
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

SYSTEMATIC METHOD

FOR ANALYSIS OF PERFORMANCE LOSS

 WHEN USING SIMPLIFIED MPC FORMULATIONS

DIPLOMA THESIS

FCHPT-5414-28512

2010 Bc. Robert Taraba

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

FACULTY OF CHEMICAL AND FOOD TECHNOLOGY

SYSTEMATIC METHOD

 FOR ANALYSIS OF PERFORMANCE LOSS

 WHEN USING SIMPLIFIED MPC FORMULATIONS

DIPLOMA THESIS

FCHPT-5414-28512

Study programme: Automation and Informatization in Chemistry

and Food Industry

Study field: 5.2.14 Automation

Supervisor: Ing. Michal Kvasnica, PhD.

Consultant: MSc Henrik Manum

Work place: NTNU Trondheim

Bratislava 2010 Bc. Robert Taraba

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my thesis supervisor at Institute of

Information Engineering, Automation and Mathematics at the Faculty of Chemical and

Food Technology of the Slovak University of Technology in Bratislava, Ing. Michal

Kvasnica, PhD., for giving me the opportunity to become an exchange student and work

on my diploma thesis abroad.

My big gratitude and appreciation goes to my thesis consultant in NTNU Trondheim,

PhD Candidate Henrik Manum and to Prof. Sigurd Skogestad, for their patient guidance

and support during my stay in Norway.

ABSTRACT

Given diploma thesis deals with the systematic method for analysis of performance loss

when using simplified model predictive control formulations. Aim of this thesis is to

analyze and compare system response using model predictive control (MPC)

implemented on a reference and simplified controller. To find the maximum difference

between these controllers and to solve this problem we use bilevel programming. The

main drawback of MPC is in increasing of the complexity in both cases (off-line and

on-line) as the size of the system model grows larger as well as the control horizon and

the number of constraints are increasing. One part of the thesis deals with introduction

into MPC and with techniques how to make MPC faster. There are some techniques as

model reduction, move blocking, changing the prediction horizon and changing the

sampling time, which can be used for simplify MPC problem that makes the

optimization problem easier to solve and thus make MPC faster. Using the model

reduction to reduce model state variables is important, e.g. the more states variables

model contains, the more complex the regulator must be. This fact is very important

especially for explicit MPC. Using input blocking we fix the inputs to be constant and

using delta-input blocking we fix the difference between two consecutive control inputs

to be constant over a certain number of time-steps which reduce degrees of freedom.

Reducing prediction horizon we make MPC problem easier to solve. As an example of

controlling a typical chemical plant we here consider MPC for a distillation column.

Using a bilevel program and model of distillation column we compare these simplify

techniques and we focus on the connection between control performance and

computational effort. Finally, results are compared and the best way of simplification

for our example of plant is found, which turns out to be delta input blocking.

Keywords: analysis of MPC, simplified MPC formulations, analysis of MPC

performance

ABSTRAKT

Diplomová práca sa zaoberá metódou na analýzu zníženia kvality riadenia pri použití

zjednodušených formulácií prediktívneho riadenia s modelom. Cieľom tejto diplomovej

práce je analyzovať a porovnať odozvy systému pri použití prediktívneho riadenia

(MPC) na referenčnom regulátore a na zjednodušenom regulátore. Na vyriešenie

problému nájdenia maximálneho rozdielu medzi týmito regulátormi používame bilevel

programovanie. Hlavnou nevýhodou MPC je že s nárastom veľkosti modelu systému

ako aj s nárastom predikčného horizontu a počtu obmedzení sa zvyšuje zložitosť

regulátora a to v oboch prípadoch (off-line aj on-line) MPC. Časť práce sa zaoberá

úvodom do problematiky MPC a technikami ako urobiť MPC rýchlejšie. Existuje

niekoľko techník ako redukcia modelu, blokovanie pohybu, zmena predikčného

horizontu, zmena periódy vzorkovania, ktoré môžu byť použité na zjednodušenie MPC

problému, čo zabezpečí jednoduchšiu riešiteľnosť optimalizačného problému a tým aj

zvýši rýchlosť MPC. Použitie redukcie modelu za účelom redukcie počtu stavov je

z tohto hľadiska dôležité, pretože čím viac stavov model obsahuje tým zložitejší

regulátor musí byť. Tento fakt je veľmi dôležitý najmä pre explicitné MPC. Použitím

blokovania vstupov fixujeme vstupy na konštantnú hodnotu a použitím blokovania

zmeny vstupov fixujeme zmenu medzi dvoma po sebe nasledujúcimi vstupmi na

konštantnú hodnotu a tým znižujeme počet stupňov voľnosti. Redukciou predikčného

horizontu urobíme MPC problém jednoduchšie riešiteľný. Ako príklad riadenia

typického chemického zariadenia uvažujeme MPC pre destilačnú kolónu. Použitím

bilevel programu a modelu destilačnej kolóny porovnávame zjednodušujúce techniky

a zameriavame sa na vzťah medzi kvalitou riadenia a výpočtovou náročnosťou. Na

uvedenom príklade destilačnej kolóny porovnávame výsledky rôznych

zjednodušujúcich techník a prezentujeme najlepšie riešenie, ktorým sa ukázalo byť

blokovanie zmeny vstupov.

Kľúčové slová: analýza MPC, zjednodušené formulácie MPC, analýza kvality riadenia

MPC

CONTENTS

LIST OF APPENDICES... 9

LIST OF SYMBOLS AND ABBREVIATIONS... 10

LIST OF FIGURES... 11

1 INTRODUCTION.. 13

2 INTRODUCTION TO MODEL PREDICTIVE CONTROL.................... 15

2.1 Model Predictive Control... 15

2.2 General Formulation of Optimal Control Problem..................................... 18

2.2.1 Objective Function... 20

2.2.2 Model of the System... 22

2.2.3 Constraints.. 24

2.3 How to Make MPC Faster.. 26

2.3.1 Move Blocking... 26

2.3.1.1 Input Blocking.. 27

2.3.1.2 Delta Input Blocking.. 30

2.3.2 Model Reduction.. 33

2.3.2.1 Balanced Representation... 35

2.3.2.2 Truncation.. 36

2.3.3 Change of the Prediction Horizon.. 36

2.3.4 Change of the Sampling Time.. 37

2.4 Karush-Kuhn-Tucker Conditions... 38

3 IMPLEMENTATION OF THE MODEL WITH

DISTURBANCES IN MPC... 40

3.1 Model of the Distillation Column... 40

3.1.1 Disturbance Model... 42

3.2 Formulation of the MPC Problems... 43

3.2.1 Formulation of Problem 1.. 43

3.2.2 Formulation of Problem 2.. 43

3.2.3 Formulation of Problem 3.. 46

3.3 Implementation of the MPC Problems... 48

3.3.1 Implementation of Problem 1... 48

3.3.2 Implementation of Problem 2... 48

3.3.3 Implementation of Problem 3... 48

3.4 Comparison of the Solutions to the MPC Problems................................... 49

3.5 Conclusion.. 50

4 WORST-CASE ERROR ANALYSIS... 51

4.1 Model Reduction Worst-case Error Analysis... 51

4.1.1 Simulations... 55

4.1.1.1 WCE for a Set of Different Reduced-order Models............ 56

4.1.1.2 Closed Loop Simulation... 57

4.1.1.3 WCE for a set of Different Reduced-order Models with

Changing .. 58

4.1.1.4 The Worst Possible Initial Disturbances.............................. 59

4.1.1.5 WCE sum for a set of Different Reduced-order Models

with Changing .. 61

4.1.1.6 Comparison of WCE Sum Using Real Updating Objective

Function and MPC Simulation Calculation......................... 62

4.1.1.7 Check of the WCE Using Closed Loop Simulation............. 65

4.1.2 Conclusion.. 65

4.2 Move Blocking Worst-case Error Analysis.. 66

4.2.1 Simulations... 67

4.2.1.1 Input Blocking.. 67

4.2.1.2 Delta Input Blocking.. 72

4.2.1.3 Comparison of Input Blocking and Delta Input Blocking... 76

4.2.2 Conclusion.. 78

5 COMPARISON OF TECHNIQUES FOR SIMPLIFICATION

OF MPC... 79

5.1 Example 1 Desired Speed up 25 %... 80

5.2 Example 2 Desired Speed up 50 %... 82

5.3 Example 3 Desired Speed up 75 %... 84

5.4 Conclusion.. 86

6 CONCLUSION... 87

7 RESUMÉ... 88

8 REFERENCES... 90

9 APPENDICES... 93

simN

simN







9 | P a g e

LIST OF APPENDICES

Appendix A: Numerical values of matrices: A, B, C, D, Bd, Dd......................... 93

Appendix B: List of software on CD.. 94

10 | P a g e

LIST OF SYMBOLS AND ABBREVIATIONS

MPC model predictive control

PID proportional-integral-derivative controller

LQR linear quadratic control

CFTOC constrained finite time optimal control

SISO single input, single output

IB Input Blocking

DIB Delta-Input Blocking

BT Balanced Truncation

BTA Balance and Truncate Algorithm

SVD Singular Value Decomposition

KKT Karush–Kuhn–Tucker conditions

MILP mixed-integer linear program

WCE worst-case error

DOF degrees of freedom

U control inputs

*U optimal control inputs

 sampling time

 initial states

 initial disturbances

y outputs

P, Q, R weight matrices

A, B, C, D, Bd, Dd system matrices

M move blocking matrix

simN simulation steps (simulation time)

N prediction horizon

fulln number of states in full-order controller

redn number of states in low-order controller

m number of inputs

sT

0x

0d

11 | P a g e

LIST OF FIGURES

Figure 1: Difference between classical control and implicit MPC [7].................... 17

Figure 2: Analogy MPC with driving a car [6].. 17

Figure 3: Strategy of moving horizon [7].. 18

Figure 4: A feedback control scheme with implicit solution [4]............................. 19

Figure 5: A feedback control scheme with explicit solution [4]............................. 20

Figure 6: Convex, concave, non-convex functions [7].. 20

Figure 7: Constraints [7].. 25

Figure 8: Input blocking type [1 4 3], DOF = 3.. 30

Figure 9: Delta input blocking type [4 3 4 2], DOF = 5.. 33

Figure 10: Distillation column controlled with LV-configuration [21]................... 40

Figure 11. Close loop simulation with the MPC Problem 1, 2, 3............................ 49

Figure 12: WCE for a set of different reduced order models.................................. 56

Figure 13: Closed loop simulation for the full order controller and

 low order controller and with number of simulation

 steps ... 57

Figure 14: WCE for a set of different reduced order models with

 changing .. 58

Figure 15: WCE for a set of different reduced order models with changing

.. 59

Figure 16: Using initial disturbances for calculating WCE for reduced model

 = 10 and with changing 60

Figure 17: Sum of WCE for a set of different reduced order models with changing

 ... 61

Figure 18: Sum of WCE for a set of different reduced order models with changing

 ... 62

)16(fulln

)4(redn

10simN

201simN

)20,16,12,8,4,1(simN

0201,dd

redn)20,16,12,8,4,1(simN

201simN

)20,16,12,8,4,1(simN

12 | P a g e

Figure 19: Comparison real sum of WCE (11) and sum of WCE (12) obtain from

 disturbances calculated in the last simulation step 63

Figure 20: Zoom 1 of figure 8... 63

Figure 21: Zoom 2 of figure 8... 64

Figure 22: Comparison real sum of WCE (11) and sum of WCE (12) obtain from

 disturbances calculated in the last simulation step 64

Figure 23: Compare worst-case errors for a set of different reduced order

 models using reached as a solution of bilevel problem

 and it closed loop check... 65

Figure 24: WCE for a set of DOF using different IB…………………………..… 68

Figure 25: WCE for a set of DOF using different IB Zoom…………………..….. 68

Figure 26: Predicted inputs with IB type = [4 4] and DOF = 2………………...… 69

Figure 27: Predicted inputs with IB type = [1 2 2 3] and DOF = 4………….…… 69

Figure 28: IB types for same degree of freedom – free inputs at the beginning…. 70

Figure 29: IB types for same degree of freedom – free inputs in the end……...… 71

Figure 30: WCE for a set of DOF using different DIB…………………….…….. 72

Figure 31: WCE for a set of DOF using different DIB Zoom……………….…… 73

Figure 32: WCE for a set of DOF using different DIB free inputs in the end….… 73

Figure 33: Predicted inputs with DIB type = [8] and DOF = 2……………...…… 74

Figure 34: Predicted inputs with DIB type = [6 2 2] and DOF = 4…………….… 74

Figure 35: DIB types for same degree of freedom – first free………………….… 75

Figure 36: DIB types for same degree of freedom – last free………………….… 75

Figure 37: Comparison IB and DIB for different DOF – first free………….…… 77

Figure 38: Comparison IB and DIB for different DOF – first free Zoom……...… 77

Figure 39: Comparison IB and DIB for different DOF – last free……………..… 78

Figure 40. Example 1... 81

Figure 41. Example 1... 81

Figure 42. Example 2... 83

Figure 43. Example 2... 83

Figure 44. Example 3... 85

Figure 45. Example 3... 85

10simN

18simN

13 | P a g e

1 INTRODUCTION

Model predictive control (MPC) is advanced control technique that has a significant

impact on industrial control engineering. Mathematical model of the system is used to

calculate predictions of the future outputs and the control inputs are used to optimize the

future response of the system. Because of this, it is very important to have model of the

system that adequately describes its dynamic properties.

One of the greatest strength of the MPC is the possibility of effectively involving

constraints on inputs, states and output variables. On the other hand in both cases (off-

line MPC and on-line MPC) as the size of the system model grows larger as well as the

control horizon and the number of constraints is increasing then the complexity of MPC

is increasing. This means more time to compute optimal control action and bigger

hardware requirements.

The first chapter is devoted to MPC introduction and possibilities of simplifying MPC

problem. There are some simplification methods, such as Model Reduction, Move

Blocking, Change of the Prediction Horizon and Change of the Sampling Time.

Relevant question is the trade-off between speed and performance of MPC using

reduced model or some other simplify method, because with increasing reduction of

degrees of freedom, the control performance is decreasing.

The second chapter deals with implementation of the mathematical model with

disturbances into MPC problem and compare three ways of solving the MPC problem

like MPC with the model as equality constraints, MPC with the model substituted into

the objective function and first-order optimality conditions of the MPC. As an example

of the plant we used a typical simple distillation column by Prof. Skogestad.

The goal of this thesis is to analyze and compare system response using MPC

implemented on a reference and simplified controller. To find the maximum (worst-

case) difference between the full-order controller and low-order controller we used

bilevel programming to solve this problem.

14 | P a g e

In the third and fourth chapters of thesis we answered the questions: What is the worst-

case difference between an MPC using the full model and an MPC using the reduced

model and what maximizes difference between outputs from full model and reduced

model, when we consider and we will use different simulation time? What is

the worst-case difference between an MPC without using move blocking and an MPC

using move blocking which we use to make MPC faster? Another question is, which

move blocking type gives us less worst-case error, when we compare different types of

move blocking?

At the end in the last chapter, results of worst-case error obtained from using different

simplification methods that can be used to speed up the computation of the control

action in MPC are compared numerically and graphically.

0d

00 dBx d

15 | P a g e

2 INTRODUCTION TO MODEL PREDICTIVE

CONTROL

2.1 Model Predictive Control

Model predictive control (MPC) is a successful control technique that has a significant

and widespread impact on industrial process control [3]. MPC is used mainly in the oil

refineries and petrochemical industry where taking account of the safety constraints is

very important. Currently the MPC covers a wide range of methods that can be

categorized using various criteria. In this chapter, we cover the main principle of MPC

and ways of making the MPC faster.

One of the greatest strengths of MPC using a model of the system is the possibility to

include constraints on inputs, states and outputs variables already in the design of the

controller. That is why performance of control is better than standard proportional-

integral-derivative (PID) controller, which does not provide physical, safety and other

constraints on the input, output and state variables.

As the title (Model Predictive Control) suggests the prediction of the future output of

the controlled system MPC is calculated using a mathematical model of the system.

Because of this, it is very important to have model of the system that adequately

describes its dynamic properties. Some models include models of disturbances directly

while others assume that the disturbances are constant.

The idea of MPC is to use the control inputs to optimize the future response of the

system while, given the information about current states and disturbances .

Calculation of the future optimal control input

is based on the

minimization of the objective function on the prediction horizon. Only the optimal value

obtained for the current time is actually implemented. Then the system evolves one

sample, new measurements are collected and the optimization is repeated. With a fixed

length of the horizon, the horizon is shifted one sample further at each new

)(U

)(x)(d

 T

N

TT uuuU 110 ,,, 

  

16 | P a g e

measurement as given in Fig. 3. Because of this, MPC is often termed moving horizon

control [5]. In Fig. 1 the difference between classical feedback control and MPC is

shown. Strategy of MPC overcomes drawbacks of other methods, such as linear

quadratic control (LQR), that are using optimization with infinity horizon without

taking constraints into account.

Strategy of the future forecasting is typical in our everyday life. For instance, one can

imagine a situation when driving a car as given in Fig. 2.

Our control tasks:

 stay on the road,

 don‟t crash into the car ahead of us,

 respect speed limits.

When driving a car, we are looking on the road through the windscreen, it is similar to

the predictive control strategy as shown in figure 3.

Inputs are usually signals to the plant that can (e.g. gas pedal, brake pedal) or cannot

(e.g. side wind, slope of the road, disturbances) be manipulated. The actual information

about the plant is given by state variables, such as car speed. Of course, even though

this comparison is not absolutely precise, it describes very simply the idea of predictive

control, that is trying to control the system (in this case a car) forecasting its future (the

next position on the road) using a model of the controlling system (car controllers,

acceleration, braking, etc.), while respecting constraints (traffic rules, speed limits,

vehicle operating characteristics, etc.) [6].

One of the important elements is the choice of adequate prediction horizon . Using a

prediction horizon too short can cause poor control quality or instability of control. In

automobile analogy it is if the driver views only too short of a distance ahead, what

could lead to accident (collision with slower car, by not having enough reaction time

upon obstacle, etc.) [7]. Another problem is when the controlling system model is not

representing the real plant and when there are some random disturbances. Using such

mathematical model of the system for the prediction of future outputs calculation could

be inaccurate and cause incorrect control inputs. MPC works with discrete time system

models. Because of this, we need a good choice of the sampling time value for

discretization of our model. Sampling time length is a very important since it is the time

when new measurements are made, new prediction calculated and new optimal control

N

sT

17 | P a g e

inputs determined. However, sampling time must be short

enough so that updated measurements from the plant can be taken. There are some good

rules in place on how to set the right sampling time, for example we can use Nyquist-

Shannnon sampling theorem.

Figure 1: Difference between classical control and implicit MPC [7]

Figure 2: Analogy MPC with driving a car [6]

 T

N

TT uuuU 110 ,,, 

  

Reference

Plant

K(s) Outputs Inputs

Measurements

Reference

Plant

Outputs Inputs

Measurements

Constraints

Optimization

18 | P a g e

Figure 3: Strategy of moving horizon [7]

2.2 General Formulation of Optimal Control Problem

As is written in [4] the “optimal control problem” is to find optimal control inputs

 that drive the system from the current initial state at time

towards the origin.

Optimal control problem [4] is then:

 (1a)

 T

N

TT uuuU 110 ,,, 

   0x 0t







1

0

),()(min
N

i

iiN uxLxF

DO

PREDICTION

0 1 2 3 4 5 6 7 8 9 10 11
t

measuring

DO

PREDICTION

0 1 2 3 4 5 6 7 8 9 10 11
t

measuring

DO

PREDICTION

0 1 2 3 4 5 6 7 8 9 10 11

measuring

t

19 | P a g e

 subject to:

 (1b)

 (1c)

 (1d)

 (1e)

Expression (1a) is an objective function, (1b) is the process model and, , are the

constraints on states and inputs, respectively. This optimal control problem is often

called constrained finite time optimal control (CFTOC), because of the constraint on

states, inputs and finite horizon . Predictions have length steps to the future and

control inputs are the optimized degrees of freedom [4].

There are two ways how the optimization problem can be characterized [4]:

Implicit solution: The computed input is given as a sequence of numerical values

, which depend on the particular values of at specific times within the

interval .

Explicit solution: The control input is given as a sequence of function typically with

plant state as its argument, i.e.

In Fig. 4 and Fig. 5 feedback controls using implicit and explicit solution are compared.

Figure 4: A feedback control scheme with implicit solution [4]

X U

N N

U

U







110 ,,, Nuuu  0x

],[0 Ntt

U

)(),(011000 xuxu   

)(

.1,...,0,

,1,...,1,

,1,...,0),,(

0

1

txx

Niu

Nix

Niuxfx

i

i

iii









U

X

Plant

solve CFTOC select 

0u
U)(0 txx  0)(utu

20 | P a g e

Figure 5: A feedback control scheme with explicit solution [4]

2.2.1 Objective Function

We can divide objective functions on easy and hard to solve.

- EASY : objective function is a convex function

- HARD : objective function is a non-convex function or concave function

 (minimization of concave function is hard to solve)

Figure 6: Convex, concave, non-convex functions [7]

An objective function is convex if for

 (2)

Usually we can use 3 types of norm of convex objective function.

)(xf  1,0

x xx

)()1()())1((yfxfyxf  

Plant

)(0 txx  0)(utu

Evaluate)(000 xu 

Non-convex function Convex function Concave function

21 | P a g e

 





1

0

),(min
N

i
pipipN RuQxPxJ ux

u







1

02

1

2

1
),(min

N

i

iiiiNN RuuQxxPxxJ ux
u

We can define objective function using general norm as:

 (3)

For one norm , for infinity norm and for 2 norm .

Objective function is typically quadratic in the states and in the control inputs (4).

 (4)

Where is prediction horizon, and are weight matrices for states

and inputs

respectively. Weight matrices can be chosen freely, but it is required that is

positive semi definite and is positive definite so that the objective

function becomes convex. These matrices are used to tune the MPC performance and

most commonly are diagonal.

Here (5) we consider objective function with formulation and tracking.

 (5)

Using this formulation, matrices penalize deviation of the state vector from

some reference and penalize difference of the actual and the last calculated input.

Increasing the weights on the control moves relative to the weights on

the tracking errors has the effect of reducing the control activity. Because of this the

elements of are in some MPC products called move suppression factors [2]. We

can say that increasing these weight matrices indefinitely will reduce the control activity

pl

1p p 2p

N QP, R ix

iu RQ, Q

0Q R 0R

u

)(, kQP

)(kR

)(kR)(, kQP

)(kR

1

1

0

..

)())(()(),(min















 

ktktkt

k

k

N

k
pktprefktprefNt

u

uuu

u

xts

ukRxxkQxxPJ

U

X

ux

22 | P a g e

to zero, which “switch off” the feedback action. In other words, the penalization of

changes in inputs will be so big, that it will not affect the controller. As is stated in [2] if

the plant is stable, it will result in a stable system, but not vice versa. Thus with a stable

plant, we can expect getting a stable closed loop by sufficient increasing of the control

weight. The penalty for doing this will be slow response to disturbances, since it will

result in only little control actions. With an unstable plant we can expect an unstable

feedback loop, if the s are increased too much. Because of this there are better

ways of ensuring closed-loop stability than using heavy penalty weights .

As it was written using weight matrices we can penalize states vector or

penalize deviation of states vector from some reference. It is possible to penalize some

state more heavily than other. That is a way of how to change weight and decide on

which states are important for us.

2.2.2 Model of the System

The model of the system represents a mathematical abstraction of the plant‟s behaviour.

There are different choices of models possible:

 linear (transfer function, state-space, finite impulse response, ...),

 nonlinear (state-space, fuzzy, neural networks, ...),

 hybrid (combination of continuous dynamics and discrete logic).

It is very important to make compromise between quality and complexity of the system

model. Complex models are better for predictions, but make optimization more

difficult, which takes the optimization problem a lot of time to solve.

Models are very important part of MPC, because they are used to predict the future.

A linear state space model is given by:

 (6a)

 (6b)

where denote states, are outputs (measurements), are controlled inputs.

)(kR

)(kR

)(, kQP

ix iy iu

,1,...,0,1  NiBuAxx iii

,,...,0, NiDuCxy iii 

23 | P a g e

 

 



,

1

2

,

1

,

0

0

2

2010

2

0

2

0

3

0

2

201000

2

2223

01000

2

010001112

0001

dBBudABABudBABuAxA

dBBudBBudABABuxAAdBBuAxx

i

i

dBBudABABuxA

dBBudBBuAxAdBBuAxx

i

dBBuAxx

i

ddd

dddd

dd

ddd

d



























The state space formulation of model with disturbances is given by

 (7a)

 (7b)

where note states, are outputs (measurements), are controlled inputs and are

disturbances.

There are many types of disturbance models. For example we can define a disturbance

model as:

 (8)

When we know initial conditions as initial states , initial disturbances and the

vector of inputs U we can calculate every state .

 (9)

ix iy iu id

0x 0d

1,...,11  Nixi

,1,...,0,1  NidBBuAxx idiii

,,...,0, NidDDuCxy idiii 

10

0

1

1

01

0



















dd

dd

givend

N

N



24 | P a g e

0

1

2

1

2

1

0

21

32

0

22

1

2

1

0

00

000

x

A

A

A

A

u

u

u

u

BABBABA

BBABA

BAB

B

dBdAABdBd

ABdBd

Bd

x

x

x

x

x

Z

N

N

U

N

Y

NN

NN

Xx

N

N









  










  


















































































































































  


















U

N

Y

NN

NN

X

N

x

N

N

u

u

u

u

BABBABA

BBABA

BAB

B

x

A

A

A

A

x

x

x

x

x







































































































1

2

1

0

21

32

0

3

2

1

2

1

0

00

000

We can formulate the prediction equation for calculating every state

as:

 (10)

 (11)

Considering a model without disturbances, the prediction equation is:

 (12)

 (13)

2.2.3 Constraints

We encounter constraints in our daily live. Physical constraints (temperature, pressure,

etc.), safety constraints, environmental constraints but also economical constraints are

needed in the industry. It is important to account for safety constraints in the systems

control. One of the greatest strengths of MPC is the possibility of effectively involving

constraints on inputs, states and outputs variables. We can also make use of constraint

on the maximal change of inputs, which makes our controlling more realistic.

1,...,11  Nixi

0

1

1

0

1

0

10

1 xABuAdBAx
N

j

j
N

j

N

j

jN

j

d

jjN

N  












  







1

0

10

N

j

jN

jN

N BuAxAx

25 | P a g e

The model (4) and (5) are equality constraints and we use them for calculation of

predictions. Beside these equality constraints there are inequality constraints too, which

define some operating space for allowed values of our variables.

In general we can have two types of constraints. First types are convex constraints that

are common in many optimization problems. Second types are non-convex constraints

which lead to difficult optimization problems.

Constraints can be divided [7]:

 Polytopic constraints – relatively easy to solve

 Ellipsoids – quadratic constraints which are more difficult to solve

 Non-convex constraints – extremely hard to solve

Figure 7: Constraints [7]

 BAxxPPx  |

 rxxPxxxx )()(| 00

P



26 | P a g e

2.3 How to Make MPC Faster

In order to make MPC faster and make optimization problem easier to solve we can use

some techniques as:

 Move Blocking,

 Change of the Prediction Horizon,

 Change of the Sampling Time ,

 Model Reduction.

2.3.1 Move Blocking

In this part we would like to dwell more on the possibility of using move blocking

strategies and also compare different types of move blocking. As is stated in [8] it is

common practice to reduce the degrees of freedom by fixing the input or its derivatives

to be constant over several time-steps. This approach is referred to as „move blocking‟.

MPC problem containing move blocking is then:

 (14a)

 subject to:

 (14b)

 (14c)

 (14d)

 (14e)

 (14f)

Expression (14a) is an objective function, (14b) is the process model and, , are the

constraints on states and inputs, respectively. We here consider move blocking

constraint (14f) where M is blocking matrix consists of ones and zeros and U is vector

of optimal inputs.

Ts

X U







1

0

),()(min
N

i

iiN uxLxF

0

U

X











MU

txx

Niu

Nix

Niuxfx

i

i

iii

)(

.1,...,0,

,1,...,1,

,1,...,0),,(

0

1

27 | P a g e

In the standard MPC problem, the degrees of freedom of a Receding Horizon Control

problem correspond to the number of inputs multiplied with the length of prediction

horizon N. The degrees of freedom are the factor for complexity, regardless of whether

the optimization problem is solved on-line or off-line [9, 10].

Move blocking schemes can be divided to [8]:

 Input Blocking (IB),

 Delta-Input Blocking (DIB),

 Offset Blocking (OB),

 Delta-Offset Blocking (DOB),

 Moving Window Blocking (MWB).

2.3.1.1 Input Blocking

Computation complexity of solving the optimization problem in MPC depends directly

on the degrees of freedom and it is possible do it with fixing the inputs to be constant

over a certain number of time-steps. There are some ways how to implement the input

blocking. One of them is using matrix called blocking matrix [8].

Using Input Blocking (IB) can be illustrated on one simple example. We have classic

MPC problem (3). This problem is solving for the optimal vector

, where is number of inputs multiplied with the prediction

horizon N. We also consider move blocking constraint (14f).

For example of a SISO with input blocking type , prediction

horizon , number of inputs , it means that every input is vector of two

numbers .

un

uNn

N RuuU  ],,[10  un

654321 , uuuuuu 

6N 2un

Niuuu iii :1),,(21 

28 | P a g e

 (15)

 (16)

Using this input blocking type we reduce the degree of freedom (DOF) from value

DOF = 6 to DOF = 2, which makes the MPC problem easier to solve.

From input blocking equation (15) we get this equation which we then use to define our

input blocking matrix.

 (17)

For calculation of this input blocking matrix M we created a function make_blocking

(Appendix B). Inputs to this function are number of inputs nu, prediction horizon N,

type of input blocking ibtype. Output from this function is IB matrix M. Entries of the

input blocking type (ibtype) define how many consecutive inputs are set to constant.

Sum of all entries has to be equal to the prediction horizon N.

Input blocking type can be divided into 2 groups:

1. ibtype = [number]

Example 1: ibtype = [5] N = 5

Means that first 5 predicted inputs are set to constant .

54321 uuuuu 



 654321 uuuuuu

00

00





6532

5421

uuuu

uuuu




0

U

M

0

0

0

0

0000

0000

0000

0000









































































6

5

4

3

2

1

u

u

u

u

u

u

II

II

II

II

mm

mm

mm

mm

  

29 | P a g e

Example 2: ibtype = [5] N = 10

Means that first 5 predicted inputs are set to constant and next 5

inputs are automatically fixed too .

Example 3: ibtype = [1] N = 1

If ibtype = 1, then first predicted input is independent.

Example 4: ibtype = [1] N = 5

If we have just ibtype = 1 and prediction horizon longer than 1, then all inputs are

independent. This means input blocking is not applied.

2. ibtype = [number1, number2, ...]

Example 1: ibtype = [3, 2] N = 5

Means that fist 3 predicted inputs are set to constant and that next 2

predicted inputs are set to constant too .

Example 2: ibtype = [3, 2] N = 9

Means that first 3 predicted inputs are set to constant and next inputs are

fixed with input blocking type 2, that means .

Example 3: ibtype = [1, 4, 3] N = 8 nu = 2

First predicted input is independent and next 4 predicted inputs are set to constant

. Also last 3 inputs are fixed . In figure 8 we can see

inputs prediction for both inputs using IB with

ibtype = [1 4 3]. Using this IB we reduce the number of degrees of freedom from 8 to

DOF = 3.

54321 uuuuu 

109876 uuuuu 

321 uuu 

54 uu 

321 uuu 

987654 ,, uuuuuu 

5432 uuuu  876 uuu 

Niuuu iii :1),,(21 

30 | P a g e

Figure 8: Input blocking type [1 4 3], DOF = 3

2.3.1.2 Delta-Input Blocking

Delta-Input Blocking (DIB) is a method that shows us that instead of just fixing the

input to be constant over a certain number or steps, it is too possible to fix the difference

between two consecutive control inputs to be constant over several steps. As is written

in [8] compared to IB strategy, the DIB strategy may lead to greater flexibility in the

controller since only the difference between successive inputs and not the actual inputs

are blocked. As the previously presented IB scheme, the DIB has one drawback too.

Both of these strategies reduce the complexity of optimization problem but do not

guarantee closed-loop stability or feasibility.

The principle of DIB can be illustrated on a very simple example. We consider a SISO

system with DIB, prediction horizon , number of inputs , meanings that

every input is vector of two numbers . For us the first input

 is free now and it can be any number.

 (18)

6N 2un

Niuuu iii :1),,(21 

),(12111 uuu 

C

C

C







34

23

12

uu

uu

uu

31 | P a g e

Equations (18), (19) mean that the difference between these states is constant.

 (19)

It is possible to rewrite these equations into a matrix form:

 (20)

Using some elimination process we want to separate constant C. For example from last

equation (18) we know that . Substituting this equation into first and second

equations in (18) we obtain (21).

 (21)

 (22)

From (22) it is clear that we get the same equation like equation as the (14) in IB. In

(22) M is Delta-Input blocking matrix.

For calculation this Delta-Input blocking matrix M we created a function

make_delta_blocking (Appendix B). Inputs to this function are number of inputs nu,

prediction horizon N, type of delta input blocking dibtype. Output from this function is

DIB matrix M.

Entries of the DIB type (dibtype) define for how many consecutive inputs are the

differences between these inputs constant. Sum of all entries has to be equal to the

prediction horizon N.

34 uuC 

C00

C00

C00







4321

4321

4321

uuuu

uuuu

uuuu




C

U
A

C

C

C

00

00

00

~4

3

2

1

~



























































u

u

u

u

II

II

II

mm

mm

mm

  

00

0





4321

4321

2 uuIuu

uuuu

m




0

U

M

0

0

00









































4

3

2

1

2

u

u

u

u

II

IIII

mm

mmmm

  

32 | P a g e

The DIB type can be divided into 2 groups:

1. dibtype = [number]

Example 1: dibtype = [5] N = 5

Means that differences between first 5 consecutive inputs are set to constant

.

Example 2: dibtype = [5] N = 10

Means that differences between first 5 consecutive inputs are set to constant

and differences between next consecutive

inputs are free.

Example 3: dibtype = [2] N = 5

In this case only the difference between first 2 consecutive inputs is set to be

, but that is the same as when not using delta input blocking, as there is

always some constant difference between two consecutive inputs. It means that, in this

case, the differences between consecutive inputs are free.

2. dibtype = [number1, number2, ...]

Example 1: dibtype = [2, 4] N = 5

The difference between first 2 consecutive inputs is set to constant and it

means that for first two we do not use the delta input blocking and difference between

next 4 consecutive inputs is set to constant .

Example 2: dibtype = [4, 3, 4, 2] N = 10 nu = 2

The difference between first 4 consecutive inputs is set to constant

. The difference between next 3 consecutive inputs is

constant and also the difference between next 4 consecutive

inputs is set to constant while last inputs are variable

C 45342312 uuuuuuuu

C 45342312 uuuuuuuu

C 12 uu

C1 12 uu

C2 453423 uuuuuu

C1 342312 uuuuuu

25645 C uuuu

3897867 C uuuuuu

33 | P a g e

because only two inputs are set to constant . In figure 9 we can see inputs

prediction for both inputs using DIB with dibtype = [1 4 3].

This type of DIB reduces the number of degrees of freedom from 10 to DOF = 5.

Figure 9: Delta input blocking type [4 3 4 2], DOF = 5

2.3.2 Model Reduction

As mentioned, the MPC controller uses mathematical model to obtain a prediction of

outputs. There are many types of models complexity. From models consisting of few

states to models which containing many states. With rising number of states in the

model, also the complexity of this model grows and, of course, the more complex the

MPC controller gets. In other words, as stated in [12], the main drawback of MPC is the

large increase in controller complexity as the optimization problem increases. Thus it

takes longer time to compute the sequence of optimal control actions. For this reason,

usually the low-order models are used with small number of constraints and short

control horizons. But applications of this simplification cause control performance loss.

A challenging question is whether it is possible to simplify these complex models and

make MPC faster by using some kind of model states reduction. Another relevant

question is the trade-off between speed and performance of MPC using reduced model.

Answer to first question can be found in [12], [13], [14], [15], [16], where it is also

mentioned that the goal of model reduction methods is to derive a model of low order

(less number of states) that approximates the input-output behavior of the original

4910 Cuu

Niuuu iii :1),,(21 

34 | P a g e

uDxCyuBxAx cccc  ,

model in an appropriate manner. There are some methods for model reduction. These

methods can be divided to stable or unstable systems or to methods based on stochastic

or deterministic principles. Another big group of model reduction methods is

Truncation methods.

This group of methods includes [13]:

 Balanced Truncation (BT)

 Balance and Truncate Algorithm (BTA)

 Square Root Truncation Algorithm (SRTA)

 Balancing Free Square Root Truncation Algorithm (BFS-RTA)

Other model reduction techniques are Optimal Hankel Model Reduction, or LQG

Balanced Truncation.

In this project we will use the Balanced Truncation (BT) [16] as an example of a model

reduction scheme that can be than analyzed using our program in order to get the

optimal reduction. Main principle of methods like Balanced Truncation or Square Root

Truncation Algorithm is to compute Lyapunov functions that wouls satisfy stability of

system [13]. Afterwards, Cholesky factorization and Singular Value Decomposition

(SVD) is used for choosing the states with the biggest influence in model. With

application of truncation we obtain a reduced model.

We consider a continuous linear system [17]:

 (13)

Balanced truncation is well known for preserving stability. When we consider that the

original model of the system is asymptotically stable, balanced truncation produces

asymptotically stable reduced models. Controllability and observability are also

preserved in the model reduction process [16].

.,, uyx nnn
RuRyRx 

35 | P a g e

11

0

1

210

)(

),...,,(











TWTW

TTWW

diagWW

c

cc

nc x


The BT model reduction method consists of two steps which is clear from the name of

this method. First step is called balancing and its aim is to find a balanced

representation of system we would like to reduce (13). Second step is truncation of the

states corresponding to the smallest Hankel singular values of the balanced

representation [17].

2.3.2.1 Balanced Representation

As an example of balanced system we can say that the system is balanced when the

states that are excited most by input are at same time the states that produce the most

output energy [12]. The gramians can be found by solving the Lyapunov equations

below. The controllability and observability gramians of a linear system are defined

[16]:

 (14)

 (15)

 (16)

A balanced representation (13) is obtained through a transformation matrix T, such that

and (of the transformed system) are equal. Let z donate the states of the balanced

system, i.e. .

It can be shown that

 (17)

The diagonal elements are called the system‟s Hankel singular values of

the balanced representation, ordered according to .

cW 0W

Txz 

xki n,...,2,1, 

0...21 
xn

0''  ccc

cc

c BBAWWA

0'' 00  cccc CCAWWA

0, 0 WWc

36 | P a g e

2.3.2.2 Truncation

Main purpose of truncation is to cut off states that are not useful for system, i.e. have no

major influence on the model behaviour and to keep only states that are important for

our model.

Let . In balanced truncation we simply delete from the vector of balanced

states . Denote and as

 (18)

We can now express the balanced and truncated result as

 (19)

and finally

2.3.2 Change of the Prediction Horizon

Another approach of how to reduce the degrees of freedom is to use different control

and prediction horizons, i.e. the inputs are kept constant beyond a certain point in the

prediction horizon, or a linear controller is used beyond that point [8].

MPC has an internal model that is used to predict the behaviour of the plant, starting at

the current time, over a future prediction horizon. Predicted behaviour depends on input

trajectory that is calculated over that prediction horizon. Inputs promising the best

predicted behaviour are then selected and applied to the system [2]. Length of the

prediction horizon is the number of steps that optimal inputs are calculated over. Longer

length of the prediction horizon provides better performance of control, but

simultaneously with longer prediction horizon also the number of decision variables

][21 zzz  2z

z lT rT

DuzTCy

uBTTATz

l

rc

c

lr

c

l



1


.xTz ll 

37 | P a g e

grows, and this increases the complexity of the optimization problem. On the other hand

using too short prediction horizon can cause poor control quality or instability of

control. Shortening of the prediction horizon is one way of making the MPC faster, but

shorter prediction increases the risk that the control performance will not be

satisfactory.

2.3.3 Change of the Sampling Time

Strategy of moving horizon or strategy of future prediction is based on mathematical

model of the system to be controlled. MPC works with discrete time system models.

Because of this it is necessary to discretize the mathematical model. For this reason the

right choice of sampling time is needed for discretization of our model.

The main idea of how to use changing sampling time to make MPC faster is very

simple. One of these techniques is described in [11] where the optimization is repeated

at each time-step by dividing the prediction horizon into two parts. In the first half of

prediction horizon is the sampling rate doubling and the second part of the solution is

keeping fixed, until a reasonable sampling time is reached. If we double the sampling

time , it will reduce the prediction length by a factor of 2. Therefore the speed-up in

terms of sampling time can be measured in the prediction length N. This method shows

one major drawback in loss of quality of the model, which transforms into less precise

description of the real system. In the worst case, the model can lose its dynamic and will

be describing only steps between steady states. Also we cannot omit the fact that the

length of sampling time is very important since during this time the new measurements

are taken and also new prediction and calculation of optimal inputs is realized.

sT

sT

Ts

38 | P a g e

2.4 Karush-Kuhn-Tucker Conditions

The Karush–Kuhn–Tucker conditions (also known as the Kuhn-Tucker or KKT

conditions) are very important for solving constrained optimization problems. The

conditions are named after William Karush, Harold W. Kuhn, and Albert W. Tucker

and were described in a 1951 paper of Kuhn and Tucker [19], though they were derived

earlier (and independently) in an unpublished 1939 master‟s thesis of W. Karush.

The KKT conditions are the first-order conditions on the gradient for an optimal point.

It is a generalization of the method of Lagrange multipliers to inequality constraints.

Lagrange multipliers extend the unconstrained first-order condition (derivative or

gradient equal to zero) to the case of equality constraints; KKT adds inequality

constraints. KKT conditions are necessary for the local optimality of a feasible point in

a constrained optimization problem [20].

It is about minimizing functions subject to constraints on the variables. A general

formulation for these problems is [18]:

subject to (20)

where and functions are all smooth, real-valued functions on a subset of , and

are two finite sets of indices. is the objective function, while , are the

equality constraints and , are inequality constraints.

As a preliminary to stating the necessary conditions, we define the Lagrangian function

for the general problem (20) as:

 (21)

Following conditions (22) are called first-order conditions because they are concerned

with properties of the gradients (first-derivative vectors) of the objective and constraint

functions.

)(min xf
nRx 








,,0)(

,,0)(

ixc

ixc

i

i

f ic nR 

 f ic i

ic i





i

ii xcxfxL).()(),(

39 | P a g e

Suppose that is a local solution of (20), that the function and in (20) are

continuously differentiable, and that the linear independence constraint qualification

(LICQ) holds at . Then there is a Lagrange multiplier vector , with components

, such the following conditions are satisfied at [18]

 (22a)

 for all (22b)

 for all (22c)

 for all (22d)

 for all (22e)

The conditions (22) are often knows as the Karush-Kuhn-Tucker conditions, or KKT

conditions for short. The conditions (22e) are complementarity conditions; they imply

that either constraints is active or or possibly both. In particular, the

Lagrange multipliers corresponding to inactive inequality constraint are zero, we can

omit the terms for indices from (22a) and rewrite this condition as [1]

 (23)

Given a local solution of (20) and a vector satisfying (22), we say that the strict

complementarity condition holds if exactly one of and is zero for each index

. In other words, we have that for each .

Satisfaction of the strict complementarity property usually makes it easier for

algorithms to determine the active set and converge rapidly to the solution .

For a given problem (20) and solution point , there are many vectors for which the

conditions (22) are satisfied [18].

x f ic

x  i


, i   ,x

,0),(  xLx

,0)(xci ,i

,0)(xci ,i

,0
i ,i

,0)( xcii , i

i ,0
i

)( xAi




 
)(*

).()(),(0
xAi

iix xcxfxL 

x 

i
)(xci

,i ,0
i)( xAi 

)(xA x

x 

40 | P a g e

3 IMPLEMETATION OF THE MODEL WITH

DISTURBANCES IN MPC

In this part of the Project we compare three ways of implementation and solving the

MPC problem using mathematical model of system including disturbances:

1. MPC with the model as equality constraints,

2. MPC with the model substituted into the objective function,

3. First-order optimality conditions of the MPC.

3.1 Model of the Distillation Column

As an example of the plant we will use a typical simple distillation column controlled

with LV – configuration which is shown in figure 10. The most important notation is

summarized in table 1. Our nonlinear model of a distillation column (“column A”) by

Prof. Skogestad [21] was linearized using a script in MATLAB („cola_linearize.m‟) to

obtain a linear model. The model has 82 states (liquid composition and liquid hold up)

and we reduced it to 16 states because it is easier to work with a 16 states model. This

model contains 2 inputs (reflux L, boilup V) and also 2 disturbances (feed rate F, feed

composition zF). We consider that our disturbances are measured and can be included in

the mathematical model.

Figure 10: Distillation column controlled with LV-configuration [21]

41 | P a g e

__

 feed rate [kmol/min]

 feed composition [mole fraction]

fraction of liquid in feed

and distillate (top) and bottoms product flow rate [kmol/min]

and distillate and bottom product composition (usually of light component)

[mole fraction]

 reflux flow [kmol/min]

 boilup flow [kmol/min]

N no. of theoretical stages including reboiler

and

liquid and vapour flow from stage i [kmol/min]

and liquid and vapour composition on stage i (usually of light component)

[mole fraction]

 liquid and holdup on stage i [kmol] (- reboiler, - condenser

holdup)

 relative volatility between light and heavy component

 time constant for liquid flow dynamics on each stage [min]

 constant for effect of vapour flow on liquid flow

__

Table 1: Notation [21]

The model and assumptions [21]:

 binary separation,

 41 stages, including rebolier and total condenser,

 each stage is at equilibrium, with constant relatives volatility ,

 linearized liquid flow dynamics,

 negligible vapor holdup,

 constant pressure.

 constant molar flows

 no vapor holdup

F

Fz

Fq

D B

Dx Bx

L

V

iL iV

ix iy

iM
BM DM



L



5.1

42 | P a g e

More details about this distillation column: model equations, linearization of this model,

steady-state operating point, column temperatures, important MATLAB files, etc. can

be found in [22].

MPC is based on a discrete time representation of the system dynamics. Because of this

we must discretize our model with sample time Ts = 1.

Consider the linear system

 (24)

with constraints

 (25)

where note states, are measurements, are controlled inputs and are

disturbances. Further X, Y, U are polytopes.

Matrices A, B, C, D, Bd, Dd are given in (Appendix A).

And our constraints on inputs are .

3.1.1 Disturbance Model

There are many types of disturbance models. In this part of project we defined a

disturbance model as:

 (26)

Disturbance is measured and changing in every step, is a parameter.

kdkkk

kdkkk

dDDuCxy

kdBBuAxx



 ,...}2,1,0{,1

,R,R,R uyx nnn
 UYX kkk uyx

kx ky ku kd

11  ku

10

0

1

1

01

0



















dd

dd

givend

N

N



0d

43 | P a g e

3.2 Formulation of the MPC Problems

Here we use three ways how to formulate and solve MPC problems. In the end we will

make results if solving of these problems gives us the same solutions as is expected.

3.2.1 Formulation of Problem 1

MPC formulation:

subject to (27)

3.2.2 Formulation of Problem 2

We use linear model to rewrite Problem 1 to the form of Problem 2.

 (28)







1

0
, 2

1

2

1
),(min

N

i

iNiiNN
ux

RuuQxxPxxuxJ

givend

givenx

Niuuu

Niu

Nix

NidBBuAxx

i

i

i

idiii













0

0

maxmin

1

,0

,1,...,0

,1,...,0,

,1,...,1,

,1,...,0,

U

X

10

,1,...,1

,0

,1,...,0,

0

0

0

1













 Nidd

givend

givenx

NidBBuAxx

i

i

idiii

44 | P a g e

 

 



,

2

,

1

,

0

0

2

2010

2

0

2

0

3

0

2

201000

2

2223

01000

2

010001112

0001

dBBudABABudBABuAxA

dBBudBBudABABuxAAdBBuAxx

i

dBBudABABuxA

dBBudBBuAxAdBBuAxx

i

dBBuAxx

i

ddd

dddd

dd

ddd

d

























0

1

2

21

32

0

22

1

2

1

0

00

000

x

A

A

A

A

U

BABBABA

BBABA

BAB

B

dBdAABdBd

ABdBd

Bd

x

x

x

x

x

Z

N

N

Y

NN

NN

Xx

N

N





  










  























































































































When we know , and U we can calculate every state .

 (29)

Formula for calculating every state :

 (30)

Transforming (30) into matrix form we get:

 (31)

here .

Objective function (27) can be rewritten in this matrix form:

 (32)

0x 0d 1,...,11  Nixi

1,...,11  Nixi

0

1

1

0

1

0

10

1 xABuAdBAx
N

j

j
N

j

N

j

jN

j

d

jjN

N  












  

00 ZxYuXdx 

U

R

R

R

R

Ux

P

Q

Q

Q

x

RuuQxxPxxuxJ

RQ

N

i

iNiiNN
ux

  










  










~~

1

0
,

000

000

000

000

'
2

1

000

000

000

000

'
2

1

2

1

2

1
),(min

















































 




45 | P a g e

       

 

 URYQYUYUQzzQz

URUYUQYUYUQzzQz

URUYUzQYUzURUYUXdZxQYUXdZx

H
YUQ

X
Z

dxconst




~~
''

2

1~
''

~
''

2

1

~
'

2

1~
''

2

1~
''

~
''

2

1

~
'

2

1~
'

2

1~
'

2

1~
'

2

1

~

'
'

''

0000

00




















xd

xd

d

x

FxdFf

FxFdf

YQXF

YQZF

RYQYH

''

'''

~
'

~
'

~~
'

00

00











By using (30) the MPC problem defined in (27) can be rewritten as:

, (33a)

subject to
 (33b)

We need to rewrite the MPC problem from formulation (32) to the formulation (33). We

will use equation (31) and put it into the problem (32).

 (34)

We define as:

 (35)

We can use equation (35), put it in the objective function (34) and we get objective

function in form (36).

 (36)

From objective function (36) we can extract matrices .

 (37)









 UFdUFxHUUYxxdxV dx
u

000000 '''
2

1
min'

2

1
),(

00 dExEWGU dx 



dx FFH ,,

 


z

d

x
XZXdZx 










0

0

00 


    URUYUXdZxQYUXdZx

URUxQxuxJ
ux

~
'

2

1~
'

2

1

~
'

2

1~
'

2

1
),(min

0000

,





46 | P a g e

Now we have matrices which we need to formulate the objective function in

problem (33).

We also need to formulate constraints and get matrices (33). We have only one

input constraint:

 (38)

 (39)

From (16) we can express as:

 (40)

3.2.3 Formulation of Problem 3

In formulation of the Problem 3 we need to define the KKT conditions (44) for the

problem (33). Problem (33) is a typical problem of a single inequality constraint which

we can solve using KKT conditions.

Our optimization problem is:

 (41a)

Subject to the single inequality constraint:

 (41b)

We define the Lagrangian function (42) for our problem using Lagrange multiplier

and equations (41a) and (41b):

 (42)

dx FFH ,,

WG,

WG,









 UFdUFxHUU dx
u

00 '''
2

1
min

000

00





dExEWGU

dExEWGU

dx

dx



 0000 ''''
2

1
),(dExEWGUUFdUFxHUUuL dxdx 








 

maxmax

maxmin

1uIuuu

uuu







1minminmin uIuuuuu 


























1

1
;

min

max

u

u
W

I

I
G

47 | P a g e

First condition of KKT conditions is gradient (first-derivation vector) of the objective

and constraint functions. Here u is a local solution of (41) and the functions in (41) are

continuously differentiable.

 (43)

From (43) we get fist KKT condition (44a). Second KKT condition (44b) is our

constraint (41b) and the Lagrange multiplier must be greater than equal to 0.

 (44a)

 (44b)

 (44c)

 (45)

In (45) we use binary variables and big-M formulation, where is the

number of inequality constraints in (41b).

The big-M is a constant that is large enough such the solution to (44), (45) corresponds

to the solution of (33). Big-M reformulations are used to convert a logic or nonconvex

constraint to a set of constraints describing the same feasible set, using auxillary binary

variables and additional constraints [23].

0'

0),(

00 







GdFxFHU

uL

dx

u

0*'00  GdFxFHU dx

000  dExEWGU dx

0

  Wn
s 1,0 Wn

)1(00 sMdExEWGU

Ms

dx 



48 | P a g e

3.3 Implementation of the MPC Problems

3.3.1 Implementation of Problem 1

We use Yalmip [Löfberg, 2004] under MATLAB to set up the optimization model,

objective function with constraints of the Problem 1. To solve Problem 1 we use the

function solvesdp which is the common function for solving standard optimization

problems with Yalmip. The script which we use is in (Appendix B: Script to solve

Problem 1).

3.3.2 Implementation of Problem 2

To implement Problem 2 we need matrices which are defined in (31) and

(32). To calculate these matrices we wrote functions “xyfun.m” and “QRfun.m”. Using

these functions we can get matrices with using different length of

prediction horizon , disturbances parameters and , model of system, sample

time Ts and different weight matrices . In the script (Appendix B: Script to solve

Problem 2) we calculate also matrices (37) and (40) which are

necessary to solve the Problem 2 with function quadprog which is a function that can

solve quadratic programming problems.

3.3.3 Implementation of Problem 3

For implementation and solving Problem 3 we use the script in (Appendix B: Script to

solve Problem 3). In this script we also use functions “xyfun.m” and “QRfun.m” as

before when we was solving the Problem 2, because we need define matrices

and which are part of the KKT conditions. To define a KKT conditions with big-

M formulation we use Yalmip and to solve the problem we use the function solvesdp.

RQZYX
~

,
~

,,,

RQZYX
~

,
~

,,,

N 0d 

RQ,

dx FFH ,, WG,

dx FFH ,,

WG,

http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Commands.Solvesdp
http://users.isy.liu.se/johanl/yalmip/pmwiki.php?n=Commands.Solvesdp

49 | P a g e

3.4 Comparison of the Solutions to the MPC Problems

Problems 1, 2, 3 should have the same solution because they represent the same

problem.

We here consider MPC for our distillation column example [21] with 16 states, sample

time Ts = 1, prediction horizon , weight matrices Q = diag(ones(16,1),0) and

R = diag(ones(2,1),0). Disturbances parameters are and the initial

state .

Figure 11. Close loop simulation with the MPC Problem 1, 2, 3

Problems 1, 2, 3 have the same solution because we use only other formulations of the

same MPC problem. It is clear in figures 11 where we obtain the same system response

from close loop simulations using Problem 1, 2, 3. In Table 2 are optimal inputs

obtained as a solution from optimization problems 1, 2, 3.

8N

  1.0,1;5.00  d

)zeros(16,1 0 x

50 | P a g e

Table 2: Inputs obtained from Problem1, Problem 2, Problem 3 MPC regulators

3.5 Conclusions

In this part of thesis we wrote short introduction into the formulation and solving MPC

using mathematical model of the system including disturbances. We defined our MPC

problem using three ways of formulations. At first we used normal formulation of MPC

problem with objective function and disturbances. This problem we implemented and

solved using Yalmip in Matlab. As a Problem 2 we reformulated the first problem into

the quadratic programming problem and then we used function quadprog to solve it.

For the last way of formulation and solving MPC problem we used KKT conditions and

we solved this problem as a typical problem of a single inequality constraint using

Yalmip in Matlab. We reached the same solutions of this MPC problem using Problem

1, 2, 3.

u1 u2 u1 u2 u1 u2

1 -0.0638 0.0833 -0.0638 0.0833 -0.0638 0.0833

2 -0.0575 0.0771 -0.0575 0.0771 -0.0575 0.0771

3 -0.0558 0.0691 -0.0558 0.0691 -0.0558 0.0691

4 -0.0530 0.0625 -0.0530 0.0625 -0.0530 0.0625

5 -0.0489 0.0572 -0.0489 0.0572 -0.0489 0.0572

6 -0.0443 0.0526 -0.0443 0.0526 -0.0443 0.0526

7 -0.0397 0.0482 -0.0397 0.0482 -0.0397 0.0482

8 -0.0354 0.0441 -0.0354 0.0441 -0.0354 0.0441

9 -0.0313 0.0401 -0.0313 0.0401 -0.0313 0.0401

10 -0.0275 0.0363 -0.0275 0.0363 -0.0275 0.0363

11 -0.0241 0.0328 -0.0241 0.0328 -0.0241 0.0328

12 -0.0210 0.0295 -0.0210 0.0295 -0.0210 0.0295

13 -0.0182 0.0264 -0.0182 0.0264 -0.0182 0.0264

14 -0.0157 0.0236 -0.0157 0.0236 -0.0157 0.0236

15 -0.0135 0.0211 -0.0135 0.0211 -0.0135 0.0211

16 -0.0116 0.0188 -0.0116 0.0188 -0.0116 0.0188

17 -0.0099 0.0167 -0.0099 0.0167 -0.0099 0.0167

18 -0.0084 0.0149 -0.0084 0.0149 -0.0084 0.0149

19 -0.0071 0.0132 -0.0071 0.0132 -0.0071 0.0132

20 -0.0059 0.0118 -0.0059 0.0118 -0.0059 0.0118

60 0.0002895 0.0003659 0.0002895 0.0003659 0.0002895 0.0003659

61 0.0002761 0.0003443 0.0002761 0.0003443 0.0002761 0.0003443

62 0.0002631 0.0003241 0.0002631 0.0003241 0.0002631 0.0003241

63 0.0002506 0.0003053 0.0002506 0.0003053 0.0002506 0.0003053

64 0.0002385 0.0002877 0.0002385 0.0002877 0.0002385 0.0002877

65 0.0002269 0.0002712 0.0002269 0.0002712 0.0002269 0.0002712

66 0.0002158 0.0002557 0.0002158 0.0002557 0.0002158 0.0002557

67 0.0002051 0.0002412 0.0002051 0.0002412 0.0002051 0.0002412

68 0.0001949 0.0002276 0.0001949 0.0002276 0.0001949 0.0002276

69 0.0001851 0.0002149 0.0001851 0.0002149 0.0001851 0.0002149

70 0.0001757 0.0002029 0.0001757 0.0002029 0.0001757 0.0002029

Problem 1 Problem 2 Problem 3

      

51 | P a g e

4 WORST-CASE ERROR ANALYSIS

4.1 Model Reduction Worst-case Error Analysis

In this chapter we consider model predictive control (MPC) [1] and we would like to

answer the question: What is the worst-case difference between an MPC using the full

model (2) and an MPC using the reduced model (3) and what maximizes difference

between outputs from full model (2b) and reduced model (3b) when we consider

 and we will use different simulation time?

To find the maximum difference between the reference and simplified controller we use

bilevel programming. We could calculate the distance between the controllers as

, but we focused on difference in outputs . We use the

infinity norm because then the problem can be reformulated as a mixed-integer linear

program (MILP). [17]

 subject to (46)

We don‟t use an explicit formulation of the controllers, but we simply express them as

solutions to optimization problems. Problem (46) can be rewritten as a mixed-integer

linear program (MILP) and solved using standard software.

We consider following system:

 (47a)

 (47b)

and also “reduced” model

 (48a)

 (48b)

0d

00 dBx d


 red

kk uu


)(red

kky yyQ

,1,...,0,1  NiBuAxx iii

,,...,0, NiCxy ii 

,1,...,0,1  NiuBxAx i

redred

i

redred

i

.,...,0, NixCy red

i

redred

i 

)y,distance(y max red

kk
Dd

 

 model reducedn with formulatio MPCminarg

model fulln with formulatio MPCminargyk





red

ky

52 | P a g e

To reduce the model we use balanced truncation. We note that the map from the full

state vector to the balanced and truncated system is given by [17].

MPC controller:

 (49)

subject to

We use to rewrite our MPC problem (49) to this form [9]:

, (50a)

subject to
 (50b)

By using a modification of (50a) and (50b) we can define our lower-level problem in

bilevel programming and the KKT conditions (51). For this problem can be defined as

[17]:

 (51)

x xTz l

givend

dBx

Niuuu

Niu

Nix

NiBuAxx

d

i

i

i

iii













0

00

maxmin

1

,

,1,...,0

,1,...,0,

,1,...,1,

,1,...,0,

U

X









 UFdUFxHUUYxxdxV dx
u

000000 '''
2

1
min'

2

1
),(

00 dExEWGU dx 

0'0  GxFHU x

00  xEWGU x

0







1

0

10

i

j

ji

ji

i BuAxAx

)1(00 sMdExEWGU

Ms

dx 









1

0
, 2

1

2

1
),(min

N

i

iNiiNN
ux

RuuQxxPxxuxJ

53 | P a g e

In (49) we use binary variables and big-M formulation, where is the

number of inequality constraints in (50b). The big-M is a constant that is large enough

such the solution to (51) corresponds to the solution of (50).

The same method we will use to get MPC controller using reduced model. Defined

KKT conditions (51) and our MPC problem (50) we will use as a lower-level problem

in bilevel programming. Using full-order model (47) we get matrices

 from KKT conditions (51) and using low-order model

(48) we get matrices from KKT conditions (51) [17].

Here in (52) and (53) we define the one-step problem as:

 (52)

 subject to

 (53)

Using objective function (52) we define our one-step problem which means that we are

looking for maximal difference of outputs from full and outputs from reduced

model. A part of the constraints are KKT conditions, prediction models for full-order

and reduced-order model, equality constraints and is in D

interval, where

 . (54)

Equations (52), (53) represents only one-step problem. We would like to calculate the

worst-case error (WCE) over some steps using simulation time or number of simulation

steps . Objective function for our bilevel problem can be defined (55). Using

simulation steps we get more KKT conditions (56), one for each simulation step

.

  Wn
s 1,0 W

n

),,,,(fullfullfullfullfull EWGFH

),,,,(redredredredred EWGFH

fully redy

0000 , dBxdBx d

red

d

full  0d

simN

simN

simN

),(MPC KKT

),(MPC KKT

red

full

xT

x

l




)y-(y max redfull

0

y
Dd

Q

 1|2 


dRdD

54 | P a g e

 (55)

subject to

We consider that .

 (56)

We wanted originally to calculate the WCE as a sum of the worst-case outputs

differences between full and reduced order MPC controllers during some simulation

steps (57).

 (57)

However it was not possible because this optimization problem is really difficult to

solve, respectively solving this problem takes very long time. Finally, we decided to try

one-step formulation of objective function (58), where the WCE is calculated in the last

simulation step and these results of worst-case disturbances are used to obtain the initial

states for closed loop MPC simulation. Using simulation steps in this MPC

simulation we will get a sum of the worst-case outputs for concrete worst-case

disturbances. We assume there is some difference between real calculations of (57) and

using this method, because we are solving different optimization problem, but as is

shown later the difference is small and this solution is usable.

 (58)

0000 , dBxdBx d

red

d

full 

simN

simN




)y-(y max red

Nsim

full

Nsim
0

y
Dd

Q

end

),(MPC KKTu

),(MPC KKTu

x

x

N:1 ifor

1

red

)1(MPC

1

full

)1(MPC

)1(1

red

i

)1(1

full

i

sim

red

il

red

ix

full

i

full

ix

red

ixMPC

red

i

full

ixMPC

full

i

xT

x

BuAx

BuAx
























simN

i 1

red

i

full

i y-y

 y-y redfull

simsim NN

55 | P a g e

4.1.1 Simulations

We here present some simulations and plots. These simulations can be divided into

several groups:

 in these plots we would like to show how the WCE of outputs is changing when we

use different reduced models with different number of states,

 we would like to compare closed loop simulation with number of simulation steps

 for the full order controller and low order controller ,

 in other plots we would like to show the trend of changing WCE of outputs

calculating with objective function in the last step of simulation time while the

simulation time is changing from

to ,

 using MPC simulations we would like to calculate and compare the sum of WCE

obtained over the simulation time , for this simulations we will use the

worst-case disturbances from solutions of bilevel problems which are using objective

function calculating for the last step of simulation time changing from

to

 ,

 also we would like to check that we can use MPC simulations to calculate the WCE,

when we have worst-case disturbances,

 for one example we would like to compare sum of WCE obtained using updating

objective function (12) in our bilevel problem to sum of WCE obtained with

calculation of one-step problem and then using worst-case initial disturbances in

MPC simulations,

 we would like to show how the worst possible initial disturbances which

we used to calculate initial states were changing.

10simN)16(fulln)4(redn

simN

1simN 20simN

20simN

1simN

20simN

),(0201 dd

00 dBx d

56 | P a g e

4.1.1.1 WCE for a Set of Different Reduced-order Models

Figure 12: WCE for a set of different reduced order models

In figure 12 is plot of the WCE for a set of different reduced order models, which

consist of 1 to 15 states. The WCE is the most different between full-order outputs and

reduced-order outputs which we get from equations (2b), (3b), respectively. Number of

simulation steps in every calculation WCE for different reduced models is .

The objective functions which we use to obtain the WCE of outputs use only outputs

from last simulation step. This means that the objective function is calculated only in

the last simulation step when . We can see that the WCE of outputs is

decreasing with rising numbers of states in reduced order controller. It was expected

because when we use less reduced model also the different between full order model

and reduced order model is smaller.

10simN

10simN

57 | P a g e

4.1.1.2 Closed Loop Simulation

In figure 13 we can see difference when we compare closed loop simulation for the full-

order controller and low order controller during simulation steps

which number is . Reason why full order controller produces other inputs into

controlling system as low order controller is very simple. It is because low order

controller uses reduced model to calculate prediction as full order controller which use

no reduced model of system. There is also a difference between the full-order outputs

and the reduced-order outputs, but the difference is very small and it is not clear see in

figure 13.

Figure 13: Closed loop simulation for the full order controller and low order

controller and with number of simulation steps

)16(fulln)4(redn

10simN

)16(fulln

)4(redn 10simN

58 | P a g e

4.1.1.3 WCE for a Set of Different Reduced-order Models with

Changing

The figures 14, 15 answer us the question how is changing the dependence of WCE on

different reduced-order controllers when we use different simulation times or number of

simulation steps which are changing from 1 to 20. The objective function which is used

to calculate the worst case difference of outputs is calculated in the last step of changing

simulation time. The figure 15 compares dependence WCE of outputs on different

reduced-order controllers which was obtained using different simulation times namely

. It is good see that with increasing simulation time is this

WCE dependence decreasing especially when we use reduced-order controllers which

are using reduced model with number of states in range 1 to 6. Exception is the WCE of

outputs when is using simulation time . Reason of this is very simple, because

these outputs are calculated from the initial states which are for full-order and reduced-

order controllers same.

Figure 14: WCE for a set of different reduced order models with changing

simN

)20,16,12,8,4,1(simN simN

1simN

201simN

59 | P a g e

Figure 15: WCE for a set of different reduced order models with changing

4.1.1.4 The Worst Possible Initial Disturbances

In figure 16 we can see worst possible initial disturbances for reduced-order controller

using reduced model with number of states = 10 and different time of simulation

. As it was written these initial disturbances are used to calculate

the initial states which are the worst possible initial states. Values of initial

disturbances which are plotted in the figure 16 are also in table 3 in row number 10 for

number of states = 10 and we can see how are changing from interval

.

)20,16,12,8,4,1(simN

redn

)20,16,12,8,4,1(simN

00 dBx d

redn

2,1,11 0  id i

60 | P a g e

Figure 16: Using initial disturbances for calculating WCE for reduced model

= 10 and with changing

Table 3: Initial disturbances

0201,dd

redn)20,16,12,8,4,1(simN

d01

d02

States /Nsim 1 4 8 12 16 20

States/Nsim 1 4 8 12 16 20

1 1 -1 -1 -1 -1 -1

1 1 1 1 1 1 1

2 1 -1 -1 -1 -1 -1

2 1 1 1 1 1 -1

3 -1 -1 -1 -1 -1 -1

3 -1 1 -1 -1 -1 -1

4 -1 1 1 1 1 1

4 -1 1 -1 -1 -1 -1

5 -1 -1 -1 -1 -1 -1

5 -1 1 1 -1 -1 -1

6 -1 -1 -1 -1 -1 -1

6 -1 1 -1 -1 -1 -1

7 -1 1 1 -1 -1 -1

7 1 1 1 1 1 1

8 1 -1 -1 -1 -1 -1

8 1 1 -1 -1 -1 -1

9 1 -1 -1 -1 -1 -1

9 1 -1 -1 -1 1 1

10 -1 1 -1 -1 1 1

10 -1 1 -1 -1 -1 -1

11 -1 -1 -1 -1 -1 -1

11 1 -1 -1 -1 -1 -1

12 -1 -1 -1 -1 -1 -1

12 -1 -1 -1 -1 -1 -1

13 -1 -1 -1 -1 -1 -1

13 -1 -1 -1 1 1 1

14 1 -1 -1 -1 -1 -1

14 1 -1 -1 -1 -1 -1

15 -1 -1 -1 -1 -1 -1

15 -1 -1 -1 1 1 1

61 | P a g e

4.1.1.5 WCE sum for a Set of Different Reduced-order Models with

Changing

As we said before, we wanted originally to calculate the WCE as a sum of the worst-

case outputs differences between reference and reduced MPC controllers (57), because

solving this optimization problem takes very long time, we decided to try other

formulation of objective function (58), where the WCE is calculating in the last

simulation step and calculated results of worst-case disturbances are used to obtain the

initial states for closed loop MPC simulation.

It is clear that when we use the worst case initial disturbances calculated for different

reduced models and simulation steps as seen in table 1 we will get in some cases the

same initial states for closed loop MPC simulation. This also mean that the sum of

WCE will be for that simulations same. This argument proves figure 17, where lines

represented sums of WCE obtained using different number of simulation steps are

identical. This result is distinct also in figure 18 for concrete simulation steps.

Figure 17: Sum of WCE for a set of different reduced order models with changing

simN

201simN

62 | P a g e

Figure 18: Sum of WCE for a set of different reduced order models with changing

4.1.1.6 Comparison of WCE Sum Using Real Updating Objective

Function and MPC Simulation Calculation

It is important to show the difference when the sum of WCE error is calculated with

updating objective function or with our simplified technique which calculates WCE in

the last step of simulation and then are using obtained disturbances in MPC simulation.

In figures 19, 20, 21 are displayed plots when the objective function (58) is calculated in

the last simulation step while numbers of simulation steps

are changing. These measurements are compared with sum of WCE obtained with

updating objective function (57). From these plots we can see that the difference

between real and simplified technique is very small. And also is shown that calculating

objective function in the last step is the best. Reason why we get different WCE is very

simple. It is because we are solving different optimization problems.

)20,16,12,8,4,1(simN

)10,9,8,7,6,5,4,3,2,1(simN

63 | P a g e

Figure 19: Comparison real sum of WCE (11) and sum of WCE (12) obtain from

disturbances calculated in the last simulation step

Figure 20: Zoom 1 of figure 8

64 | P a g e

Figure 21: Zoom 2 of figure 8

Figure 22: Comparison real sum of WCE (11) and sum of WCE (12) obtain from

disturbances calculated in the last simulation step

10simN

65 | P a g e

4.1.1.7 Check of the WCE Using Closed Loop Simulation

In this part we would like to check if our calculated WCE for outputs is the same than

we can get using closed loop simulation. We chose simulation length and

different reduced models with number of states from interval 1 to 15. For these

conditions we calculated the maximum difference of outputs in the last simulation step.

As initial conditions we were using calculated worst case initial states, respectively the

worst initial disturbances which were inserted into equation (3b). In the figure 23 we see

that the worst-case errors are the same and the difference between these worst-case

errors is zero and we can say that the worst-case error which we got from solving the

bilevel problem is correct.

Figure 23: Compare worst-case errors for a set of different reduced order models using

 reached as a solution of bilevel problem and it closed loop check

4.1.2 Conclusions

In this part of project we obtained the worst-case difference between an MPC using the

full model (2) and an MPC using the reduced model (3) with number of states from

range 1 to 15 and with different length of simulation time. Solving the bilevel problem

we get also the worst-case initial disturbances which we used to check the maximum

difference between obtained outputs using full-order and reduce-order MPC controller.

We investigated a possibility to use simplified method based on calculating the sum of

WCE from MPC simulation which use worst-case disturbances obtained from solving

bilevel problem with objective function calculated only in the last simulation step.

These results we figured at plots using some simulations.

18simN

18simN

66 | P a g e

4.2 Move Blocking Worst-case Error Analysis

In this capture we would like to answer these questions: What is the worst-case

difference between an MPC without using move blocking and an MPC using move

blocking which we use to make MPC faster? Another question is, which move blocking

type gives us less worst-case error, when we compare different types of move blocking?

As it was written in (MPC theory chapter) move blocking is a method to simplify the

complexity of MPC problem, where we can reduce the degrees of freedom using move

blocking approach. Principle of move blocking it is fixing the input (input blocking) or

its derivatives (delta input blocking) to be constant over several time-steps in

calculation of optimal inputs [8]. To get an input blocking (IB) and delta input blocking

(DIB) matrices we created functions make_blocking and make_delta_blocking.

To find the maximum difference between the controller without move blocking and the

simplified controller using move blocking we use bilevel programming. We could

calculate the distance between the controllers as , but we focused on

difference in outputs as before when we used model reduction to make

MPC faster. We use the infinity norm because then the problem can be reformulated as

a mixed-integer linear program (MILP) [2].

 subject to (59)

Formulation and solving of this problem is the same like it was shown in chapter 4.1.


 red

kk uu


)(red

kky yyQ

)y,distance(y max red

kk
Dd

 

 blocking move using with MPCminarg

blocking move using without MPCminargyk





red

ky

67 | P a g e

4.2.1 Simulations

In these simulations we would like to show and compare some results concerning to

simplify technique - move blocking. These simulations can be divided into two groups.

First group of simulations is dedicated to compare IB types and show the trend how the

worst-case error (WCE) is changing when we use different IB type with different

reduction of degree of freedom (DOF). Second group of simulation is about DIB and we

here also compare the trend of using different DIB types and what effect it has on WCE.

Finally we compare which of these simplify technique is more effective to use. In other

words, which of these methods give us less WCE when we reduce degree of freedom at

the same value?

4.2.1.1 Input Blocking

Function make_blocking allows us to generate different IB types and enables us

compare IB with fixing different number of inputs to be constant over a certain number

of steps too. Fixing of inputs allows us to change DOF.

We choose these conditions for following simulations. Prediction horizon with length

N = 8, number of states in mathematical model n = 16, simulation time Nsim = 10. WCE

was calculated in the last step in the simulation time as in (Model Reduction chapter).

Then we used worst-case disturbances and IB type in MPC simulation to calculate sum

of WCE over simulation time Nsim = 10. Presented values of WCE are WCE sum

obtained from MPC simulations.

In figure 24, 25 we can see that with decreasing DOF the WCE is increasing. This trend

of using different IB type was expected, because the more we simplify MPC, we should

get an increase in WCE too. For calculation sum of WCE were used worst-case

disturbances found by the bilevel program (table 4).

 [8] [4 4] [2 3 3] [1 2 2 3] [1 1 1 2 3] [1 1 1 1 1 3] [1 1 1 1 1 1 2]

d1 -1 -1 -1 1 1 1 -1

d2 -1 -1 -1 1 1 1 -1

Table 4: Worst-case disturbances used to calculate x1 in the MPC simulation

68 | P a g e

Figure 24: WCE for a set of DOF using different IB

Figure 25: WCE for a set of DOF using different IB Zoom

69 | P a g e

In figures 26 and 27 we show a predicted inputs calculated for first simulation step.

Number of predicted inputs is equal to length of prediction horizon multiplied to

number of inputs. In this case for our example of distillation column model we have two

inputs u1 and u2 and prediction horizon has length N = 8. In figure 26 we present IB type

which fix four and four inputs to be constant and reduce DOF from eight to two.

Another IB type is presented in figure 27, where first inputs is free and then two, two

and three inputs are fixed to be constant. Using this IB type we reduced DOF from eight

to four.

Figure 26: Predicted inputs with IB type = [4 4] and DOF = 2

Figure 27: Predicted inputs with IB type = [1 2 2 3] and DOF = 4

We would like to investigate also the case when we are using different IB type and we

reduce MPC on the same DOF. If IB type contains also some free inputs then is relevant

question if is better to use free inputs at the beginning or in the end of IB? Answer to

this question gives us figures 28, 29 and tables 5, 6. From these plots and from values of

70 | P a g e

WCE we can deduce that using free inputs at the beginning of predicted inputs it is

better than in the end. Values of the WCE were obtained from the MPC simulation with

worst-case disturbances with values -1.

WCE obtained using free inputs at the beginning of IB:

 IB type: WCE:











Table 5: Free inputs at the beginning of IB

Figure 28: IB types for same degree of freedom – free inputs at the beginning

3100737.0]611[

3100440.0]521[

3100270.0]431[

3106799.0]422[

3106873.0]332[

71 | P a g e

Figure 29: IB types for same degree of freedom – free inputs in the end

WCE obtained using free inputs in the end of IB:

 IB type: WCE:











Table 6: Free inputs in the end of IB

In table 6 we can see that using smaller number of fixed inputs in the end of IB is better

than using smaller number of fixed inputs in the middle of IB. This is probably due to

"end - effects" in MPC problem.

0042.0]116[

0032.0]125[

0023.0]134[

0023.0]224[

0015.0]233[

72 | P a g e

4.2.1.2 Delta Input Blocking

Similarly as before but now it is function make_delta_blocking which allows us to

generate different DIB types with different number of fixed differences between two

consecutive control inputs over several steps, what allows us to reduce DOF. Here we

choose the same conditions as for IB. Prediction horizon N = 8, number of states n = 16,

simulation time Nsim = 10 and we calculate WCE sum from MPC simulation using

these conditions and worst-case disturbances obtained from bilevel program.

In figures 30, 31 we can see the trend of increasing of WCE with decreasing DOF.

Comparing plots 7 and 9 we can see that using free delta inputs in the beginning gives

us much better results (less WCE) as using free delta inputs in the end of IB.

Figure 30: WCE for a set of DOF using different DIB

73 | P a g e

Figure 31: WCE for a set of DOF using different DIB Zoom

Figure 32: WCE for a set of DOF using different DIB free inputs in the end

74 | P a g e

To calculate WCE sum for DIB with free inputs in the end, we used worst-case

disturbances found by our bilevel program presented in table 7. For DIB with inputs at

beginning were used worst-case disturbances with values 1.

 [8] [2 7] [2 2 6] [2 2 2 5] [2 2 2 2 4] [2 2 2 2 2 3]

d1 -1 1 1 1 1 1

d2 1 1 1 1 1 1

Table 7: Worst-case disturbances used to calculate x1 in the MPC simulation

Figure 33: Predicted inputs with DIB type = [8] and DOF = 2

Figure 34: Predicted inputs with DIB type = [6 2 2] and DOF = 4

In figures 33 and 34 we show a predicted inputs calculated for first simulation step. In

figure 33 we present DIB type which fix differences between consecutive control inputs

and reduce DOF from eight to two. DIB type with fixing first five differences between

75 | P a g e

inputs and last two differences are free is presented in figure 34.Using this DIB type we

reduced DOF from eight to four.

Figure 35: DIB types for same degree of freedom – first free

Figure 36: DIB types for same degree of freedom – last free

76 | P a g e

When we are using different DIB type and we reduce MPC on the same DOF we get

different WCE. In figures 35, 36 and in table 8 we can see that using free delta inputs at

the beginning of predicted inputs it is better than in the end. Values of WCE were

obtained from MPC simulation with worst-case disturbances table 9.

 DIB type: WCE:













Table 8: Free inputs of DIB

 [2 2 6] [2 3 5] [2 4 4] [6 2 2] [5 3 2] [4 4 2]

d1 1 -1 1 -1 -1 -1

d2 1 -1 1 1 1 1

Table 9: Worst-case disturbances used to calculate x1 in the MPC simulation

4.2.1.3 Comparison of Input Blocking and Delta Input Blocking

The following figures and also previous results prove that reduction of DOF with DIB

gives us less control performance loss (less WCE) compared to IB, except DOF = 2

where we use IB type [1 7] , DIB type [8] (figure 37). But it was expected because in

this case DIB do not include free inputs. In figure 39 we compare IB and DIB with free

inputs in the end.

6105665.0]622[

6105164.0]532[

6104429.0]442[

3105193.0]226[

3103128.0]235[

3101313.0]244[

77 | P a g e

Figure 37: Comparison IB and DIB for different DOF – first free

Figure 38: Comparison IB and DIB for different DOF – first free Zoom

78 | P a g e

Figure 39: Comparison IB and DIB for different DOF – last free

4.2.2 Conclusion

From these simulations and from values of WCE we can deduce that in both cases (IB

and DIB), using free inputs at the beginning of predicted inputs it is better than in the

end. Previous results for use example of distillation column prove that reduction of

DOF with DIB gives us less control performance loss (less WCE) compared to IB.

79 | P a g e

5 COMPARISON OF TECHNIQUES FOR

SIMPLIFICATION OF MPC

In this part of the thesis we would like to compare a collection of methods that can be

used to speed up the computation of MPC. We are using our bilevel program to

minimize WCE of outputs, and show how we can use the program to choose the method

of simplification with the lowest values of WCE for some desired speed up value. Use

of our program is demonstrated on simulations for concrete examples. WCE calculated

in the last step of simulation time Nsim = 10 and then we are using worst-case

disturbances in MPC simulation to calculate sum of WCE over this simulation time.

Method of calculation WCE sum was introduced and explained in (chapter - Analazy of

WCE - Model reduction).

We would like to compare these methods:

 Input blocking

 Delta input blocking

 Model reduction

 Change of the prediction horizon

We will define speed up coefficient as:

Speed up = (60)

 (61)

where

 n – state dimension

 m – input dimension

 N – prediction horizon

 – state dimension of full system

 – input dimension of full system

 – prediction horizon of full system

We are using similar formula as is in [24], but we include there also f which represent

normalized coefficient of degrees of freedom using move blocking.

3

00

3

0

33

0

3

)(

)(

mnN

fmnN





)(

)(

originalDOF

blockingmovewithreucedDOF
f 

0n

0m

0N

80 | P a g e

5.1 Example 1 Desired Speed up 25 %

Parameters for full controller:

Simplification methods:

a) Model reduction

Speed up =

b) Change of the prediction horizon

Speed up =

c) Move blocking

Speed up =

 Input blocking type: [1 1 1 2 3]

 Delta input blocking type: [2 2 3 4]



2

16

8

0

0

0







m

n

N

2

9

18







m

n

fN

%82.222282.0
)216(8

1)29(8

)(

)(
33

333

3

00

3

0

33

0

3











mnN

fmnN

2

16

15







m

n

fN

%41.240.2441
)216(8

1)216(5

)(

)(
33

333

3

00

3

0

33

0

3











mnN

fmnN

2

16

8

5)(
8







m

n

lDOForigina

blockingmovewithreucedDOF
fN

%41.240.2441
)216(8

8

5
)216(5

)(

)(
33

3

33

3

00

3

0

33

0

3



















mnN

fmnN

81 | P a g e

In first example we speed up MPC 4 times compared to the speed of the nominal MPC.

The calculation time could not be reduced to exactly 25 % of the nominal MPC

calculation time. The reason is formulation of our speed up formula. Because of this the

values of speed up are different for these methods. Using model reduction we obtained

22.82 % speed up, using change of the prediction horizon and move blocking it was

24.41 %. The biggest WCE of outputs we get using change of the prediction horizon

and the difference comparing with other simplify approaches is very big, what is clear

see in figure 40. Comparing model reduction, input blocking and delta input blocking in

figure 41 we get the best results using delta input blocking.

Figure 40. Example 1

Figure 41. Example 1

82 | P a g e

5.2 Example 2 Desired Speed up 50 %

Parameters for full controller:

Simplification methods:

a) Model reduction

Speed up =

b) Change of the prediction horizon

Speed up =

c) Move blocking

Speed up =

 Input blocking type: [1 1 1 1 2 2]

 Delta input blocking type: [2 2 2 3 3]



2

16

8

0

0

0







m

n

N

2

12

18







m

n

fN

%05.474705.0
)216(8

1)212(8

)(

)(
33

333

3

00

3

0

33

0

3











mnN

fmnN

2

16

16







m

n

fN

%19.420.4219
)216(8

1)216(6

)(

)(
33

333

3

00

3

0

33

0

3











mnN

fmnN

2

16

8

6)(
8







m

n

lDOForigina

blockingmovewithreucedDOF
fN

%19.420.4219
)216(8

8

6
)216(5

)(

)(
33

3

33

3

00

3

0

33

0

3



















mnN

fmnN

83 | P a g e

In our second example we reduce the MPC calculation time to 50 %. Using model

reduction we obtained 47.05 %, using change of the prediction horizon and move

blocking it was 42.19 %. The biggest WCE of outputs we get as before using change of

the prediction horizon and the difference comparing with the other approaches is huge.

In figure 43 we can see that WCE obtained using delta input has the lowest value

compared to model reduction and input blocking.

Figure 42. Example 2

Figure 43. Example 2

84 | P a g e

5.3 Example 3 Desired Speed up 75 %

Parameters for full controller:

Simplification methods:

a) Model reduction

Speed up =

b) Change of the prediction horizon

Speed up =

c) Move blocking

Speed up =

 Input blocking type: [1 1 1 1 1 1 2]

 Delta input blocking type: [2 2 2 2 2 3]



2

16

8

0

0

0







m

n

N

2

14

18







m

n

fN

%23.707023.0
)216(8

1)214(8

)(

)(
33

333

3

00

3

0

33

0

3











mnN

fmnN

2

16

17







m

n

fN

%99.660.6699
)216(8

1)216(7

)(

)(
33

333

3

00

3

0

33

0

3











mnN

fmnN

2

16

8

7)(
8







m

n

lDOForigina

blockingmovewithreucedDOF
fN

%99.660.6699
)216(8

8

7
)216(5

)(

)(
33

3

33

3

00

3

0

33

0

3



















mnN

fmnN

85 | P a g e

In our third example we reduce the MPC calculation time to 50 %. Using model

reduction we obtained 70.23 %, using change of the prediction horizon and move

blocking it was 66.99 %. The biggest WCE of outputs we get as in both previous

examples using change of the prediction horizon and the difference comparing with the

other approaches is huge. In figure 45 we can see that WCE obtained using delta input

has the lowest value compared to model reduction and input blocking.

Figure 44. Example 3

Figure 45. Example 3

86 | P a g e

5.4 Conclusion

In the previous examples, we tested the functionality of our bilevel program for

purposes of finding the best simplification method for MPC problem. It was shown that

the best choice for our example of distillation column is delta input blocking, because

using this method ensures the lowest WCE. The worst results were achieved using

change of the prediction horizon.

87 | P a g e

6 CONCLUSION

MPC was introduced in first part of the thesis and we were discussing about a problem

of increasing of the MPC complexity, when size of the system model grows larger as

well as the control horizon and the number of constraints is increasing. Afterwards

methods such as Model Reduction, Move Blocking, Change of the Prediction Horizon

and Change of the Sampling Time that can be used for simplification of the MPC and

making MPC faster were proposed. The other part was about formulation,

implementation and then about solving of the MPC problem using mathematical model

including disturbances.

Main goal of this diploma thesis was to analyze and compare system response using

MPC implemented on a reference and simplified controller. The approach how to find

the worst-case difference between the reference controller and simplified controller was

introduced. To find the worst-case error between outputs obtained from using full-order

and low-order controller we used bilevel program. Using our bilevel program we were

comparing different Model Reductions of our distillation column model. We made a

analyze of Input blocking and Delta input blocking methods and using our program we

found the optimal values of input blocking and delta input blocking types. Also we

compare WCE obtained using input blocking and delta input blocking and we got

conclusion that using delta input blocking gives us less control performance loss

compared to input blocking.

On concrete reduction of computation time we tested the functionality of our bilevel

program for purposes of finding the best simplification method for MPC problem. It

was shown that the best choice for our example of distillation column is delta input

blocking, because using this method ensures the lowest WCE. The worst results were

achieved using change of the prediction horizon.

In the future we assume that our bilevel program could be use in form of toolbox used

for finding the best choice of simplification method for MPC.

88 | P a g e

7 RESUMÉ

Prediktívne riadenie s modelom (MPC) patrím medzi pokročilé techniky riadenia, ktoré

má významný vplyv na priemyselné riadenie. Matematický model systému sa využíva

na výpočet predpovede budúcich výstupov zo systému a riadiace vstupy sú použité na

optimalizáciu budúcej odozvy systému. Z toho dôvodu je veľmi dôležité mať model

systému, ktorý dostatočne opisuje dynamické vlastnosti riadeného zariadenia.

Jednou z najväčších výhod MPC je možnosť efektívneho zahrnutia obmedzení na

vstupy, stavy a výstupy systému. Na druhú stranu v oboch prípadoch (off-line MPC

alebo on-line MPC) s rastúcou veľkosťou modelu systému, ako aj s rastúcou dĺžkou

predikčného horizontu a s pribúdajúcimi obmedzeniami rastie aj zložitosť samotného

MPC. Zložitý regulátor si vyžaduje viac času potrebného na výpočet optimálneho

akčného zásahu ako aj väčšie požiadavky na výpočtovú techniku.

Prvá kapitola je venovaná úvodu do problematiky prediktívneho riadenia a možnostiam

zjednodušenia MPC problému. Existuje niekoľko zjednodušujúcich metód ako redukcia

modelu, blokovanie pohybu, zmena predikčného horizontu, zmena periódy

vzorkovania, ktoré môžu byť použité na zjednodušenie MPC problému. Dôležitá je

správna voľba kompromisu medzi rýchlosťou a kvalitou riadenia pri použití týchto

zjednodušujúcich metód, pretože so zvyšujúcou redukciou stupňov voľnosti, klesá

kvalita riadenia.

Druhá kapitola sa zaoberá implementáciou matematického modelu s poruchami do

MPC problému. Porovnávané sú tri možnosti riešenia MPC problému na príklade

typického chemického zariadenia, ktorým je destilačná kolóna. Jedná sa o nelineárny

model destilačnej kolóny („column A“) od Prof. Skogestada. Tento nelineárny model

sme linearizovali pomocou funkcie („cola_linearize.m“). Model obsahuje 82 stavov,

ktoré sme zredukovali na 16 stavov, pretože je pre nás jednoduchšie pracovať s 16

stavovým modelom. Model obsahuje dva vstupy (spätný tok (reflux) L, tok pár V) a tiež

dve poruchy (prietok nástreku F, zloženie nástreku zF).

89 | P a g e

Cieľom tejto práce je analyzovať a porovnať odozvy systému pri použití MPC s

referenčným a zjednodušeným regulátorom. Pričom sa snažíme nájsť najhoršiu chybu

medzi týmito regulátormi. Na základe tejto informácie môžeme určiť ktorú

zjednodušujúcu metódu je vhodnejšie použiť. Na nájdenie najhoršej chyby používame

bilevel programovanie.

V tretej a štvrtej kapitole sa bližšie zaoberáme využitím redukcie modelu a blokovanie

pohybu na zjednodušenie MPC. Využívame pritom náš bilevel program pomocou

ktorého hľadáme najhoršiu chybu medzi základným a redukovaným regulátorom,

pomocou ktorého porovnávame rôzne stupne redukcie stavov a neskôr aj rôzne druhy

blokovania vstupov a blokovania rozdielu medzi vstupmi. Pôvodne sme chceli najhoršiu

chybu hľadať ako sumu najhorších chýb počas celej simulácie. Tento spôsob sa však

ukázal ako veľmi výpočtovo a časovo náročný. Preto sme sa po analýze rozhodli využiť

spôsob pri ktorom hľadáme najhoršiu chybu v poslednom simulačnom kroku a následne

využívame MPC simuláciu v ktorej využívame vypočítanú najhoršiu možnú poruchu

ako počiatočnú podmienku a počas MPC simulácie počítame sumu rozdielov medzi

výstupmi z riadeného systému s použitím referenčného a zjednodušeného regulátora.

Nakoniec v poslednej kapitole porovnávame numericky aj graficky najhoršie chyby

získané použitím rôznych zjednodušujúcich techník, ktoré môžu byť použité na

zrýchlenie MPC. Výsledkom tohto porovnania je, že pre náš zvolený model destilačnej

kolóny je najvhodnejšie použiť blokovanie rozdielu medzi dvoma nasledujúcimi

vstupmi, pretože s použitím tejto metódy sme dosiahli najlepšie výsledky. Naopak

najhoršou metódou sa ukázala metóda zníženia predikčného horizontu.

90 | P a g e

8 References

[1] D. Q. Mayne, J. B. Rawlings C. V. Rao, and P. O. M. Scokaert. Constrained model

predictive control: Stability and optimality. Automatica, 36:789–814, 2000.

[2] J. M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

[3] S. J. Qin and T. A. Badgwell. A survey of industrial model predictive control

technology. Control engineering Practice, 11:733–764, 2003.

[4] M. Herceg. Real-Time Explicit Model Predictive Control of Processes, PhD thesis

pages 29 – 46, 2009

[5] Rawlings, J. B. (2000). Tutorial overview of model predictive control. IEEE Control

Systems Magazine, 20, 38–52.

[6] E. F. Camacho and C. Bordons. Model Predictive Control. Springer Verlag, 1st.

edition, 1999.

[7] M. Kvasnica. Model predictive control (MPC) Part 1: Introduction. Lecture from

MPC

[8] R. Cagienard, P. Grieder, E.C. Kerrigan, M. Morari. Move Blocking strategies in

receding horizon control, Journal of Process Control 17 (2007) 563-570

[9] A. Bemporad, M. Morari, V. Dua, E.N. Pistikopoulos, The explicit linear quadratic

regulator for constrained systems, Automatica 38 (1) (2002) 3–20

[10] P. Grieder, F. Borrelli, F.D. Torrisi, M. Morari, Computation of the constrained

infinite time linear quadratic regulator, Automatica 40 (4) (2004) 701–708.

[11] U. Halldorsson, M. Fikar, H. Unbehauen, Nonlinear predictive control with

multirate optimisation step lengths, IEE Proceedings – Control Theory and Applications

152 (3) (2005) 273–284.

91 | P a g e

[12] S. Gravdahl J. Hovland. Complexity Reduction in Explicit MPC through Model

Reduction. In 17th IFAc World Congress, 2008.

[13] S. Beck C.L. Sivakumar. MRedTool - a MATLAB Tooolbox for Model Reduction

of Multi-dimensionals Systems. In 43rd IEEE Conference on Decision and Control,

2004.

[14] Quintana-Ort´ı G. Benner P., Quintana-Ort´ı E.S. State-Space Trunctation Methods

for

Parallel Model Reduction of Large-Scale Systems. Parallel Computing, 8:203–214,

June

2003.

[15] Peter Benner, Enrique S. Quintana-Ort´ı, and Gregorio Quintana-Ort´ı. Efficient

numerical algorithms for balanced stochastic truncation, 2001.

[16] B. Moore. Principal Component Analysis in Linear Systems: Controllability,

Observability and Model Reduction. IEEE Transactions on Automatic Control,

26(1):17–32, 1981.

[17] H. Manum, S. Skogestad. Bilevel programming for analysis of reduced models for

use in model predictive control. International Conference – Cybernetics and informatics,

Vyšná Boca, SR 2010

[18] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations

Research. Springer-Verlag, 1999.

[19] H. W. Kuhn and A. W. Tucker, Nonlinear programming, in Proceedings of the

Second Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman,

ed., Berkeley, CA, 1951, University of California Press, pp. 481-492.

[20] Niclas Andr´easson, Anton Evgrafov, and Michael Patriksson, An Introduction to

Continuous Optimization: Foundations and Fundamental Algorithms

92 | P a g e

[21] S. Skogestad. Dynamics and control of distillation columns - a tutorial introduction. Trans
IChemE, Part A, 75:539–562, September 1997.

[22] http://www.nt.ntnu.no/users/skoge/book/matlab_m/cola/cola.html#init

[23] http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php?n=Tutorials.Big-M

[24] Yang Wang, Stephen Boyd. Fast Model Predictive Control Using Online

Optimization, Proceedings of the 17th World Congress The International Federation of

Automatic Control

Seoul, Korea, July 6-11, 2008

http://www.nt.ntnu.no/users/skoge/book/matlab_m/cola/cola.html#init

93 | P a g e

9 APPENDICES

Appendix A: Numerical values of matrices: A, B, C, D, Bd, Dd

94 | P a g e

Appendix B: List of software on CD

Model of distillation column files (“column A”)

 mathematical model and linearization

o cola_lv.m, colamod.m, cola_lv_lin.m,

 model reduction (truncation)

o model_baltrunc.m, baltrunc.m

1 Implementation of the model with disturbances in MPC

 Functions for obtaining matrices

o QRfun.m, xyfun.m

 Scripts to solve Problem 1,2,3 and comparing these MPC problems

o problem1.m, problem2.m, problem3.m, compareP123.m

1 Model reduction worst-case error analysis

a) WCE calculated in the last step of simulation

 Calculation WCE for different Nsim, and different reduced order models

o dif_red_order.m, yalmip_useCHS_trajectory_check.m

 Functions for calculation WCE using MPC simulation, making closed loop

simulation,

o analyze_dro.m, matrices_analyze_dro.m, MPC_solv.m

b) WCE sum calculated with MPC sim

 Functions for calculation WCE sum using MPC simulation

o make_WCEsum_plots.m, compare_sum_WCE.m, sum_WCE.m

c) WCE sum calculating with updating objective function

 Mostly the same like in “a) WCE calculated in the last step of simulation”,

but in yalmip_useCHS_trajectory_check.m we are using updating objective

function

RQZYX
~

,
~

,,,

95 | P a g e

2 Move blocking worst-case error analysis

 Script for comparison of IB and DIB WCE calculated in the last step of

simulation and WCEsum

o comparison_IB_DIB.m

 Functions for calculation IB matrix and DIB matrix

o make_blocking.m, make_delta_blocking.m

 Functions using to calculate WCE sum

o sum_IB_WCE.m, sum_DIB_WCE.m, MPC_solvIB.m,

MPC_solvDIB.m, dif_mb_WCE.m, dif_delta_mb_WCE.m,

matrices_analyze_dro.m

 Calculation WCE in last step for IB and DIB

o moveblocking_onestep.m, deltamoveblocking_onestep.m

3 Comparison of techniques for simplification of MPC

 Script for comparison results from simplification methods

o speedup_comparison.m

 Script for analyze WCE sum using change of the prediction horizon method

o prediction_horizon_WCE_analyze.m

 Script for analyze WCE sum using model reduction method

o model_reduction_WCE_analyze.m

 Script for analyze WCE sum using move blocking method

o move_blocking_WCE_analyze.m

4 Figures

Figures using in Diploma thesis:

1. Implementation of the model with disturbances in MPC

2. Model reduction worst-case error analysis

3. Move blocking worst-case error analysis

4. Comparison of techniques for simplification of MPC

