, Move
Blocking, Change of the Prediction Horizon and Change of the Sampling Time.
Relevant question is the trade-off between speed and performance of MPC using
reduced model or some other simplify method, because with increasing reduction of

degrees of freedom, the control performance is decreasing.

The second chapter deals with implementation of the mathematical model with
disturbances into MPC problem and compare three ways of solving the MPC problem
like MPC with the model as equality constraints, MPC with the model substituted into
the objective function and first-order optimality conditions of the MPC. As an example

of the plant we used a typical simple distillation column by Prof. Skogestad.

The goal of this thesis is to analyze and compare system response using MPC
implemented on a reference and simplified controller. To find the maximum (worst-
case) difference between the full-order controller and low-order controller we used

bilevel programming to solve this problem.
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In the third and fourth chapters of thesis we answered the questions: What is the worst-

case difference between an MPC using the full model and an MPC using the reduced

model and what d, maximizes difference between outputs from full model and reduced

model, when we consider x, = B,d, and we will use different simulation time? What is

the worst-case difference between an MPC without using move blocking and an MPC
using move blocking which we use to make MPC faster? Another question is, which
move blocking type gives us less worst-case error, when we compare different types of

move blocking?
At the end in the last chapter, results of worst-case error obtained from using different

simplification methods that can be used to speed up the computation of the control

action in MPC are compared numerically and graphically.
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2 INTRODUCTION TO MODEL PREDICTIVE
CONTROL

2.1 Model Predictive Control

Model predictive control (MPC) is a successful control technique that has a significant
and widespread impact on industrial process control [3]. MPC is used mainly in the oil
refineries and petrochemical industry where taking account of the safety constraints is
very important. Currently the MPC covers a wide range of methods that can be
categorized using various criteria. In this chapter, we cover the main principle of MPC

and ways of making the MPC faster.

One of the greatest strengths of MPC using a model of the system is the possibility to
include constraints on inputs, states and outputs variables already in the design of the
controller. That is why performance of control is better than standard proportional-
integral-derivative (PID) controller, which does not provide physical, safety and other

constraints on the input, output and state variables.

As the title (Model Predictive Control) suggests the prediction of the future output of
the controlled system MPC is calculated using a mathematical model of the system.
Because of this, it is very important to have model of the system that adequately
describes its dynamic properties. Some models include models of disturbances directly

while others assume that the disturbances are constant.

The idea of MPC is to use the control inputs (U) to optimize the future response of the
system while, given the information about current states (x) and disturbances (d).
Calculation of the future optimal control input U~ =(ug,u1T ,---,UL) is based on the

minimization of the objective function on the prediction horizon. Only the optimal value
obtained for the current time is actually implemented. Then the system evolves one
sample, new measurements are collected and the optimization is repeated. With a fixed

length of the horizon, the horizon is shifted one sample further at each new
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measurement as given in Fig. 3. Because of this, MPC is often termed moving horizon
control [5]. In Fig. 1 the difference between classical feedback control and MPC is
shown. Strategy of MPC overcomes drawbacks of other methods, such as linear
quadratic control (LQR), that are using optimization with infinity horizon without
taking constraints into account.

Strategy of the future forecasting is typical in our everyday life. For instance, one can
imagine a situation when driving a car as given in Fig. 2.

Our control tasks:
e stay on the road,
e don’t crash into the car ahead of us,

e respect speed limits.

When driving a car, we are looking on the road through the windscreen, it is similar to
the predictive control strategy as shown in figure 3.

Inputs are usually signals to the plant that can (e.g. gas pedal, brake pedal) or cannot
(e.g. side wind, slope of the road, disturbances) be manipulated. The actual information
about the plant is given by state variables, such as car speed. Of course, even though
this comparison is not absolutely precise, it describes very simply the idea of predictive
control, that is trying to control the system (in this case a car) forecasting its future (the
next position on the road) using a model of the controlling system (car controllers,
acceleration, braking, etc.), while respecting constraints (traffic rules, speed limits,
vehicle operating characteristics, etc.) [6].

One of the important elements is the choice of adequate prediction horizon N . Using a
prediction horizon too short can cause poor control quality or instability of control. In
automobile analogy it is if the driver views only too short of a distance ahead, what
could lead to accident (collision with slower car, by not having enough reaction time
upon obstacle, etc.) [7]. Another problem is when the controlling system model is not
representing the real plant and when there are some random disturbances. Using such
mathematical model of the system for the prediction of future outputs calculation could

be inaccurate and cause incorrect control inputs. MPC works with discrete time system
models. Because of this, we need a good choice of the sampling time T, value for
discretization of our model. Sampling time length is a very important since it is the time
when new measurements are made, new prediction calculated and new optimal control
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inputsU*:(ug,uf,...,uL_l) determined. However, sampling time must be short

enough so that updated measurements from the plant can be taken. There are some good
rules in place on how to set the right sampling time, for example we can use Nyquist-

Shannnon sampling theorem.

l Reference

Outputs

v

K(S) Inputs

A 4

Ditillation column

\apor
Steam to and from

eed
H(-/

reboller tube bunde
Bortoms
Beottoms Product
A Tiquid

Measurements

l Reference _
Plan Constraints 0

Optimization 4 T s I
Inputs

Outputs

v

A 4

Distilation column

Measurements

Figure 1: Difference between classical control and implicit MPC [7]

! |
-2 t-1 t t+N

Figure 2: Analogy MPC with driving a car [6]
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Figure 3: Strategy of moving horizon [7]
2.2 General Formulation of Optimal Control Problem
As is written in [4] the “optimal control problem” is to find optimal control inputs

U :(ug,uf,...,uL_l) that drive the system from the current initial state X, at timet,

towards the origin.

Optimal control problem [4] is then:
) N-1
min - F(xy)+ > L(X,u;) (1a)
i=0

18|Page



subject to:

X = f(%,U,), Vi=0,.,N-1 (1b)
X, € X, Vi=1..,N-1 (1c)
u, ey, Vi=0,.,N-1. (1d)
X, = X(t) (1e)

Expression (1a) is an objective function, (1b) is the process model and, X, U are the
constraints on states and inputs, respectively. This optimal control problem is often
called constrained finite time optimal control (CFTOC), because of the constraint on
states, inputs and finite horizon N . Predictions have length N steps to the future and
control inputs U " are the optimized degrees of freedom [4].

There are two ways how the optimization problem can be characterized [4]:

Implicit solution: The computed input U " is given as a sequence of numerical values

Ug,Us,...,uy ;, Which depend on the particular values of X,at specific times within the

interval [t,,t,].

Explicit solution: The control input U *is given as a sequence of function typically with
plant state as its argument, i.e.u; = 7, (X,),U; = 7, (X,)

In Fig. 4 and Fig. 5 feedback controls using implicit and explicit solution are compared.

\ 4

Plant

Figure 4: A feedback control scheme with implicit solution [4]
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\ 4

Plant

Figure 5: A feedback control scheme with explicit solution [4]

2.2.1 Objective Function

We can divide objective functions on easy and hard to solve.
- EASY : objective function is a convex function
- HARD : objective function is a non-convex function or concave function

(minimization of concave function is hard to solve)

X

Convex function Concave function Non-convex function
Figure 6: Convex, concave, non-convex functions [7]
An objective function f (x) is convex if for 6 €[0,1]
fOX+1-0)y) <O f(X)+1-0)f(y) )

Usually we can use 3 types of norm of convex objective function.
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We can define objective function using general | norm as:

N -

min 3x,u) = [P, |, + > (@, +Rui,) Q

LN

For one norm p =1, for infinity norm p =ccand for 2 norm p=2.

Objective function is typically quadratic in the states and in the control inputs (4).

N-1

min J(X,u) = %X;\, PX,, JF%ZX{QXi +Uu/Ru; (4)
u i=0

Where N is prediction horizon, P, Qand R are weight matrices for states X; and inputs

u, respectively. Weight matrices Q,R can be chosen freely, but it is required that Q is
positive semi definite Q>0 and R is positive definite R >0 so that the objective

function becomes convex. These matrices are used to tune the MPC performance and

most commonly are diagonal.

Here (5) we consider objective function with AU formulation and tracking.

min J (x, u) = HP(Xt+N — X, )Hp + f“Q(k)(XHk — Xref )Hp +|R(K)AU., ], ®
k=0

s.t. X, € X
u eu
Aut+k = ut+k - ut+k—1

Using this formulation, matrices P,Q(k) penalize deviation of the state vector from
some reference and R(k) penalize difference of the actual and the last calculated input.
Increasing the weights R(k) on the control moves relative to the weights P,Q(k) on

the tracking errors has the effect of reducing the control activity. Because of this the

elements of R(k)are in some MPC products called move suppression factors [2]. We

can say that increasing these weight matrices indefinitely will reduce the control activity
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to zero, which “switch off” the feedback action. In other words, the penalization of
changes in inputs will be so big, that it will not affect the controller. As is stated in [2] if
the plant is stable, it will result in a stable system, but not vice versa. Thus with a stable
plant, we can expect getting a stable closed loop by sufficient increasing of the control
weight. The penalty for doing this will be slow response to disturbances, since it will
result in only little control actions. With an unstable plant we can expect an unstable
feedback loop, if the R(k)s are increased too much. Because of this there are better
ways of ensuring closed-loop stability than using heavy penalty weights R(k) .

As it was written using weight matrices P,Q(k) we can penalize states vector or
penalize deviation of states vector from some reference. It is possible to penalize some
state more heavily than other. That is a way of how to change weight and decide on

which states are important for us.

2.2.2 Model of the System

The model of the system represents a mathematical abstraction of the plant’s behaviour.
There are different choices of models possible:

¢ linear (transfer function, state-space, finite impulse response, ...),
e nonlinear (state-space, fuzzy, neural networks, ...),

e hybrid (combination of continuous dynamics and discrete logic).

It is very important to make compromise between quality and complexity of the system
model. Complex models are better for predictions, but make optimization more
difficult, which takes the optimization problem a lot of time to solve.

Models are very important part of MPC, because they are used to predict the future.

A linear state space model is given by:

X;, = AX; +BuU;, Vi=0,.,N -1 (6a)

y, =Cx, +Du,, Vi=0,...,N, (6b)
where X; denote states, Y, are outputs (measurements), u;are controlled inputs.
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The state space formulation of model with disturbances is given by
X, = Ax; + Bu, + B,d,, vi=0,...,N -1, (7a)
y, =Cx; + Dy, + D,d;, vi=0,..,N, (7b)

where X; note states, Y, are outputs (measurements), U,are controlled inputs and d,are

disturbances.

There are many types of disturbance models. For example we can define a disturbance

model as:

d, = given
d, =ad,

dy,=a""dg (®)

O<a<l

When we know initial conditions as initial states X,, initial disturbances d, and the

vector of inputs U we can calculate every state X, Vi=1...,N -1,

i=0
X, = AX, + Bu, + B,d,,

i=1
X, = AX, + Bu, + B,d, = A(Ax, + Bu, + B,d, )+ Bu, + Byad, =

= A®x, + ABU, + AB,d, + Bu, + B,ad,,
(9)

X, = AX, + Bu, + B, d, = A(A’X, + ABU, + AB,d, + Bu, + B,ad, )+ Bu, + B,a’d, =
= A’x, + A’Bu, + A’B,d, + ABu, + AB,ad, + Bu, + B,a’d,,
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We can formulate the prediction equation for calculating every state

Xy, Vi=1..,N-1las:
N-1 o N-1 N
Xy = aIAIBdy + > ATBUy L, + D AlXg (10)
i=0 j=0 j=1
Cx ][ Bd 1 [ B 0 0 0|fu, T [ A]
X, aBd + ABd AB B ... : S A2
X=| ! |=| a’Bd+aABd+A°Bd (d,+| RS u, [+ & [%
Xy E A"?B AM?B ... B 0|l : ANt
R : | AV'B AM?B ... AB  B|[Uvi] |AM
. i i LA
X X Y U z
(11)
Considering a model without disturbances, the prediction equation is:
N N-1
Xy =A%, + > AlBuy (12)
j=0
x, 1| Al [B 0 - 0 0lfu, ]
X, A? AB B ... oy,
X=| i |=| A®[X,+| ! .0 0 ||u, (13)
Xy : A"?B AYPB ... B :
| Xw | | AV AV'B AN?B ... AB  B||Uni |
X - - - M - U

2.2.3 Constraints

We encounter constraints in our daily live. Physical constraints (temperature, pressure,
etc.), safety constraints, environmental constraints but also economical constraints are
needed in the industry. It is important to account for safety constraints in the systems
control. One of the greatest strengths of MPC is the possibility of effectively involving
constraints on inputs, states and outputs variables. We can also make use of constraint

on the maximal change of inputs, which makes our controlling more realistic.
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The model (4) and (5) are equality constraints and we use them for calculation of
predictions. Beside these equality constraints there are inequality constraints too, which
define some operating space for allowed values of our variables.

In general we can have two types of constraints. First types are convex constraints that
are common in many optimization problems. Second types are non-convex constraints
which lead to difficult optimization problems.

Constraints can be divided [7]:

e Polytopic constraints — relatively easy to solve

xeP P={x|Ax<B}

o Ellipsoids — quadratic constraints which are more difficult to solve

xee &={X|(X=%)P(x=x%,)<r}

¢ Non-convex constraints — extremely hard to solve

Figure 7: Constraints [7]
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2.3 How to Make MPC Faster

In order to make MPC faster and make optimization problem easier to solve we can use

some techniques as:

e Move Blocking,

e Change of the Prediction Horizon,
e Change of the Sampling Time Ts,
e Model Reduction.

2.3.1 Move Blocking

In this part we would like to dwell more on the possibility of using move blocking
strategies and also compare different types of move blocking. As is stated in [8] it is
common practice to reduce the degrees of freedom by fixing the input or its derivatives
to be constant over several time-steps. This approach is referred to as “‘move blocking’.

MPC problem containing move blocking is then:

N-1
min - F(xy)+ > L(X,u;) (14a)

i=0

subject to:

X, = f(x,u,), Vvi=0,.,N-1, (14b)
X, € X, Vi=1..,N-1 (14c)
u, eU, Vi=0,.,N-1. (14d)
X, = X(t) (14e)
MU =0 (149

Expression (14a) is an objective function, (14b) is the process model and, X, U are the
constraints on states and inputs, respectively. We here consider move blocking
constraint (14f) where M is blocking matrix consists of ones and zeros and U is vector

of optimal inputs.
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In the standard MPC problem, the degrees of freedom of a Receding Horizon Control

problem correspond to the number of inputs n, multiplied with the length of prediction

horizon N. The degrees of freedom are the factor for complexity, regardless of whether

the optimization problem is solved on-line or off-line [9, 10].
Move blocking schemes can be divided to [8]:

e Input Blocking (1B),

e Delta-Input Blocking (DIB),

e Offset Blocking (OB),

e Delta-Offset Blocking (DOB),

e Moving Window Blocking (MWB).

2.3.1.1 Input Blocking

Computation complexity of solving the optimization problem in MPC depends directly
on the degrees of freedom and it is possible do it with fixing the inputs to be constant
over a certain number of time-steps. There are some ways how to implement the input

blocking. One of them is using matrix called blocking matrix [8].

Using Input Blocking (IB) can be illustrated on one simple example. We have classic
MPC problem (3). This problem is solving for the optimal vector

U =[ug,---,uy,] € R™, where n, is number of inputs multiplied with the prediction

horizon N. We also consider move blocking constraint (14f).

For example of a SISO with input blocking type U, =uU, =u,,U, =U; =Ug, prediction
horizon N =6, number of inputs n, =2, it means that every input is vector of two

numbers U; = (U;;,U;,), T€l:N
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u1:u2:u3 u4:u5:U5 (15)

U U
u,—u,=0 u,—u; =0 (16)
u,—-u, =0 U;—Us =0

Using this input blocking type we reduce the degree of freedom (DOF) from value
DOF =6 to DOF = 2, which makes the MPC problem easier to solve.

From input blocking equation (15) we get this equation which we then use to define our

input blocking matrix.

0
-1 0 0 0 O0]|u,| [O]
o I, -1. 0 0 O0fflu]| |0
— (17)
o o0 o0 I, -1, O0fflu]| |O
0 0 0 0 I, —I,|lus| |O
M lu | T
U

For calculation of this input blocking matrix M we created a function make_blocking
(Appendix B). Inputs to this function are number of inputs nu, prediction horizon N,
type of input blocking ibtype. Output from this function is IB matrix M. Entries of the
input blocking type (ibtype) define how many consecutive inputs are set to constant.

Sum of all entries has to be equal to the prediction horizon N.

Input blocking type can be divided into 2 groups:

1.  ibtype = [number]

Example 1: ibtype=[5] N=5

Means that first 5 predicted inputs are set to constant U, =u, =uU; =U, = Us.
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Example 2: ibtype=[5] N =10

Means that first 5 predicted inputs are set to constant u, =u, =uU, =U, =Uand next 5

inputs are automatically fixed too Ug; =U; =Ug =Ugy =U,, .

Example 3: ibtype=[1] N=1
If ibtype = 1, then first predicted input is independent.

Example 4: ibtype=[1] N=5
If we have just ibtype = 1 and prediction horizon longer than 1, then all inputs are

independent. This means input blocking is not applied.

2.  ibtype = [numberl, number2, ...]

Example 1: ibtype = [3, 2] N=5

Means that fist 3 predicted inputs are set to constantu, =u, =ujand that next 2

predicted inputs are set to constant too U, = Us.

Example 2: ibtype = [3, 2] N=9
Means that first 3 predicted inputs are set to constant U, =u, =uUzand next inputs are

fixed with input blocking type 2, that means u, = Us,Us =U,,Ug = U,.

Example 3: ibtype =[1, 4, 3] N=38 nu=2

First predicted input is independent and next 4 predicted inputs are set to constant
u, =u; =u, =Us. Also last 3 inputs are fixed u; =uU, =ug. In figure 8 we can see
inputs prediction for both inputs U =(u,,U,),i€l:N using IB with

ibtype = [1 4 3]. Using this IB we reduce the number of degrees of freedom from 8 to
DOF = 3.
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ibtype = [1 4 3], DOF = 3 % 10° ibtype = [14 3], DOF = 3
T T T

values
values

u(i1) u(i2)

Figure 8: Input blocking type [1 4 3], DOF =3

2.3.1.2 Delta-Input Blocking

Delta-Input Blocking (DIB) is a method that shows us that instead of just fixing the
input to be constant over a certain number or steps, it is too possible to fix the difference
between two consecutive control inputs to be constant over several steps. As is written
in [8] compared to IB strategy, the DIB strategy may lead to greater flexibility in the
controller since only the difference between successive inputs and not the actual inputs
are blocked. As the previously presented IB scheme, the DIB has one drawback too.
Both of these strategies reduce the complexity of optimization problem but do not

guarantee closed-loop stability or feasibility.

The principle of DIB can be illustrated on a very simple example. We consider a SISO

system with DIB, prediction horizon N =6, number of inputs n, =2, meanings that

every input is vector of two numbers U, = (U;;,U;,), i €1:N . For us the first input

u, = (uy,,u,,) is free now and it can be any number.

u,—u, =C
u;—u, =C (18)
u,-u,=C
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Equations (18), (19) mean that the difference between these states is constant.

-u, + U, + Ou; +Ou, =C
Ou, — u, + u; +0u, =C (19)
Ou +0u, - u;, + u,=C

It is possible to rewrite these equations into a matrix form:

_u1_
Il -1 0 0 C
u,
0 Il -1 0 =|C (20)
m m u3
o o0 I, -1 C
v ] u4 ——
A e’ C
U

Using some elimination process we want to separate constant C. For example from last

equation (18) we know that C =u, —u,. Substituting this equation into first and second

equations in (18) we obtain (21).

-u, +Uu,+ u,—u, =0

(21)
Ou, —u, +21 u,—-u,=0
0
ey —1n 1, =1, 1|u,| [O
{0 I, -21, 0 } Uy :L(j (22)
M u, 0

U
From (22) it is clear that we get the same equation like equation as the (14) in IB. In

(22) M is Delta-Input blocking matrix.
For calculation this Delta-Input blocking matrix M we created a function
make_delta_blocking (Appendix B). Inputs to this function are number of inputs nu,
prediction horizon N, type of delta input blocking dibtype. Output from this function is
DIB matrix M.
Entries of the DIB type (dibtype) define for how many consecutive inputs are the
differences between these inputs constant. Sum of all entries has to be equal to the
prediction horizon N.
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The DIB type can be divided into 2 groups:

1.  dibtype = [number]

Example 1: dibtype=[5] N=5
Means that differences between first 5 consecutive inputs are set to constant

u,—-u, =u;—u, =u, —U; =u; —u, =C.

Example 2: dibtype =[5] N=10
Means that differences between first 5 consecutive inputs are set to constant

u,-u, =u;—u, =u, —U, =Ugs —U, =Cand differences between next consecutive

inputs are free.

Example 3: dibtype=[2] N=5
In this case only the difference between first 2 consecutive inputs is set to be

u, —u, =C, but that is the same as when not using delta input blocking, as there is

always some constant difference between two consecutive inputs. It means that, in this

case, the differences between consecutive inputs are free.

2. dibtype = [numberl, number2, ...]

Example 1: dibtype =[2, 4] N=5
The difference between first 2 consecutive inputs is set to constant U, —U, =C1 and it
means that for first two we do not use the delta input blocking and difference between

next 4 consecutive inputs is set to constant U, —u, =uU, —U; =u; —u, =C2,

Example 2: dibtype = [4, 3, 4, 2] N =10 nu=2
The difference between first 4 consecutive inputs is set to constant

u, —u, =u; —u, =u, —u, =C1. The difference between next 3 consecutive inputs is
constant U. —U, =U; —U; =C2 and also the difference between next 4 consecutive

inputs is set to constant U, —U, =Ug —U, =Uy —Ug = C3 while last inputs are variable
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because only two inputs are set to constant u,, —u, = C4. In figure 9 we can see inputs
prediction for both inputs U; = (U, U;,), i€1l: N using DIB with dibtype = [1 4 3].

This type of DIB reduces the number of degrees of freedom from 10 to DOF = 5.

%107 dibtype = [4 34 2], DOF =5
: : : . C3

1 T T T

values
values

u(i1) uli2)

Figure 9: Delta input blocking type [4 3 4 2], DOF =5

2.3.2 Model Reduction

As mentioned, the MPC controller uses mathematical model to obtain a prediction of
outputs. There are many types of models complexity. From models consisting of few
states to models which containing many states. With rising number of states in the
model, also the complexity of this model grows and, of course, the more complex the
MPC controller gets. In other words, as stated in [12], the main drawback of MPC is the
large increase in controller complexity as the optimization problem increases. Thus it
takes longer time to compute the sequence of optimal control actions. For this reason,
usually the low-order models are used with small number of constraints and short

control horizons. But applications of this simplification cause control performance loss.

A challenging question is whether it is possible to simplify these complex models and
make MPC faster by using some kind of model states reduction. Another relevant
question is the trade-off between speed and performance of MPC using reduced model.

Answer to first question can be found in [12], [13], [14], [15], [16], where it is also
mentioned that the goal of model reduction methods is to derive a model of low order

(less number of states) that approximates the input-output behavior of the original
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model in an appropriate manner. There are some methods for model reduction. These
methods can be divided to stable or unstable systems or to methods based on stochastic
or deterministic principles. Another big group of model reduction methods is

Truncation methods.
This group of methods includes [13]:

e Balanced Truncation (BT)

e Balance and Truncate Algorithm (BTA)

e Square Root Truncation Algorithm (SRTA)

e Balancing Free Square Root Truncation Algorithm (BFS-RTA)

Other model reduction techniques are Optimal Hankel Model Reduction, or LQG

Balanced Truncation.

In this project we will use the Balanced Truncation (BT) [16] as an example of a model
reduction scheme that can be than analyzed using our program in order to get the
optimal reduction. Main principle of methods like Balanced Truncation or Square Root
Truncation Algorithm is to compute Lyapunov functions that wouls satisfy stability of
system [13]. Afterwards, Cholesky factorization and Singular Value Decomposition
(SVD) is used for choosing the states with the biggest influence in model. With

application of truncation we obtain a reduced model.

We consider a continuous linear system [17]:

X = A°X+ B°u, y=C°x+ DU
xeR™,yeR",ueR™. (13)

Balanced truncation is well known for preserving stability. When we consider that the
original model of the system is asymptotically stable, balanced truncation produces
asymptotically stable reduced models. Controllability and observability are also

preserved in the model reduction process [16].
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The BT model reduction method consists of two steps which is clear from the name of
this method. First step is called balancing and its aim is to find a balanced
representation of system we would like to reduce (13). Second step is truncation of the
states corresponding to the smallest Hankel singular values of the balanced

representation [17].

2.3.2.1 Balanced Representation

As an example of balanced system we can say that the system is balanced when the
states that are excited most by input are at same time the states that produce the most
output energy [12]. The gramians can be found by solving the Lyapunov equations
below. The controllability and observability gramians of a linear system are defined
[16]:

AW, +W_A°'+B°B*'=0 (14)
AS'W, +W,A° +C°'C° =0 (15)
W,,W, >0 (16)

A balanced representation (13) is obtained through a transformation matrix T, such that
W_and W, (of the transformed system) are equal. Let z donate the states of the balanced

system, i.e. z=Tx.

It can be shown that
W, =W, = diag(oy,0,,..., 0, )
VVC :TWCT‘l
Wy = (T W, T

(17)

The diagonal elements o;, =12,...,n, are called the system’s Hankel singular values of

the balanced representation, ordered accordingtoo, >0, >..>0, >0.
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2.3.2.2 Truncation

Main purpose of truncation is to cut off states that are not useful for system, i.e. have no
major influence on the model behaviour and to keep only states that are important for

our model.

Letz'=[z; z,]. In balanced truncation we simply delete z,from the vector of balanced

states z . Denote T,and T, as

e e,
Tii ... T I, T i
T= : T =1 7, 3 3 (18)
Tﬁl ]}m nl . nn nn
: T,
L Tnl ];m J
We can now express the balanced and truncated result as
2, =T,A°T, +T,Bu (19)

y=C°T"z +Du

and finally z, =T,X.

2.3.2 Change of the Prediction Horizon

Another approach of how to reduce the degrees of freedom is to use different control
and prediction horizons, i.e. the inputs are kept constant beyond a certain point in the
prediction horizon, or a linear controller is used beyond that point [8].

MPC has an internal model that is used to predict the behaviour of the plant, starting at
the current time, over a future prediction horizon. Predicted behaviour depends on input
trajectory that is calculated over that prediction horizon. Inputs promising the best
predicted behaviour are then selected and applied to the system [2]. Length of the
prediction horizon is the number of steps that optimal inputs are calculated over. Longer
length of the prediction horizon provides better performance of control, but

simultaneously with longer prediction horizon also the number of decision variables
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grows, and this increases the complexity of the optimization problem. On the other hand
using too short prediction horizon can cause poor control quality or instability of
control. Shortening of the prediction horizon is one way of making the MPC faster, but
shorter prediction increases the risk that the control performance will not be

satisfactory.

2.3.3 Change of the Sampling Time

Strategy of moving horizon or strategy of future prediction is based on mathematical
model of the system to be controlled. MPC works with discrete time system models.

Because of this it is necessary to discretize the mathematical model. For this reason the

right choice of sampling time T, is needed for discretization of our model.

The main idea of how to use changing sampling time T, to make MPC faster is very

simple. One of these techniques is described in [11] where the optimization is repeated
at each time-step by dividing the prediction horizon into two parts. In the first half of
prediction horizon is the sampling rate doubling and the second part of the solution is
keeping fixed, until a reasonable sampling time is reached. If we double the sampling
time Ts, it will reduce the prediction length by a factor of 2. Therefore the speed-up in
terms of sampling time can be measured in the prediction length N. This method shows
one major drawback in loss of quality of the model, which transforms into less precise
description of the real system. In the worst case, the model can lose its dynamic and will
be describing only steps between steady states. Also we cannot omit the fact that the
length of sampling time is very important since during this time the new measurements

are taken and also new prediction and calculation of optimal inputs is realized.
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2.4 Karush-Kuhn-Tucker Conditions

The Karush—Kuhn-Tucker conditions (also known as the Kuhn-Tucker or KKT
conditions) are very important for solving constrained optimization problems. The
conditions are named after William Karush, Harold W. Kuhn, and Albert W. Tucker
and were described in a 1951 paper of Kuhn and Tucker [19], though they were derived
earlier (and independently) in an unpublished 1939 master’s thesis of W. Karush.

The KKT conditions are the first-order conditions on the gradient for an optimal point.
It is a generalization of the method of Lagrange multipliers to inequality constraints.
Lagrange multipliers extend the unconstrained first-order condition (derivative or
gradient equal to zero) to the case of equality constraints; KKT adds inequality
constraints. KKT conditions are necessary for the local optimality of a feasible point in

a constrained optimization problem [20].

It is about minimizing functions subject to constraints on the variables. A general

formulation for these problems is [18]:

in f(x) subjectt c,(x)=0, ieE, 20
min f (x
xeR" SUbJect 0 c(x)=0, i€l (20)

where f and functions c, are all smooth, real-valued functions on a subset of R", Tand
Eare two finite sets of indices. f is the objective function, while c;, i<€Eare the

equality constraints and C;, i €1 are inequality constraints.

As a preliminary to stating the necessary conditions, we define the Lagrangian function

for the general problem (20) as:

L(x,2) = f(x) = D 4G (X). (21)

ieEUI
Following conditions (22) are called first-order conditions because they are concerned
with properties of the gradients (first-derivative vectors) of the objective and constraint

functions.
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Suppose that X'is a local solution of (20), that the function fand c,in (20) are
continuously differentiable, and that the linear independence constraint qualification
(LICQ) holds at x". Then there is a Lagrange multiplier vector 1°, with components A'i

, e EUI, such the following conditions are satisfied at (X*,I‘) [18]

V,L(x", 1) =0, (22a)
c.(x)=0, forall ieE, (22b)
c,(x)=0, forall iel, (22c)

Ai20, forall iel, (22d)
Aic,(x")>0, forall ieEUI, (22e)

The conditions (22) are often knows as the Karush-Kuhn-Tucker conditions, or KKT

conditions for short. The conditions (22e) are complementarity conditions; they imply
that either constraints i is active or A5 =0, or possibly both. In particular, the
Lagrange multipliers corresponding to inactive inequality constraint are zero, we can

omit the terms for indices i ¢ A(X") from (22a) and rewrite this condition as [1]

0=V,L(X", A)=Vf(x")— > Aic,(x). (23)

ieA(X")

Given a local solution X" of (20) and a vector A’ satisfying (22), we say that the strict
complementarity condition holds if exactly one of A'iand c,(x")is zero for each index
i €1,. In other words, we have that 1 >0, for each i1 A(X").

Satisfaction of the strict complementarity property usually makes it easier for

algorithms to determine the active set A(X")and converge rapidly to the solution x".

For a given problem (20) and solution point X", there are many vectors A for which the
conditions (22) are satisfied [18].
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3 IMPLEMETATION OF THE MODEL WITH
DISTURBANCES IN MPC

In this part of the Project we compare three ways of implementation and solving the
MPC problem using mathematical model of system including disturbances:

1. MPC with the model as equality constraints,

2. MPC with the model substituted into the objective function,

3. First-order optimality conditions of the MPC.

3.1 Model of the Distillation Column

As an example of the plant we will use a typical simple distillation column controlled
with LV — configuration which is shown in figure 10. The most important notation is
summarized in table 1. Our nonlinear model of a distillation column (“column A”) by
Prof. Skogestad [21] was linearized using a script in MATLAB (‘cola_linearize.m’) to
obtain a linear model. The model has 82 states (liquid composition and liquid hold up)
and we reduced it to 16 states because it is easier to work with a 16 states model. This
model contains 2 inputs (reflux L, boilup V) and also 2 disturbances (feed rate F, feed
composition zg). We consider that our disturbances are measured and can be included in

the mathematical model.

Outputs: xp, xg

F.zr > Inputs: L.V
Disturbances: F. z¢

¢

1
1
o BAXB

»
L] ~

Figure 10: Distillation column controlled with LV-configuration [21]
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F feed rate [kmol/min]

Zc feed composition [mole fraction]

o fraction of liquid in feed

Dand B distillate (top) and bottoms product flow rate [kmol/min]

Xp and Xg distillate and bottom product composition (usually of light component)

[mole fraction]

L reflux flow [kmol/min]

\Y boilup flow [kmol/min]

N no. of theoretical stages including reboiler

L,and V, liquid and vapour flow from stage i [kmol/min]

X;and Y; liquid and vapour composition on stage i (usually of light component)

[mole fraction]

M; liquid and holdup on stage i [kmol] ( M - reboiler, M- condenser
holdup)

a relative volatility between light and heavy component

T, time constant for liquid flow dynamics on each stage [min]

A constant for effect of vapour flow on liquid flow

Table 1: Notation [21]

The model and assumptions [21]:
e binary separation,
e 41 stages, including rebolier and total condenser,
e each stage is at equilibrium, with constant relatives volatility a =1.5,
e linearized liquid flow dynamics,
e negligible vapor holdup,
e constant pressure.
e constant molar flows

e no vapor holdup
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More details about this distillation column: model equations, linearization of this model,
steady-state operating point, column temperatures, important MATLAB files, etc. can
be found in [22].

MPC is based on a discrete time representation of the system dynamics. Because of this

we must discretize our model with sample time Ts = 1.

Consider the linear system

X, =Ax, +Bu, +B,d,,  ke{012.}

Y, =Cx, +Du, + D,d, (24)

with constraints

X, e XcR™,y, eYcR"™,u eUcR™, (25)

where X, note states, Y,are measurements, U, are controlled inputs and d, are

disturbances. Further X, Y, U are polytopes.
Matrices A, B, C, D, Bq, Dq are given in (Appendix A).

And our constraints on inputs are —1<u, <1.

3.1.1 Disturbance Model
There are many types of disturbance models. In this part of project we defined a
disturbance model as:

d, = given

d,=a-d,

d,=a""-d, (26)

O<axl

Disturbance is measured and changing in every step, d, is a parameter.
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3.2 Formulation of the MPC Problems

Here we use three ways how to formulate and solve MPC problems. In the end we will

make results if solving of these problems gives us the same solutions as is expected.

3.2.1 Formulation of Problem 1

MPC formulation:

subject to

N-1
min J(x,u) = %x;q PX, +%Zx{Qxi +u,Ru,

i=0

X, = AX; + Bu; + B,d,, Vi=0,.,N-1,
X, € X, Vi=1..,N-1,
u; €U, Vi=0,.,N-1,
Upin SU; SU Vi=0,.,N-1,

X, =0V given,

d, = given

3.2.2 Formulation of Problem 2

We use linear model to rewrite Problem 1 to the form of Problem 2.

Xi., = AX, + Bu, + B,d,, Vi=0,..,N-1
X, =0V given,

d, = given

d =o' -d, Vi=1..,N-1
O<ax<l

(27)

(28)
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When we know X,, d, and U we can calculate every state X
i=0
X, = AX, + Bu, + B,d,,

vi=1..,N-1.

i+1

=1
X, = Ax, + Bu, + B,d, = A(Ax, + Bu, + B,d, )+ Bu, + B,ad, =
= A*x, + ABu, + AB,d, + Bu, + B,ad,,
(29)

N

i=
X, = AX, + Bu, + B,d, = A(A2x, + ABU, + AB,d, + Bu, + B,ad, )+ Bu, + B,ar’d, =
A’x, + A’Bu, + A’B,d, + ABu, + AB,ad, + Bu, + B,a*d,,

Formula for calculating every state x,,, Vi=1...,N-1:
N-1 o N-1 N .

Xy = aVIAIBdy + > ABU L, + D AlX, (30)
j=0 j=0 j=1

Transforming (30) into matrix form we get:

X, Bd B 0o .- 0 0 A
X, oBd + ABd AB B -+ : A’
X=| ! |=| o’Bd+aABd+A’Bd [d,+| Y U+ %
Xy : AV?B AVPB ... B 0 AN
X L : | |AYB AY?B ... AB B iN/; (31)
X X Y z

here X = Xd, +Yu +Zx,.

Objective function (27) can be rewritten in this matrix form:

N-1
min J(x,u) = %X;\l PX, +%in’Qxi +U,Ru, =

i=0

Q 0-- 0 O] RO--- 0 O
0Q.. 0 O OR.. 0 O
_1)—(- R :X+EU' oty
5 : U8 i (32)
0 0 Q 0 0 0 0
0 0 0 P] 0 0 0 R
Q R
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By using (30) the MPC problem defined in (27) can be rewritten as:
1., N . .
V(xo,do)zaxonoerln{EU HU +x', FU +d0FdU}, (33a)

subjectto GU <W +E x, + E,d, (33b)

We need to rewrite the MPC problem from formulation (32) to the formulation (33). We
will use equation (31) and put it into the problem (32).

min J(X,U)=%)_(I(5)_(+%U'§U =

(zx, + Xd, +YU )'Q(Zx0+Xdo+YU)+%U'I5U (34)

N

We define @ as:
Zx, + Xd, =[Z x]{ 0} (35)

We can use equation (35), put it in the objective function (34) and we get objective

function in form (36).

%(ZXO + Xd, +YU YQ(Zx, + Xd, +YU )+%U'§U =%(Hz +YU )Q(6z +YU )+%U'I5U =
1 TP Lot~ 1 NS T~ 1 P~

=570'Q0+70'QYU +-U'Y'QYU +ZU'RU =

~1r0G0+ zodWU +1U Gy 4R

2 = 2=

H

(36)

const [’ dol][il'}éYU

From objective function (36) we can extract matrices H,F,, F, .

LIS |

H=Y'QY +R

F =2'QY

F, = X'QY

f'=d,'F, +x%,'F, 37)
f=F,'d,+x,'F,
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Now we have matrices H, F , F, which we need to formulate the objective function in

problem (33).

We also need to formulate constraints and get matrices G,W (33). We have only one

input constraint:

Upin SU <UL (38)
U<SUpy = lu<lu,
Uy, <U = —u<-u,, =-lu<-u,1 (39)

From (16) we can express G,W as:

G:{ ! }w{ Hres '1 (40)
=1 _umin'l

3.2.3 Formulation of Problem 3

In formulation of the Problem 3 we need to define the KKT conditions (44) for the
problem (33). Problem (33) is a typical problem of a single inequality constraint which
we can solve using KKT conditions.

Our optimization problem is:

muin{%U'HU +X, FU +d, qu} (41a)

Subject to the single inequality constraint:

GU <W +E,x, +E,d,

(41b)
-GU+W +E x,+E,d, >0

We define the Lagrangian function (42) for our problem using Lagrange multiplier A
and equations (41a) and (41b):

L(u, A) :[%U'HU +x, FU+d, quj—z'(—c;u +W +E, x, + E,d,) (42)

46 |Page



First condition of KKT conditions is gradient (first-derivation vector) of the objective
and constraint functions. Here u is a local solution of (41) and the functions in (41) are

continuously differentiable.

vV, Lu,2)=0
HU +F,x, + F,d, +G'1=0 (43)

From (43) we get fist KKT condition (44a). Second KKT condition (44b) is our
constraint (41b) and the Lagrange multiplier must be greater than equal to 0.

HU +F,x, +F,d, +G'A*=0 (44a)
GU-W -E, x,-E,d, <0 (44b)
A20 (44c)

A< Ms
GU-W —E x, —E,d, >M(1-5s) (45)

In (45) we use binary variables se{01}™ and big-M formulation, where n,, is the
number of inequality constraints in (41b).

The big-M is a constant that is large enough such the solution to (44), (45) corresponds
to the solution of (33). Big-M reformulations are used to convert a logic or nonconvex
constraint to a set of constraints describing the same feasible set, using auxillary binary

variables and additional constraints [23].
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3.3 Implementation of the MPC Problems

3.3.1 Implementation of Problem 1

We use Yalmip [Lofberg, 2004] under MATLAB to set up the optimization model,
objective function with constraints of the Problem 1. To solve Problem 1 we use the
function solvesdp which is the common function for solving standard optimization
problems with Yalmip. The script which we use is in (Appendix B: Script to solve
Problem 1).

3.3.2 Implementation of Problem 2

To implement Problem 2 we need matrices X,Y,Z,(S, R which are defined in (31) and
(32). To calculate these matrices we wrote functions “xyfun.m” and “QRfun.m”. Using
these functions we can get matrices X,Y,Z,Q,R with using different length of
prediction horizon N , disturbances parameters d, and o, model of system, sample
time Ts and different weight matrices Q,R . In the script (Appendix B: Script to solve
Problem 2) we calculate also matrices H,F,,F, (37) and G,W (40) which are
necessary to solve the Problem 2 with function quadprog which is a function that can

solve quadratic programming problems.
3.3.3 Implementation of Problem 3

For implementation and solving Problem 3 we use the script in (Appendix B: Script to

solve Problem 3). In this script we also use functions “xyfun.m” and “QRfun.m” as
before when we was solving the Problem 2, because we need define matrices H, F,, F,

and G,W which are part of the KKT conditions. To define a KKT conditions with big-

M formulation we use Yalmip and to solve the problem we use the function solvesdp.
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3.4 Comparison of the Solutions to the MPC Problems

Problems 1, 2, 3 should have the same solution because they represent the same
problem.

We here consider MPC for our distillation column example [21] with 16 states, sample
time Ts = 1, prediction horizon N =8, weight matrices Q = diag(ones(16,1),0) and
R = diag(ones(2,1),0). Disturbances parameters ared, =[0.5;1],a=0.1 and the initial

state X, =zeros(16,1).

[].01 T T T T T T
w 0
5
=N
5
© o0t .
_[]_02 1 1 1 1 1 1
0 10 20 30 40 50 60 70
Time [sec]
0.1 T T T T T T
0.05r .

-0.05

Inputs
=
1

_0_1 1 1 1 1 1 1
0 10 20 30 40 50 60 70

Time [sec]

Figure 11. Close loop simulation with the MPC Problem 1, 2, 3

Problems 1, 2, 3 have the same solution because we use only other formulations of the
same MPC problem. It is clear in figures 11 where we obtain the same system response
from close loop simulations using Problem 1, 2, 3. In Table 2 are optimal inputs

obtained as a solution from optimization problems 1, 2, 3.
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Problem 1 Problem 2 Problem 3

1 -0.0638 0.0833 -0.0638 0.0833 -0.0638 0.0833

2 -0.0575 0.0771 -0.0575 0.0771 -0.0575 0.0771
3 -0.0558 0.0691 -0.0558 0.0691 -0.0558 0.0691
4 -0.0530 0.0625 -0.0530 0.0625 -0.0530 0.0625
5 -0.0489 0.0572 -0.0489 0.0572 -0.0489 0.0572
6 -0.0443 0.0526 -0.0443 0.0526 -0.0443 0.0526
7 -0.0397 0.0482 -0.0397 0.0482 -0.0397 0.0482
8 -0.0354 0.0441 -0.0354 0.0441 -0.0354 0.0441
9 -0.0313 0.0401 -0.0313 0.0401 -0.0313 0.0401
10 -0.0275 0.0363 -0.0275 0.0363 -0.0275 0.0363
11 -0.0241 0.0328 -0.0241 0.0328 -0.0241 0.0328
12 -0.0210 0.0295 -0.0210 0.0295 -0.0210 0.0295
13 -0.0182 0.0264 -0.0182 0.0264 -0.0182 0.0264
14 -0.0157 0.0236 -0.0157 0.0236 -0.0157 0.0236
15 -0.0135 0.0211 -0.0135 0.0211 -0.0135 0.0211
16 -0.0116 0.0188 -0.0116 0.0188 -0.0116 0.0188
17 -0.0099 0.0167 -0.0099 0.0167 -0.0099 0.0167
18 -0.0084 0.0149 -0.0084 0.0149 -0.0084 0.0149
19 -0.0071 0.0132 -0.0071 0.0132 -0.0071 0.0132
20 -0.0059 0.0118 -0.0059 0.0118 -0.0059 0.0118
60 0.0002895 0.0003659 0.0002895 0.0003659 0.0002895 0.0003659
61 0.0002761 0.0003443 0.0002761 0.0003443 0.0002761 0.0003443
62 0.0002631 0.0003241 0.0002631 0.0003241 0.0002631 0.0003241
63 0.0002506 0.0003053 0.0002506 0.0003053 0.0002506 0.0003053
64 0.0002385 0.0002877 0.0002385 0.0002877 0.0002385 0.0002877
65 0.0002269 0.0002712 0.0002269 0.0002712 0.0002269 0.0002712
66 0.0002158 0.0002557 0.0002158 0.0002557 0.0002158 0.0002557
67 0.0002051 0.0002412 0.0002051 0.0002412 0.0002051 0.0002412
68 0.0001949 0.0002276 0.0001949 0.0002276 0.0001949 0.0002276
69 0.0001851 0.0002149 0.0001851 0.0002149 0.0001851 0.0002149
70 0.0001757 0.0002029 0.0001757 0.0002029 0.0001757 0.0002029

Table 2: Inputs obtained from Problem1, Problem 2, Problem 3 MPC regulators

3.5 Conclusions

In this part of thesis we wrote short introduction into the formulation and solving MPC
using mathematical model of the system including disturbances. We defined our MPC
problem using three ways of formulations. At first we used normal formulation of MPC
problem with objective function and disturbances. This problem we implemented and
solved using Yalmip in Matlab. As a Problem 2 we reformulated the first problem into
the quadratic programming problem and then we used function quadprog to solve it.
For the last way of formulation and solving MPC problem we used KKT conditions and
we solved this problem as a typical problem of a single inequality constraint using
Yalmip in Matlab. We reached the same solutions of this MPC problem using Problem
1,2,3.
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4  WORST-CASE ERROR ANALYSIS

4.1 Model Reduction Worst-case Error Analysis

In this chapter we consider model predictive control (MPC) [1] and we would like to

answer the question: What is the worst-case difference between an MPC using the full
model (2) and an MPC using the reduced model (3) and what d, maximizes difference
between outputs from full model (2b) and reduced model (3b) when we consider

X, = Byd, and we will use different simulation time?

To find the maximum difference between the reference and simplified controller we use

bilevel programming. We could calculate the distance between the controllers as

red

Huk — Uy

, but we focused on difference in outputsHQy(yk —yrh)

LC. We use the

infinity norm because then the problem can be reformulated as a mixed-integer linear
program (MILP). [17]

max distance(y, ,y;*)

y, = argmin{M PCformulation with full model}

subject to (46)

red

y;* = arg min{MPCformulation with reduced model }

We don’t use an explicit formulation of the controllers, but we simply express them as
solutions to optimization problems. Problem (46) can be rewritten as a mixed-integer
linear program (MILP) and solved using standard software.

We consider following system:

X, = AX; +BuU,, Vi=0,..,N-1, (472)
y, =Cx;, Vi=0,...,N, (47hb)

and also “reduced” model
Xirff _ Ared Xired + Bredui’ Vi = O,..., N _1, (48&)
yired -C red Xired , Vi = 0,...,N. (48b)
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To reduce the model we use balanced truncation. We note that the map from the full

state vector X to the balanced and truncated system is given by z =T x [17].

MPC controller:

nQ'iun J(X, u):%x'N PXy +%i§xi’Qxi +UuyRuy, (49)
X, = AX; + Bu;, Vi=0,.,N-1,
X; € X, Vi=1..,N-1,
u, €U, Vi=0,.,N-1,
subject to U, <u <u_ Vi=0,.,N -1,
Xo = Bydy,
d, = given

We use X; = A'X, > A’Bu_,_; torewrite our MPC problem (49) to this form [9]:

j=0

V (X, do) :%x'o Yx0+muin{%U' HU +x, FU +d', qu}, (50a)

subjectto GU <W +E, x, + E,d, (50b)

By using a modification of (50a) and (50b) we can define our lower-level problem in
bilevel programming and the KKT conditions (51). For this problem can be defined as
[17]:

HU+F X, +G'A=0
GU-W -E,x, <0
A20 (51)
A< Ms
GU -W —E x, —E,d, >M(1-5s)
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In (49) we use binary variables se {01} and big-M formulation, where n,, is the

number of inequality constraints in (50b). The big-M is a constant that is large enough

such the solution to (51) corresponds to the solution of (50).

The same method we will use to get MPC controller using reduced model. Defined
KKT conditions (51) and our MPC problem (50) we will use as a lower-level problem

in bilevel programming. Using full-order model (47) we get matrices

(H" FY c"™w™ E™) from KKT conditions (51) and using low-order model

(48) we get matrices (H™,F"™ ,G™ W™ E™) from KKT conditions (51) [17].

Here in (52) and (53) we define the one-step problem as:

max
dyeD

‘Qy (yfull _ yred)

. (52)

subject to

KKT (MPC"", x)

. (53)
KKT (MPC™ T x)

Using objective function (52) we define our one-step problem which means that we are

red

looking for maximal difference of outputs y™" from full and outputs y™ from reduced

model. A part of the constraints are KKT conditions, prediction models for full-order
and reduced-order model, equality constraints x,"' = B,d,,x;* =B,d, and d, isin D

interval, where
D=1{d eR?||d], <1} . (54)

Equations (52), (53) represents only one-step problem. We would like to calculate the

worst-case error (WCE) over some steps using simulation time or number of simulation

steps N;,,. Objective function for our bilevel problem can be defined (55). Using
simulation steps N, we get more KKT conditions (56), one for each simulation step

N

sim -
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max |Q, (Yin - Yiein) - (55)
subject to

We consider that x,""' = B,d,, x;* = B,d, .

for i=1:N. (56)

sim

full full full
Xi = AXg + BUMPC x(i-1)

]
red red red
X =AX; + BuMPC x(i-1)
full o full
Uppcxiy = KKT (MPCH, x.1
red ed red
Unipe x(i-ny = KKT(M PC 11X
end

We wanted originally to calculate the WCE as a sum of the worst-case outputs

differences between full and reduced order MPC controllers during some simulation

steps N, (57).

Nsim

2

i=1

vy ®)

[e¢]

However it was not possible because this optimization problem is really difficult to
solve, respectively solving this problem takes very long time. Finally, we decided to try
one-step formulation of objective function (58), where the WCE is calculated in the last

simulation step and these results of worst-case disturbances are used to obtain the initial
states for closed loop MPC simulation. Using simulation steps N, in this MPC
simulation we will get a sum of the worst-case outputs for concrete worst-case
disturbances. We assume there is some difference between real calculations of (57) and

using this method, because we are solving different optimization problem, but as is

shown later the difference is small and this solution is usable.

full red

HYNsim “Yn

sim || © (58)
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4.1.1 Simulations

We here present some simulations and plots. These simulations can be divided into

several groups:

e in these plots we would like to show how the WCE of outputs is changing when we

use different reduced models with different number of states,
e we would like to compare closed loop simulation with number of simulation steps

N, =10 for the full order controller (n, =16) and low order controller (n,,, =4),

e in other plots we would like to show the trend of changing WCE of outputs

calculating with objective function in the last step of simulation time N, while the
simulation time is changing from N, =1to N, =20,

e using MPC simulations we would like to calculate and compare the sum of WCE
obtained over the simulation time N, =20, for this simulations we will use the
worst-case disturbances from solutions of bilevel problems which are using objective
function calculating for the last step of simulation time changing from N, =1 to

N, =20,

sim

e also we would like to check that we can use MPC simulations to calculate the WCE,

when we have worst-case disturbances,

o for one example we would like to compare sum of WCE obtained using updating
objective function (12) in our bilevel problem to sum of WCE obtained with
calculation of one-step problem and then using worst-case initial disturbances in

MPC simulations,
o we would like to show how the worst possible initial disturbances (d,,,d;,) which

we used to calculate initial states x, = B,d, were changing.
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4.1.1.1 WCE for a Set of Different Reduced-order Models

% 1[]'5 Msim = 10
9 T T T T T T T

warst case error (outputs)

2 4 B 8 10 12 14 16
states in reduced-order controller

Figure 12: WCE for a set of different reduced order models

In figure 12 is plot of the WCE for a set of different reduced order models, which
consist of 1 to 15 states. The WCE is the most different between full-order outputs and
reduced-order outputs which we get from equations (2b), (3b), respectively. Number of
simulation steps in every calculation WCE for different reduced models isN, =10 .
The objective functions which we use to obtain the WCE of outputs use only outputs
from last simulation step. This means that the objective function is calculated only in
the last simulation step when N, =10. We can see that the WCE of outputs is
decreasing with rising numbers of states in reduced order controller. It was expected
because when we use less reduced model also the different between full order model

and reduced order model is smaller.
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4.1.1.2 Closed Loop Simulation

In figure 13 we can see difference when we compare closed loop simulation for the full-

order controller (n,, =16) and low order controller (N, =4)during simulation steps

which number is N, =10 . Reason why full order controller produces other inputs into
controlling system as low order controller is very simple. It is because low order
controller uses reduced model to calculate prediction as full order controller which use
no reduced model of system. There is also a difference between the full-order outputs
and the reduced-order outputs, but the difference is very small and it is not clear see in

figure 13.

0.04 T T T T T T T T
— full

— — reduced

0.02

Outputs

10

Time

Figure 13: Closed loop simulation for the full order controller (n,,, =16) and low order

controller (n,.; =4)and with number of simulation steps N, =10
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4.1.1.3 WCE for a Set of Different Reduced-order Models with
Changing Ng,

The figures 14, 15 answer us the question how is changing the dependence of WCE on
different reduced-order controllers when we use different simulation times or number of
simulation steps which are changing from 1 to 20. The objective function which is used
to calculate the worst case difference of outputs is calculated in the last step of changing
simulation time. The figure 15 compares dependence WCE of outputs on different
reduced-order controllers which was obtained using different simulation times namely
N, =(14,81216,20) . It is good see that with increasing simulation time N, is this
WCE dependence decreasing especially when we use reduced-order controllers which

are using reduced model with number of states in range 1 to 6. Exception is the WCE of

outputs when is using simulation time N, =1. Reason of this is very simple, because

these outputs are calculated from the initial states which are for full-order and reduced-

order controllers same.

worst case error (outputs)

. —— 1

2 4 5] 8 10 12 14 16
states in reduced-order controller

Figure 14: WCE for a set of different reduced order models with changing
N, =1-20
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G 8 10 12 14 16
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Figure 15: WCE for a set of different reduced order models with changing
N, = (14,81216,20)

4.1.1.4 The Worst Possible Initial Disturbances

In figure 16 we can see worst possible initial disturbances for reduced-order controller

using reduced model with number of states n,, = 10 and different time of simulation
Ngn = (1,4,812,16,20) . As it was written these initial disturbances are used to calculate

the initial states X, = B,d, which are the worst possible initial states. Values of initial
disturbances which are plotted in the figure 16 are also in table 3 in row number 10 for

number of states n,,= 10 and we can see how are changing from interval

~1<d, <1,i=12.
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Figure 16: Using initial disturbances d,,,d,, for calculating WCE for reduced model

10 and with changing N, = (1,4,8,12,16,20)

n red

do2
States/Nsim

dol
States /Nsim

20

16

12

1

10
11
12
13
14
15

20

16
-1
-1

12

1

10
11
12
13
14
15

Table 3: Initial disturbances
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4.1.1.5 WCE sum for a Set of Different Reduced-order Models with
Changing Ng,

As we said before, we wanted originally to calculate the WCE as a sum of the worst-
case outputs differences between reference and reduced MPC controllers (57), because
solving this optimization problem takes very long time, we decided to try other
formulation of objective function (58), where the WCE is calculating in the last
simulation step and calculated results of worst-case disturbances are used to obtain the

initial states for closed loop MPC simulation.

It is clear that when we use the worst case initial disturbances calculated for different
reduced models and simulation steps as seen in table 1 we will get in some cases the
same initial states for closed loop MPC simulation. This also mean that the sum of
WCE will be for that simulations same. This argument proves figure 17, where lines
represented sums of WCE obtained using different number of simulation steps are

identical. This result is distinct also in figure 18 for concrete simulation steps.

Msim 1-20
U.U14 T T T T T T T

0.012

0.01

0.008

0.006

0.004

sum of worst case errors (outputs)

0.002

2 4 6 8 10 12 14 16
states in reduced-order contraller

Figure 17: Sum of WCE for a set of different reduced order models with changing

N, =1-20
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MNsim = [1.4,8,12,16,20]
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=0
=2
S 0.008} -
[sH]
€
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(&
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(=]
=
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E
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0.002 .
0 1 e, | ELLL il LLL PP P C TP e T ol A h
2 4 6 8 10 12 14 16

states in reduced-order controller
Figure 18: Sum of WCE for a set of different reduced order models with changing
N, =(14,81216,20)

4.1.1.6 Comparison of WCE Sum Using Real Updating Objective

Function and MPC Simulation Calculation

It is important to show the difference when the sum of WCE error is calculated with
updating objective function or with our simplified technique which calculates WCE in
the last step of simulation and then are using obtained disturbances in MPC simulation.
In figures 19, 20, 21 are displayed plots when the objective function (58) is calculated in

the last simulation step while numbers of simulation steps N, =(12,3,4,5,6,7,8,9,10)

are changing. These measurements are compared with sum of WCE obtained with
updating objective function (57). From these plots we can see that the difference
between real and simplified technique is very small. And also is shown that calculating
objective function in the last step is the best. Reason why we get different WCE is very

simple. It is because we are solving different optimization problems.

62|Page



sum of worst case error (outputs)
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Figure 19: Comparison real sum of WCE (11) and sum of WCE (12) obtain from

sum of worst case error (outputs)
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disturbances calculated in the last simulation step

Nsim = 10
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states in reduced-order controller

Figure 20: Zoom 1 of figure 8
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==EF= Real Nsim = 10

sum of worst case error (outputs)

8 9 10 11 12 13 14 15 16
states in reduced-order controller

Figure 21: Zoom 2 of figure 8
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states in reduced-order controller

Figure 22: Comparison real sum of WCE (11) and sum of WCE (12) obtain from

disturbances calculated in the last simulation step N, =10
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4.1.1.7 Check of the WCE Using Closed Loop Simulation

In this part we would like to check if our calculated WCE for outputs is the same than
we can get using closed loop simulation. We chose simulation length N, =18 and

different reduced models with number of states from interval 1 to 15. For these
conditions we calculated the maximum difference of outputs in the last simulation step.
As initial conditions we were using calculated worst case initial states, respectively the
worst initial disturbances which were inserted into equation (3b). In the figure 23 we see
that the worst-case errors are the same and the difference between these worst-case
errors is zero and we can say that the worst-case error which we got from solving the
bilevel problem is correct.

x 10" Nsim18 s 107 Cloosed loop simulation Nsim18

worst case error (outputs)
wiarst case error (outputs)

2 4 6 8 10 12 14 16 2 1 6 8 10 12 14 16

states in reduced-order controller states in reduced-order controller

Figure 23: Compare worst-case errors for a set of different reduced order models using

N, =18 reached as a solution of bilevel problem and it closed loop check

4.1.2 Conclusions

In this part of project we obtained the worst-case difference between an MPC using the
full model (2) and an MPC using the reduced model (3) with number of states from
range 1 to 15 and with different length of simulation time. Solving the bilevel problem
we get also the worst-case initial disturbances which we used to check the maximum
difference between obtained outputs using full-order and reduce-order MPC controller.
We investigated a possibility to use simplified method based on calculating the sum of
WCE from MPC simulation which use worst-case disturbances obtained from solving
bilevel problem with objective function calculated only in the last simulation step.
These results we figured at plots using some simulations.
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4.2  Move Blocking Worst-case Error Analysis

In this capture we would like to answer these questions: What is the worst-case
difference between an MPC without using move blocking and an MPC using move
blocking which we use to make MPC faster? Another question is, which move blocking
type gives us less worst-case error, when we compare different types of move blocking?
As it was written in (MPC theory chapter) move blocking is a method to simplify the
complexity of MPC problem, where we can reduce the degrees of freedom using move
blocking approach. Principle of move blocking it is fixing the input (input blocking) or
its derivatives (delta input blocking) to be constant over several time-steps in
calculation of optimal inputs [8]. To get an input blocking (IB) and delta input blocking

(DIB) matrices we created functions make_blocking and make_delta_blocking.

To find the maximum difference between the controller without move blocking and the

simplified controller using move blocking we use bilevel programming. We could

red

calculate the distance between the controllers as”uk - U,

, but we focused on

difference in outputs HQy(yk -y

‘ as before when we used model reduction to make

MPC faster. We use the infinity norm because then the problem can be reformulated as
a mixed-integer linear program (MILP) [2].

red

max distance(y, , yr®)

y, =argmin{MPCwithout using move blocking }

subject to (59)

red

y;* = arg min {MPCwith using move blocking }

Formulation and solving of this problem is the same like it was shown in chapter 4.1.
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4.2.1 Simulations

In these simulations we would like to show and compare some results concerning to
simplify technique - move blocking. These simulations can be divided into two groups.
First group of simulations is dedicated to compare 1B types and show the trend how the
worst-case error (WCE) is changing when we use different IB type with different
reduction of degree of freedom (DOF). Second group of simulation is about DIB and we
here also compare the trend of using different DIB types and what effect it has on WCE.
Finally we compare which of these simplify technique is more effective to use. In other
words, which of these methods give us less WCE when we reduce degree of freedom at

the same value?

4.2.1.1 Input Blocking

Function make_blocking allows us to generate different 1B types and enables us
compare 1B with fixing different number of inputs to be constant over a certain number
of steps too. Fixing of inputs allows us to change DOF.

We choose these conditions for following simulations. Prediction horizon with length
N = 8, number of states in mathematical model n = 16, simulation time Nsim = 10. WCE
was calculated in the last step in the simulation time as in (Model Reduction chapter).
Then we used worst-case disturbances and IB type in MPC simulation to calculate sum
of WCE over simulation time Nsim = 10. Presented values of WCE are WCE sum
obtained from MPC simulations.

In figure 24, 25 we can see that with decreasing DOF the WCE is increasing. This trend
of using different IB type was expected, because the more we simplify MPC, we should
get an increase in WCE too. For calculation sum of WCE were used worst-case
disturbances found by the bilevel program (table 4).

8] [ [44] | [233] [ [1223] [[11123][[111113][[1111112]
di | -1 | -1 1 1 1 1 -1
d2 | -1 | -1 -1 1 1 1 -1

Table 4: Worst-case disturbances used to calculate x; in the MPC simulation

67|Page
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worst case error (outputs)
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Figure 24: WCE for a set of DOF using different 1B

x10° Input blocking sum

11 I I T I
5 B

| A Pl #  ibtype=([1223, 11123, 111113 [1111112]) ||
S S SO - SRS A S ]
] I e ee€e€e$Ss- s L A _
A SN R— HA— R b ]
T -
A SO N 1
Y N SN S SRS AU S VR ]
0 S N i
] RGGOCUCOT TERREFRIEEORRRS SESRRREPRRRTRE. LSRR EEETEDRSSTTTRRI FEPEPRRRRERS -
y | I | | |

4 45 5 55 6 6.5 7

DOF
Figure 25: WCE for a set of DOF using different IB Zoom
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In figures 26 and 27 we show a predicted inputs calculated for first simulation step.
Number of predicted inputs is equal to length of prediction horizon multiplied to
number of inputs. In this case for our example of distillation column model we have two
inputs u; and u, and prediction horizon has length N = 8. In figure 26 we present IB type
which fix four and four inputs to be constant and reduce DOF from eight to two.
Another 1B type is presented in figure 27, where first inputs is free and then two, two
and three inputs are fixed to be constant. Using this IB type we reduced DOF from eight

to four.

w107 ibtype = [4 4], DOF =2 w10” ibtype = [4 4], DOF =2
5 T T T T T 73 T T T T

45

4

35

values

3

values

25

u(i1) u(i2)
Figure 26: Predicted inputs with IB type = [4 4] and DOF = 2

values
values

ufi1) u(i2)
Figure 27: Predicted inputs with IB type=[12 2 3] and DOF =4

We would like to investigate also the case when we are using different 1B type and we
reduce MPC on the same DOF. If IB type contains also some free inputs then is relevant
question if is better to use free inputs at the beginning or in the end of IB? Answer to

this question gives us figures 28, 29 and tables 5, 6. From these plots and from values of
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WCE we can deduce that using free inputs at the beginning of predicted inputs it is
better than in the end. Values of the WCE were obtained from the MPC simulation with

worst-case disturbances with values -1.

WCE obtained using free inputs at the beginning of IB:

IB type: WCE:

e [116] = 0.0737-10°°
e [125] = 0.0440-10°°
e [134] = 0.0270-10°°
o [224] = 0.6799-10°°
e [2373] = 0.6873-10°°

Table 5: Free inputs at the beginning of IB
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B =125 |
I s =13 4] ;
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o 1
Jofic ] S e b R — -
- !
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z '
2 mmemmdme e b -
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Input blocking type

Figure 28: IB types for same degree of freedom — free inputs at the beginning
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| B =521 |-
| IS =43 1]
| B=1422] |
I E-=332)

worst-case error (outputs)

611] 52 1] [431] [42 2] [332]

Input blocking type

______________

_____________________________________________

Figure 29: IB types for same degree of freedom — free inputs in the end

WCE obtained using free inputs in the end of I1B:

IB type:

e [611]] =
e [521]] =
e [431]] =
e [422] =
e [332] —

WCE:
0.0042

0.0032
0.0023
0.0023
0.0015

Table 6: Free inputs in the end of IB

In table 6 we can see that using smaller number of fixed inputs in the end of IB is better

than using smaller number of fixed inputs in the middle of IB. This is probably due to

"end - effects” in MPC problem.
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4.2.1.2 Delta Input Blocking

Similarly as before but now it is function make_delta_blocking which allows us to
generate different DIB types with different number of fixed differences between two
consecutive control inputs over several steps, what allows us to reduce DOF. Here we
choose the same conditions as for IB. Prediction horizon N = 8, number of states n = 16,
simulation time Nsim = 10 and we calculate WCE sum from MPC simulation using
these conditions and worst-case disturbances obtained from bilevel program.

In figures 30, 31 we can see the trend of increasing of WCE with decreasing DOF.
Comparing plots 7 and 9 we can see that using free delta inputs in the beginning gives

us much better results (less WCE) as using free delta inputs in the end of IB.
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Figure 32: WCE for a set of DOF using different DIB free inputs in the end
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To calculate WCE sum for DIB with free inputs in the end, we used worst-case
disturbances found by our bilevel program presented in table 7. For DIB with inputs at

beginning were used worst-case disturbances with values 1.

B] | [27] | [226] | [2225] | [22224] | [222223]
di | -1 | 1 1 1 1 1
d2 | 1 1 1 1 1 1

Table 7: Worst-case disturbances used to calculate x; in the MPC simulation

values
values

u(i1) u(i2)

values
values

u(i2) u(i1)

Figure 34: Predicted inputs with DIB type = [6 2 2] and DOF =4

In figures 33 and 34 we show a predicted inputs calculated for first simulation step. In
figure 33 we present DIB type which fix differences between consecutive control inputs

and reduce DOF from eight to two. DIB type with fixing first five differences between
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inputs and last two differences are free is presented in figure 34.Using this DIB type we

reduced DOF from eight to four.

x 107
T T
I CE=[226]
: I DIB = [2 3 5]
£ - ---{ DB =[244] |-

warst-case error (outputs)
ol

[226] [235] [244]
Delta input blocking type

Figure 35: DIB types for same degree of freedom — first free

x 107
S
I 0E =622
o =(532]
5 -

I =[442] |-

worst-case error (outputs)

[622] [532] [442]
Delta input blocking type

Figure 36: DIB types for same degree of freedom — last free
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When we are using different DIB type and we reduce MPC on the same DOF we get
different WCE. In figures 35, 36 and in table 8 we can see that using free delta inputs at
the beginning of predicted inputs it is better than in the end. Values of WCE were
obtained from MPC simulation with worst-case disturbances table 9.

DIB type: WCE:

e [226] = 0.5665-10°°

e [235] = 0.5164-10°°

o [244] = 0.4429-10°°

e [622] = 0.5193-10°°

e [532] = 0.3128-10°°

o [442] = 0.1313-10°°

Table 8: Free inputs of DIB
[226] | [235] | [244] | [622] | [532] [442]

d; 1 -1 1 1 1 1
d2 1 -1 1 1 1 1

Table 9: Worst-case disturbances used to calculate x; in the MPC simulation
4.2.1.3 Comparison of Input Blocking and Delta Input Blocking

The following figures and also previous results prove that reduction of DOF with DIB
gives us less control performance loss (less WCE) compared to 1B, except DOF = 2
where we use IB type [1 7] , DIB type [8] (figure 37). But it was expected because in
this case DIB do not include free inputs. In figure 39 we compare 1B and DIB with free
inputs in the end.
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Figure 37: Comparison IB and DIB for different DOF — first free
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Figure 38: Comparison IB and DIB for different DOF — first free Zoom
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. %107 Comparison |B and DIB for different DOF
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Figure 39: Comparison IB and DIB for different DOF — last free

4.2.2 Conclusion

From these simulations and from values of WCE we can deduce that in both cases (IB
and DIB), using free inputs at the beginning of predicted inputs it is better than in the
end. Previous results for use example of distillation column prove that reduction of

DOF with DIB gives us less control performance loss (less WCE) compared to IB.
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5 COMPARISON OF TECHNIQUES FOR
SIMPLIFICATION OF MPC

In this part of the thesis we would like to compare a collection of methods that can be
used to speed up the computation of MPC. We are using our bilevel program to
minimize WCE of outputs, and show how we can use the program to choose the method
of simplification with the lowest values of WCE for some desired speed up value. Use
of our program is demonstrated on simulations for concrete examples. WCE calculated
in the last step of simulation time Nsn = 10 and then we are using worst-case
disturbances in MPC simulation to calculate sum of WCE over this simulation time.
Method of calculation WCE sum was introduced and explained in (chapter - Analazy of
WCE - Model reduction).

We would like to compare these methods:

e Input blocking

e Delta input blocking

e Model reduction

e Change of the prediction horizon

We will define speed up coefficient as:

N3(n+m,)®f?
Ng (n +m,)?

Speed up = (60)

_ DOF (reuced with move blocking)
DOF(original)

f

(61)

where

= n-state dimension

m — input dimension

N — prediction horizon

n, — state dimension of full system

* m, —input dimension of full system

= N, — prediction horizon of full system

We are using similar formula as is in [24], but we include there also f which represent
normalized coefficient of degrees of freedom using move blocking.
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5.1 Example 1 Desired Speed up ~ 25 %

Parameters for full controller:
N, =8
n, =16
m, =2

Simplification methods:

a) Model reduction

N =8 f=1
n=9
m=2
3 33 3 3143
Speedup=N_(N+Mo) 17 _8O+2L _ ) ore5 . 28204

Ni(n,+m,)®  8°(16+2)°

b) Change of the prediction horizon

N3(n+m,)* f°  53(16+2)°1°

s - 5 — =0.2441= 24.41%
Ny (n, +m,) 8°(16+2)

Speed up =

c) Move blocking

_ DOF (reuced with move blocking) 5

N =8 f — =
DOForiginal 8
n=16
m=2
5 3
5°(16 + 2)3(j
3 3 £3
Speed up = (M) f° 8) —0.2441= 24.41%

Ni(n,+m,)°  8°(16+2)°

e Input blocking type: [1112 3]
e Delta input blocking type: [2 2 3 4]
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In first example we speed up MPC 4 times compared to the speed of the nominal MPC.
The calculation time could not be reduced to exactly 25 % of the nominal MPC
calculation time. The reason is formulation of our speed up formula. Because of this the
values of speed up are different for these methods. Using model reduction we obtained
22.82 % speed up, using change of the prediction horizon and move blocking it was
24.41 %. The biggest WCE of outputs we get using change of the prediction horizon
and the difference comparing with other simplify approaches is very big, what is clear
see in figure 40. Comparing model reduction, input blocking and delta input blocking in
figure 41 we get the best results using delta input blocking.

L e R R itiieisisisisiristssisisisisisisiisisisir ity
: : I '/1cdel reduction
[ Changing prediction harizon
I Input blocking i
[ lDelta input blocking

T T
__________ D
v

worst-case errar (outputs)

______________________________________

______________________________________

MR CPH IB DIB
Simplify methods for MPC

Figure 40. Example 1

I 1/ odel ruduction
] Input blocking i
[ ]Delta input blocking

' '
______________ R
v v

08} Rttt ST

06} --- S - - b

worst-case error (outputs)

0.4 ------------

02} TP

MR 1B DIB
Simplify methods for MPC

Figure 41. Example 1
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5.2 Example 2 Desired Speed up ~ 50 %

Parameters for full controller:
N, =8
n, =16
m, =2

Simplification methods:

a) Model reduction

N =8 f=1
n=12
m=2
3 3¢3 3 3143
Speedup=N_(N+Mo) 17 _8(A2+2)°L ) /1700 . 47 05%

Ni(n,+m,)®  8°(16+2)°

b) Change of the prediction horizon

N3(n+mg)° 3 63(16+2)°1°

e - 5 —=0.4219 = 42.19%
Ny (N, +my) 8°(16+2)

Speed up =

c) Move blocking

_ DOF (reuced with move blocking) 6

N=8 f — 5
DOForiginal 8
n=16
m=2
6 3
5°(16+2)°% —
N3(n+my)°f® 16+ )(BJ

=0.4219 = 42.19%

Speed up = =
P e~ my )’ 8 (16+2)°

e Input blocking type: [11112 2]
e Delta input blocking type: [22 2 3 3]
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In our second example we reduce the MPC calculation time to 50 %. Using model
reduction we obtained 47.05 %, using change of the prediction horizon and move
blocking it was 42.19 %. The biggest WCE of outputs we get as before using change of
the prediction horizon and the difference comparing with the other approaches is huge.
In figure 43 we can see that WCE obtained using delta input has the lowest value
compared to model reduction and input blocking.

I '/odel reduction
[ Changing prediction horizon |.
I Input blocking

[ Delta input blocking

waorst-case error {outputs)
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Figure 42. Example 2
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Figure 43. Example 2
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5.3 Example 3 Desired Speed up ~ 75 %

Parameters for full controller:
N, =8
n, =16
m, =2

Simplification methods:

a) Model reduction

N =8 f=1

n=14

m=2
3 33 3 313

speed up =N (N+M) 1784+ 217_ 7093 70,2396
Ny (n, +my) 8°(16+2)

b) Change of the prediction horizon

N=7 f=1

n=16

m=2
3 33 3 3143

Speed up= N (N*TMo)" 17 T°A6+2)' L _ 5 seo9 . 66.99%

NS(n,+m,)®  8°(16+2)°
c) Move blocking

_ DOF(reuced with move blocking) _ 7

N =8 f —
DOForiginal 8
n=16
m=2
7 3
5°(16 + 2){)
3 33

Speed up =\ FMo)"f° 8) o 0.6699= 66.99%

Ni(n,+m,)°  8(16+2)°

e Input blocking type: [111111 2]
e Delta input blocking type: [22 22 2 3]
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In our third example we reduce the MPC calculation time to 50 %. Using model
reduction we obtained 70.23 %, using change of the prediction horizon and move
blocking it was 66.99 %. The biggest WCE of outputs we get as in both previous
examples using change of the prediction horizon and the difference comparing with the
other approaches is huge. In figure 45 we can see that WCE obtained using delta input
has the lowest value compared to model reduction and input blocking.

I 1/10de! reduction
[ Changing prediction horizon |-
I Input blocking

[ IDelta input blocking

______________________________________

______________________________________

worst-case error (outputs)

i i
MR CPH =] DIB

Simplify methods for MPC
Figure 44. Example 3

x 10
i bt bt ieieileiuiulluleleleleteteleisislets talslslulsislsieieieis
I '/ ode! ruduction
7L : ______ I Input blocking -
: [ I Delta input blocking

E_ ______________ L e m——— - Locmmceccemem
'
'
— '
Lx] 1
= 1
= 1
=% 1
5 5 '
(=] 1
e :
L 1
E 1
5 4 - ----  CGCODCTTLETLRRES GOLEEEE
a '
@ '
]
L]
2 o3-S . b boremeeaons
I '
— '
g '
'
'
'

MR 1B DIB
Simplify methods for MPC

Figure 45. Example 3
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5.4 Conclusion

In the previous examples, we tested the functionality of our bilevel program for
purposes of finding the best simplification method for MPC problem. It was shown that
the best choice for our example of distillation column is delta input blocking, because
using this method ensures the lowest WCE. The worst results were achieved using

change of the prediction horizon.
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6 CONCLUSION

MPC was introduced in first part of the thesis and we were discussing about a problem
of increasing of the MPC complexity, when size of the system model grows larger as
well as the control horizon and the number of constraints is increasing. Afterwards
methods such as Model Reduction, Move Blocking, Change of the Prediction Horizon
and Change of the Sampling Time that can be used for simplification of the MPC and
making MPC faster were proposed. The other part was about formulation,
implementation and then about solving of the MPC problem using mathematical model

including disturbances.

Main goal of this diploma thesis was to analyze and compare system response using
MPC implemented on a reference and simplified controller. The approach how to find
the worst-case difference between the reference controller and simplified controller was
introduced. To find the worst-case error between outputs obtained from using full-order
and low-order controller we used bilevel program. Using our bilevel program we were
comparing different Model Reductions of our distillation column model. We made a
analyze of Input blocking and Delta input blocking methods and using our program we
found the optimal values of input blocking and delta input blocking types. Also we
compare WCE obtained using input blocking and delta input blocking and we got
conclusion that using delta input blocking gives us less control performance loss

compared to input blocking.

On concrete reduction of computation time we tested the functionality of our bilevel
program for purposes of finding the best simplification method for MPC problem. It
was shown that the best choice for our example of distillation column is delta input
blocking, because using this method ensures the lowest WCE. The worst results were

achieved using change of the prediction horizon.

In the future we assume that our bilevel program could be use in form of toolbox used

for finding the best choice of simplification method for MPC.
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7 RESUME

Prediktivne riadenie s modelom (MPC) patrim medzi pokrocilé techniky riadenia, ktoré
ma vyznamny vplyv na priemyselné riadenie. Matematicky model systému sa vyuziva
na vypocet predpovede buducich vystupov zo systému a riadiace vstupy st pouzité na
optimalizaciu buducej odozvy systému. Z toho dévodu je vel'mi dolezité mat’ model

systému, ktory dostatocne opisuje dynamické vlastnosti riadeného zariadenia.

Jednou z najvacsich vyhod MPC je mozZnost efektivneho zahrnutia obmedzeni na
vstupy, stavy a vystupy systému. Na druha stranu v oboch pripadoch (off-line MPC
alebo on-line MPC) s rasticou velkostou modelu systému, ako aj s rasticou dizkou
predikéného horizontu a s pribudajiicimi obmedzeniami rastie aj zlozitost samotného
MPC. Zlozity regulator si vyzaduje viac Casu potrebného na vypocet optimalneho

akcného zasahu ako aj vicsie poziadavky na vypoctova techniku.

Prva kapitola je venovana uvodu do problematiky prediktivneho riadenia a moznostiam
zjednoduSenia MPC problému. Existuje niekol'ko zjednodusujucich metdd ako redukcia
modelu, blokovanie pohybu, zmena predikéného horizontu, zmena periddy
vzorkovania, ktoré moézu byt pouzité na zjednodusenic MPC problému. Ddélezita je
spravna volba kompromisu medzi rychlostou a kvalitou riadenia pri pouziti tychto
zjednoduSujucich metdd, pretoze so zvysujucou redukciou stupiiov volnosti, klesa

kvalita riadenia.

Druha kapitola sa zaobera implementaciou matematického modelu s poruchami do
MPC problému. Porovnavané su tri moznosti rieSenia MPC problému na priklade
typického chemického zariadenia, ktorym je destilacnd kolona. Jednd sa o nelinearny
model destilacnej kolony (,,column A*) od Prof. Skogestada. Tento nelinedrny model
sme linearizovali pomocou funkcie (,,cola linearize.m*). Model obsahuje 82 stavov,
ktoré sme zredukovali na 16 stavov, pretoze je pre nas jednoduchSie pracovat’ s 16
stavovym modelom. Model obsahuje dva vstupy (spétny tok (reflux) L, tok par V) a tiez

dve poruchy (prietok nastreku F, zlozenie nastreku zg).
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Cielom tejto prace je analyzovat a porovnat odozvy systému pri pouziti MPC s
referenénym a zjednoduSenym regulatorom. Pri¢om sa snazime najst’ najhorsiu chybu
medzi tymito regulatormi. Na zdklade tejto informdcie modzeme urcit ktort
zjednoduSujucu metddu je vhodnejsie pouzit. Na najdenie najhorsej chyby pouZzivame

bilevel programovanie.

V tretej a Stvrtej kapitole sa bliz§ie zaoberame vyuzitim redukcie modelu a blokovanie
pohybu na zjednodusenie MPC. Vyuzivame pritom na$ bilevel program pomocou
ktorého hladame najhorSiu chybu medzi zikladnym aredukovanym regulatorom,
pomocou ktorého porovnavame rdzne stupne redukcie stavov a neskor aj rézne druhy
blokovania vstupov a blokovania rozdielu medzi vstupmi. Pévodne sme chceli najhorsiu
chybu hl'adat’ ako sumu najhorsich chyb pocas celej simulacie. Tento spdsob sa vsak
ukazal ako vel'mi vypoctovo a ¢asovo naro¢ny. Preto sme sa po analyze rozhodli vyuzit
spdsob pri ktorom hl'adame najhorsiu chybu Vv poslednom simula¢nom kroku a nasledne
vyuzivame MPC simuldciu v ktorej vyuzivame vypocitani najhorsiu moznu poruchu
ako pociatoéni podmienku a pocas MPC simulacie pocitame sumu rozdielov medzi

vystupmi z riadeného systému s pouzitim referencného a zjednoduseného regulétora.

Nakoniec Vv poslednej kapitole porovnavame numericky aj graficky najhorSie chyby
ziskané pouzitim roéznych zjednodusSujucich technik, ktoré moézu byt pouZité na
zrychlenie MPC. Vysledkom tohto porovnania je, Ze pre nas zvoleny model destilacnej
kolony je najvhodnejSie pouzit' blokovanie rozdielu medzi dvoma nasledujicimi
vstupmi, pretoZze s pouZitim tejto metddy sme dosiahli najlepSie vysledky. Naopak

najhorsou metddou sa ukazala metdda znizenia predik¢éného horizontu.
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9 APPENDICES

Appendix A: Numerical values of matrices: A, B, C, D, By, Dy

A

Columns 1 through 10

.9790
-a.
-a.
.01z22
—-a.
-a.
-0017
.oosz
.0o3g
-a.
.0018
-a.
-o.
—-a.
.0000
-0oo4

oozo
01&7

o021
o0ge

0015

0010
0o0e
0004

ODooDooooao

o

L0072
. 9470
L0188
L0233
.0os08
.003€

0108

L0104
.oo1g
0.
0.
-a.
-0.
-0,

0.
-a.

ooos
0015
oozo
o037
0033
oooz
000&

Columns 11 through 1&

.000s
.0os1
.0077
.oo78
.0757
.1035
.0zgg
.2971
.1788
.0211
.2837
.0505
.010e
.0077
.1453
.03ez

0.
.000&
L0058
L0181
L0074
L0381
L1352
L0533
L0804

.1254
.0478
.00os
.135&
.0739
.0171
.0131
.0z74
.0a3o0
.0017
.0034
.0o01z
.0ooo
.0o013
.0oo1
.oooz

ooos

L3222
.1010
L1787
.0&E8
L1028
.01&8
.0&eze

-a.
-a.

-0.
-0.
-0.
-0.

-0.

-0.

-0.
-0.

1302
0z14

.03%90

0z32
aa37
o1&
aoss

.0113
.0188

o041

.0049

015&
oovs
o035

.ooos
.oo47

L0357
L0173
.BES4H
.0g48
.oogg
.111€
L0025
L0104
L0184
L0137
L0134
L0150
.oos4
.000s
001
.0013

.0o0z
.00z1
.0015
L0215
.0058
.0157
.0708
.20E8
L0542
L1331
L1357
.030%
L1353
L1481
.0078
.0041

-0.0235 -0.0040 -0.004&
-0.1052 -0.007& 0.051z2
0.1952 0.0279 0.0&833
0.3132 -0.5728 0.1185
0.3355 -0.0752 -0.045%
0.0911 0.1253 0.&88%
0.0410 0.1080 -0.1450
0.1375 0.2372 0.0415
0.0158 0.0&&& 0.1057
-0.0411 0.0471 -0.0824
-0.0578 -0.0&38 0.130&
0.0144 0.04&0 0.0&887
-0.0113 -0.0401 0.05z28
0.0234 0.0132 -0.008%
0.01&5 0.0188 -0.0118
0.0005 -0.0252 0.0052
0.0001 0.0001 -0.0004
0.0008 0.0004 0.0015
-0.000%2 -0.0007 0.0032
0.011& -0.0018 -0.0003
-0.0130 0.021& -0.005%
-0.007& 0.00zZ8 -0.0z07
0.0489 -0.0183 0.00ez
0.0577 -0.0213 -0.00zZ8
0.0378 -0.118& -0.014&
0.118& -0.0&41 0.1378
0.230& -0.07z4 -D0.0543
-0.0828 -0.10z20 -0.1087
0.1285 0.10&7 -0.09&2
0.0728 -0.103% 0.0180
0.1158 0.0315 0.0383
-0.0475 -0.0114 0.0721
Columns 1 through 10
50 -0.0857 -0.1z217
1923 0.0987 -0.14%88
Columns 11 through 1&
0.0215 -0.0818 -0.0439
-0.0&75 0.0372 -0.0437
Bd =
0.0738 0.1z200
0.1z210 -0.0183
-0.0o0z2 0.1308
-0.0743 0.0400
-0.0720 -0.010%
0.0127 0.0&e78
-0.0122 -0.0014
0.0088 -0.0174
-0.0048 -0.0142
0.0008 0.0125
-0.00z2z2 -0.00=21
-0.001&8 -0.0075
0.0021 -0.0038
0.0043 -0.000&
a.00o07 0.000z2
0.0017 -0.0001

.o0ozz
.005&
-o.
- 1803
-o.
-o.
-a.
-o.
.0953
.0738
-o.
-o.
.0548
-o.
.0z257
-a.

01&0
2058
1387

4308
0338

0145

029z

00geg

0335

0.010z
0.1838

0.00z21
0.04&%9

s e R e O e I s o |

.00z3
.00&7
-o.
-0,
- 4425
-o.
-a.
.2258
.348E
-2564
—-o.
-o.
.1008
—-o.
-o.
-0187

o175
o105

0275
0742

ooo=
0&70

0e79
0527

-0.0133
.1338

(=]

-0.0108
.031z2

o

L T e R e e e s e e s e |

.0013 a
.0035 -a.
.0oe7 -o.
.03e& a
.0175 a
.1021 a
-3802 -a.
-4025 -o.
.1200 a
.019%9 a
.1849 -a.
.01zz -o.
0174 a
.De48 a
.0z249 a
-047& -a.
0.0248
0.0000
-0.0z288
-0.010&
Id =

.0ozz

0084
0177

2013
.0315
.1579

1293
Og&S5

.142¢8
-3037

1458
0389

.03&9
0412
0191

0831

0.010&
0.1z2&z2

o e T e e e s I

e e s e e e s e s s s Y

0.0071
0.0&00

0.07z1
-0.0&&1
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Appendix B: List of software on CD
Model of distillation column files (“column A”)

e mathematical model and linearization

o cola_lv.m, colamod.m, cola_lv_lin.m,
e model reduction (truncation)

o model_baltrunc.m, baltrunc.m

1 Implementation of the model with disturbances in MPC

e Functions for obtaining X,Y,Z,Q,R matrices
o QRfun.m, xyfun.m

e Scripts to solve Problem 1,2,3 and comparing these MPC problems
o probleml.m, problem2.m, problem3.m, compareP123.m

1 Model reduction worst-case error analysis
a)  WCE calculated in the last step of simulation

e Calculation WCE for different Nsim, and different reduced order models
o dif_red_order.m, yalmip_useCHS_trajectory_check.m

e Functions for calculation WCE using MPC simulation, making closed loop

simulation,
o analyze dro.m, matrices_analyze _dro.m, MPC_solv.m

b)  WCE sum calculated with MPC sim

e Functions for calculation WCE sum using MPC simulation
o make WCEsum_plots.m, compare_sum_WCE.m, sum_WCE.m

c)  WCE sum calculating with updating objective function

e Mostly the same like in “a) WCE calculated in the last step of simulation”,
but in yalmip_useCHS_trajectory_check.m we are using updating objective
function
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Move blocking worst-case error analysis
Script for comparison of IB and DIB WCE calculated in the last step of
simulation and WCEsum
o comparison_IB_DIB.m
Functions for calculation 1B matrix and DIB matrix

o make_blocking.m, make_delta_blocking.m

Functions using to calculate WCE sum
o sum_IB_WCE.m,sum_DIB_WCE.m, MPC_solvIB.m,
MPC _solvDIB.m, dif mb_WCE.m, dif delta_ mb_WCE.m,
matrices_analyze_dro.m

Calculation WCE in last step for IB and DIB
o moveblocking_onestep.m, deltamoveblocking_onestep.m

Comparison of techniques for simplification of MPC

Script for comparison results from simplification methods
o speedup_comparison.m

Script for analyze WCE sum using change of the prediction horizon method
o prediction_horizon_WCE_analyze.m

Script for analyze WCE sum using model reduction method
o model_reduction_ WCE_analyze.m

Script for analyze WCE sum using move blocking method
o move_blocking_ WCE_analyze.m

4 Figures

Figures using in Diploma thesis:

el NS =

Implementation of the model with disturbances in MPC
Model reduction worst-case error analysis

Move blocking worst-case error analysis

Comparison of techniques for simplification of MPC
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