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ABSTRACT 

 

Given diploma thesis deals with the systematic method for analysis of performance loss 

when using simplified model predictive control formulations. Aim of this thesis is to 

analyze and compare system response using model predictive control (MPC) 

implemented on a reference and simplified controller. To find the maximum difference 

between these controllers and to solve this problem we use bilevel programming. The 

main drawback of MPC is in increasing of the complexity in both cases (off-line and 

on-line) as the size of the system model grows larger as well as the control horizon and 

the number of constraints are increasing. One part of the thesis deals with introduction 

into MPC and with techniques how to make MPC faster. There are some techniques as 

model reduction, move blocking, changing the prediction horizon and changing the 

sampling time, which can be used for simplify MPC problem that makes the 

optimization problem easier to solve and thus make MPC faster. Using the model 

reduction to reduce model state variables is important, e.g. the more states variables 

model contains, the more complex the regulator must be. This fact is very important 

especially for explicit MPC. Using input blocking we fix the inputs to be constant and 

using delta-input blocking we fix the difference between two consecutive control inputs 

to be constant over a certain number of time-steps which reduce degrees of freedom. 

Reducing prediction horizon we make MPC problem easier to solve. As an example of 

controlling a typical chemical plant we here consider MPC for a distillation column. 

Using a bilevel program and model of distillation column we compare these simplify 

techniques and we focus on the connection between control performance and 

computational effort. Finally, results are compared and the best way of simplification 

for our example of plant is found, which turns out to be delta input blocking.  
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ABSTRAKT 

 

Diplomová práca sa zaoberá metódou na analýzu zníženia kvality riadenia pri použití 

zjednodušených formulácií prediktívneho riadenia s modelom. Cieľom tejto diplomovej 

práce je analyzovať a porovnať odozvy systému pri použití prediktívneho riadenia 

(MPC) na referenčnom regulátore a na zjednodušenom regulátore. Na vyriešenie 

problému nájdenia maximálneho rozdielu medzi týmito regulátormi používame bilevel 

programovanie. Hlavnou nevýhodou MPC je že s nárastom veľkosti modelu systému 

ako aj s nárastom predikčného horizontu a počtu obmedzení sa zvyšuje zložitosť 

regulátora a to v oboch prípadoch (off-line aj on-line) MPC. Časť práce sa zaoberá 

úvodom do problematiky MPC a technikami ako urobiť MPC rýchlejšie. Existuje 

niekoľko techník ako redukcia modelu, blokovanie pohybu, zmena predikčného 

horizontu, zmena periódy vzorkovania, ktoré môžu byť použité na zjednodušenie MPC 

problému, čo zabezpečí jednoduchšiu riešiteľnosť optimalizačného problému a tým aj 

zvýši rýchlosť MPC. Použitie redukcie modelu za účelom redukcie počtu stavov je 

z tohto hľadiska dôležité, pretože čím viac stavov model obsahuje tým zložitejší 

regulátor musí byť. Tento fakt je veľmi dôležitý najmä pre explicitné MPC. Použitím 

blokovania vstupov fixujeme vstupy na konštantnú hodnotu a použitím blokovania 

zmeny vstupov fixujeme zmenu medzi dvoma po sebe nasledujúcimi vstupmi na 

konštantnú hodnotu a tým znižujeme počet stupňov voľnosti. Redukciou predikčného 

horizontu urobíme MPC problém jednoduchšie riešiteľný. Ako príklad riadenia 

typického chemického zariadenia uvažujeme MPC pre destilačnú kolónu. Použitím 

bilevel programu a modelu destilačnej kolóny porovnávame zjednodušujúce techniky 

a zameriavame sa na vzťah medzi kvalitou riadenia a výpočtovou náročnosťou. Na 

uvedenom príklade destilačnej kolóny porovnávame výsledky rôznych 

zjednodušujúcich techník a prezentujeme najlepšie riešenie, ktorým sa ukázalo byť 

blokovanie zmeny vstupov.            

 

 

 

Kľúčové slová: analýza MPC, zjednodušené formulácie MPC, analýza kvality riadenia 

MPC 
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1 INTRODUCTION 

 

Model predictive control (MPC) is advanced control technique that has a significant 

impact on industrial control engineering. Mathematical model of the system is used to 

calculate predictions of the future outputs and the control inputs are used to optimize the 

future response of the system. Because of this, it is very important to have model of the 

system that adequately describes its dynamic properties.   

 

One of the greatest strength of the MPC is the possibility of effectively involving 

constraints on inputs, states and output variables. On the other hand in both cases (off-

line MPC and on-line MPC) as the size of the system model grows larger as well as the 

control horizon and the number of constraints is increasing then the complexity of MPC 

is increasing. This means more time to compute optimal control action and bigger 

hardware requirements.   

  

The first chapter is devoted to MPC introduction and possibilities of simplifying MPC 

problem. There are some simplification methods, such as Model Reduction, Move 

Blocking, Change of the Prediction Horizon and Change of the Sampling Time. 

Relevant question is the trade-off between speed and performance of MPC using 

reduced model or some other simplify method, because with increasing reduction of 

degrees of freedom, the control performance is decreasing.    

 

The second chapter deals with implementation of the mathematical model with 

disturbances into MPC problem and compare three ways of solving the MPC problem 

like MPC with the model as equality constraints, MPC with the model substituted into 

the objective function and first-order optimality conditions of the MPC. As an example 

of the plant we used a typical simple distillation column by Prof. Skogestad.  

 

The goal of this thesis is to analyze and compare system response using MPC 

implemented on a reference and simplified controller. To find the maximum (worst-

case) difference between the full-order controller and low-order controller we used 

bilevel programming to solve this problem.   
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In the third and fourth chapters of thesis we answered the questions: What is the worst-

case difference between an MPC using the full model and an MPC using the reduced 

model and what  maximizes difference between outputs from full model and reduced 

model, when we consider  and we will use different simulation time? What is 

the worst-case difference between an MPC without using move blocking and an MPC 

using move blocking which we use to make MPC faster? Another question is, which 

move blocking type gives us less worst-case error, when we compare different types of 

move blocking?  

 

At the end in the last chapter, results of worst-case error obtained from using different 

simplification methods that can be used to speed up the computation of the control 

action in MPC are compared numerically and graphically.    
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2 INTRODUCTION TO MODEL PREDICTIVE 

CONTROL 

 

2.1 Model Predictive Control  

 

Model predictive control (MPC) is a successful control technique that has a significant 

and widespread impact on industrial process control [3]. MPC is used mainly in the oil 

refineries and petrochemical industry where taking account of the safety constraints is 

very important. Currently the MPC covers a wide range of methods that can be 

categorized using various criteria. In this chapter, we cover the main principle of MPC 

and ways of making the MPC faster.    

 

One of the greatest strengths of MPC using a model of the system is the possibility to 

include constraints on inputs, states and outputs variables already in the design of the 

controller. That is why performance of control is better than standard proportional-

integral-derivative (PID) controller, which does not provide physical, safety and other 

constraints on the input, output and state variables. 

 

As the title (Model Predictive Control) suggests the prediction of the future output of 

the controlled system MPC is calculated using a mathematical model of the system. 

Because of this, it is very important to have model of the system that adequately 

describes its dynamic properties. Some models include models of disturbances directly 

while others assume that the disturbances are constant.   

 

The idea of MPC is to use the control inputs  to optimize the future response of the 

system while, given the information about current states  and disturbances . 

Calculation of the future optimal control input 
 
is based on the 

minimization of the objective function on the prediction horizon. Only the optimal value 

obtained for the current time is actually implemented. Then the system evolves one 

sample, new measurements are collected and the optimization is repeated. With a fixed 

length of the horizon, the horizon is shifted one sample further at each new 

)(U

)(x )(d

 T

N

TT uuuU 110 ,,, 

  
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measurement as given in Fig. 3. Because of this, MPC is often termed moving horizon 

control [5]. In Fig. 1 the difference between classical feedback control and MPC is 

shown. Strategy of MPC overcomes drawbacks of other methods, such as linear 

quadratic control (LQR), that are using optimization with infinity horizon without 

taking constraints into account.  

Strategy of the future forecasting is typical in our everyday life. For instance, one can 

imagine a situation when driving a car as given in Fig. 2. 

Our control tasks:  

 stay on the road,  

 don‟t crash into the car ahead of us, 

 respect speed limits.  

 

When driving a car, we are looking on the road through the windscreen, it is similar to 

the predictive control strategy as shown in figure 3. 

Inputs are usually signals to the plant that can (e.g. gas pedal, brake pedal) or cannot 

(e.g. side wind, slope of the road, disturbances) be manipulated. The actual information 

about the plant is given by state variables, such as car speed. Of course, even though 

this comparison is not absolutely precise, it describes very simply the idea of predictive 

control, that is trying to control the system (in this case a car) forecasting its future (the 

next position on the road) using a model of the controlling system (car controllers, 

acceleration, braking, etc.), while respecting constraints (traffic rules, speed limits, 

vehicle operating characteristics, etc.) [6]. 

One of the important elements is the choice of adequate prediction horizon . Using a 

prediction horizon too short can cause poor control quality or instability of control. In 

automobile analogy it is if the driver views only too short of a distance ahead, what 

could lead to accident (collision with slower car, by not having enough reaction time 

upon obstacle, etc.) [7]. Another problem is when the controlling system model is not 

representing the real plant and when there are some random disturbances. Using such 

mathematical model of the system for the prediction of future outputs calculation could 

be inaccurate and cause incorrect control inputs. MPC works with discrete time system 

models. Because of this, we need a good choice of the sampling time value for 

discretization of our model. Sampling time length is a very important since it is the time 

when new measurements are made, new prediction calculated and new optimal control 

N

sT
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inputs  determined. However, sampling time must be short 

enough so that updated measurements from the plant can be taken. There are some good 

rules in place on how to set the right sampling time, for example we can use Nyquist-

Shannnon sampling theorem.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Difference between classical control and implicit MPC [7] 

 

Figure 2: Analogy MPC with driving a car [6] 
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Figure 3: Strategy of moving horizon [7] 

 

2.2 General Formulation of Optimal Control Problem 

 

As is written in [4] the “optimal control problem” is to find optimal control inputs 

 that drive the system from the current initial state at time

towards the origin.  

 

Optimal control problem [4] is then:   

   

       

                (1a) 
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  subject to:       

     (1b) 

                (1c) 

                (1d) 

                (1e) 

 

Expression (1a) is an objective function, (1b) is the process model and, , are the 

constraints on states and inputs, respectively. This optimal control problem is often 

called constrained finite time optimal control (CFTOC), because of the constraint on 

states, inputs and finite horizon . Predictions have length steps to the future and 

control inputs are the optimized degrees of freedom [4].  

There are two ways how the optimization problem can be characterized [4]: 

 

Implicit solution: The computed input is given as a sequence of numerical values 

, which depend on the particular values of at specific times within the 

interval . 

 

Explicit solution: The control input is given as a sequence of function typically with 

plant state as its argument, i.e.  

In Fig. 4 and Fig. 5 feedback controls using implicit and explicit solution are compared.  

 

 

 

 

 

 

 

 

 

 

Figure 4: A feedback control scheme with implicit solution [4] 
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Figure 5: A feedback control scheme with explicit solution [4] 

 

2.2.1 Objective Function  

 

We can divide objective functions on easy and hard to solve.  

- EASY : objective function is a convex function 

- HARD : objective function is a non-convex function or concave function  

                     (minimization of concave function is hard to solve)     

 

 

 

 

Figure 6: Convex, concave, non-convex functions [7] 

 

An objective function is convex if for   

 

                                                                                   (2) 

 

Usually we can use 3 types of norm of convex objective function.  
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We can define objective function using general norm as: 

 

            (3) 

 

For one norm , for infinity norm and for 2 norm .

 

 

 

Objective function is typically quadratic in the states and in the control inputs (4).

  
 

                  (4) 

 

Where  is prediction horizon, and are weight matrices for states 
 
and inputs 

respectively. Weight matrices  can be chosen freely, but it is required that  is 

positive semi definite  and  is positive definite   so that the objective 

function becomes convex. These matrices are used to tune the MPC performance and 

most commonly are diagonal.  

 

Here (5) we consider objective function with formulation and tracking.        

                  (5) 

 

 

 

Using this formulation, matrices  penalize deviation of the state vector from 

some reference and penalize difference of the actual and the last calculated input. 

Increasing the weights on the control moves relative to the weights  on 

the tracking errors has the effect of reducing the control activity. Because of this the 

elements of are in some MPC products called move suppression factors [2]. We 

can say that increasing these weight matrices indefinitely will reduce the control activity 
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to zero, which “switch off” the feedback action. In other words, the penalization of 

changes in inputs will be so big, that it will not affect the controller. As is stated in [2] if 

the plant is stable, it will result in a stable system, but not vice versa. Thus with a stable 

plant, we can expect getting a stable closed loop by sufficient increasing of the control 

weight. The penalty for doing this will be slow response to disturbances, since it will 

result in only little control actions. With an unstable plant we can expect an unstable 

feedback loop, if the s are increased too much. Because of this there are better 

ways of ensuring closed-loop stability than using heavy penalty weights .  

As it was written using weight matrices  we can penalize states vector or 

penalize deviation of states vector from some reference. It is possible to penalize some 

state more heavily than other. That is a way of how to change weight and decide on 

which states are important for us.   

  

2.2.2 Model of the System 

 

The model of the system represents a mathematical abstraction of the plant‟s behaviour. 

 

There are different choices of models possible: 

 

 linear (transfer function, state-space, finite impulse response, ...), 

 nonlinear (state-space, fuzzy, neural networks, ...), 

 hybrid (combination of continuous dynamics and discrete logic). 

 

It is very important to make compromise between quality and complexity of the system 

model. Complex models are better for predictions, but make optimization more 

difficult, which takes the optimization problem a lot of time to solve.  

Models are very important part of MPC, because they are used to predict the future.  

A linear state space model is given by: 

  

       (6a) 

   

            (6b) 

where  denote states, are outputs (measurements), are controlled inputs. 
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The state space formulation of model with disturbances is given by 

 

                 (7a) 

              

     (7b) 

 

where  note states, are outputs (measurements), are controlled inputs and are 

disturbances. 

 

There are many types of disturbance models. For example we can define a disturbance 

model as: 

 

 

 

           

                   (8) 

 

 

 

When we know initial conditions as initial states , initial disturbances  and the 

vector of inputs U we can calculate every state .  
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We can formulate the prediction equation for calculating every state 

as: 

  

          (10) 

 

 

 

  

                 

 

 

     (11) 

 

Considering a model without disturbances, the prediction equation is: 

  

     (12) 

 

  

                 

     (13) 

 

 

 

 

2.2.3 Constraints    

 

We encounter constraints in our daily live. Physical constraints (temperature, pressure, 

etc.), safety constraints, environmental constraints but also economical constraints are 

needed in the industry. It is important to account for safety constraints in the systems 

control. One of the greatest strengths of MPC is the possibility of effectively involving 

constraints on inputs, states and outputs variables. We can also make use of constraint 

on the maximal change of inputs, which makes our controlling more realistic.  
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The model (4) and (5) are equality constraints and we use them for calculation of 

predictions. Beside these equality constraints there are inequality constraints too, which 

define some operating space for allowed values of our variables.  

In general we can have two types of constraints. First types are convex constraints that 

are common in many optimization problems. Second types are non-convex constraints 

which lead to difficult optimization problems.   

 

Constraints can be divided [7]:  

 

 Polytopic constraints – relatively easy to solve 

 

 

 

 

 

 

 Ellipsoids – quadratic constraints which are more difficult to solve  

 

 

 

 

 

 

 

 

 Non-convex constraints – extremely hard to solve 

 

 

 

 

 

Figure 7: Constraints [7] 
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2.3 How to Make MPC Faster 

 

In order to make MPC faster and make optimization problem easier to solve we can use 

some techniques as: 

 

 Move Blocking, 

 Change of the Prediction Horizon, 

 Change of the Sampling Time ,  

 Model Reduction. 

 

2.3.1 Move Blocking 

 

In this part we would like to dwell more on the possibility of using move blocking 

strategies and also compare different types of move blocking. As is stated in [8] it is 

common practice to reduce the degrees of freedom by fixing the input or its derivatives 

to be constant over several time-steps. This approach is referred to as „move blocking‟.  

MPC problem containing move blocking is then:   

   

      

              (14a) 

 

 

  subject to:       

   (14b) 

              (14c) 

              (14d) 

                 (14e) 

              (14f) 

 

Expression (14a) is an objective function, (14b) is the process model and, , are the 

constraints on states and inputs, respectively. We here consider move blocking 

constraint (14f) where M is blocking matrix consists of ones and zeros and U is vector 

of optimal inputs.  
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In the standard MPC problem, the degrees of freedom of a Receding Horizon Control 

problem correspond to the number of inputs  multiplied with the length of prediction 

horizon N. The degrees of freedom are the factor for complexity, regardless of whether 

the optimization problem is solved on-line or off-line [9, 10].  

 

Move blocking schemes can be divided to [8]: 

 

 Input Blocking (IB), 

 Delta-Input Blocking (DIB), 

 Offset Blocking (OB), 

 Delta-Offset Blocking (DOB), 

 Moving Window Blocking (MWB). 

 

 

2.3.1.1 Input Blocking  

 

Computation complexity of solving the optimization problem in MPC depends directly 

on the degrees of freedom and it is possible do it with fixing the inputs to be constant 

over a certain number of time-steps. There are some ways how to implement the input 

blocking. One of them is using matrix called blocking matrix [8].  

  

Using Input Blocking (IB) can be illustrated on one simple example.  We have classic 

MPC problem (3). This problem is solving for the optimal vector

, where  is number of inputs multiplied with the prediction 

horizon N.  We also consider move blocking constraint (14f). 

 

For example of a SISO with input blocking type , prediction 

horizon , number of inputs , it means that every input is vector of two 

numbers . 
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                (15) 

     

                   

     (16) 

 

 

Using this input blocking type we reduce the degree of freedom (DOF) from value  

DOF = 6 to DOF = 2, which makes the MPC problem easier to solve.   

 

From input blocking equation (15) we get this equation which we then use to define our 

input blocking matrix. 

   

 

             

     (17) 

 

 

 

 

For calculation of this input blocking matrix M we created a function make_blocking 

(Appendix B). Inputs to this function are number of inputs nu, prediction horizon N, 

type of input blocking ibtype. Output from this function is IB matrix M. Entries of the 

input blocking type (ibtype) define how many consecutive inputs are set to constant. 

Sum of all entries has to be equal to the prediction horizon N. 

 

Input blocking type can be divided into 2 groups: 

 

1. ibtype = [number] 

 

Example 1: ibtype = [5] N = 5   

Means that first 5 predicted inputs are set to constant .  
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Example 2: ibtype = [5] N = 10  

Means that first 5 predicted inputs are set to constant and next 5 

inputs are automatically fixed too   . 

 

Example 3: ibtype = [1] N = 1  

If ibtype = 1, then first predicted input is independent.   

 

Example 4: ibtype = [1] N = 5  

If we have just ibtype = 1 and prediction horizon longer than 1, then all inputs are 

independent. This means input blocking is not applied.   

 

2. ibtype = [number1, number2, ...]  

 

Example 1: ibtype = [3, 2] N = 5  

Means that fist 3 predicted inputs are set to constant and that next 2 

predicted inputs are set to constant too .  

 

Example 2: ibtype = [3, 2] N = 9  

Means that first 3 predicted inputs are set to constant and next inputs are 

fixed with input blocking type 2, that means .  

 

Example 3: ibtype = [1, 4, 3] N = 8  nu = 2  

First predicted input is independent and next 4 predicted inputs are set to constant

. Also last 3 inputs are fixed . In figure 8 we can see 

inputs prediction for both inputs  using IB with                 

ibtype = [1 4 3]. Using this IB we reduce the number of degrees of freedom from 8 to 

DOF = 3.  
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Figure 8: Input blocking type [1 4 3], DOF = 3 

 

 

2.3.1.2 Delta-Input Blocking  

 

Delta-Input Blocking (DIB) is a method that shows us that instead of just fixing the 

input to be constant over a certain number or steps, it is too possible to fix the difference 

between two consecutive control inputs to be constant over several steps. As is written 

in [8] compared to IB strategy, the DIB strategy may lead to greater flexibility in the 

controller since only the difference between successive inputs and not the actual inputs 

are blocked. As the previously presented IB scheme, the DIB has one drawback too. 

Both of these strategies reduce the complexity of optimization problem but do not 

guarantee closed-loop stability or feasibility.   

 

The principle of DIB can be illustrated on a very simple example. We consider a SISO 

system with DIB, prediction horizon , number of inputs , meanings that 

every input is vector of two numbers . For us the first input 

 is free now and it can be any number.  
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Equations (18), (19) mean that the difference between these states is constant. 

 

 

     (19) 

 

 

It is possible to rewrite these equations into a matrix form: 

  

           

           

     (20) 

 

 

 

Using some elimination process we want to separate constant C. For example from last 

equation (18) we know that . Substituting this equation into first and second 

equations in (18) we obtain (21). 

 

                (21) 

 

 

 

                           (22) 

 

From (22) it is clear that we get the same equation like equation as the (14) in IB.  In 

(22) M is Delta-Input blocking matrix.  

For calculation this Delta-Input blocking matrix M we created a function 

make_delta_blocking (Appendix B). Inputs to this function are number of inputs nu, 

prediction horizon N, type of delta input blocking dibtype. Output from this function is 

DIB matrix M. 

Entries of the DIB type (dibtype) define for how many consecutive inputs are the 

differences between these inputs constant. Sum of all entries has to be equal to the 

prediction horizon N.  
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The DIB type can be divided into 2 groups: 

  

1. dibtype = [number] 

 

Example 1: dibtype = [5] N = 5   

Means that differences between first 5 consecutive inputs are set to constant

.  

 

Example 2: dibtype = [5] N = 10  

Means that differences between first 5 consecutive inputs are set to constant

and differences between next consecutive 

inputs are free. 

 

Example 3: dibtype = [2] N = 5  

In this case only the difference between first 2 consecutive inputs is set to be 

, but that is the same as when not using delta input blocking, as there is 

always some constant difference between two consecutive inputs. It means that, in this 

case, the differences between consecutive inputs are free. 

 

2. dibtype = [number1, number2, ...]  

 

Example 1: dibtype = [2, 4] N = 5  

The difference between first 2 consecutive inputs is set to constant  and it 

means that for first two we do not use the delta input blocking and difference between 

next 4 consecutive inputs is set to constant .  

 

Example 2: dibtype = [4, 3, 4, 2]  N = 10  nu = 2 

The difference between first 4 consecutive inputs is set to constant

. The difference between next 3 consecutive inputs is 

constant   and also the difference between next 4 consecutive 

inputs is set to constant  while last inputs are variable 
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because only two inputs are set to constant . In figure 9 we can see inputs 

prediction for both inputs  using DIB with dibtype = [1 4 3]. 

This type of DIB reduces the number of degrees of freedom from 10 to DOF = 5. 

 

 

Figure 9: Delta input blocking type [4 3 4 2], DOF = 5 

 

2.3.2 Model Reduction 

 

As mentioned, the MPC controller uses mathematical model to obtain a prediction of 

outputs. There are many types of models complexity. From models consisting of few 

states to models which containing many states. With rising number of states in the 

model, also the complexity of this model grows and, of course, the more complex the 

MPC controller gets. In other words, as stated in [12], the main drawback of MPC is the 

large increase in controller complexity as the optimization problem increases. Thus it 

takes longer time to compute the sequence of optimal control actions. For this reason, 

usually the low-order models are used with small number of constraints and short 

control horizons. But applications of this simplification cause control performance loss.  

 

A challenging question is whether it is possible to simplify these complex models and 

make MPC faster by using some kind of model states reduction. Another relevant 

question is the trade-off between speed and performance of MPC using reduced model. 

Answer to first question can be found in [12], [13], [14], [15], [16], where it is also 

mentioned that the goal of model reduction methods is to derive a model of low order 

(less number of states) that approximates the input-output behavior of the original 
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uDxCyuBxAx cccc  ,

model in an appropriate manner. There are some methods for model reduction. These 

methods can be divided to stable or unstable systems or to methods based on stochastic 

or deterministic principles. Another big group of model reduction methods is 

Truncation methods.  

 

This group of methods includes [13]: 

 

 Balanced Truncation (BT) 

 Balance and Truncate Algorithm (BTA) 

 Square Root Truncation Algorithm (SRTA) 

 Balancing Free Square Root Truncation Algorithm (BFS-RTA) 

 

Other model reduction techniques are Optimal Hankel Model Reduction, or LQG 

Balanced Truncation. 

 

 

In this project we will use the Balanced Truncation (BT) [16] as an example of a model 

reduction scheme that can be than analyzed using our program in order to get the 

optimal reduction. Main principle of methods like Balanced Truncation or Square Root 

Truncation Algorithm is to compute Lyapunov functions that wouls satisfy stability of 

system [13].  Afterwards, Cholesky factorization and Singular Value Decomposition 

(SVD) is used for choosing the states with the biggest influence in model. With 

application of truncation we obtain a reduced model.  

 

We consider a  continuous linear system [17]: 

     

    

               (13) 

 

Balanced truncation is well known for preserving stability. When we consider that the 

original model of the system is asymptotically stable, balanced truncation produces 

asymptotically stable reduced models. Controllability and observability are also 

preserved in the model reduction process [16].  

.,, uyx nnn
RuRyRx 
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The BT model reduction method consists of two steps which is clear from the name of 

this method. First step is called balancing and its aim is to find a balanced 

representation of system we would like to reduce (13). Second step is truncation of the 

states corresponding to the smallest Hankel singular values of the balanced 

representation [17].    

 

2.3.2.1 Balanced Representation 

 

As an example of balanced system we can say that the system is balanced when the 

states that are excited most by input are at same time the states that produce the most 

output energy [12]. The gramians can be found by solving the Lyapunov equations 

below. The controllability and observability gramians of a linear system are defined 

[16]: 

 

                                      (14) 

                                           (15) 

                (16) 

 

A balanced representation (13) is obtained through a transformation matrix T, such that 

and (of the transformed system) are equal. Let z donate the states of the balanced 

system, i.e. .  

 

It can be shown that  

 

     (17) 

 

 

 

 

The diagonal elements are called the system‟s Hankel singular values of 

the balanced representation, ordered according to . 

 

 

cW 0W

Txz 

xki n,...,2,1, 

0...21 
xn

0''  ccc

cc

c BBAWWA

0'' 00  cccc CCAWWA

0, 0 WWc



 

36 | P a g e  

 

2.3.2.2 Truncation 

 

Main purpose of truncation is to cut off states that are not useful for system, i.e. have no 

major influence on the model behaviour and to keep only states that are important for 

our model.  

Let . In balanced truncation we simply delete from the vector of balanced 

states . Denote and as 

 

 

                (18) 

 

 

 

We can now express the balanced and truncated result as 

 

                              (19) 

and finally  

 

 

2.3.2 Change of the Prediction Horizon 

 

Another approach of how to reduce the degrees of freedom is to use different control 

and prediction horizons, i.e. the inputs are kept constant beyond a certain point in the 

prediction horizon, or a linear controller is used beyond that point [8].  

MPC has an internal model that is used to predict the behaviour of the plant, starting at 

the current time, over a future prediction horizon. Predicted behaviour depends on input 

trajectory that is calculated over that prediction horizon. Inputs promising the best 

predicted behaviour are then selected and applied to the system [2]. Length of the 

prediction horizon is the number of steps that optimal inputs are calculated over. Longer 

length of the prediction horizon provides better performance of control, but 

simultaneously with longer prediction horizon also the number of decision variables 
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grows, and this increases the complexity of the optimization problem. On the other hand 

using too short prediction horizon can cause poor control quality or instability of 

control. Shortening of the prediction horizon is one way of making the MPC faster, but 

shorter prediction increases the risk that the control performance will not be 

satisfactory.  

 

2.3.3 Change of the Sampling Time 

 

Strategy of moving horizon or strategy of future prediction is based on mathematical 

model of the system to be controlled. MPC works with discrete time system models. 

Because of this it is necessary to discretize the mathematical model. For this reason the 

right choice of sampling time  is needed for discretization of our model.  

The main idea of how to use changing sampling time  to make MPC faster is very 

simple. One of these techniques is described in [11] where the optimization is repeated 

at each time-step by dividing the prediction horizon into two parts. In the first half of 

prediction horizon is the sampling rate doubling and the second part of the solution is 

keeping fixed, until a reasonable sampling time is reached. If we double the sampling 

time , it will reduce the prediction length by a factor of 2. Therefore the speed-up in 

terms of sampling time can be measured in the prediction length N. This method shows 

one major drawback in loss of quality of the model, which transforms into less precise 

description of the real system. In the worst case, the model can lose its dynamic and will 

be describing only steps between steady states. Also we cannot omit the fact that the 

length of sampling time is very important since during this time the new measurements 

are taken and also new prediction and calculation of optimal inputs is realized.  
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2.4 Karush-Kuhn-Tucker Conditions 

 

The Karush–Kuhn–Tucker conditions (also known as the Kuhn-Tucker or KKT 

conditions) are very important for solving constrained optimization problems. The 

conditions are named after William Karush, Harold W. Kuhn, and Albert W. Tucker 

and were described in a 1951 paper of Kuhn and Tucker [19], though they were derived 

earlier (and independently) in an unpublished 1939 master‟s thesis of W. Karush.  

 

The KKT conditions are the first-order conditions on the gradient for an optimal point. 

It is a generalization of the method of Lagrange multipliers to inequality constraints.  

Lagrange multipliers extend the unconstrained first-order condition (derivative or 

gradient equal to zero) to the case of equality constraints; KKT adds inequality 

constraints. KKT conditions are necessary for the local optimality of a feasible point in 

a constrained optimization problem [20].  

 

It is about minimizing functions subject to constraints on the variables. A general 

formulation for these problems is [18]: 

 

subject to         (20) 

 

where and functions are all smooth, real-valued functions on a subset of , and 

are two finite sets of indices. is the objective function, while , are the 

equality constraints and , are inequality constraints.  

 

As a preliminary to stating the necessary conditions, we define the Lagrangian function 

for the general problem (20) as: 

 

        (21) 

Following conditions (22) are called first-order conditions because they are concerned 

with properties of the gradients (first-derivative vectors) of the objective and constraint 

functions. 
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Suppose that is a local solution of (20), that the function and in (20) are 

continuously differentiable, and that the linear independence constraint qualification 

(LICQ) holds at . Then there is a Lagrange multiplier vector , with components

,  such the following conditions are satisfied at  [18] 

 

                        (22a) 

              for all                  (22b) 

              for all       (22c) 

           for all       (22d) 

             for all                  (22e) 

 

The conditions (22) are often knows as the Karush-Kuhn-Tucker conditions, or KKT 

conditions for short. The conditions (22e) are complementarity conditions; they imply 

that either constraints  is active or  or possibly both. In particular, the 

Lagrange multipliers corresponding to inactive inequality constraint are zero, we can 

omit the terms for indices from (22a) and rewrite this condition as [1]  

 

                (23) 

 

Given a local solution of (20) and a vector satisfying (22), we say that the strict 

complementarity condition holds if exactly one of and is zero for each index 

. In other words, we have that for each . 

Satisfaction of the strict complementarity property usually makes it easier for 

algorithms to determine the active set and converge rapidly to the solution . 

For a given problem (20) and solution point , there are many vectors for which the 

conditions (22) are satisfied [18].   
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3 IMPLEMETATION OF THE MODEL WITH 

DISTURBANCES IN MPC 

 

In this part of the Project we compare three ways of implementation and solving the 

MPC problem using mathematical model of system including disturbances: 

1. MPC with the model as equality constraints, 

2. MPC with the model substituted into the objective function, 

3. First-order optimality conditions of the MPC. 

 

3.1 Model of the Distillation Column 

 

As an example of the plant we will use a typical simple distillation column controlled 

with LV – configuration which is shown in figure 10. The most important notation is 

summarized in table 1. Our nonlinear model of a distillation column (“column A”) by 

Prof. Skogestad [21] was linearized using a script in MATLAB („cola_linearize.m‟) to 

obtain a linear model. The model has 82 states (liquid composition and liquid hold up) 

and we reduced it to 16 states because it is easier to work with a 16 states model. This 

model contains 2 inputs (reflux L, boilup V) and also 2 disturbances (feed rate F, feed 

composition zF). We consider that our disturbances are measured and can be included in 

the mathematical model.  

 

Figure 10: Distillation column controlled with LV-configuration [21] 
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______________________________________________________________________

   feed rate [kmol/min] 

    feed composition [mole fraction] 

  
fraction of liquid in feed 

and     distillate (top) and bottoms product flow rate [kmol/min] 

and   distillate and bottom product composition (usually of light component) 

[mole fraction] 

   reflux flow [kmol/min] 

   boilup flow [kmol/min] 

N  no. of theoretical stages including reboiler 

and
 

liquid and vapour flow from stage i [kmol/min] 

and   liquid and vapour composition on stage i (usually of light component) 

[mole fraction] 

   liquid and holdup on stage i [kmol] ( - reboiler, - condenser 

holdup) 

 
 relative volatility between light and heavy component 

 
 time constant for liquid flow dynamics on each stage [min]

 

     constant for effect of vapour flow on liquid flow 

______________________________________________________________________ 

Table 1: Notation [21] 

 

The model and assumptions [21]: 

 binary separation, 

 41 stages, including rebolier and total condenser, 

 each stage is at equilibrium, with constant relatives volatility , 

 linearized liquid flow dynamics, 

 negligible vapor holdup, 

 constant pressure.      

 constant molar flows 

 no vapor holdup 
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More details about this distillation column: model equations, linearization of this model, 

steady-state operating point, column temperatures, important MATLAB files, etc. can 

be found in [22].  

MPC is based on a discrete time representation of the system dynamics. Because of this 

we must discretize our model with sample time Ts = 1.   

 

Consider the linear system  

      (24) 

with constraints   

 

      (25) 

 

 

where  note states, are measurements, are controlled inputs and  are 

disturbances. Further X, Y, U are polytopes.  

Matrices A, B, C, D, Bd, Dd are given in (Appendix A).  

And our constraints on inputs are . 

 

3.1.1 Disturbance Model 

 

There are many types of disturbance models. In this part of project we defined a 

disturbance model as: 

          (26)
 

 

Disturbance is measured and changing in every step,  is a parameter.   
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3.2 Formulation of the MPC Problems 

 

Here we use three ways how to formulate and solve MPC problems. In the end we will 

make results if solving of these problems gives us the same solutions as is expected.  

 

3.2.1 Formulation of Problem 1 

 

MPC formulation: 

 

subject to               (27) 

 

 

3.2.2 Formulation of Problem 2 

 

We use linear model to rewrite Problem 1 to the form of Problem 2. 

 

 

 

          (28) 
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When we know ,  and U we can calculate every state .  
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Formula for calculating every state : 

 

                (30) 

 

Transforming (30) into matrix form we get: 

 

 

 

  

                           (31) 

 

here         . 

 

Objective function (27) can be rewritten in this matrix form: 
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By using (30) the MPC problem defined in (27) can be rewritten as: 

 

,       (33a) 

 

subject to 
                     (33b)

 

 

We need to rewrite the MPC problem from formulation (32) to the formulation (33). We 

will use equation (31) and put it into the problem (32). 

           

   

     (34) 

 

We define as: 

 

                (35) 

  

We can use equation (35), put it in the objective function (34) and we get objective 

function in form (36). 

 

 

 

            

                (36) 

 

From objective function (36) we can extract matrices  .  
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Now we have matrices  which we need to formulate the objective function in 

problem (33). 

 

We also need to formulate constraints and get matrices  (33). We have only one 

input constraint: 

           (38) 

 

       
 

           (39) 

 

From (16) we can express as: 

                            (40)

 

 

 

3.2.3 Formulation of Problem 3 

 

In formulation of the Problem 3 we need to define the KKT conditions (44) for the 

problem (33). Problem (33) is a typical problem of a single inequality constraint which 

we can solve using KKT conditions.  

Our optimization problem is: 

       (41a) 

 

Subject to the single inequality constraint: 

     

            (41b) 

 

We define the Lagrangian function (42) for our problem using Lagrange multiplier  
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First condition of KKT conditions is gradient (first-derivation vector) of the objective 

and constraint functions. Here u is a local solution of (41) and the functions in (41) are 

continuously differentiable.  

     

                                   (43) 

 

From (43) we get fist KKT condition (44a). Second KKT condition (44b) is our 

constraint (41b) and the Lagrange multiplier must be greater than equal to 0. 

 

                                       
       (44a) 

                  (44b) 

                          (44c) 

 

 
    

            (45)

 

 

In (45) we use binary variables  and big-M formulation, where is the 

number of inequality constraints in (41b).  

The big-M is a constant that is large enough such the solution to (44), (45) corresponds 

to the solution of (33). Big-M reformulations are used to convert a logic or nonconvex 

constraint to a set of constraints describing the same feasible set, using auxillary binary 

variables and additional constraints [23]. 
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3.3 Implementation of the MPC Problems 

 

3.3.1 Implementation of Problem 1 

 

We use Yalmip [Löfberg, 2004] under MATLAB to set up the optimization model, 

objective function with constraints of the Problem 1. To solve Problem 1 we use the 

function solvesdp which is the common function for solving standard optimization 

problems with Yalmip. The script which we use is in (Appendix B: Script to solve 

Problem 1).  

 

3.3.2 Implementation of Problem 2 

 

To implement Problem 2 we need matrices which are defined in (31) and 

(32). To calculate these matrices we wrote functions “xyfun.m” and “QRfun.m”. Using 

these functions we can get matrices  with using different length of 

prediction horizon , disturbances parameters  and , model of system, sample 

time Ts and different weight matrices . In the script (Appendix B: Script to solve 

Problem 2) we calculate also matrices  (37) and (40) which are 

necessary to solve the Problem 2 with function quadprog which is a function that can 

solve quadratic programming problems. 

 

3.3.3 Implementation of Problem 3 

 

For implementation and solving Problem 3 we use the script in (Appendix B: Script to 

solve Problem 3). In this script we also use functions “xyfun.m” and “QRfun.m” as 

before when we was solving the Problem 2, because we need define matrices  

and which are part of the KKT conditions. To define a KKT conditions with big-

M formulation we use Yalmip and to solve the problem we use the function solvesdp. 
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3.4 Comparison of the Solutions to the MPC Problems 

 

Problems 1, 2, 3 should have the same solution because they represent the same 

problem. 

We here consider MPC for our distillation column example [21] with 16 states, sample 

time Ts = 1, prediction horizon , weight matrices Q = diag(ones(16,1),0) and                 

R = diag(ones(2,1),0). Disturbances parameters are  and the initial 

state . 

 

 

Figure 11. Close loop simulation with the MPC Problem 1, 2, 3 

 

 

Problems 1, 2, 3 have the same solution because we use only other formulations of the 

same MPC problem. It is clear in figures 11 where we obtain the same system response 

from close loop simulations using Problem 1, 2, 3. In Table 2 are optimal inputs 

obtained as a solution from optimization problems 1, 2, 3. 
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Table 2: Inputs obtained from Problem1, Problem 2, Problem 3 MPC regulators 

 

3.5 Conclusions 

 

In this part of thesis we wrote short introduction into the formulation and solving MPC 

using mathematical model of the system including disturbances. We defined our MPC 

problem using three ways of formulations. At first we used normal formulation of MPC 

problem with objective function and disturbances. This problem we implemented and 

solved using Yalmip in Matlab. As a Problem 2 we reformulated the first problem into 

the quadratic programming problem and then we used function quadprog to solve it. 

For the last way of formulation and solving MPC problem we used KKT conditions and 

we solved this problem as a typical problem of a single inequality constraint using 

Yalmip in Matlab. We reached the same solutions of this MPC problem using Problem 

1, 2, 3.   

u1 u2 u1 u2 u1 u2

1 -0.0638  0.0833 -0.0638  0.0833 -0.0638  0.0833

2    -0.0575     0.0771    -0.0575     0.0771    -0.0575     0.0771

3    -0.0558     0.0691    -0.0558     0.0691    -0.0558     0.0691

4    -0.0530     0.0625    -0.0530     0.0625    -0.0530     0.0625

5    -0.0489     0.0572    -0.0489     0.0572    -0.0489     0.0572

6    -0.0443     0.0526    -0.0443     0.0526    -0.0443     0.0526

7    -0.0397     0.0482    -0.0397     0.0482    -0.0397     0.0482

8    -0.0354     0.0441    -0.0354     0.0441    -0.0354     0.0441

9    -0.0313     0.0401    -0.0313     0.0401    -0.0313     0.0401

10    -0.0275     0.0363    -0.0275     0.0363    -0.0275     0.0363

11    -0.0241     0.0328    -0.0241     0.0328    -0.0241     0.0328

12    -0.0210     0.0295    -0.0210     0.0295    -0.0210     0.0295

13    -0.0182     0.0264    -0.0182     0.0264    -0.0182     0.0264

14    -0.0157     0.0236    -0.0157     0.0236    -0.0157     0.0236

15    -0.0135     0.0211    -0.0135     0.0211    -0.0135     0.0211

16    -0.0116     0.0188    -0.0116     0.0188    -0.0116     0.0188

17    -0.0099     0.0167    -0.0099     0.0167    -0.0099     0.0167

18    -0.0084     0.0149    -0.0084     0.0149    -0.0084     0.0149

19    -0.0071     0.0132    -0.0071     0.0132    -0.0071     0.0132

20    -0.0059     0.0118    -0.0059     0.0118    -0.0059     0.0118

60  0.0002895 0.0003659  0.0002895 0.0003659  0.0002895 0.0003659

61     0.0002761     0.0003443     0.0002761     0.0003443     0.0002761     0.0003443

62     0.0002631     0.0003241     0.0002631     0.0003241     0.0002631     0.0003241

63     0.0002506     0.0003053     0.0002506     0.0003053     0.0002506     0.0003053

64     0.0002385     0.0002877     0.0002385     0.0002877     0.0002385     0.0002877

65     0.0002269     0.0002712     0.0002269     0.0002712     0.0002269     0.0002712

66     0.0002158     0.0002557     0.0002158     0.0002557     0.0002158     0.0002557

67     0.0002051     0.0002412     0.0002051     0.0002412     0.0002051     0.0002412

68     0.0001949     0.0002276     0.0001949     0.0002276     0.0001949     0.0002276

69     0.0001851     0.0002149     0.0001851     0.0002149     0.0001851     0.0002149

70     0.0001757     0.0002029     0.0001757     0.0002029     0.0001757     0.0002029

Problem 1 Problem 2 Problem 3

      
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4 WORST-CASE ERROR ANALYSIS 

 

4.1 Model Reduction Worst-case Error Analysis 

 

In this chapter we consider model predictive control (MPC) [1] and we would like to 

answer the question: What is the worst-case difference between an MPC using the full 

model (2) and an MPC using the reduced model (3) and what  maximizes difference 

between outputs from full model (2b) and reduced model (3b) when we consider

 and we will use different simulation time?   

 

To find the maximum difference between the reference and simplified controller we use 

bilevel programming. We could calculate the distance between the controllers as

, but we focused on difference in outputs . We use the 

infinity norm because then the problem can be reformulated as a mixed-integer linear 

program (MILP). [17] 

             

 

 subject to                (46) 

 

 

We don‟t use an explicit formulation of the controllers, but we simply express them as 

solutions to optimization problems. Problem (46) can be rewritten as a mixed-integer 

linear program (MILP) and solved using standard software.  

We consider following system: 

   (47a) 

 

          (47b) 

and also “reduced” model 
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To reduce the model we use balanced truncation. We note that the map from the full 

state vector to the balanced and truncated system is given by  [17]. 

 

MPC controller:  

     (49) 

 

subject to   

  

     

We use          to rewrite our MPC problem (49) to this form [9]: 

 

 

,       (50a) 

 

 

subject to 
          (50b)

 

 

By using a modification of (50a) and (50b) we can define our lower-level problem in 

bilevel programming and the KKT conditions (51). For this problem can be defined as 

[17]: 

 

 

       

               (51) 
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In (49) we use binary variables  and big-M formulation, where is the 

number of inequality constraints in (50b). The big-M is a constant that is large enough 

such the solution to (51) corresponds to the solution of (50).   

 

The same method we will use to get MPC controller using reduced model. Defined 

KKT conditions (51) and our MPC problem (50) we will use as a lower-level problem 

in bilevel programming. Using full-order model (47) we get matrices 

 from KKT conditions (51) and using low-order model 

(48) we get matrices  from KKT conditions (51) [17]. 

 

Here in (52) and (53) we define the one-step problem as: 

 

                        (52) 

 

 subject to      

            

                (53) 

  

 

Using objective function (52) we define our one-step problem which means that we are 

looking for maximal difference of outputs  from full and outputs from reduced 

model. A part of the constraints are KKT conditions, prediction models for full-order 

and reduced-order model, equality constraints  and  is in D 

interval, where 

                            .                                           (54) 

 

Equations (52), (53) represents only one-step problem. We would like to calculate the 

worst-case error (WCE) over some steps using simulation time or number of simulation 

steps . Objective function for our bilevel problem can be defined (55). Using 

simulation steps  we get more KKT conditions (56), one for each simulation step
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                        (55) 

 

subject to     

  

We consider that . 

             

                (56) 

  

 

 

 

 

 

 

 

We wanted originally to calculate the WCE as a sum of the worst-case outputs 

differences between full and reduced order MPC controllers during some simulation 

steps  (57). 

                                             (57) 

 

However it was not possible because this optimization problem is really difficult to 

solve, respectively solving this problem takes very long time. Finally, we decided to try 

one-step formulation of objective function (58), where the WCE is calculated in the last 

simulation step and these results of worst-case disturbances are used to obtain the initial 

states for closed loop MPC simulation. Using simulation steps  in this MPC 

simulation we will get a sum of the worst-case outputs for concrete worst-case 

disturbances. We assume there is some difference between real calculations of (57) and 

using this method, because we are solving different optimization problem, but as is 

shown later the difference is small and this solution is usable.    
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4.1.1 Simulations 

 

We here present some simulations and plots. These simulations can be divided into 

several groups: 

 

 in these plots we would like to show how the WCE of outputs is changing when we 

use different reduced models with different number of states, 

 we would like to compare closed loop simulation with number of simulation steps

 for the full order controller and low order controller , 

 in other plots we would like to show the trend of changing WCE of outputs 

calculating with objective function in the last step of simulation time  while the 

simulation time is changing from 
 
to ,  

 using MPC simulations we would like to calculate and compare the sum of WCE 

obtained over the simulation time , for this simulations we will use the 

worst-case disturbances from solutions of bilevel problems which are using objective 

function calculating for the last step of simulation time changing from 
 
to 

 ,   

 also we would like to check that we can use MPC simulations to calculate the WCE, 

when we have worst-case disturbances,     

 for one example we would like to compare sum of WCE obtained using updating 

objective function (12) in our bilevel problem to sum of WCE obtained with 

calculation of one-step problem and then using worst-case initial disturbances in 

MPC simulations,                           

 we would like to show how the worst possible initial disturbances  which 

we used to calculate initial states  were changing.  
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4.1.1.1 WCE for a Set of Different Reduced-order Models   

 

 

Figure 12: WCE for a set of different reduced order models 

 

 

In figure 12 is plot of the WCE for a set of different reduced order models, which 

consist of 1 to 15 states. The WCE is the most different between full-order outputs and 

reduced-order outputs which we get from equations (2b), (3b), respectively. Number of 

simulation steps in every calculation WCE for different reduced models is  . 

The objective functions which we use to obtain the WCE of outputs use only outputs 

from last simulation step. This means that the objective function is calculated only in 

the last simulation step when . We can see that the WCE of outputs is 

decreasing with rising numbers of states in reduced order controller. It was expected 

because when we use less reduced model also the different between full order model 

and reduced order model is smaller.   
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4.1.1.2 Closed Loop Simulation 

 

In figure 13 we can see difference when we compare closed loop simulation for the full-

order controller and low order controller during simulation steps 

which number is . Reason why full order controller produces other inputs into 

controlling system as low order controller is very simple. It is because low order 

controller uses reduced model to calculate prediction as full order controller which use 

no reduced model of system. There is also a difference between the full-order outputs 

and the reduced-order outputs, but the difference is very small and it is not clear see in 

figure 13.  

 

 

Figure 13: Closed loop simulation for the full order controller and low order 

controller and with number of simulation steps  
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4.1.1.3 WCE for a Set of Different Reduced-order Models with 

Changing  

 

The figures 14, 15 answer us the question how is changing the dependence of WCE on 

different reduced-order controllers when we use different simulation times or number of 

simulation steps which are changing from 1 to 20. The objective function which is used 

to calculate the worst case difference of outputs is calculated in the last step of changing 

simulation time. The figure 15 compares dependence WCE of outputs on different 

reduced-order controllers which was obtained using different simulation times namely

. It is good see that with increasing simulation time  is this 

WCE dependence decreasing especially when we use reduced-order controllers which 

are using reduced model with number of states in range 1 to 6. Exception is the WCE of 

outputs when is using simulation time .  Reason of this is very simple, because 

these outputs are calculated from the initial states which are for full-order and reduced-

order controllers same.   

 

 

Figure 14: WCE for a set of different reduced order models with changing 
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Figure 15: WCE for a set of different reduced order models with changing  

 

 

4.1.1.4 The Worst Possible Initial Disturbances             

 

In figure 16 we can see worst possible initial disturbances for reduced-order controller 

using reduced model with number of states = 10 and different time of simulation

. As it was written these initial disturbances are used to calculate 

the initial states  which are the worst possible initial states. Values of initial 

disturbances which are plotted in the figure 16 are also in table 3 in row number 10 for 

number of states = 10 and we can see how are changing from interval

.  
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Figure 16: Using initial disturbances  for calculating WCE for reduced model 

= 10 and with changing 
 

 

Table 3: Initial disturbances 

0201,dd

redn )20,16,12,8,4,1(simN

d01 
       

d02 
      

States /Nsim 1 4 8 12 16 20 
 

States/Nsim 1 4 8 12 16 20 

1 1 -1 -1 -1 -1 -1 
 

1 1 1 1 1 1 1 

2 1 -1 -1 -1 -1 -1 
 

2 1 1 1 1 1 -1 

3 -1 -1 -1 -1 -1 -1 
 

3 -1 1 -1 -1 -1 -1 

4 -1 1 1 1 1 1 
 

4 -1 1 -1 -1 -1 -1 

5 -1 -1 -1 -1 -1 -1 
 

5 -1 1 1 -1 -1 -1 

6 -1 -1 -1 -1 -1 -1 
 

6 -1 1 -1 -1 -1 -1 

7 -1 1 1 -1 -1 -1 
 

7 1 1 1 1 1 1 

8 1 -1 -1 -1 -1 -1 
 

8 1 1 -1 -1 -1 -1 

9 1 -1 -1 -1 -1 -1 
 

9 1 -1 -1 -1 1 1 

10 -1 1 -1 -1 1 1 
 

10 -1 1 -1 -1 -1 -1 

11 -1 -1 -1 -1 -1 -1 
 

11 1 -1 -1 -1 -1 -1 

12 -1 -1 -1 -1 -1 -1 
 

12 -1 -1 -1 -1 -1 -1 

13 -1 -1 -1 -1 -1 -1 
 

13 -1 -1 -1 1 1 1 

14 1 -1 -1 -1 -1 -1 
 

14 1 -1 -1 -1 -1 -1 

15 -1 -1 -1 -1 -1 -1 
 

15 -1 -1 -1 1 1 1 
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4.1.1.5 WCE sum for a Set of Different Reduced-order Models with 

Changing  

As we said before, we wanted originally to calculate the WCE as a sum of the worst-

case outputs differences between reference and reduced  MPC controllers (57), because 

solving this optimization problem takes very long time, we decided to try other 

formulation of objective function (58), where the WCE is calculating in the last 

simulation step and calculated results of worst-case disturbances are used to obtain the 

initial states for closed loop MPC simulation.   

It is clear that when we use the worst case initial disturbances calculated for different 

reduced models and simulation steps as seen in table 1 we will get in some cases the 

same initial states for closed loop MPC simulation. This also mean that the sum of 

WCE will be for that simulations same. This argument proves figure 17, where lines 

represented sums of WCE obtained using different number of simulation steps are 

identical. This result is distinct also in figure 18 for concrete simulation steps.    

 
 

 

Figure 17: Sum of WCE for a set of different reduced order models with changing 
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Figure 18: Sum of WCE for a set of different reduced order models with changing 

 

 

4.1.1.6 Comparison of WCE Sum Using Real Updating Objective 

Function and MPC Simulation Calculation 

 

It is important to show the difference when the sum of WCE error is calculated with 

updating objective function or with our simplified technique which calculates WCE in 

the last step of simulation and then are using obtained disturbances in MPC simulation. 

In figures 19, 20, 21 are displayed plots when the objective function (58) is calculated in 

the last simulation step while numbers of simulation steps  

are changing. These measurements are compared with sum of WCE obtained with 

updating objective function (57). From these plots we can see that the difference 

between real and simplified technique is very small. And also is shown that calculating 

objective function in the last step is the best. Reason why we get different WCE is very 

simple. It is because we are solving different optimization problems.  
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Figure 19: Comparison real sum of WCE (11) and sum of WCE (12) obtain from 

disturbances calculated in the last simulation step  

 

 

Figure 20: Zoom 1 of figure 8  
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Figure 21: Zoom 2 of figure 8  

 

 

Figure 22: Comparison real sum of WCE (11) and sum of WCE (12) obtain from 

disturbances calculated in the last simulation step 
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4.1.1.7 Check of the WCE Using Closed Loop Simulation  

 

In this part we would like to check if our calculated WCE for outputs is the same than 

we can get using closed loop simulation. We chose simulation length  and 

different reduced models with number of states from interval 1 to 15. For these 

conditions we calculated the maximum difference of outputs in the last simulation step. 

As initial conditions we were using calculated worst case initial states, respectively the 

worst initial disturbances which were inserted into equation (3b). In the figure 23 we see 

that the worst-case errors are the same and the difference between these worst-case 

errors is zero and we can say that the worst-case error which we got from solving the 

bilevel problem is correct.  

 

 

 

 

 

 

 

 

 

Figure 23: Compare worst-case errors for a set of different reduced order models using 

 reached as a solution of bilevel problem and it closed loop check  

 

4.1.2 Conclusions 

In this part of project we obtained the worst-case difference between an MPC using the 

full model (2) and an MPC using the reduced model (3) with number of states from 

range 1 to 15 and with different length of simulation time. Solving the bilevel problem 

we get also the worst-case initial disturbances which we used to check the maximum 

difference between obtained outputs using full-order and reduce-order MPC controller. 

We investigated a possibility to use simplified method based on calculating the sum of 

WCE from MPC simulation which use worst-case disturbances obtained from solving 

bilevel problem with objective function calculated only in the last simulation step.  

These results we figured at plots using some simulations.  

18simN

18simN
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4.2 Move Blocking Worst-case Error Analysis 

 

In this capture we would like to answer these questions: What is the worst-case 

difference between an MPC without using move blocking and an MPC using move 

blocking which we use to make MPC faster? Another question is, which move blocking 

type gives us less worst-case error, when we compare different types of move blocking? 

As it was written in (MPC theory chapter) move blocking is a method to simplify the 

complexity of MPC problem, where we can reduce the degrees of freedom using move 

blocking approach. Principle of move blocking it is fixing the input (input blocking) or 

its derivatives (delta input blocking) to be constant over several time-steps in 

calculation of optimal inputs [8]. To get an input blocking (IB) and delta input blocking 

(DIB) matrices we created functions make_blocking and make_delta_blocking.  

 

To find the maximum difference between the controller without move blocking and the 

simplified controller using move blocking we use bilevel programming. We could 

calculate the distance between the controllers as , but we focused on 

difference in outputs as before when we used model reduction to make 

MPC faster. We use the infinity norm because then the problem can be reformulated as 

a mixed-integer linear program (MILP) [2]. 

             

 

 subject to                (59) 

 

 

Formulation and solving of this problem is the same like it was shown in chapter 4.1.  
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4.2.1 Simulations 

 

In these simulations we would like to show and compare some results concerning to 

simplify technique - move blocking. These simulations can be divided into two groups. 

First group of simulations is dedicated to compare IB types and show the trend how the 

worst-case error (WCE) is changing when we use different IB type with different 

reduction of degree of freedom (DOF). Second group of simulation is about DIB and we 

here also compare the trend of using different DIB types and what effect it has on WCE. 

Finally we compare which of these simplify technique is more effective to use. In other 

words, which of these methods give us less WCE when we reduce degree of freedom at 

the same value?  

 

4.2.1.1 Input Blocking  

 

Function make_blocking allows us to generate different IB types and enables us 

compare IB with fixing different number of inputs to be constant over a certain number 

of steps too. Fixing of inputs allows us to change DOF. 

We choose these conditions for following simulations. Prediction horizon with length   

N = 8, number of states in mathematical model n = 16, simulation time Nsim = 10. WCE 

was calculated in the last step in the simulation time as in (Model Reduction chapter). 

Then we used worst-case disturbances and IB type in MPC simulation to calculate sum 

of WCE over simulation time Nsim = 10. Presented values of WCE are WCE sum 

obtained from MPC simulations.  

In figure 24, 25 we can see that with decreasing DOF the WCE is increasing. This trend 

of using different IB type was expected, because the more we simplify MPC, we should 

get an increase in WCE too. For calculation sum of WCE were used worst-case 

disturbances found by the bilevel program (table 4). 

 

 [8] [4 4] [2 3 3] [1 2 2 3] [1 1 1 2 3] [1 1 1 1 1 3] [1 1 1 1 1 1 2] 

d1 -1 -1 -1 1 1 1 -1 

d2 -1 -1 -1 1 1 1 -1 

Table 4: Worst-case disturbances used to calculate x1 in the MPC simulation 



 

68 | P a g e  

 

 

Figure 24: WCE for a set of DOF using different IB  

 

 

 

Figure 25: WCE for a set of DOF using different IB Zoom 
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In figures 26 and 27 we show a predicted inputs calculated for first simulation step. 

Number of predicted inputs is equal to length of prediction horizon multiplied to 

number of inputs. In this case for our example of distillation column model we have two 

inputs u1 and u2 and prediction horizon has length N = 8. In figure 26 we present IB type 

which fix four and four inputs to be constant and reduce DOF from eight to two. 

Another IB type is presented in figure 27, where first inputs is free and then two, two 

and three inputs are fixed to be constant. Using this IB type we reduced DOF from eight 

to four.   

 

Figure 26: Predicted inputs with IB type = [4 4] and DOF = 2 

 

 

Figure 27: Predicted inputs with IB type = [1 2 2 3] and DOF = 4 

 

We would like to investigate also the case when we are using different IB type and we 

reduce MPC on the same DOF. If IB type contains also some free inputs then is relevant 

question if is better to use free inputs at the beginning or in the end of IB? Answer to 

this question gives us figures 28, 29 and tables 5, 6. From these plots and from values of 
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WCE we can deduce that using free inputs at the beginning of predicted inputs it is 

better than in the end. Values of the WCE were obtained from the MPC simulation with 

worst-case disturbances with values -1. 

 

WCE obtained using free inputs at the beginning of IB: 

 

                        IB type:                                  WCE: 

  

  

  

  

  

Table 5: Free inputs at the beginning of IB 

 

 

 

Figure 28: IB types for same degree of freedom – free inputs at the beginning 
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Figure 29: IB types for same degree of freedom – free inputs in the end 

 

WCE obtained using free inputs in the end of IB: 

 

           IB type:                                     WCE: 

  

  

  

  

  

Table 6: Free inputs in the end of IB 

 

In table 6 we can see that using smaller number of fixed inputs in the end of IB is better 

than using smaller number of fixed inputs in the middle of IB. This is probably due to 

"end - effects" in MPC problem. 
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4.2.1.2 Delta Input Blocking  

 

Similarly as before but now it is function make_delta_blocking which allows us to 

generate different DIB types with different number of fixed differences between two 

consecutive control inputs over several steps, what allows us to reduce DOF. Here we 

choose the same conditions as for IB. Prediction horizon N = 8, number of states n = 16, 

simulation time Nsim = 10 and we calculate WCE sum from MPC simulation using 

these conditions and worst-case disturbances obtained from bilevel program.  

In figures 30, 31 we can see the trend of increasing of WCE with decreasing DOF. 

Comparing plots 7 and 9 we can see that using free delta inputs in the beginning gives 

us much better results (less WCE) as using free delta inputs in the end of IB.    

 

  

 

Figure 30: WCE for a set of DOF using different DIB  
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Figure 31: WCE for a set of DOF using different DIB Zoom 

 

 

Figure 32: WCE for a set of DOF using different DIB free inputs in the end 
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To calculate WCE sum for DIB with free inputs in the end, we used worst-case 

disturbances found by our bilevel program presented in table 7. For DIB with inputs at 

beginning were used worst-case disturbances with values 1.  

 

 [8] [2 7] [2 2 6] [2 2 2 5] [2 2 2 2 4] [2 2 2 2 2 3] 

d1 -1 1 1 1 1 1 

d2 1 1 1 1 1 1 

Table 7: Worst-case disturbances used to calculate x1 in the MPC simulation 

 

 

Figure 33: Predicted inputs with DIB type = [8] and DOF = 2 

 

 

Figure 34: Predicted inputs with DIB type = [6 2 2] and DOF = 4 

 

In figures 33 and 34 we show a predicted inputs calculated for first simulation step. In 

figure 33 we present DIB type which fix differences between consecutive control inputs 

and reduce DOF from eight to two. DIB type with fixing first five differences between 
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inputs and last two differences are free is presented in figure 34.Using this DIB type we 

reduced DOF from eight to four.   

 

Figure 35: DIB types for same degree of freedom – first free 

 

 

Figure 36: DIB types for same degree of freedom – last free 
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When we are using different DIB type and we reduce MPC on the same DOF we get 

different WCE. In figures 35, 36 and in table 8 we can see that using free delta inputs at 

the beginning of predicted inputs it is better than in the end. Values of WCE were 

obtained from MPC simulation with worst-case disturbances table 9. 

 

                        DIB type:                                 WCE: 

  

  

  

  

  

  

Table 8: Free inputs of DIB 

 

 [2 2 6] [2 3 5] [2 4 4] [6 2 2] [5 3 2] [4 4 2] 

d1 1 -1 1 -1 -1 -1 

d2 1 -1 1 1 1 1 

Table 9: Worst-case disturbances used to calculate x1 in the MPC simulation 

 

4.2.1.3 Comparison of Input Blocking and Delta Input Blocking  

 

The following figures and also previous results prove that reduction of DOF with DIB 

gives us less control performance loss (less WCE) compared to IB, except DOF = 2 

where we use IB type [1 7] , DIB type [8] (figure 37). But it was expected because in 

this case DIB do not include free inputs. In figure 39 we compare IB and DIB with free 

inputs in the end. 
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Figure 37: Comparison IB and DIB for different DOF – first free 

 

 

 

Figure 38: Comparison IB and DIB for different DOF – first free Zoom 
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Figure 39: Comparison IB and DIB for different DOF – last free 

 

 

4.2.2 Conclusion 

 

From these simulations and from values of WCE we can deduce that in both cases (IB 

and DIB), using free inputs at the beginning of predicted inputs it is better than in the 

end. Previous results for use example of distillation column prove that reduction of 

DOF with DIB gives us less control performance loss (less WCE) compared to IB. 
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5 COMPARISON OF TECHNIQUES FOR 

SIMPLIFICATION OF MPC 

 
In this part of the thesis we would like to compare a collection of methods that can be 

used to speed up the computation of MPC. We are using our bilevel program to 

minimize WCE of outputs, and show how we can use the program to choose the method 

of simplification with the lowest values of WCE for some desired speed up value. Use 

of our program is demonstrated on simulations for concrete examples. WCE calculated 

in the last step of simulation time Nsim = 10 and then we are using worst-case 

disturbances in MPC simulation to calculate sum of WCE over this simulation time. 

Method of calculation WCE sum was introduced and explained in (chapter - Analazy of 

WCE - Model reduction).       

 

We would like to compare these methods: 

 

 Input blocking 

 Delta input blocking 

 Model reduction 

 Change of the prediction horizon 

 

We will define speed up coefficient as: 

 

Speed up =           (60) 

 

                                                (61) 

where 

 

 n – state dimension   

 m – input dimension 

 N – prediction horizon  

  – state dimension of full system  

  – input dimension of full system 

 – prediction horizon of full system 

 

We are using similar formula as is in [24], but we include there also f which represent 

normalized coefficient of degrees of freedom using move blocking.   
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5.1 Example 1 Desired Speed up  25 % 
 

Parameters for full controller: 

 

 

Simplification methods: 

 

a) Model reduction 

 

 

Speed up =     

      

b) Change of the prediction horizon 

                                  

 

Speed up =  

 

c) Move blocking 

 

 

Speed up =  

 

 

 Input blocking type: [1 1 1 2 3] 

 Delta input blocking type: [2 2 3 4] 
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In first example we speed up MPC 4 times compared to the speed of the nominal MPC. 

The calculation time could not be reduced to exactly 25 % of the nominal MPC 

calculation time. The reason is formulation of our speed up formula. Because of this the 

values of speed up are different for these methods. Using model reduction we obtained 

22.82 % speed up, using change of the prediction horizon and move blocking it was 

24.41 %. The biggest WCE of outputs we get using change of the prediction horizon 

and the difference comparing with other simplify approaches is very big, what is clear 

see in figure 40. Comparing model reduction, input blocking and delta input blocking in 

figure 41 we get the best results using delta input blocking.  

 
Figure 40. Example 1 

 
Figure 41. Example 1 
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5.2 Example 2 Desired Speed up  50 % 
 

Parameters for full controller: 

 

 

Simplification methods: 

 

a) Model reduction 

 

 

Speed up =     

      

b) Change of the prediction horizon 

                                  

 

Speed up =  

 

c) Move blocking 

 

 

Speed up =  

 

 

 Input blocking type: [1 1 1 1 2 2] 

 Delta input blocking type: [2 2 2 3 3] 
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In our second example we reduce the MPC calculation time to 50 %. Using model 

reduction we obtained 47.05 %, using change of the prediction horizon and move 

blocking it was 42.19 %. The biggest WCE of outputs we get as before using change of 

the prediction horizon and the difference comparing with the other approaches is huge. 

In figure 43 we can see that WCE obtained using delta input has the lowest value 

compared to model reduction and input blocking.  

 

 
Figure 42. Example 2 

 
Figure 43. Example 2 
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5.3 Example 3 Desired Speed up  75 % 
 

Parameters for full controller: 

 

 

Simplification methods: 

 

a) Model reduction 

 

 

Speed up =     

      

b) Change of the prediction horizon 

                                  

 

Speed up =  

 

c) Move blocking 

 

 

Speed up =  

 

 Input blocking type: [1 1 1 1 1 1 2] 

 Delta input blocking type: [2 2 2 2 2 3] 
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In our third example we reduce the MPC calculation time to 50 %. Using model 

reduction we obtained 70.23 %, using change of the prediction horizon and move 

blocking it was 66.99 %. The biggest WCE of outputs we get as in both previous 

examples using change of the prediction horizon and the difference comparing with the 

other approaches is huge. In figure 45 we can see that WCE obtained using delta input 

has the lowest value compared to model reduction and input blocking.  

 
Figure 44. Example 3 

 
Figure 45. Example 3 
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5.4 Conclusion 
 

In the previous examples, we tested the functionality of our bilevel program for 

purposes of finding the best simplification method for MPC problem. It was shown that 

the best choice for our example of distillation column is delta input blocking, because 

using this method ensures the lowest WCE. The worst results were achieved using 

change of the prediction horizon.  
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6 CONCLUSION 

 

MPC was introduced in first part of the thesis and we were discussing about a problem 

of increasing of the MPC complexity, when size of the system model grows larger as 

well as the control horizon and the number of constraints is increasing. Afterwards 

methods such as Model Reduction, Move Blocking, Change of the Prediction Horizon 

and Change of the Sampling Time that can be used for simplification of the MPC and 

making MPC faster were proposed. The other part was about formulation, 

implementation and then about solving of the MPC problem using mathematical model 

including disturbances.   

 

Main goal of this diploma thesis was to analyze and compare system response using 

MPC implemented on a reference and simplified controller. The approach how to find 

the worst-case difference between the reference controller and simplified controller was 

introduced. To find the worst-case error between outputs obtained from using full-order 

and low-order controller we used bilevel program. Using our bilevel program we were 

comparing different Model Reductions of our distillation column model. We made a 

analyze of Input blocking and Delta input blocking methods and using our program we 

found the optimal values of input blocking and delta input blocking types. Also we 

compare WCE obtained using input blocking and delta input blocking and we got 

conclusion that using delta input blocking gives us less control performance loss 

compared to input blocking. 

 

On concrete reduction of computation time we tested the functionality of our bilevel 

program for purposes of finding the best simplification method for MPC problem. It 

was shown that the best choice for our example of distillation column is delta input 

blocking, because using this method ensures the lowest WCE. The worst results were 

achieved using change of the prediction horizon.  

 

In the future we assume that our bilevel program could be use in form of toolbox used 

for finding the best choice of simplification method for MPC. 
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7 RESUMÉ 

 

Prediktívne riadenie s modelom (MPC) patrím medzi pokročilé techniky riadenia, ktoré 

má významný vplyv na priemyselné riadenie. Matematický model systému sa využíva 

na výpočet predpovede budúcich výstupov zo systému a riadiace vstupy sú použité na 

optimalizáciu budúcej  odozvy systému. Z toho dôvodu je veľmi dôležité mať model 

systému, ktorý dostatočne opisuje dynamické vlastnosti riadeného zariadenia.   

 

Jednou z najväčších výhod MPC je možnosť efektívneho zahrnutia obmedzení na 

vstupy, stavy a výstupy systému. Na druhú stranu v oboch prípadoch (off-line MPC 

alebo on-line MPC) s rastúcou veľkosťou modelu systému, ako aj s rastúcou dĺžkou 

predikčného horizontu a s pribúdajúcimi obmedzeniami rastie aj zložitosť samotného 

MPC. Zložitý regulátor si vyžaduje viac času potrebného na výpočet optimálneho 

akčného zásahu ako aj väčšie požiadavky na výpočtovú techniku.   

 

Prvá kapitola je venovaná úvodu do problematiky prediktívneho riadenia a možnostiam 

zjednodušenia MPC problému. Existuje niekoľko zjednodušujúcich metód ako redukcia 

modelu, blokovanie pohybu, zmena predikčného horizontu, zmena periódy 

vzorkovania, ktoré môžu byť použité na zjednodušenie MPC problému. Dôležitá je 

správna voľba kompromisu medzi rýchlosťou a kvalitou riadenia pri použití týchto 

zjednodušujúcich metód, pretože so zvyšujúcou redukciou stupňov voľnosti, klesá 

kvalita riadenia. 

 

Druhá kapitola sa zaoberá implementáciou matematického modelu s poruchami do 

MPC problému. Porovnávané sú tri možnosti riešenia MPC problému na príklade 

typického chemického zariadenia, ktorým je destilačná kolóna. Jedná sa o nelineárny 

model destilačnej kolóny („column A“) od Prof. Skogestada. Tento nelineárny model 

sme linearizovali pomocou funkcie („cola_linearize.m“). Model  obsahuje 82 stavov, 

ktoré sme zredukovali na 16 stavov, pretože je pre nás jednoduchšie pracovať s 16 

stavovým modelom. Model obsahuje dva vstupy (spätný tok (reflux) L, tok pár V) a tiež 

dve poruchy (prietok nástreku F, zloženie nástreku zF).    
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Cieľom tejto práce je analyzovať a porovnať odozvy systému pri použití MPC s 

referenčným a zjednodušeným regulátorom. Pričom sa snažíme nájsť najhoršiu chybu 

medzi týmito regulátormi. Na základe tejto informácie môžeme určiť ktorú 

zjednodušujúcu metódu je vhodnejšie použiť. Na nájdenie najhoršej chyby používame 

bilevel programovanie.  

 

V tretej a štvrtej kapitole sa bližšie zaoberáme využitím redukcie modelu a blokovanie 

pohybu na zjednodušenie MPC. Využívame pritom náš bilevel program pomocou 

ktorého hľadáme najhoršiu chybu medzi základným a redukovaným regulátorom, 

pomocou ktorého porovnávame rôzne stupne redukcie stavov a neskôr aj rôzne druhy 

blokovania vstupov a blokovania rozdielu medzi vstupmi. Pôvodne sme chceli najhoršiu 

chybu hľadať ako sumu najhorších chýb počas celej simulácie. Tento spôsob sa však 

ukázal ako veľmi výpočtovo a časovo náročný. Preto sme sa po analýze rozhodli využiť 

spôsob pri ktorom hľadáme najhoršiu chybu v poslednom simulačnom kroku a následne 

využívame MPC simuláciu v ktorej využívame vypočítanú najhoršiu možnú poruchu 

ako počiatočnú podmienku a počas MPC simulácie počítame sumu rozdielov medzi 

výstupmi z riadeného systému s použitím referenčného a zjednodušeného regulátora. 

 

Nakoniec v poslednej kapitole porovnávame numericky aj graficky najhoršie chyby 

získané použitím rôznych zjednodušujúcich techník, ktoré môžu byť použité na 

zrýchlenie MPC. Výsledkom tohto porovnania je, že pre náš zvolený model destilačnej 

kolóny je najvhodnejšie použiť blokovanie rozdielu medzi dvoma nasledujúcimi 

vstupmi, pretože s použitím tejto metódy sme dosiahli najlepšie výsledky. Naopak 

najhoršou metódou sa ukázala metóda zníženia predikčného horizontu. 
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9 APPENDICES 

 
Appendix A: Numerical values of matrices: A, B, C, D, Bd, Dd 
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Appendix B: List of software on CD 

 

Model of distillation column files (“column A”) 

 
 mathematical model and linearization 

o cola_lv.m, colamod.m, cola_lv_lin.m,  

 model reduction (truncation) 

o model_baltrunc.m, baltrunc.m 

 

 

 

1 Implementation of the model with disturbances in MPC 
 

 Functions for obtaining matrices 

o QRfun.m, xyfun.m 

 

 Scripts to solve Problem 1,2,3 and comparing these MPC problems 

o problem1.m, problem2.m, problem3.m, compareP123.m 

 

 

 

1 Model reduction worst-case error analysis 

 

a) WCE calculated in the last step of simulation 

 
 Calculation WCE for different Nsim, and different reduced order models 

o dif_red_order.m, yalmip_useCHS_trajectory_check.m  

 

 Functions for calculation WCE using MPC simulation, making closed loop 

simulation,  

o analyze_dro.m, matrices_analyze_dro.m, MPC_solv.m 

 

 

b) WCE sum calculated with MPC sim 

 
 Functions for calculation WCE sum using MPC simulation  

o make_WCEsum_plots.m, compare_sum_WCE.m, sum_WCE.m 

 

 

c) WCE sum calculating with updating objective function 
 

 Mostly the same like in “a) WCE calculated in the last step of simulation”, 

but in yalmip_useCHS_trajectory_check.m we are using updating objective 

function 
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2 Move blocking worst-case error analysis 

 Script for comparison of IB and DIB WCE calculated in the last step of 

simulation and WCEsum 

o comparison_IB_DIB.m 

 Functions for calculation IB matrix and DIB matrix 

o make_blocking.m, make_delta_blocking.m 

 

 Functions using to calculate WCE sum 

o sum_IB_WCE.m, sum_DIB_WCE.m, MPC_solvIB.m, 

MPC_solvDIB.m, dif_mb_WCE.m, dif_delta_mb_WCE.m, 

matrices_analyze_dro.m 

 

 Calculation WCE in last step for IB and DIB 

o moveblocking_onestep.m, deltamoveblocking_onestep.m 

 

 
3 Comparison of techniques for simplification of MPC 

 Script for comparison results from simplification methods  

o speedup_comparison.m 

 

 Script for analyze WCE sum using change of the prediction horizon method 

o prediction_horizon_WCE_analyze.m 

 

 Script for analyze WCE sum using model reduction method 

o model_reduction_WCE_analyze.m 

 

 Script for analyze WCE sum using move blocking method 

o move_blocking_WCE_analyze.m 

 

 

 

4 Figures 

Figures using in Diploma thesis: 

 

1. Implementation of the model with disturbances in MPC 

2. Model reduction worst-case error analysis 

3. Move blocking worst-case error analysis 

4. Comparison of techniques for simplification of MPC 


