SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA CHEMICKEJ A POTRAVINÁRSKEJ TECHNOLÓGIE

RIADENIE LABORATÓRNEHO TEPLOVZDUŠNÉHO PROCESU

BAKALÁRSKA PRÁCA

FCHPT-5415-40525

2010

Róbert Tomčík

Súhrn

Cieľom práce je navrhnúť a otestovať vhodný regulátor zabezpečujúci uriadenie teploty na požadovanú hodnotu pre laboratórny výmenník tepla. Súčasťou práce je aj oboznámenie sa s riadiacim systémom dSPACE, odmeranie prechodovej charakteristky a vytvorenie modelu výmenníka tepla vhodného pre návrh regulátora. Navrhnutý regulátor sa následne testuje v prostredí MATLAB-Simulink a na reálnom procese. Práca obsahuje päť kapitol. Prvé dve kapitoly zahrňujú teoretické poznatky potrebné k realizácii práce, tretia kapitola opisuje používané zariadenie – laboratórny výmenník tepla, vo štvrtej kapitole je popísaná problematika práce s riadiacim systémom dSPACE a záverečná kapitola je venovaná spracovaniu nameraných údajov a výberu najlepších regulátorov z hľadiska zvolených ukazovateľov kvality riadenia – IAE a času regulácie.

Kľúčové slová: prechodová charakteristika, PID regulátor, dSPACE, laboratórny výmenník tepla, ContolDesk, uzavretý regulačný obvod

Abstract

The aim of this bachelor thesis is to design a suitable controller ensuring control of temperature to required value for laboratory heat exchanger. The part of this thesis is also acquaintance with control system called dSPACE, identifying of step response and creation of model of heat exchanger suitable for controller design. Thereafter the designed controller is tested in MATLAB-Simulink program and on real process too. The thesis consists of five chapters. The first two chapters include theoretical knowledge required for execution of this work, third section describes used device – laboratory heat exchanger, in fourth chapter the control system dSPACE is described and the final chapter is dedicated to processing of measured data and selection of the best controllers from the aspect of selected indicators of quality control – IAE and time of regulation.

Key words: step response, PID controller, dSPACE, laboratory heat exchanger, ControlDesk, feedback control loop

Obsah

Zo	oznam sy	ymbol	ov, skratiek a značiek	8
Zo	oznam ol	brázko)V	11
Zo	oznam ta	abuliel	٢	13
Ú	vod			14
1	Spät	noväz	bové riadenie procesov	15
	1.1	Uzav	retý regulačný obvod	16
	1.1.1	1	Definícia problému spätnoväzbového riadenia	20
	1.2	Туру	regulátorov	20
	1.2.1	1	Proporcionálny regulátor	20
	1.2.2	2	Integračný regulátor	21
	1.2.3	3	Derivačný regulátor	22
	1.2.4	4	Štruktúry PID regulátora	22
	1.3	Stabi	lita uzavretého regulačného obvodu	23
	1.4	Kvali	ita riadenia	24
	1.4.1	1	Časová oblasť	24
	1.4.2	2	Integrálne ukazovatele kvality	25
2	Nast	tavova	nie parametrov regulátorov	26
	2.1	Anal	ytické metódy	26
	2.2	Expe	rimentálne metódy	26
	2.2.1	1	Spracovanie prechodovej charakteristiky	26
	2.2.2	2	Strejcova metóda identifikácie systému	28
	2.2.3	3	Strejcova metóda nastavenia regulátorov	29
	2.2.4	4	Iné metódy nastavenia regulátorov	30
3	Opis	s zaria	denia	31
	3.1	Opis	mechanickej zostavy	31
	3.2	Opis	skrinky so zdrojom	32
	3.3	Konv	rertor signálov	34
	3.4	Kone	ktor CP1102	34
	3.5	Vstuj	ono-výstupná karta	34
	3.6	Prepo	ojenie zariadení	35
4	Riad	liaci s	ystém dSPACE	36
	4.1	Real-	Time Interface	36
	4.1.1	1	Práca s modelom	36
	4.1.2	2	Parametre simulácie a kompilácia RTA	38
	4.2	Cont	rolDesk	41
	4.2.1	1	Tvorba nového experimentu	41
	4.2.2	2	Úprava vlastností experimentu	42
	4.2.3	3	Prístrojový panel	42
	4	.2.3.1	Vytváranie panelov prístrojov	43
	4	.2.3.2	Tvorba Layout Window	43

	4.2.3.3	Instrument Selector	43
4.2.3.4		Vytvorenie prístrojov	44
	4.2.3.5	Prepojenie prístrojov so signálmi	46
	4.2.4	Zavedenie RTA na RTP	46
	4.2.5	Ukladanie údajov do dátového súboru	47
	4.2.6	Ovládanie RTA na RTP	48
	4.2.7	Riadenie procesu	49
5	Riadenie	aboratórneho teplovzdušného procesu	52
4	5.1 Odm	eranie a spracovanie prechodovej charakteristiky	53
	5.1.1	Meranie prechodovej charakteristiky	53
	5.1.2	Určenie prenosu a jeho overenie	54
	5.1.3	Overenie identifikovaného prenosu	57
4	5.2 Riad	enie systému	60
	5.2.1	Syntéza regulátorov a ich testovanie	60
	5.2.1.1	Simulačné testovanie regulátorov	61
	5.2.1.2	Riadenie reálneho procesu	63
	5.2.2	Výber najlepšieho regulátora	64
	5.2.3	Nevyhovujúce regulátory	65
Záv	/er		69
Zoz	znam použite	j literatúry	71
Príl	oha		72

Zoznam symbolov, skratiek a značiek

- δ, deltad	spodná hranica zvoleného δ-okolia žiadanej veličiny
+δ, deltah	vrchná hranica zvoleného δ-okolia žiadanej veličiny
ADC	Analog-to-Digital Converter
AT	Advanced Technology
BIBO	Bounded Input – Bounded Output (ohraničený vstup – ohraničený
	výstup)
D	derivačná zložka regulátora, derivačný regulátor; dopravné oneskorenie
	systému
DAC	Digital-to-Analog Converter
DC	Direct Current
DSP	Digital Signal Processor, Digital Signal Processing
e	regulačná odchýlka
e(t)	regulačná odchýlka ako funkcia času
\mathbf{f}_{s}	podiel času prieťahu a času nábehu
G(s)	prenos riadeného systému
$G_A(s)$	prenos akčného člena
$G_m(s)$	prenos meracieho člena
$G_{P}(s)$	prenos riadeného procesu
$G_{pr}(s)$	prenosová funkcia poruchy
$G_R(s)$	prenos regulátora
$G_{yr}(s)$	prenos uzavretého regulačného obvodu vzhľadom na poruchu
$G_{yw}(s)$	prenos uzavretého regulačného obvodu vzhľadom na žiadanú veličinu
I	integračná zložka regulátora, integračný regulátor
I/O	Input/Output (vstup/výstup)
IAE	integrál absolútnej hodnoty regulačnej odchýlky
ISA	Industry Standard Architecture
ISE	integrál štvorca regulačnej odchýlky
M-file	súbor pracujúci v prostredí MATLAB, skript

Р	proporcionálna zložka regulátora, proporcionálny regulátor
PC	Personal Computer
РСН	Prechodová CHarakteristika
P _p	pásmo proporcionality
PWM	Pulse-Width Modulation
r	poruchová veličina
R (<i>s</i>)	obraz Laplaceovej transformácie poruchovej veličiny
RAM	Random Access Memory (pamäť s priamym prístupom)
RTA	Real-Time Application
RTI	Real-Time Interface
RTP	Real-Time Processor
RTW	Real-Time Workshop
S	argument Laplaceovej transformácie
SDF	System Description File
t	čas
Т	časová konštanta systému
t ₀	čas indikujúci skokovú zmenu vstupnej veličiny
t_1	čas určujúci priesečník y0 a dotyčnice k PCH
t_2	čas určujúci priesečník y_{∞} a dotyčnice k PCH
T _D	derivačná konštanta
T _I	integračná konštanta
TI	Texas Instrument
t _n	čas nábehu
t _{reg}	čas regulácie
TRO, e(∞)	Trvalá Regulačná Odchýlka
t _u	čas prieťahu
T _{URO}	časová konštanta uzavretého regulačného obvodu
t_{δ}	čas maximálneho preregulovania
u	riadiaca (akčná) veličina

u(t)	riadiaca veličina ako funkcia času
u ₀	hodnota žiadanej veličiny v čase 0
\mathbf{u}_{∞}	hodnota žiadanej veličiny v nekonečne
u _{max}	maximálna hodnota riadiacej veličiny
u _{min}	minimálna hodnota riadiacej veličiny
URO	Uzavretý Regulačný Obvod
W	žiadaná veličina
W(s)	obraz Laplaceovej transformácie žiadanej veličiny
\mathbf{W}_{∞}	hodnota žiadanej veličiny v nekonečne
у	riadená (výstupná) veličina
$\mathbf{Y}(s)$	obraz Laplaceovej transformácie výstupnej veličiny
y 0	hodnota riadenej veličiny v čase 0
y_{∞}	hodnota riadenej veličiny v nekonečne
y _m	meraná výstupná veličina
Ymax	maximálna hodnota riadenej veličiny
Ζ	zosilnenie systému
Z _R	zosilnenie regulátora
δ	zvolené okolie žiadanej veličiny
δ_{max}	maximálny prekmit (preregulovanie)
σ	relatívne preregulovanie

Zoznam obrázkov

Obr. 1 Deta	ilná a zjednodušená bloková schéma URO [1]	16
Obr. 2 Deta	ilná a zjednodušená bloková schéma URO pomocou prenosových funkcií [1]	18
Obr. 3 Prec	hodová charakteristika URO	24
Obr. 4 Všeo	becná prechodová charakteristika [1]	27
Obr. 5 Prec	hodová charakteristika systému prvého rádu s dopravným oneskorením [1]	28
Obr. 6 Labo	pratórne zariadenie LTR700 [5]	31
Obr. 7 Pred	ný panel skrinky so zdrojom	32
Obr. 8 Popi	s predného panelu skrinky so zdrojom [5]	33
Obr. 9 Sche	ematické zapojenie zariadení [5]	35
Obr. 10 Sch	néma na meranie prechodovej charakteristiky	37
Obr. 11 Mo	del Real-Time Application (RTA) [5]	37
Obr. 12 Úda	aje bloku "ohrev/vstup"	38
Obr. 13 Úda	aje bloku "otackyvstup"	39
Obr. 14 Par	ametre simulácie – Solver	40
Obr. 15 Par	ametre simulácie – Real-Time Workshop	40
Obr. 16 Cor	ntrolDesk	42
Obr. 17 Mó	dy panelov prístrojov	43
Obr. 18 Lay	yout Window	44
Obr. 19 Ins	trument Selector – Data Acquisition, Virtual Instruments	44
Obr. 20 Prís	stroj "Plotter"	45
Obr. 21 Prís	stroj "Capture Settings"	45
Obr. 22 Too	ol Window	46
Obr. 23 Ok	no dSPACE CaptureSettings Control – vlastnosti, záložka Capture	47
Obr. 24 Ok	no dSPACE CaptureSettings Control – vlastnosti, záložka Acquisition	48
Obr. 25 Pla	tform Manager Toolbar – štart/stop RTA	48
Obr. 26 Sch	néma na riadenie laboratórneho teplovzdušného procesu	49
Obr. 27 Nas	stavenie prístroja Capture Settings pre riadenie procesu	50
Obr. 28 Vz	orový grafický priebeh riadenia – ControlDesk	51
Obr. 29 Vz	orový priebeh IAE – ControlDesk	51
Obr. 30 Pre	chodová charakteristika systému	53
Obr. 31 Spr	acovanie prechodovej charakteristiky	55
Obr. 32 Gra	afický priebeh skokovej zmeny ohrevu	56
Obr. 33 Sch	néma na overenie identifikovaného prenosu	58

Obr. 34	Údaje bloku "Ohrev"	58
Obr. 35	Údaje bloku "Prenos"	59
Obr. 36	Údaje bloku "Dopravne oneskorenie"	59
Obr. 37	Graf porovnania PCH reálneho procesu a PCH identifikovaného prenosu	60
Obr. 38	Schéma na testovanie navrhnutých regulátorov	61
Obr. 39	Grafický priebeh regulácie s PID regulátorom navrhnutým metódou Chien-Hrones-Reswick - simulácia	62
Obr. 40	Grafický priebeh regulácie s PID regulátorom navrhnutým metódou Smith-Murrill – simulácia	63
Obr. 41	Grafický priebeh regulácie s PID regulátorom navrhnutým metódou Chien-Hrones-Reswick	68
Obr. 42	Grafický priebeh regulácie s PID regulátorom navrhnutým metódou Smith-Murrill	68

Zoznam tabuliek

Tab. 1	Tabuľka pre Strejcovu metódu identifikácie [2]	28
Tab. 2	Nastavenie regulátora podľa Strejca [2]	29
Tab. 3	Údaje odčítané z PCH a vypočítané údaje Strejcovej identifikácie systému	57
Tab. 4	Tabuľka výsledkov	66

Úvod

V dnešnej dobe sa neustále zlepšuje výpočtová technika, ktorá sa používa aj na riadenie systémov vo výrobe a priemysle. Neustále dokonalejšie zariadenia vyžadujú aj lepšie operačné systémy a programy, ktoré v konečnom dôsledku neslúžia len na samotné riadenie, ale zabezpečujú aj jednoduchšie ovládanie a kompatibilitu s inými – podpornými programami. Na návrh či už týchto programov samotných alebo modelov systémov a zariadení regulujúcich výstupnú veličinu na požadovanú hodnotu v podmienkach výroby treba získať veľa teoretických poznatkov a skúseností v danom odbore.

Na oboznámenie sa s princípom fungovania priemyselných a výrobných zariadení, ale aj ich riadiacimi systémami zabezpečujúcimi ich chod a funkčnosť presne podľa podmienok nutných k získaniu požadovaných výsledkov, slúžia rôzne laboratórne zariadenia.

Predmetom tejto práce je oboznámenie sa s riadiacim systémom dSPACE a jeho následné využitie na vytvorenie modelu výmenníka tepla vhodného pre návrh regulátora. Navrhnutý regulátor možno testovať v prostredí MATLAB-Simulink a následne v reálnom procese. Reálny systém predstavuje laboratórny výmenník tepla LTR700. Samotné zariadenie sa skladá z trubice so špirálou zabezpečujúcou ohrev vzduchu prúdiaceho výmenníkom, z ventilátora, ktorý umožňuje nútené prúdenie tekutiny (vzduchu) trubicou a skrinky so zdrojom. Je možné riadiť teplotu vzduchu prechádzajúceho výmenníkom pomocou ohrevu a/alebo pomocou prietoku a sledovať jej hodnotu na výstupe z výmenníka. Teplotu možno vyjadriť v stupňoch Celzia a aj v percentuálnom rozsahu.

Pomocou programu dSPACE sa zabezpečí prepojenie modelu výmenníka s počítačom. Program je kompatibilný s prostredím MATLAB-Simulink. Návrh celého systému pozostáva z vytvorenia aplikácie Real-Time Application (RTA) pomocou knižnice RTI1102, následnej kompilácie a zavedenia do procesora a vizualizácie a ovládania v programe ControlDesk, ktorý je súčasťou dSPACE. Keďže aj ControlDesk spolupracuje s programom MATLAB, je možné jednoduchšie a prehľadne spracovávať získané výsledky vo forme grafov a na základe rôznych zvolených ukazovateľov kvality riadenia vybrať najvhodnejší regulátor, ktorý zabezpečí čo najplynulejší resp. najkratší regulačný pochod.

14

1 Spätnoväzbové riadenie procesov

V bežnej praxi sa veľakrát riešia problémy, ktorých výsledkom väčšinou býva získať výstup zo systému s požadovanými parametrami. Výstupom možno rozumieť rôzne fyzikálne vlastnosti média, výšku hladiny média v prípade zásobníkov, teplotu tekutiny opúšťajúcu výmenník tepla, koncentrácie jednotlivých zložiek zmesí po výstupe z chemického reaktora a pod.

Predpokladajme, že máme výmenník tepla, cez ktorý prúdi vzduch z atmosféry. Tok vzduchu zabezpečuje ventilátor, ktorý je súčasťou zariadenia. Úlohou tohoto výmenníka je ohriať vzduch na žiadanú hodnotu (**žiadaná veličina**) ohrevnou špirálou s určitým príkonom, pri konštantnej hodnote otáčok ventilátora. **Objektom riadenia** je teda **proces prestupu tepla** spolu so **zariadením**.

Riadenie procesu prestupu tepla je také cieľavedomé pôsobenie na proces, aby sa teplota výstupného prúdu z výmenníka udržala pri zmene prevádzkových podmienok procesu na žiadanej hodnote alebo v jej požadovanom okolí. Pôsobenie na proces sa realizuje prostredníctvom zmeny tepelného príkonu ohrevnej špirály (**akčná veličina**). Ak vznikne odchýlka od žiadanej veličiny, treba prostredníctvom akčnej veličiny zabezpečiť jej zmenšenie alebo odstránenie. Kvôli zisteniu skutočnej hodnoty teploty na výstupe z výmenníka, musí byť na jeho konci umiestnené zariadenie na meranie teploty.

Zmenu akčnej veličiny môže na základe merania teploty na výstupe zariadenia vykonávať buď človek (**ručné riadenie procesu**) alebo technické zariadenie (**automatické riadenie**). Človek však nie je vždy schopný vykonávať zmenu akčnej veličiny kvalitne, a preto pri automatickom riadení jeho úlohu preberá **riadiaci člen**, ktorý však riadi narozdiel od človeka exaktne podľa určeného **zákona riadenia**. Riadiaci člen pri riadení procesu prestupu tepla využije informáciu o skutočnej teplote (odmeranej teplote na výstupe) a o žiadanej teplote na nastavenie tepelného príkonu podľa vopred určeného matematického zákona riadenia. Rozdiel medzi žiadanou a skutočnou teplotou sa nazýva **odchýlka riadenia** alebo **regulačná odchýlka**. Riadením treba zabezpečiť aby bola táto odchýlka čo najmenšia. Úlohou je teda určiť zákon riadenia tak, aby sa odstránila, resp. zmenšila odchýlka riadenia optimálnym spôsobom podľa určitých kritérií. Zákon riadenia určuje štruktúru riadiaceho člena, ako aj jeho vlastnosti v rámci danej štruktúry.

Jednou z možností návrhu riadiaceho člena je navrhnúť ho tak, aby menil tepelný príkon úmerne k odchýlke riadenia. Odchýlenie sa nameranej teploty od žiadanej

hodnoty spôsobí vznik nenulovej odchýlky a regulátor zmení tepelný príkon úmerne – proporcionálne k tejto odchýlke. Takýto regulátor sa nazýva proporcionálny. Ak meraná teplota stúpne nad žiadanú, proporcionálny regulátor hodnotu tepelného príkonu zmenší. Ak teplota, naopak, poklesne pod žiadanú hodnotu, tepelný príkon sa zväčší. Ide teda o **zápornú spätnú väzbu**. Odmeranie výstupnej veličiny procesu poskytne riadiacemu členu informáciu o procese. Táto informácia sa prostredníctvom riadiaceho člena dostane späť na vstup procesu. Opísaný spôsob riadenia sa nazýva **spätnoväzbové riadenie**. [1]

1.1 Uzavretý regulačný obvod

Uzavretý regulačný obvod je vo všeobecnosti súbor technických prostriedkov, ktoré slúžia na to, aby vybrané zariadenie (**proces**) uspokojivo pracovalo v automatickom režime. Tvorí ho proces, ktorý riadime a ďalšie prístrojové prvky zabezpečujúce automatické riadenie. Abstrakciou uzavretého regulačného obvodu (URO) je jeho všeobecná bloková schéma, zobrazená na Obr. 1. Pozostáva zo 4 základných súčastí, ktorými sú regulátor, akčný člen, riadený systém a merací člen.

Obr. 1 Detailná a zjednodušená bloková schéma URO [1]

Riadený systém je naša predstava o riadenom procese zo systémového hľadiska. Záleží nám na **riadenej veličine** y, ktorá je výstupom z riadeného procesu a ktorú dokážeme ovplyvňovať riadiacou (alebo akčnou) veličinou u. Riadenú veličinu však často ovplyvňujú aj iné veličiny, ktoré nedokážeme meniť – poruchové veličiny, označované premennou r.

Aby sme mohli riadenú veličinu y riadiť, musíme ju najprv odmerať. Na to slúži merací člen. Na jeho výstupe sa meria hodnota výstupu y_m .

Regulátor je zariadenie, ktoré vyhodnocuje regulačnú odchýlku a na základe zákona riadenia generuje akčnú veličinu. Táto je použitá akčným členom, ktorý akčnú veličinu zrealizuje (otvorí ventil, spustí pohon atď.).

Kvôli zjednodušeniu skúmania spätnoväzbových obvodov riadenia sa bloková schéma často zjednodušuje. V **zjednodušenej blokovej schéme** sú len dva bloky (Obr. 1b). Prvý blok predstavuje riadiaci člen a druhý blok riadený objekt. Každý blok podrobnej blokovej schémy musí byť zahrnutý do niektorého z týchto dvoch blokov. Najčastejšie sa v zjednodušenej blokovej schéme riadiacim členom myslí len tá časť spätnoväzbového obvodu, ktorá realizuje zákon riadenia. Pri zjednodušení schémy sa teda akčný a merací člen zaraďujú k riadenému procesu.

Každé zo zariadení, ktoré tvoria uzavretý regulačný obvod, reprezentuje dynamický systém a možno ho opísať diferenciálnou rovnicou alebo prenosom. Takže blokové schémy z Obr. 1 môžeme prekresliť pomocou Obr. 2, kde pôsobia signály w – žiadaná veličina, e – regulačná odchýlka, u – akčná veličina, r – porucha, y – riadená (výstupná) veličina a y_m – meraná výstupná veličina. Vplyv poruchovej veličiny na riadený proces je opísaný diferenciálnou rovnicou zodpovedajúcou prenosovej funkcii $G_{pr}(s)$. Ďalšie prenosy sú $G_R(s)$ – prenos regulátora, $G_A(s)$ – prenos akčného člena, $G_m(s)$ – prenos meracieho člena, $G_P(s)$ – prenos riadeného procesu.

Pri opisovaní dynamických vlastností URO rozlišujeme medzi reakciou na žiadanú a poruchovú veličinu. Tieto dve veličiny totiž reprezentujú dve vstupné veličiny celého URO.

Obr. 2 Detailná a zjednodušená bloková schéma URO pomocou prenosových funkcií [1]

Z Obr. 2a vyplýva na základne algebry prenosov vzťah pre výstupnú veličinu

$$Y(s) = G_{pr}(s)R(s) + G_{P}(s)G_{A}(s)G_{R}(s)[W(s) - G_{rm}(s)Y(s)]$$
(1)

a po úprave

$$Y(s) = \frac{G_{pr}}{1 + G_P(s)G_A(s)G_R(s)G_m(s)}R(s) + \frac{G_P(s)G_A(s)G_R(s)}{1 + G_P(s)G_A(s)G_R(s)G_m(s)}W(s)$$
(2)

Z tohoto vzťahu sa dajú odvodiť dva prenosy.

• Pre R(s) = 0 získame prenos žiadanej veličiny (prenos riadenia) v tvare

$$G_{yw}(s) = \frac{G_P(s)G_A(s)G_R(s)}{1 + G_P(s)G_A(s)G_R(s)G_m(s)}$$
(3)

• W(s) = 0 získame prenos poruchy v tvare

$$G_{yr}(s) = \frac{G_{pr}}{1 + G_P(s)G_A(s)G_R(s)G_m(s)}$$
(4)

Oba prenosy majú spoločný menovateľ, ktorý určuje dynamické vlastnosti URO a ktorý sa nazýva **charakteristický polynóm**. Ak ho položíme rovný nule, získame **charakteristickú rovnicu** URO v tvare

$$1 + G_P(s)G_A(s)G_R(s)G_m(s) = 0$$
(5)

Ak budeme uvažovať zjednodušenú verziu blokovej schémy, pri ktorej riadený systém G(s) zahŕňa riadený proces, merací a akčný člen, t. j. $G(s) = G_P(s)G_A(s)G_m(s)$, potom z Obr. 2b vyplýva na základe algebry prenosov vzťah pre výstupnú veličinu

$$Y(s) = G_{pr}(s)R(s) + G(s)G_{R}(s)[W(s) - Y(s)]$$
(6)

a po úprave

$$Y(s) = \frac{G_{pr}}{1 + G(s)G_R(s)}R(s) + \frac{G(s)G_R(s)}{1 + G(s)G_R(s)}W(s)$$
(7)

Prenosové funkcie URO vzhľadom na poruchu a žiadanú veličinu majú tvar

$$G_{yw}(s) = \frac{G(s)G_R(s)}{1 + G(s)G_R(s)}$$
(8)

$$G_{yr}(s) = \frac{G_{pr}}{1 + G(s)G_R(s)} \tag{9}$$

a charakteristická rovnica URO má tvar

$$1 + G(s)G_R(s) = 0 (10)$$

1.1.1 Definícia problému spätnoväzbového riadenia

Na uzavretý regulačný obvod sa kladú rôzne požiadavky. Medzi najdôležitejšie patria:

stabilita – URO musí byť stabilný.

URO musí byť schopný zabezpečiť riešenie viacerých úloh. Dve z nich sú

regulácia – URO musí zabezpečiť minimalizáciu vplyvu porúch na riadený proces,

sledovanie – URO musí zabezpečiť aby riadená veličina sledovala žiadanú veličinu čo najrýchlejšie a najpresnejšie.

Ak URO zabezpečí vyriešenie aj úlohy regulácie aj úlohy sledovania, tak matematicky v ideálnom prípade platia pre prenosy URO podmienky

$$G_{yr}(s) = 0 \tag{11}$$

$$G_{yw}(s) = 1 \tag{12}$$

1.2 Typy regulátorov

1.2.1 Proporcionálny regulátor

Vhodným vylepšením dvojpolohového regulátora je zavedenie pásma proporcionality riadenia pre malé regulačné odchýlky – ak bude regulačná odchýlka malá, bude aj malý akčný zásah. Matematickým vyjadrením myšlienky proporcionality je zákon riadenia alebo prenos

$$u(t) = Z_R e(t), \qquad G_R(s) = Z_R$$
(13)

Regulátor, ktorý pracuje na základe tohto zákona riadenia, sa nazýva **proporcionálny** (P regulátor) a Z_R je zosilnenie regulátora.

Z praktického hľadiska môže regulátor pracovať proporcionálne iba v určitom rozsahu vstupných hodnôt, pretože akčná veličina vždy môže byť iba v rozsahu medzi u_{min} a u_{max} . Proporcionalita regulátora tak môže byť charakterizovaná alebo jeho

zosilnením Z_R , alebo pásmom, kedy je regulátor lineárny – tzv. **pásmo proporcionality** P_p . Vzťah medzi nimi je

$$u_{max} - u_{min} = Z_R P_p \tag{14}$$

Ak uvažujeme, že maximálny rozsah vstupných veličín je normovaný, t. j. $u_{max} - u_{min} = 100$ %, potom dostaneme

$$Z_R = \frac{100}{P_p} \tag{15}$$

Ak je však regulačná odchýlka príliš veľká (v absolútnej hodnote), proporcionálny regulátor sa správa ako dvojpolohový regulátor, pretože riadiaca veličina *u* je obmedzená svojimi hraničnými hodnotami.

Oproti dvojpolohovému regulátoru má proporcionálny výhodu, pretože v ustálenom stave riadená veličina nekmitá. Avšak tento regulátor nedokáže úplne odstrániť trvalú regulačnú odchýlku. Preto sa zvyčajne dopĺňa na výstupe prídavnou zložkou, ktorá sa nazýva **offset**. Väčšinou ju nastavuje obsluha ručne.

1.2.2 Integračný regulátor

Na automatické odstránenie trvalej regulačnej odchýlky je potrebné zaviesť integrátor – akčný zásah sa bude meniť dovtedy, kým nebude regulačná odchýlka nulová. Matematicky sa dá táto požiadavka zapísať zákonom riadenia alebo prenosom

$$u(t) = \frac{1}{T_I} \int_0^t e(t) dt, \ G_R(s) = \frac{1}{T_I s}$$
(16)

kde T_I sa nazýva integračná konštanta a určuje rýchlosť zmeny akčného zásahu v prípade jednotkovej regulačnej odchýlky. Čím bude veľkosť T_I menšia, tým väčšie zmeny riadenia budú generované. Takýto regulátor nazývame **integračný** (I).

1.2.3 Derivačný regulátor

Derivačná zložka zlepšuje stabilitu uzatvoreného regulačného obvodu. Dôvod na jej zavedenie tkvie v tom, že účinok proporcionálnej (P) a integračnej (I) zložky na riadený proces nie je okamžitý, ale sa prejaví až po určitom čase. Naproti tomu **derivačný** (D) regulátor, ktorý je opísaný zákonom riadenia alebo prenosom

$$u(t) = T_D \frac{\mathrm{d}e(t)}{\mathrm{d}t}, \qquad \qquad G_R(s) = T_D s \qquad (17)$$

kde T_D je derivačná konštanta, svojou akciou predpovedá vývoj regulačnej odchýlky.

Ideálny D regulátor je citlivý na prítomnosť šumu v riadenej veličine, pretože derivácia nepresného signálu môže viesť k veľkým a častým zmenám amplitúdy riadenia. Okrem toho, ideálny derivačný člen je nerealizovateľný, pretože stupeň čitateľa jeho prenosu je väčší ako stupeň menovateľa.

Z týchto dôvodov sa zavádza filtrovaný D regulátor s prenosom

$$G_R(s) = \frac{T_D s}{1 + \frac{T_D}{N} s}$$
(18)

čo nie je nič iné, ako ideálny D regulátor zapojený v sérii so systémom prvého rádu s malou časovou konštantou T_D/N . Typické hodnoty N sú medzi 5 a 20.

1.2.4 Štruktúry PID regulátora

Spojením P, I, a D regulátora vzniká PID regulátor. Obsahuje teda tri zložky: proporcionálnu, integračnú a derivačnú. Konkrétna realizácia môže byť rôzna a závisí napr. od spôsobu implementácie (elektromechanický, pneumatický, elektronický atď.).

Najčastejšie sa využívajú nasledovné štruktúry ideálneho PID regulátora:

• bez interakcie

$$G_R(s) = Z_R \left(1 + \frac{1}{T_I s} + T_D s \right)$$
⁽¹⁹⁾

• s interakciou (sériová)

$$G_R(s) = Z_R \left(1 + \frac{1}{T_I s} \right) (1 + T_D s)$$
(20)

• paralelná

$$G_R(s) = Z_R + \frac{1}{T_I s} + T_D s \tag{21}$$

Je veľmi dôležité si uvedomiť, že konštanty regulátora sú úzko zviazané s konkrétnou štruktúrou regulátora, pre ktorú boli navrhnuté, a nie je ich možné použiť bez vhodného prepočtu pre niektorú z alternatívnych štruktúr. [1]

1.3 Stabilita uzavretého regulačného obvodu

Základnou požiadavkou kladenou na uzavretý regulačný obvod je jeho stabilita. Tá závisí od menovateľov prenosov URO – **charakteristického polynómu**. Ak ho položíme rovný nule, dostaneme **charakteristickú rovnicu** (rovnica (5) a (10)).

Systém je BIBO stabilný (z angl. bounded input – bounded output), ak ohraničený vstup dáva ohraničený výstup.

Nutná a postačujúca podmienka stability – korene charakteristickej rovnice (charakteristického polynómu) majú záporné reálne časti, t. j. ležia v ľavej polrovine komplexnej roviny.

Kritériá stability sa používajú na určenie stability inak ako vyčíslením koreňov charakteristickej rovnice. Poznáme napr. Hurwitzovo kritérium stability alebo Routhovo–Schurovo kritérium stability. Slúžia na posúdenie stability pomocou koeficientov charakteristickej rovnice.

Routhovo–Schurovo kritérium stability – systém je stabilný, ak sú všetky koeficienty charakteristickej rovnice kladné (ak majú všetky koeficienty charakteristickej rovnice rovnaké znamienko) a ak sa v Routhovom–Schurovom algoritme nevyskytne koeficient rovný nule ani záporný koeficient.

Podmienka kladnosti koeficientov charakteristickej rovnice je nutnou ale nie postačujúcou podmienkou stability pre systém n-tého rádu.

Podmienka kladnosti koeficientov charakteristickej rovnice je nutnou a aj postačujúcou podmienkou stability pre systém 2. a 1. rádu.

Kritické hodnoty parametrov regulátora – hodnoty parametrov Z_R , T_I alebo T_D regulátora, pri ktorých je URO na hranici stability. [2]

1.4 Kvalita riadenia

Jedna z úloh uzavretého regulačného obvodu je zabezpečiť, aby riadená veličina sledovala čo najpresnejšie žiadanú veličinu. Pre kvantifikáciu tejto požiadavky používame rozličné kritériá.

1.4.1 Časová oblasť

Pri vyhodnotení kvality riadenia v časovej oblasti je vhodné vybrať si nejaký štandardný priebeh vstupnej veličiny do uzavretého regulačného obvodu a vyhodnotiť priebeh riadenej veličiny. Za týmto účelom sa najčastejšie študuje reakcia uzavretého regulačného obvodu na jednotkovú skokovú zmenu žiadanej veličiny. Typická trajektória výstupu je zobrazená na Obr. 3.

Obr. 3 Prechodová charakteristika URO

V časovej oblasti je definovaných niekoľko ukazovateľov kvality riadenia:

Maximálny prekmit (preregulovanie) δ_{max} udáva v percentách normovanú veľkosť maximálnej odchýlky výstupnej veličiny od jej ustálenej hodnoty. Matematicky sa dá zapísať vzťahom

$$\delta_{max} = \frac{y_{max} - y_{\infty}}{y_{\infty} - y_{0}}.100 \%$$
(22)

Pre aperiodické deje bez prekmitu platí $\delta_{max} = 0$. Vo väčšine prípadov sa však odporúča hodnota prekmitu menšia ako 25 %. [1]

- Čas regulácie t_{reg} čas, od ktorého sa riadená veličina dostane natrvalo do δ-okolia žiadanej veličiny.
- Čas maximálneho preregulovania t_{δ} čas, v ktorom nastane maximálne preregulovanie. [2]
- Trvalá regulačná odchýlka (TRO) e(∞) je definovaná ako rozdiel medzi žiadanou veličinou w a riadeným výstupom v novom ustálenom stave. Je nenulová v prípade použitia regulátora bez integračnej zložky.

Kým časové údaje vypovedajú o rýchlosti regulácie, ostatné charakteristiky sú vyjadrením kvality regulácie. [1]

1.4.2 Integrálne ukazovatele kvality

Medzi najlepšie integrálne ukazovatele kvality riadenia patria podľa [3]:

• Integrál absolútnej regulačnej odchýlky IAE

$$IAE = \int_0^\infty |e(t)| dt$$
(23)

• Integrál štvorca regulačnej odchýlky ISE

$$ISE = \int_0^\infty e^2(t)dt \tag{24}$$

2 Nastavovanie parametrov regulátorov

Pre nastavovanie parametrov regulátorov sa používa veľké množstvo metód, ktoré pracujú alebo s prenosovou funkciou riadeného procesu – analytické metódy alebo s nameranými charakteristikami (prechodová charakteristika, kritické zosilnenie atď.) – experimentálne metódy.

V každej z týchto metód ide o dosiahnutie niektorého z ukazovateľov kvality riadenia.

2.1 Analytické metódy

Pri analytických metódach nastavenia regulátora sa predpokladá znalosť prenosu riadeného systému. Medzi tieto metódy patrí napr. Naslinova metóda a metóda umiestnenia pólov, ktoré využívajú charakteristickú rovnicu URO, obsahujúcu aj neznáme parametre regulátora, ktorý treba nastaviť. Na základe špeciálnych tvarov charakteristickej rovnice sa potom získavajú rovnice na výpočet parametrov regulátora.

2.2 Experimentálne metódy

Všetky analytické metódy predpokladajú znalosť prenosu riadeného systému. Keďže ho obyčajne nepoznáme presne, využívame tieto metódy skôr na prvotný odhad parametrov regulátora, ktorý potom treba ešte doladiť priamo experimentovaním na procese.

Tieto nedostatky sú čiastočne eliminované použitím praktických metód, ktoré pre určenie parametrov regulátora skúmajú priamo dynamické vlastnosti riadeného procesu. Budeme teda uvažovať, že nepoznáme dynamický model (prenosovú funkciu) riadeného procesu, ale iba jeho správanie sa v čase.

2.2.1 Spracovanie prechodovej charakteristiky

Najčastejšie používaným vstupným signálom na identifikáciu systému potrebnú na návrh regulátora, prípadne pre približné určenie dynamických vlastností regulovaného objektu je skoková zmena jednej zo vstupných veličín pri zachovaní ostatných vstupných veličín konštantných. Pred uskutočnením skokovej zmeny je potrebné, aby bol skúmaný systém v ustálenom stave. Časový priebeh výstupnej veličiny, ktorý je reakciou na skokovú zmenu jednej zo vstupných veličín, voláme reálnou prechodovou charakteristikou (PCH).

Uvažujme nameranú prechodovú charakteristiku podľa Obr. 4. Predpokladáme, že vstupná veličina sa zmenila skokom v čase $t = t_0$ (do času $t = t_0$ posunieme os y) z hodnoty u_0 na hodnotu u_∞ . Na PCH určíme inflexný bod, preložíme ním dotyčnicu k PCH, ktorá na rovnobežkách s časovou osou prechádzajúcimi hodnotami y_0 , y_∞ vymedzí dva časové údaje: čas prieťahu t_u a čas nábehu t_n . Okrem toho môžeme z PCH určiť hodnotu zosilnenia systému daného pomerom zmien výstupu a vstupu pomocou vzťahu

$$Z = \frac{y_{\infty} - y_0}{u_{\infty} - u_0} \tag{25}$$

V prípade jednotkového skoku na vstupe a nulových začiatočných podmienok sa tento vzťah zjednoduší na $Z = y_{\infty}$.

Poznámky:

- Dotyčnicu v inflexnom bode určíme najjednoduchšie ako priamku minimálneho sklonu, ktorá ešte nepretne PCH v troch bodoch.
- V prípade, že nameriame PCH, ktorá nemá inflexný bod, prekladáme dotyčnicu miestom s najväčším sklonom spôsobom znázorneným na Obr. 5.

Pre približný prenos identifikovaného systému potom môžeme použiť Strejcovu metódu identifikácie z prechodovej charakteristiky. [1]

Obr. 4 Všeobecná prechodová charakteristika [1]

Obr. 5 Prechodová charakteristika systému prvého rádu s dopravným oneskorením [1]

2.2.2 Strejcova metóda identifikácie systému

Dynamické vlastnosti identifikovaného systému aproximujeme pomocou náhradného prenosu v tvare

$$G(s) = \frac{Z}{(Ts+1)^n} e^{-Ds}$$
(26)

kde Z je zosilnenie, T časová konštanta, D dopravné oneskorenie systému a n rád systému, ktoré potrebujeme určiť.

Postup pri identifikácii je nasledovný:

- Z nameranej PCH určiť hodnoty Z, t_u , t_n .
- Určiť podiel $f_s = t_u/t_n$.
- V Tab. 1 vybrať rád systému *n* tak, aby platilo

$$f(n) \le f_s < f(n+1) \tag{27}$$

п	1	2	3	4	5	6
$f(n) = t_u/t_n$	0,000	0,104	0,218	0,319	0,410	0,493
$g(n) = T/t_n$	1,000	0,368	0,271	0,224	0,195	0,161

Tab. 1 Tabul'ka pre Strejcovu metódu identifikácie [2]

V prípade, že vypočítaná hodnota f_s je väčšia, ako maximálna možná uvedená v tabuľke, t_u sa zmenší na prijateľnú mieru (výsledná hodnota t_u musí byť taká, aby sa hodnota podielu t_u/t_n rovnala tabuľkovému) o hodnotu, ktorá sa potom v ďalšom kroku pripočíta k vypočítanej hodnote dopravného oneskorenia. [2]

Dopravné oneskorenie D sa určí ako rozdiel medzi skutočným a fiktívnym časom nábehu t_u

$$D = [f_s - f(n)]t_n \tag{28}$$

Časová konštanta T sa určí pomocou hodnôt z riadku funkcie g(n) pre príslušné
 n. Odčíta sa g(n) a T sa určí ako

$$T = g(n)t_n \tag{29}$$

2.2.3 Strejcova metóda nastavenia regulátorov

Na určenie parametrov PID regulátora v tvare podľa rovnice (19) pomocou Strejcovej metódy uvažujeme prenos riadeného systému v tvare podľa rovnice (26).

Na nastavenie parametrov regulátora podľa Strejca sa používa Tab. 2.

Vyberieme si vhodnú štruktúru regulátora a z príslušného riadku odčítame jeho parametre. Ak volíme štruktúru PID regulátora, potom musí byť riadený prenos minimálne tretieho rádu, pre P a PI regulátor je nutný prenos minimálne druhého rádu. Vyplýva to zo vzorca pre výpočet Z_R v Tab. 2. [1]

Regulátor	Z_R	T_I	T_D
Р	$\frac{1}{Z} \frac{1}{n-1}$	-	-
PI	$\frac{1}{Z} \frac{n+2}{4(n-1)}$	$T\frac{n+2}{3}$	-
PID	$\frac{1}{Z} \frac{7n+16}{16(n-2)}$	$T\frac{7n+16}{15}$	$T\frac{(n+1)(n+3)}{7n+16}$

Tab. 2 Nastavenie regulátora podľa Strejca [2]

2.2.4 Iné metódy nastavenia regulátorov

Medzi metódy syntézy regulátorov, založené na identifikácii Strejcovou metódou, možno okrem Strejcovej metódy zaradiť tieto:

- Zieglerova Nicholsova metóda
- Cohenova Coonova metóda: vhodná na návrh PD regulátora
- Metóda požadovaného modelu: voľba koeficientu β od relatívneho preregulovania σ , návrh iba PI regulátora

Medzi metódy založené na identifikácii 1. rádu s dopravným oneskorením patria tieto metódy:

- Haalmanova metóda: návrh iba PI regulátora
- Chien Hrones Reswickova metóda: riadenie na žiadanú hodnotu a odstránenie vplyvu poruchy, obe pre povolené preregulovanie 0 % a 20 %
- Metóda priamej syntézy s použitím aproximovaného modelu URO: volí sa časová konštanta URO: T_{URO} < T, návrh PI, PID regulátora
- **Riverova Morariho metóda**: volí sa časová konštanta URO: $T_{URO} < T$
- Smithova Murrillova metóda: mala by byť splnená podmienka $0,1 < \frac{t_u}{t_n} < 1$,

riadenie na žiadanú hodnotu (návrh PI, PID regulátora) alebo odstránenie vplyvu poruchy [4]

3 Opis zariadenia

Pomocou laboratórneho zariadenia LTR700 (Obr. 6) možno meniť teplotu a prietok vzduchu. Slúži na trénovanie riadenia reálneho procesu. Okrem automatického riadenia umožňuje aj riadenie manuálne. Samotné zariadenie sa skladá z dvoch základných častí:

- z mechanickej zostavy (trubice), ktorá obsahuje ventilátor a ohrevnú špirálu, diferenciálny tlakový snímač a snímač teploty
- zo skrinky so zdrojom, ktorá má dve fixné prepojenia na mechanickú zostavu

Obr. 6 Laboratórne zariadenie LTR700 [5]

3.1 Opis mechanickej zostavy

Na mechanickej zostave možno realizovať **skokovú poruchu prietoku vzduchu** pomocou regulačnej klapky. Táto klapka je prepojená s pákou, ktorá je pomocou magnetu udržiavaná vo vertikálnej polohe, čo znamená minimálny prietok vzduchu. Zmena polohy páky do horizontálnej polohy, znamená zmenu prietoku vzduchu k maximálnej hodnote. Príčinou je otvorenie klapky. Páku je nutné prepínať manuláne. **Skokovú funkciu ohrevu** možno dosiahnuť nastavením vypínača s polohami "0" a "1".

Pri polohe "0" je ohrev minimálny (100 Ω), poloha "1" zodpovedá maximálnemu ohrevu (75 Ω). Tento vypínač sa nachádza na skrinke so zdrojom.

3.2 Opis skrinky so zdrojom

Pripojenie na sieť sa nachádza na zadnom paneli skrinky, ktorá má dve poistky v podobe sklených trubíc ako aj vstupný filter (SCHAFFNER, FN 9260-2-06) [5]. Predný (ovládací) panel skrinky so zdrojom je vyobrazený na Obr. 7. Na Obr. 8 je popis jeho ovládacích častí.

Obr. 7 Predný panel skrinky so zdrojom

Obr. 8 Popis predného panelu skrinky so zdrojom [5]

Jednotlivé body na Obr. 8 znamenajú:

- 1. hlavný vypínač
- 2. svetelná kontrolka signalizujúca zapnutie zariadenia
- prepínač (INT/EXT) na výber medzi interným a externým riadením otáčok ventilátora
- 4. prepínač (INT/EXT) na výber medzi interným a externým riadením ohrevu
- 5. potenciometer na nastavenie otáčok ventilátora pri internom riadení
- 6. potenciometer na nastavenie ohrevu ventilátora pri internom riadení
- 7. (prúdový) vstup (4-20 mA) na riadenie otáčok externe
- 8. vstup (4-20 mA) na riadenie ohrevu externe
- 9. meraný výstup (4-20 mA) zo senzora prietoku vzduchu
- 10. meraný výstup (4-20 mA) zo senzora teploty

- 11. dva elektricky izolované výstupy (2*24 V DC)
- 12. vývod pre dátový kábel meraných signálov a riadiaceho signálu otáčok
- 13. vývod pre riadiaci signál ohrevu
- 14. svetelná kontrolka indikujúca činnosť ohrevného zariadenia [5]

3.3 Konvertor signálov

Konvertory signálov slúžia na zmenu rozsahov vstupných a výstupných napäťových signálov smerujúcich na vstupno-výstupnú kartu alebo z nej vychádzajúcich. Konvertor signálov, napojený na LTR700, transformuje signál z 4-20 mA na ± 10 a v opačnom smere z ± 10 na 4-20 mA. [5]

3.4 Konektor CP1102

Dátový konektor CP1102 umožňuje prepojenie medzi vstupno-výstupnou kartou DS1102 a prístrojom LTR700, ktorý je k nej pripojený. Prístroje môžu byť ku konektoru pripojené a odpojené individuálne a sú zameniteľné bez spájkovania. [5]

3.5 Vstupno-výstupná karta

Vstupno-výstupná karta má nasledujúce parametre:

```
typ: DS1102 DSP
```

technické detaily:

- procesor: TMS320C31
 - 60 MHz časový
 - 33,3 ns (čas cyklu)
 - 4 externé prerušenia

pamäť: 128 K*32 bit RAM

2 K*32 bit RAM

analógové vstupy:

- 2 paralelné 16 bit kanály, 4 μs (prepočítavací čas)
- 2 paralelné 12 bit kanály, 1.25 μs
- simultánne vzorkovanie a pozastavenie

- ± 10 V vstup (rozsah napätí)
- >80 dB (16 bit) / 65 dB (12 bit) pomer šumového signálu

analógové výstupy:

- 4 paralelné 12 bit kanály
- 4 µs prechodový čas
- <u>+</u>10 V výstupy

digitálne I/O:

- programovateľný digitálny I/O podsystém založený na TI 25MHz TMS320P14 DSP
- 16 digitálnych I/O vedení
- zachytávacia/porovnávacia jednotka s 8 kanálmi (2 dnu, 4 von, 2 dnu/von)
- PWM (vyvíjanie) na 6-tich kanáloch
- užívateľské prerušenie [5]

3.6 Prepojenie zariadení

Schematické zapojenie zariadenia LTR700, konvertora signálov, počítača so vstupno-výstupnou kartou DS1102 DSP a konektora je na Obr. 9. Samotné prepojenie jednotlivých prvkov sa realizuje použitím vodičov. [5]

Obr. 9 Schematické zapojenie zariadení [5]

4 Riadiaci systém dSPACE

Riadiaca doska (DS1102 DSP Controller Board) je navrhnutá pre vývoj vysokorýchlostných digitálnych regulátorov a simulácii v reálnom čase. Jedná sa o riadiaci systém založený na procesore Texas Instrument TMS320C31. DSP1102 DSP Controller Board je štandardná PC/AT karta (ISA slot).

Návrh celého systému (model, riadenie, vizualizácia, ...) prebieha v troch krokoch:

- Vytvorenie aplikácie Real-Time Application (RTA) v Simulinku. Pre tento účel sa môžu využiť bloky poskytnuté toolboxom dSPACE Real-Time Interface 1102 (RTI).
- Kompilácia a zavedenie RTA do procesora dSPACE Real-Time Processor (RTP).
- Vizualizácia a ovládanie RTA v ControlDesku.

4.1 Real-Time Interface

Real-Time Interface (RTI) sa môže použiť za predpokladu, že MATLAB, Simulink, Real-Time Workshop a Real-Time Inteface pre DS1102 DSP Controller Board (RTI1102) sú správne nainštalované.

Otvorenie knižnice dSPACE RTI1102:

- Spustí sa program MATLAB.
 - Spustí sa program Simulink.

V okne Simulink Library Browser sa nachádza knižnica dSPACE RTI1102.

- Alebo v príkazovom riadku MATLABu sa zadá príkaz rti1102.
- Knižnica DS1102 (v RTI1102) obsahuje okrem iného aj bloky DS1102DAC a DS1102ADC, ktoré sa budú používať. [6]

4.1.1 Práca s modelom

Na zmeranie prechodovej charakteristiky (PCH) laboratórneho teplovzdušného procesu možno použiť schému zobrazenú na Obr. 10. Na Obr. 11 vidno schému bloku

"Fukac" (model RTA) vytvorenú pomocou knižnice RTI1102, ktorá reprezentuje uvedený objekt ako systém s dvoma vstupmi a troma výstupmi.

Obr. 10 Schéma na meranie prechodovej charakteristiky

Obr. 11 Model Real-Time Application (RTA) [5]

Je dôležité, aby sa jednotlivým blokom a signálom priradili správne názvy. Názvy signálov sa vytvoria tak, že sa dvakrát klikne na čiaru, ktorá zodpovedá danému signálu. Potom sa do prázdneho okna vloží názov signálu. Bloky **DS1102ADC** a **DS1102DAC** predstavujú analógovo-digitálny a digitálno-analógový prevodník, prostredníctvom ktorých DS1102 komunikuje s reálnym zariadením (tepelným systémom). Nepripojené vstupy a výstupy z blokov musia byť pripojené k blokom **Ground** (zem), resp. **Terminator** (ukončenie). [6]

4.1.2 Parametre simulácie a kompilácia RTA

V schéme uvedenej na Obr. 10 sa v blokoch "ohrev/vstup" a "otackyvstup" nastavia požadované hodnoty v jednotlivých riadkoch. Pre riadenie teploty vzduchu pomocou ohrevu pri konštantnej hodnote otáčok, možno použiť pre jednotlivé bloky hodnoty uvedené na Obr. 12 a Obr. 13. Z Obr. 12 vidno, že v čase **400 s** nastane skoková zmena a ohrev sa zníži z hodnoty **50 %** rozsahu na hodnotu **20 %**. Na Obr. 13 možno pozorovať, že hodnota otáčok je počas celého procesu konštantná.

Block Parameters: ohrev/vstup	×
Step	
Output a step.	
Parameters	
Step time:	
400	
Initial value:	20 1211
50	
Final value:	
20	
Sample time:	0.000
0.	
OK Cancel <u>H</u> elp <u>Apply</u>	

Obr. 12 Údaje bloku "ohrev/vstup"

Block Parameters: otackyvstup	×
Step	
Output a step.	
Parameters	
Step time:	
40	
Initial value:	20 2020
20	
Final value:	
20	
Sample time:	
0	
	N 27
OK Cancel Help	Apply

Obr. 13 Údaje bloku "otackyvstup"

Na pracovnej lište nad schémou sa potom klikne na **Simulation** a vyberie možnosť **Parameters**, alebo na lište sa klikne na **Tools** a vyberie sa **RTW Options**. Otvorí sa dialógové okno **Simulation Parameters**.

V okne Solver sa nastaví:

- Start time: musí byť vždy 0.0
- Stop time
- Type: musí byť vždy Fixed-step a vyberie sa metóda
- Fixed step size: nenulová hodnota (závisí od typu RTA)

V časti **Real-Time Workshop** sa skontrolujú nastavenia, ktoré by mali byť zhodné s nastaveniami na Obr. 15. Potom sa klikne na ikonu **Build**, ktorá spustí kompiláciu modelu. Kompiláciou sa vytvorí niekoľko súborov (v pracovnom adresári). Z nich je dôležitý súbor **názov.sdf** (SDF – System Description File), kde "názov" je zhodný z názvom modelu. Ďalej sa vytvorí kompilovaný program (RTA) **názov.obj**. Tento program je automaticky načítaný do DS1102 a následne spustený.

Na zastavenie a reštartovanie RTA na RTP sa použije **ControlDesk**. Ak je RTA zastavená a súčasná alebo novšia RTA uložená v pracovnom adresári, potom môže byť načítaná do DS1102 použitím **názov.obj** súboru v ControlDesku. [6]

🛃 Simulation Parameter	s: realnaprech1 📃 🗆 🗙
Solver Workspace I/0	Diagnostics Real-Time Workshop
Simulation time Start time: 0.0	Stop time: 1000
Solver options Type: Fixed-step	ode1 (Euler)
Fixed step size: 0.1	Mode: SingleTasking 💌
Output options	
Refine output	Flefine factor: 1
	OK Cancel Help Apply

Obr. 14 Parametre simulácie – Solver

된 Simu	lation Parame	eters: realnaprech1	_ 🗆 ×
Solver	Workspace I/	0 Diagnostics Real-Time	e Workshop
- Code Syste	generation m target file: _{[1}	i1102.tlc	Browse
Build Temp Make	options late makefile: : command: enerate code or	rti1102.tmf make_rti nly	
	Options	Stateflow options Build	RTI Settings
		OK Cancel	Help Apply

Obr. 15 Parametre simulácie – Real-Time Workshop

4.2 ControlDesk

Po inštalácii programového balíka dSPACE je program ControlDesk (na vizualizáciu a ovládanie) prístupný vo Windows **Štart** menu:

Programy – dSPACE Tools – ControlDesk

Po spustení ControlDesku prebieha inicializácia, ktorú vidno v spodnej časti programu v záložke Log Viewer (Obr. 16).

4.2.1 Tvorba nového experimentu

Pri vytváraní nového experimentu sa musí špecifikovať jeho názov a pracovný adresár. Do pracovného adresára ControlDesk ukladá súbor s názvom experimentu (CDX), ktorý obsahuje všetky informácie o experimente. V tomto adresári je možné vytvárať aj podadresáre. Po uložení experimentu na disk, už názov experimentu a pracovný adresár nemožno meniť.

Postup pri vyváraní nového experimentu zahŕňa tieto kroky:

- V bar menu sa vyberie položka File New Experiment, ktorá otvorí okno New Experiment.
- V riadku Experiment Name sa zadáva názov experimentu. Pracovný adresár sa zadáva v riadku Working Root.
- Experiment sa uloží kliknutím na ikonu OK. Pri ukončení programu ControlDesk otvorí okno s otázkou: "Do you want to add all open files to the experiment", ktorú treba akceptovať.

🎘 ControlDesk Developer Version			_ 8 ×
<u>File Edit View Tools Experiment Platform Instrumenta</u>	<u>W</u> indow <u>H</u> elp		
D ₄ •	5. 🗞 😼 📗 ka 🗛 r	□ ▶ ■ ♦] ⊀ 뭑 4	⌀ 🕅 📗 🖪 🗷
₽ ≥ < ₽ 2 * ₽ ₽ ₽ ₽ ₽ ₽ ₽	eere	韩昌 1 % % 死	
ControlDesk: ControlDesk: ControlDesk: Platform: Platform: Platform: ControlDesk: ControlDesk: ControlDesk: ControlDesk: ControlDesk: ControlDesk: ControlDesk: ControlDesk: ControlDesk: Platform: Platform: Platform: Platform: Platform: ControlDesk: ControlDesk: Platform: Platform: ControlDesk: ControlDesk: Platform: Platform: ControlDesk: ControlDesk: ControlDesk: ControlDesk: ControlDesk: ControlDesk: ControlDesk: ControlDesk: Platform: ControlDesk:	nitializing PythonInterpreter.Con nitializing ReferenceData.Comp nitializing SCOUT.Component stabilishing the connection. Connecting to the bus completed. nitializing TrcParser.Componen	iponent ionent	×
For Help, press F1.		EDIT	IUM 02/18/10 12:16

Obr. 16 ControlDesk

4.2.2 Úprava vlastností experimentu

Pri úprave vlastností experimentu sa postupuje nasledovne:

- V bar menu sa vyberie položka File Open Experiment, ktorá otvorí okno
 Open Experiment. Po nastavení sa do adresára s uloženým experimentom (prípadne viacerými), sa označí požadovaný a otvorí sa.
- V bar menu sa vyberie položka Experiment Configure Settings, ktorá otvorí okno Configure Experiment Settings. V okne sa upravia potrebné údaje a klikne sa na ikonu OK.

4.2.3 Prístrojový panel

Na vytvorenie nového **Instrument Panel** (prístrojový panel), sa musí najskôr vytvoriť nové **Layout Window**, kde sa potom umiestnia prístroje.

Obr. 17 Módy panelov prístrojov

4.2.3.1 Vytváranie panelov prístrojov

Pomocou panelov nástrojov sa môže ovládať RTA a/alebo monitorovať rôzne signály a ukladať údaje do súboru. Prístroje možno umiestniť ľubovoľne v jednom alebo vo viacerých oknách. Tieto okná sa nazývajú Layout Windows. Skupina prístrojov umiestnených v Layout Window, ktoré sú prepojené zo zodpovedajúcimi signálmi sa nazýva Virtual Instrument Panel. Vytvorenie panelu prebieha v dvoch krokoch:

- Voľba a rozmiestnenie prístrojov.
- Prepojenie prístrojov so signálmi.

4.2.3.2 Tvorba Layout Window

- V bar menu sa vyberie File New, kde sa zvolí Layout. Možno použiť aj klávesovú skratku Ctrl+Shift+L.
- Zobrazí sa nové Layout Window Obr. 18 (Instrument Panel) a Instrument Selector (Obr. 19).

4.2.3.3 Instrument Selector

ControlDesk ponúka základnú sadu prístrojov rozdelených do nasledujúcich skupín:

- Virtual Instruments
- Data Acquisition
- Custom Instruments

Obr. 18 Layout Window

Obr. 19 Instrument Selector – Data Acquisition, Virtual Instruments

4.2.3.4 Vytvorenie prístrojov

Na zmeranie prechodovej charakteristiky laboratórneho teplovzdušného zariadenia sa vyberie v Instrument Selector zo skupiny Data Acquisition prístroj Plotter a označí sa jeho ikona. Potom sa pomocou myši vytvorí v Layout Window obdĺžnik, ktorý zodpovedá veľkosti prístroja (Obr. 20). Podľa kapitoly 4.2.3.2 sa vytvorí druhý Layout Window a zo skupiny Data Acquisition vyberie prístroj Capture Settings na zachytávanie údajov a rovnakým spôsobom, ako pri prístroji Plotter, sa nanesie do druhého Layout Window (Obr. 21).

Červený rámik okolo prístroja znamená, že nebolo vytvorené prepojenie so signálom.

🂯 meranie1 - ControlDesk Developer	Version - Layout1	_ 8 ×
<u>File Edit View T</u> ools E <u>x</u> periment Pla	tform <u>I</u> nstrumentation <u>W</u> indow <u>H</u> elp	
	📃 🔩 🔩 🔌 饕 🛛 🐜 💷 🕨 🔹 🔶 📝 🤒 🧷	💥 🗍 II 🔹 🖪
🗗 🤍 🖘 📁 🛛 🔛 🗐	最同 f × E E 回 f P 共高 / 13 3 5	
		<u> </u>
meranie1	<u>⊾'</u> Layout1 *	Virtual Instruments
	11	Data Acquisition
		Selector
		LaptureSettings
		🙀 LogicAnalyzer
		K Plotter
		Template
		D XYPlot
	3.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0	1.25
		
Ex Ek	Layout1	Custom Instruments
× Variable Browser:	finished.	
Instrumentation:	finished.	_
AppServerManager: AppServerManager:	Saving experiment finished	
Source Code Editor:	finished.	
Experiment:	finished.	
L'apointion.		_
Log Viewer (Interpreter	∖ File Selector /	
For Help, press F1.	EDIT	02/18/10 12:45

Obr. 20 Prístroj "Plotter"

🚝 meranie1 - ControlDesk Develop	er Version - Layout2				
<u>File E</u> dit <u>V</u> iew <u>T</u> ools E <u>x</u> periment	Platform Instrumentation	<u>W</u> indow <u>H</u> elp			
	D ₁ S ₃ 9	u 🗞 👿 🍬 🤅		🌭 🛛 🖈 🖹 🖉	🕅 🗏 🖬 🔿 🕅
📮 🛬 🤜 💷 🕍 📾 🚍	日 泉泉 孫 X		2 6 6 6 7	1 2 2 2	
	<u>.</u>				
	Layout2 *				Virtual Instruments
					Data Acquisition
	Start	Se <u>t</u> tings.	.		K Selector
	0%	Length			🙀 CaptureSettings
		Downsempling	05		LogicAnalyzer
	Trigger Signal-	Downsamping	<u> </u>		Kt Plotter
	🗌 🗖 <u>O</u> n/Off	<u>7</u>			W Tamalaka
	Level	Delay			
	Contraction of the second s	able here >>			
				▁▁▶╱╢	
	Lavout1	Lauout2			Custon Instrumente
		Edjoure			
▲ Variable Browser:		inished.			_
AppServerManager:	 Sa	ving experiment			
AppServerManager:		inished.			
Experiment:		inished.			
Experiment:	I	inished.			
Log Viewer	er λ File Selector /				<u> </u>
For Help, press E1	/ / / / / / / / / / / / / / / / / / / /				02/18/10 12:49

Obr. 21 Prístroj "Capture Settings"

4.2.3.5 Prepojenie prístrojov so signálmi

Jednotlivé prístroje možno prepojiť s príslušnými signálmi nasledujúcim spôsobom:

- V bar menu sa klikne na File a vyberie možnosť Open Variable File... (Ctrl+T).
- Nastaví sa do adresára, kde sa nachádza súbor s koncovkou .sdf (a názvom zhodným s názvom schémy (Obr. 10)), potrebný na odmeranie prechodovej charakteristiky, vyberie sa a otvorí.
- V Tool Window sa objaví nová záložka (Obr. 22).

≚ ⊡ i realnaprech1	Variable	Size	Туре	Origin	Description	
🚽 🚊 🗄 Model Root	🕒 Out1	1x1	FloatDSP3			#1
Prietok	P Time	1x1	FloatDSP3.			
	P Before	1x1	FloatDSP3.			
	P After	1×1	FloatDSP3			
Log Viewer A Interpreter	File Selector 👌 d: tomcik/pch/	realnaprech1.sdf /				

Obr. 22 Tool Window

- V ľavej časti Tool Window sa vyhľadá pracovný adresár a v ňom sa klikne na podadresár Model Root, v ktorom sa nachádza zoznam všetkých blokov z Obr. 11. [6]
- V zozname sa klikne na ohrev/vstup a v pravej časti sa vyberie údaj, ktorý zodpovedá výstupu z bloku ohrev/vstup Out1.
- Zvolený údaj sa pomocou myši prenesie do prístroja **Plotter** na os y.
- Rovnakým postupom sa vyhľadajú a prenesú údaje Teplota(%) a Teplota(oC) do prístroja Plotter na os *y*.
- V ľavej dolnej časti prístroja Plotter v Layout Window, po umiestnení všetkých troch údajov, sa zobrazia 3 farebné štvorce. V animačnom móde (Obr. 17) možno priložením kurzoru na daný štvorec zistiť, ktorý údaj predstavuje.

4.2.4 Zavedenie RTA na RTP

Pre zavedenie RTA sa klikne v bar menu na Platform – Application – Load Application. Z okna Load Application or Model sa vyberie opäť súbor určený na vykreslenie prechodovej charakteristiky. ControlDesk zobrazí otázku či má zastaviť už bežiaci program na RTP. Vyberie sa **Áno**.

4.2.5 Ukladanie údajov do dátového súboru

- V okne Capture Settings v druhom Layout Window sa vyberie možnosť Settings... čo zobrazí okno dSPACE CaptureSettings Control – vlastnosti.
- V záložke Capture sa vyberie z rolety možnosť s názvom DSP nazov HostService, kde "nazov" reprezentuje názov schémy určenej na meranie prechodovej charakteristiky (Obr. 23).
- V časti Interval sa prepíše dĺžka intervalu na zvolenú hodnotu. Hodnota dĺžky intervalu (Length) by mala byť dostatočne dlhá nato, aby sa proces ustálil pred zvolenou skokovou zmenou a takisto po nej. Pre daný prípad je vhodné zvoliť čas od 800 s. Ostatné údaje sa nastavia tak, aby boli v zhode s údajmi na Obr. 23.

Details	MultiProcessor	Ext	ended Properties
Capture	CaptureVariables	Trigger	Acquisition
apture DSP	- realnaprech1 - HostSe	rvice	1
Auto <u>R</u> epe	at	Take Capture	Save Capture
Auto start v	with animation		J
	nor annoadorr		
Use Times	iamping		
Use Times Interval	iamping		
Use Times Interval Length	amping 800		
Use Times Interval Length	800 g 1 🖨		
Use Timest Interval Length Downsamplin	800 9 1 🗲		

Obr. 23 Okno dSPACE CaptureSettings Control – vlastnosti, záložka Capture

 Hodnota údaju dĺžky intervalu znamená koľko sekúnd bude program ukladať údaje do jedného dátového súboru. Po uplnutí nastavenej hodnoty vznikne v pracovnom adresári súbor s koncovkou .mat, ktorý možno následne spracovať v programe MATLAB. Potom začne program ukladať údaje do daľšieho súboru po zvolenú dobu atď.

- V záložke Acquisition sa označí položka Autoname, vyberie pracovný adresár a nazve sa súbor (Obr. 24).
- Zvolené nastavenia sa potvrdia tlačidlom OK.

4.2.6 Ovládanie RTA na RTP

Štart RTA:

RTA sa spustí kliknutím na zelený trojuholník v **Platform Manager Toolbar** (Obr. 25) a následne stlačením ikony animačného módu (Obr. 17).

Zastavenie RTA:

RTA sa zastaví kliknutím na ikonu editovacieho módu (Obr. 17) a červeného štvorca (Obr. 25) v **Platform Manager Toolbar**.

Details	MultiProcessor	Extend	ded Properties
Capture	CaptureVariables	Trigger	Acquisition
C <u>S</u> imple			
C Autosa <u>v</u> e			
• Auto <u>n</u> ame	d:\t	omcik/pch/mer	anie1.mat
C <u>C</u> ontinuous			
◯ Stream To <u>D</u>	isk 🚺		

Obr. 24 Okno dSPACE CaptureSettings Control – vlastnosti, záložka Acquisition

Obr. 25 Platform Manager Toolbar – štart/stop RTA

4.2.7 Riadenie procesu

Riadenie laboratórneho teplovzdušného procesu pomocou navrhnutých regulátorov prebieha v týchto krokoch:

• Vytvorenie schémy na riadenie reálneho procesu v Simulinku (Obr. 26).

Obr. 26 Schéma na riadenie laboratórneho teplovzdušného procesu

- Nastavenie údajov v schéme:
 - V bloku ohrevvstup sa nastavia požadované hodnoty. Pre daný proces je vhodné zvoliť nasledujúce hodnoty:
 - Step time: 200
 - Initial value: 40
 - Final value: 60
 - Sample time: 0
 - Údaje bloku otackyvstup sú zhodné s Obr. 13.
 - V bloku Saturation vyjadrujúcom obmedzenie teploty v rozsahu od 0 % do 100 %, sa nastaví vrchný limit (Upper limit) na hodnotu 100 a spodný limit (Lower limit) na hodnotu 0.
 - o Blok Fukac zodpovedá Obr. 11.
 - V bloku PID sa nastavia hodnoty zložiek jednotlivých regulátorov v tvare Z_R pre blok P, Z_R/T_I pre blok I a $Z_R.T_D$ pre blok D.

- V menu schémy sa vyberie Simulation Simulation Parameters a nastavia sa údaje podľa Obr. 14 a Obr. 15. Hodnota Fixed step size v záložke Solver sa prepíše na hodnotu 1 a pokračuje sa kompiláciou stlačením tlačidla Build v záložke Real-Time Workshop (Obr. 15).
- Kompiláciu treba vykonávať po každej zmene hodnôt regulátora, teda pre každý regulátor zvlášť.
- Spustí sa program ControlDesk postupom popísaným v kapitole 4.2.
- Podľa postupu v kapitole 4.2.1 sa vytvorí nový experiment.
- Podľa postupu v kapitolách 4.2.3.1, 4.2.3.2 a 4.2.3.4 sa vytvoria 3 Layout
 Windows, z toho dva pre Plotter a jeden pre Capture Settings.
- Podľa kapitoly 4.2.3.5 sa vyberie schéma určená na riadenie (koncovka .sdf) a otvorí sa. Ďalej sa prepoja signály s jednotlivými prístrojmi, a to tak, aby jeden z prístrojov Plotter obsahoval signál pre IAE a druhý signály z blokov ohrevvstup, Teplota(%) a Saturation. Tento krok je realizovaný kvôli prehľadnosti.
- Pre zavedenie RTA na RTP sa postupuje podľa kapitoly 4.2.4 a vyberie sa súbor s rovnakým menom ako má schéma určená na riadenie (koncovka "sdf").
- Podľa postupu v kapitole 4.2.5 sa nastavia údaje prístroja Capture Settings. Pre interval a jeho dĺžku (Length) postačí hodnota 500. Výsledné nastavenie by malo zodpovedať Obr. 27.
- V záložke Acquisition sa označí Autoname, vyberie pracovný adresár a pre každý testovaný regulátor sa vytvorí nový súbor, ktorý poslúži na spracovanie dát v MATLABe a vyhodnotenie najlepšieho regulátora.
- Ovládanie RTA je popísané v kapitole 4.2.6.

<u>S</u> tart	Se <u>t</u> tings	
0 9	<u>L</u> ength 500	
Auto <u>R</u> epeat	Downsampling	
—Trigger Signal- □ 0 m/0#	T	
	Delau 0	

Obr. 27 Nastavenie prístroja Capture Settings pre riadenie procesu

Obr. 28 Vzorový grafický priebeh riadenia – ControlDesk

Obr. 29 Vzorový priebeh IAE – ControlDesk

5 Riadenie laboratórneho teplovzdušného procesu

Laboratórne teplovzdušné zariadenie umožňuje riadiť teplotu vzduchu ohrevom a otáčkami ventilátora. Úlohou je uriadiť teplotu vzduchu ohrevom, na požadovanú hodnotu, pri konštantnej hodnote otáčok. Postup pri riešení daného problému zahŕňa tieto kroky:

- Odmeranie prechodovej charakteristiky a určenie prenosu systému.
 - Vytvorenie schémy na odmeranie prechodovej charakteristiky a jej nastavenie.
 - Vytvorenie modelu RTA pomocou knižnice RTI1102, ktorý je bezprostrednou súčasťou schémy.
 - o Kompilácia RTA.
 - Pomocou programu ControlDesk odmerať PCH reálneho systému a vytvoriť dátový súbor s údajmi na grafické spracovanie prechodovej charakteristiky reálneho systému.
 - Grafické spracovanie prechodovej charakteristiky v programe MATLAB.
 - Spracovanie prechodovej charakteristiky Strejcovou metódou identifikácie systému – určenie prenosu systému.
 - Vytvorenie schémy na overenie identifikovaného prenosu a jeho overenie.
- Riadenie systému.
 - o Syntéza rôznych typov regulátorov viacerými metódami.
 - o Testovanie navrhnutých regulátorov v prostredí MATLAB-Simulink.
 - Vytvorenie schémy v Simulinku na riadenie procesu za použitia jednotlivých navrhnutých regulátorov a jej nastavenie.
 - o Kompilácia RTA.
 - Pomocou programu ControlDesk sa realizuje testovanie regulátorov a vytvorí sa dátový súbor s údajmi o vplyve regulátorov na reálny systém.
 - o Grafické spracovanie dátového súboru v programe MATLAB.
 - Na základe zvolených ukazovateľov kvality regulácie sa zrealizuje výber najlepšieho regulátora.

5.1 Odmeranie a spracovanie prechodovej charakteristiky

5.1.1 Meranie prechodovej charakteristiky

Pomocou Simulinku sa vytvorí schéma (realnaprech1.mdl), pomocou ktorej sa bude merať PCH systému. Vytvorená schéma je uvedená v kapitole 4.1.1 na Obr. 10. Súčasťou schémy je aj vytvorenie modelu RTA pomocou knižnice RTI1102 (kapitola 4.1.1, Obr. 11). Nastavenie schémy je popísané a ilustoravané v kapitole 4.1.2. Následne sa vykoná kompilácia RTA postupom opísaným v kapitole 4.1.2.

Pomocou programu ControlDesk, ktorý okrem vizualizácie a ovládania sledovaného procesu umožňuje aj zachytenie údajov potrebných na spracovanie PCH v podobe dátového súboru, sa tento súbor vytvorí. Celý postup je popísaný v kapitolách 4.2.1 – 4.2.6. Tento súbor s koncovkou "mat" (pch1123001.mat), sa nachádza v pracovnom adresári a obsahuje údaje o PCH.

Vytvorený súbor možno graficky spracovať v programe MATLAB. Výsledkom je graf zobrazený na Obr. 30. Na vytvorenie grafov z dátového súboru možno použiť M-file s názvom pch.m.

Obr. 30 Prechodová charakteristika systému

Pri vytváraní grafu z dátového súboru treba najprv získať číselné hodnoty premenných, ktoré obsahuje súbor. To sa realizuje za pomoci programu MATLAB. V príkazovom riadku MATLABu sa postupne zadajú nasledovné príkazy:

- load názov, kde "názov" predstavuje názov MAT-súboru (súboru, ktorý sa získa z programu ControlDesk konkrétne pch1123001.mat).
- x=nazov.X.Data (konkrétne cas=pch1123001.X.Data "cas" predstavuje nezávisle premennú).
- y1=nazov.Y(1).Data (konkrétne y1=pch1123001.Y(1).Data "y1" predstavuje prvú závisle premennú – teplotu v % rozsahu zariadenia).
- y2=nazov.Y(2).Data (konkrétne y12=pch1123001.Y(2).Data "y12" predstavuje druhú závisle premennú – teplotu v stupňoch Celzia).
- y3=nazov.Y(3).Data (konkrétne y13=pch1123001.Y(3).Data "y13" predstavuje tretiu závisle premennú skokovú zmenu ohrevu v % zariadenia).
- Pomocou príkazu plot(cas,y1,cas,y12,cas,y13) sa získa výsledný graf. Obr. 30 možno vykresliť príkazom plot(cas,y1).

5.1.2 Určenie prenosu a jeho overenie

Na určenie prenosu sa postupuje Strejcovou metódou identifikácie systému. Prechodová charakteristika sa spracuje ako PCH prvého rádu s dopravným oneskorením, pretože na syntézu regulátora sa vyžaduje poznať hodnotu času nábehu t_n a času prieťahu t_u . Spracovanú prechodovú charakteristiku možno vidieť na Obr. 31, kde červená čiara predstavuje dotyčnicu k PCH prechádzajúcu inflexným bodom. Z takto spracovanej prechodovej charakteristiky možno získať údaje potrebné na určenie prenosu:

 $y_0 = 72,6$ % (y_0 predstavuje ustálenú hodnotu teploty vzduchu v percentách rozsahu pred skokovou zmenou)

 $y_{\infty} = 31,5$ % (y_{∞} predstavuje ustálenú hodnotu teploty vzduchu v percentách rozsahu po skokovej zmene)

 $t_0 = 366 \text{ s}$ (t_0 predstavuje čas v sekundách, v ktorom sa začína veličina y meniť v dôsledku skokovej zmeny ohrevu)

 $t_1 = 370$ s (t_1 predstavuje čas v sekundách určený ako priesečník y_0 a dotyčnice k PCH prechádzajúcou inflexným bodom)

 $t_2 = 424$ s (t_2 predstavuje čas v sekundách určený ako priesečník y_{∞} a dotyčnice k PCH prechádzajúcou inflexným bodom)

Hodnoty veličín u_0 a u_∞ predstavujú percentuálnu hodnotu veličiny ohrev pred a po skokovej zmene. Grafický priebeh vstupnej veličiny meniacej sa skokovo možno vidieť na Obr. 32.

 $u_{\theta} = 50 \% (u_{\theta} \text{ predstavuje hodnotu vstupnej veličiny pred skokovou zmenou})$ $u_{\infty} = 20 \% (u_{\infty} \text{ predstavuje hodnotu vstupnej veličiny po skokovej zmene})$ Zosilnenie systému sa vypočíta podľa vzťahu (25) uvedeného v kapitole 2.2.1

$$Z = \frac{y_{\infty} - y_0}{u_{\infty} - u_0} = \frac{31,5 - 72,6}{20 - 50} = 1,37$$

Obr. 31 Spracovanie prechodovej charakteristiky

Obr. 32 Grafický priebeh skokovej zmeny ohrevu

Hodnoty času prieťahu t_u a času nábehu t_n sa vypočítajú z nasledujúcich vzťahov

$$t_u = t_1 - t_0 \tag{30}$$

$$t_n = t_2 - t_1 \tag{31}$$

teda

 $t_u = t_1 - t_0 = 370 - 366 = 4$ s

 $t_n = t_2 - t_1 = 424 - 370 = 54$ s

Určí sa hodnota f_s ako podiel času prieťahu a času nábehu

 $f_s = t_u/t_n = 4/54 \doteq 0,0741$

Z Tab. 1 uvedenej v kapitole 2.2.2 sa vyberie rád systému tak, aby bola splnená podmienka (27). Pre daný systém zodpovedá rád n = 1.

Dopravné oneskorenie sa určí podľa vzťahu (28) a časová konštanta, za pomoci Tab. 1, podľa vzťahu (29).

$$D = [f_s - f(n)]t_n = [(4/54) - 0].54 = 4$$
 s

Z Tab. 1 sa odčíta hodnota g(n) zodpovedajúca n = 1. Táto hodnota je g(n) = 1. Časová konštanta T sa vypočíta zo vzťahu (29).

$$T = g(n)t_n = 1.54 = 54$$
 s

Výsledný prenos v tvare rovnice (26) je potom

$$G(s) = \frac{Z}{(Ts+1)^n} e^{-Ds} = \frac{1,37}{54\,s+1} e^{-4s}$$

Všetky údaje odčítané z PCH a vypočítané údaje sú prehľadne uvedené v Tab. 3.

Tab. 3 Údaje odčítané z PCH a vypočítané údaje Strejcovej identifikácie systému

<i>y</i> ₀ = 72,6 %	$y_{\infty} = 31,5\%$		$u_0 = 50 \%$		$u_{\infty} = 20 \%$	
$t_0 = 366 \text{ s}$		$t_1 = 370 \text{ s}$	5	$t_2 =$	424 s	
$t_u = 4 \text{ s}$		$t_n = 54 \text{ s}$		$f_s \doteq 0,0741$		
<i>n</i> = 1	T =	54 s	D = 4 s		Z = 1,37	
	$G(s) = \frac{1,37}{54 s+1} e^{-4s}$					

5.1.3 Overenie identifikovaného prenosu

Vhodná schéma na overenie identifikovaného prenosu je zobrazená na Obr. 33. Schéma je dostupná pod názvom overenieprenosu1.mdl. Nastavenie hodnôt schémy na overenie identifikovaného prenosu je ilustrované na Obr. 34 - Obr. 36 resp. priamo na obrázku schémy. Vzhľadom na to, že skoková zmena v skutočnosti nastala v čase **366** sekúnd miesto zvolených 400 s, tak sa naďalej bude používať táto nová hodnota. Dĺžku simulácie je vhodné zvoliť **800 s**. Po vyplnení schémy a jej spustení sa nahrajú údaje do súboru overenieprenosu1m.m, ktorý po otvorení v MATLABe vykreslí graf, ktorý porovnáva PCH získanú ako výstup z reálneho procesu (modrá čiara) a PCH získanú ako výstup z identifikovaného prenosu (červená čiara). Tento graf je zobrazený na Obr. 37.

Obr. 33 Schéma na overenie identifikovaného prenosu

🙀 Source Block Parameters: Ohrev	
Step	
Output a step.	
Parameters	
Step time:	
366	
Initial value:	
50	
Final value:	
_20	
Sample time:	
Interpret vector parameters as 1-D	
Enable zero crossing detection	
OK Cancel	Help

Obr. 34 Údaje bloku "Ohrev"

🗑 Function Block Parameters: Prenos	×
Transfer Fon	
The numerator coefficient can be a vector or matrix expression. The denominator coefficient must be a vector. The output width equals the number of rows in the numerator coefficient. You should specify the coefficients in descending order of powers of s.	
Parameters	5
Numerator coefficient:	
[1.37]	
Denominator coefficient:	
[54 1]	
Absolute tolerance:	
auto	
State Name: (e.g., 'position')	
H .	
OK Cancel Help Apply	

Obr. 35 Údaje bloku "Prenos"

Transport Delay	
Apply specified de larger than the sin	lay to the input signal. Best accuracy is achieved when the delay ulation step size.
Parameters	
Time delay:	
4	
Initial output:	
72.6	
Initial buffer size:	
1024	
🔄 Use fixed buf	er size
🔲 Direct feedthi	ough of input during linearization
Pade order (for lin	earization):
0	

Obr. 36 Údaje bloku "Dopravne oneskorenie"

Obr. 37 Graf porovnania PCH reálneho procesu a PCH identifikovaného prenosu

Podľa Obr. 37 možno považovať identifikovaný prenos za vhodný.

5.2 Riadenie systému

Úlohou je navrhnúť pomocou známych metód P, PI, PD, PID regulátory a po ich otestovaní vybrať, na základe zvolených ukazovateľov kvality riadenia (IAE a času regulácie) regulátor, ktorý v najkratšom čase a za najnižšej hodnoty IAE dosiahne požadovanú hodnotu teploty vzduchu, resp. teplotu v povolenom okolí žiadanej veličiny, pričom požadovaná hodnota teploty vzduchu je **60 %** rozsahu zariadenia. Teplota vzduchu sa riadi ohrevom pri konštantých otáčkach ventilátora.

5.2.1 Syntéza regulátorov a ich testovanie

Podľa metód uvedených v kapitole 2.2.4 a za použitia údajov z Tab. 3, sa určia rôzne typy (P, PI, PD, PID) regulátorov. Jednotlivé regulátory sa navrhujú pomocou

programu pre syntézu regulátorov podľa [7]. Prenosy jednotlivých regulátorov sú uvedené v Tab. 4.

5.2.1.1 Simulačné testovanie regulátorov

V Simulinku sa vytvorí schéma na otestovanie navrhnutých regulátorov. Schéma vhodná na použitie je vyobrazená na Obr. 38 a nachádza sa aj na priloženom CD (regulatortest1.mdl).

Obr. 38 Schéma na testovanie navrhnutých regulátorov

Parametre schémy vyobrazenej na Obr. 38 možno odčítať priamo z obrázka. Výnimku tvoria niektoré bloky. V bloku "zmena ziadanej teploty v %", sa nastaví "Step time" na hodnotu **200**, "Initial value" na hodnotu **40** a "Final value" na hodnotu **60**. Znamená to, že v čase 200 s sa hodnota žiadanej veličiny zmení skokom z hodnoty 40 % na 60 %. V bloku "obmedzenie ohrevu" sa nastaví vrchný limit na hodnotu **100** a spodný na hodnotu **0**. V bloku "dopravne oneskorenie" sa nastaví "Time delay" na hodnotu 4, "Initial output" na hodnotu **72,6**. Parametre bloku "PID regulator" sa menia podľa práve zvoleného regulátora, pričom prenosy regulátorov sú uvedené v Tab. 4. Po spustení schémy možno sledovať vplyv zvoleného regulátora na riadenú veličinu

(teplotu v % rozsahu zariadenia) v bloku "teplota vzduchu", zmenu ohrevu, ktorým sa riadi teplota v bloku "ohrev" a hodnotu IAE v bloku "IAE".

Po odsimulovaní procesu za použitia jednotlivých regulátorov sa zistilo, že najvýhodnejším regulátorom z hľadiska času regulácie je PID regulátor navrhnutý metódou Chien-Hrones-Reswick, kde **čas regulácie** dosahuje najnižšiu hodnotu, a to **16,6 s**. Z hľadiska integrálneho ukazovateľa kvality riadenia IAE je najvýhodnejším PID regulátor navrhnutý metódou Smith-Murrill, kde sa zaznamenala najnižšia hodnota **IAE**, a to **221**. Grafické priebehy regulácii s oboma uvedenými regulátormi sú zobrazené na Obr. 39 a Obr. 40. Na vykreslenie jednotlivých grafov za použitia navrhnutých regulátorov možno použiť M-file s názvom testreg.m.

Obr. 39 Grafický priebeh regulácie s PID regulátorom navrhnutým metódou Chien-Hrones-Reswick - simulácia

Obr. 40 Grafický priebeh regulácie s PID regulátorom navrhnutým metódou Smith-Murrill – simulácia

5.2.1.2 Riadenie reálneho procesu

V Simulinku sa vytvorí schéma na riadenie reálneho procesu. Vhodnou schémou je schéma na Obr. 26 (riadenie.mdl). Vyplnenie schémy je uvedené v kapitole 4.2.7.

Po vyplnení schémy nasleduje kompilácia RTA. Postup je popísaný taktiež v kapitole 4.2.7. Treba však dbať na to, aby bola kompilácia aktualizovaná pre každý regulátor, t. j. zakaždým, keď sa do bloku "PID" uvedú nové hodnoty parametrov P, I, D.

Pomocou programu ControlDesk sa po otestovaní regulátora vytvorí dátový súbor pre zadaný regulátor. Postup je opísaný v kapitole 4.2.7. Po realizácii uvedeného postupu sa v pracovnom adresári vytvorí nový súbor obsahujúci informácie o vplyve regulátora na riadený proces.

V MATLABe sa z dátového súboru vytvoreného pomocou programu ControlDesk vytvorí graf, potrebný na spracovanie regulačného pochodu. Pri spracovaní údajov zo

súboru, sa postupuje nasledovne (v príkazovom riadku MATLABu sa zadávajú tieto údaje):

- load nazov, kde "nazov" predstavuje názov MAT-súboru.
- x=nazov.X.Data (konkrétne cas=nazov.X.Data "cas" predstavuje nezávisle premennú).
- y1=nazov.Y(1).Data (konkrétne IAE=nazov.Y(1).Data "IAE" predstavuje prvú závisle premennú – hodnotu IAE).
- plot(x,y1) (konkrétne plot(cas,IAE)) vykreslí závislosť hodnoty IAE od času.
- y2=nazov.Y(2).Data ("y2" predstavuje hodnotu druhej závisle premennej ohrevu v % rozsahu zariadenia).
- y3=nazov.Y(3).Data ("y3" predstavuje hodnotu tretej závisle premennej meranej teploty v % rozsahu zariadenia).
- y4=nazov.Y(4).Data ("y4" predstavuje hodnotu štvrtej závisle premennej žiadanej teploty v % rozsahu zariadenia).
- Pomocou príkazu plot(x,y2,x,y3,x,y4) (resp. plot(cas,y2,cas,y3,cas,y4)) sa vykreslí graf zachytávajúci regulačný pochod. Za použitia súborov pidchr20.m a pidsm.m sa získajú grafy uvedené na Obr. 41 a Obr. 42. Tieto grafy sa líšia od grafov získaných postupom uvedeným vyššie tým, že zachytávajú regulačný pochod od zvoleného času (od realizácie skokovej zmeny žiadanej teploty) a vyznačením δ-okolia žiadanej veličiny.

Súbory na grafické spracovanie pre jednotlivé regulátory sú uvedené v Tab. 4 a uložené na priloženom CD.

5.2.2 Výber najlepšieho regulátora

Najlepší regulátor sa vyberie na základe najmenšej hodnoty času regulácie a IAE. Oba tieto ukazovatele, aj s údajom o maximálnom preregulovaní a časom maximálneho preregulovania, sú pre jednotlivé regulátory uvedené v Tab. 4, z ktorej vyplýva, že najlepším regulátorom, pre daný proces a zadané podmienky, je **PID regulátor** navrhnutý **metódou Smith-Murrill** z dôvodu najnižšej hodnoty IAE a **PID regulátor** navrhnutý **metódou Chien-Hrones-Reswick** z dôvodu najnižšej hodnoty času regulácie Oba tieto regulátory aj s vyhodnotenými ukazovateľmi kvality riadenia sú v Tab. 4 označené zelenou farbou. Grafické priebehy riadenia výmenníka tepla navrhnutými regulátormi sú uvedené na Obr. 41 a Obr. 42.

5.2.3 Nevyhovujúce regulátory

Za nevyhovujúce regulátory možno považovať P regulátory navrhnuté metódami Ziegler-Nichols, Cohen-Coon a Chien-Hrones-Reswick a PD regulátor navrhnutý metódou Cohen-Coon, pretože sa riadená veličina nedostane do požadovaného okolia žiadanej veličiny. Toto okolie je ± 1 % z hodnoty žiadanej veličiny, ktorá je 60 %. Z dôvodu kmitania riadenej veličiny možno považovať za nevyhovujúce aj PI regulátory navrhnuté metódami Ziegler-Nichols a Cohen-Coon.

Typ	Metóda návrhu	Prenos regulátora	IAE	Čas	Trvalá	Maximálne	Čas	Poznámka	Súbor
regulá-	regulátora	1		regulá- cie	regulačná odchélba	preregulova- nie	max. nrered		
tora				1	oucityina	200	prucë.		
Ρ	Ziegler-Nichols	$G_{R}(s) = 9,85$	1296,5	-	3,65	29,65 %	220	N	pzn.m
Ρ	Cohen-Coon	$G_{R}(s) = 10,1$	1267,1		3,46	30,27 %	220	N	pcc.m
Ρ	Chien-Hrones-Reswick	$G_{R}(s) = 2,96$	3783,4	-	11,97	10 %	226	0 % preg., N	pchr0.m
Р	Chien-Hrones-Reswick	$G_{R}(s) = 6.9$	1906,9	1	5,86	27,73 %	221	20 % preg., N	pchr20.m
CI	Cohen-Coon	$G_{R}(s) = 12,44(1+14,22s)$	1266,2		2,97	1		N	pdcc.m
Id	Ziegler-Nichols	$G_{R}(s) = 8,87\left(1 + \frac{1}{13,32s}\right)$	874,9	236,6		87 %	226	N	pizn.m
Id	Cohen-Coon	$G_{R}(s) = 8,93 \left(1 + \frac{1}{11,53s}\right)$	1276,6				224	N	picc.m
ΡΙ	Metóda priamej syntézy	$G_{R}(s) = 0.9\left(1 + \frac{1}{54s}\right)$	9,1101	157		% 0		$T_{URO} = 40$, V	pips.m
ΡΙ	Haalman	$G_{R}(s) = 6.57 \left(1 + \frac{1}{54s}\right)$	347,2	62,7		27,03 %	224	V	pih.m
ΡΙ	Chien-Hrones-Reswick	$G_{R}(s) = 6.57 \left(1 + \frac{1}{54s}\right)$	347,2	62,7		27,03 %	224	0 % preg., V	pichr0.m
Id	Chien-Hrones-Reswick	$G_{R}(s) = 5.91 \left(1 + \frac{1}{54s}\right)$	334	62,4		28,28 %	223	20 % preg., V	pichr20.m
Id	Smith-Murrill	$G_{R}(s) = 4,64\left(1 + \frac{1}{53,06s}\right)$	316,6	53,9		20,85 %	224	V	pism.m
ΡΙ	Rivera-Morari	$G_{R}(s) = 2,04\left(1 + \frac{1}{56s}\right)$	473,7	89,4		% 0		$T_{URO} = 20$, V	pirm.m
ΡΙ	Metóda požad. modelu	$G_{R}(s) = 3,63\left(1 + \frac{1}{54s}\right)$	317,5	57,1		11,33 %	227	0 % preg., V	pimpm.m
PID	Ziegler-Nichols	$G_{R}(s) = 11,82\left(1+\frac{1}{8s}+2s\right)$	1015,9	154,9	-	92,96 %	229	V	pidzn.m
PID	Cohen-Coon	$G_{R}(s) = 13,32 \left(1 + \frac{1}{9.55s} + 1,44s\right)$	832,9	150,8		84,77 %	227	V	pidcc.m

Tab.4 Tabuľka výsledkov

Súbor		pidps.m	pidchr0.m	pidchr20.m	pidsm.m	pidm.m	
Poznámka		$T_{URO} = 40$, V	0 % preg., V	$\frac{20}{V}$ % preg.,	V	$T_{URO} = 20$, V	
Čas max.	prereg.	-	223	221	222	-	
Maximálne preregulova-	nie	0 %	16,62 %	14,15 %	16,95 %	0 %	
Trvalá regulačná	odcnylka	-	-	-	-	-	
Čas regulá-	cre	172,7	36	30,6	32,1	102,6	
IAE		1044,8	307,6	301,5	282,7	550,1	
Prenos regulátora		$G_{R}(s) = 0.93 \left(1 + \frac{1}{56s} + 1.82s\right)$	$G_{R}(s) = 5.91 \left(1 + \frac{1}{54s} + 2s\right)$	$G_R(s) \; = \; 9,36 \left(1 + \frac{1}{73,445} + \; 2,56s \right)$	$G_R(s) \; = \; 6.52 \left(1 + \frac{1}{68,78s} + \; 1,48s \right)$	$G_{R}(s) = 1.7 \left(1 + \frac{1}{56s} + 1.93s\right)$	-
Metóda návrhu regulátora		Metóda priamej syntézy	Chien-Hrones-Reswick	Chien-Hrones-Reswick	Smith-Murrill	Rivera-Morari	1 1 1
Typ regulá-	tora	PID	PID	PID	PID	PID	

Tab. 4 Tabuľka výsledkov - pokračovanie

N - nevyhovuje, V - vyhovuje, preg. - preregulovanie

Obr. 41 Grafický priebeh regulácie s PID regulátorom navrhnutým metódou Chien-Hrones-Reswick

Obr. 42 Grafický priebeh regulácie s PID regulátorom navrhnutým metódou Smith-Murrill

Záver

Úlohou práce bolo zvládnuť riadenie teploty vzduchu na požadovanú hodnotu, resp. hodnotu neprekračujúcu zvolené okolie žiadanej veličiny (teploty v % rozsahu zariadenia), pomocou vybraných (najlepších) regulátorov (z hľadiska zvolených ukazovateľov kvality riadenia) implementovaných do riadiaceho systému dSPACE. Zariadenie LTR700 a v ňom teplota prúdiaceho vzduchu sa riadila ohrevom pri konštantných otáčkach ventilátora. Po zadaní údajov do schémy určenej na odmeranie prechodovej charakteristiky reálneho systému sa vykoná kompilácia modelu. Pomocou programu ControlDesk, ktorý je súčasťou systému dSPACE, sa navrhne prostredie na vizualizáciu a zachytia sa údaje týkajúce sa prechodovej charakteristiky.

Po spracovaní prechodovej charakteristiky v programe MATLAB a určenia prenosu systému, sa navrhnú štyri P regulátory, jeden PD regulátor, deväť PI a sedem PID regulátorov metódami uvedenými v kapitole 2.2.4. Jednotlivé regulátory sa postupne testujú v programovom prostredí MATLAB-Simulink a pomocou programu ControlDesk v reálnom procese. Po spracovaní dátových súborov sa určí, či daný regulátor je vhodný na riadenie a vyhodnotia sa postupne ukazovatele kvality riadenia, a to IAE, čas regulácie, trvalá regulačná odchýlka (v prípade regulátorov bez I zložky), maximálne preregulovanie a čas maximálneho preregulovania.

Najlepšie regulátory na riadenie reálneho procesu (regulátory typu PID navrhnuté metódami Chien-Hrones-Reswick a Smith-Murrill) pre zvolené ukazovatele kvality riadenia – čas regulácie a IAE – sú uvedené v poslednej kapitole práce v prehľadnej tabuľke, kde sú označené zelenou farbou. Tab. 4 obsahuje taktiež ostatné vyhovujúce (podľa vyšších hodnôt zvolených ukazovateľov kvality riadenia nie však najlepšie) a aj nevyhovujúce regulátory. V prípade nevyhovujúcich regulátorov je regulačný pochod rozkmitaný, neustaľuje sa do zvoleného času (500 s) alebo sa riadená veličina nedostane do požadovaného okolia žiadanej veličiny (teploty v % rozsahu zariadenia). Toto okolie je ± 1 % od žiadanej hodnoty 60 %. Medzi nevyhovujúce regulátory patria P regulátory navrhnuté metódami Ziegler-Nichols, Cohen-Coon a Chien-Hrones-Reswick a PD regulátor navrhnutý metódou Cohen-Coon, kde sa riadená veličina nedostane do požadovaného okolia žiadanej veličiny. Takisto dva PI regulátory (metóda Ziegler-Nichols a Cohen-Coon) sú nevyhovujúce, pretože sa riadená veličina počas 500 sekúnd neustaľuje a kmitá. V práci sú takisto zobrazené aj grafické priebehy vplyvu PID regulátorov navrhnutých metódami Chien-Hrones-Reswick a Smith-Murrill.

69

Všetky súbory, potrebné na získanie výsledkov, sú uložené na CD, ktoré je priložené k práci.

Zoznam použitej literatúry

BAKOŠOVÁ, M. – FIKAR, M. 2008. *Riadenie procesov*. Bratislava: STU,
 2008. 193 s. ISBN 978-80-227-2841-6.

 [2] BAKOŠOVÁ, M. – FIKAR, M. – ČIRKA, Ľ. 2003. Základy automatizácie: Laboratórne cvičenia zo základov automatizácie. 1. vyd. Bratislava: STU, 2003.
 153 s. ISBN 80-227-1831-9.

[3] ASTRÖM, K. J. – HÄGGLUND, T. 1995. PID Controllers: Theory, Design and Tuning. b.m.: Instrument Society of America, 1995. 343 s. ISBN 1-55617-516-7.

[4] RAY, W. H. – OGUNNAIKE, B. A. 1994. Process dynamics, modeling, and control. New York: Oxford University Press, 1994. 1260 s. ISBN 0-19-509119-1.
[5] SVETÍKOVÁ, M. 2002. Návrh užívateľského prostredia pre laboratórne

zariadenie LTR 700: diplomová práca. Bratislava: STU FCHPT, 2002. 46 s.

[6] ČIRKA, Ľ. 2001. dSPACE: Príručka. Bratislava: STU FCHPT, 2001. 16 s.

[7] ORAVEC, J. 2008. *Tvorba softvéru pre syntézu regulátorov*: bakalárska práca. Bratislava: STU FCHPT, 2008.

Príloha

Súčasťou práce je aj CD obsahujúce súbory potrebné na získanie výsledkov. Na prácu s týmito súbormi je vhodné využiť nasledujúci postup, nakoľko niektoré zo súborov využívajú údaje (nahrané do pamäte MATLABu) z predchádzajúcich súborov:

- Po spustení programu MATLAB a nastavení sa do pracovného adresára obsahujúceho priložené súbory, sa spustí M-file s názvom pch.m, na zobrazenie prechodových charakteristík (teplota v %, teplota v °C).
- 2. Na overenie identifikovaného prenosu pre teplotu v % sa spustí schéma s názvom overenieprenosu1.mdl a analogicky pre overenie prenosu pre teplotu v °C sa použije schéma s názvom overenieprenosu2.mdl. Spustením schém sa nahrajú údaje do súborov v kroku 3.
- Na grafické porovnanie prechodovej charakteristiky z identifikovaného prenosu s prechodovou charakteristikou v % (°C) z reálneho procesu, sa spustí M-file s názvom overenieprenosu1m.m (overenieprenosu2m.m).
- 4. Na otestovanie navrhnutých regulátorov (pre riadenie teploty v % resp. °C) v prostredí MATLAB-Simulink sa otvorí schéma s názvom regulatortest1.mdl (regulatortest2.mdl). V bloku "PID regulator" sa nastavia parametre regulátora (pre teplotu v % možno použiť údaje z navrhnutých regulátorov z Tab. 4) P, I, D a spustí sa schéma. Po spustení schémy sa nahrajú údaje do MATLABu a pomocou súboru testreg.m možno vykresliť grafický priebeh simulácie.
- 5. Na grafické priebehy vplyvu jednotlivých regulátorov (pre teplotu v percentuálnom rozsahu) na riadenú veličinu možno použiť súbory s príslušnými názvami v Tab. 4. Tu už ide o riadenie reálneho procesu. V príkazovom riadku MATLABu sa zadá názov zvoleného súboru (pre regulačný pochod, ktorý sa bude sledovať). Zobrazia sa dva grafy, a to samotný regulačný pochod a graf závislosti IAE od času.
- 6. Schéma realnaprech1.mdl slúži na zmeranie prechodovej charakteristiky reálneho systému, schéma riadenie.mdl na riadenie reálneho systému za použitia navrhnutých regulátorov (resp. na ich testovanie v reálnom systéme). Práca s týmito schémami sa realizuje na počítači, kde je zapojený laboratórny výmenník tepla LTR700 a naištalovaný riadiaci systém dSPACE so všetkými komponentami.