Efficient Software Tools for Control and Analysis of Hybrid Systems

Michal Kvasnica

Automatic Control Laboratory, ETH Zürich www.control.ethz.ch

dgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

1. Problem statement

2. Efficient computation and evaluation of feedback controllers

3. Software tools in theory and practice

4. Conclusions

1. Problem statement

2. Efficient computation and evaluation of feedback controllers

3. Software tools in theory and practice

4. Conclusions

Piecewise Affine (PWA) Systems

$$\begin{aligned} x(t+1) &= A_i x(t) + B_i u(t) + f_i + w(t) \\ y(t) &= C_i x(t) + D_i u(t) + g_i & \text{if } \begin{bmatrix} x(t) \\ u(t) \end{bmatrix} \in \mathcal{D}_i \\ G^x x(t) + G^u u(t) \leq G^c \end{aligned}$$

• Equivalent to many classes of hybrid systems

(Heemels, De Schutter, Bemporad, 2001)

- Include constrained linear discrete time systems
- Can approximate general non-linear systems with arbitrary precision

Control Objectives

- **Stability** (feedback is stabilizing)
- Feasibility (feedback exists for all time)
- Optimal performance
- Implementable in real time

Optimal Control of Constrained Systems

• Formulate a Constrained Finite Time Optimal Control (CFTOC) problem:

$$J_N^*(x(0)) = \min_{u_0,\dots,u_{N-1}} \left\{ \sum_{k=0}^{N-1} \left(u_k' \mathcal{R} u_k + x_k' \mathcal{Q} x_k \right) + x_N' \mathcal{Q}_f x_N \right\},$$

subj. to
$$x_k \in \mathbb{X}, \qquad k \in \{0,\dots,N\},$$

$$u_k \in \mathbb{U}, \qquad k \in \{0,\dots,N-1\},$$

$$x_{k+1} = f_{PWA}(x_k, u_k),$$

$$\mathcal{Q} \succeq 0, \qquad \mathcal{Q}_f \succeq 0, \qquad \mathcal{R} \succ 0.$$

- Compute a solution to the CFTOC problem:
 - on-line for one given initial condition
 - off-line for all admissible initial conditions by applying multi-parametric programming

Receding Horizon Control (RHC)

3 Bottlenecks of Parametric RHC

1. Problem statement

2. Efficient computation and evaluation of feedback controllers

3. Software tools in theory and practice

4. Conclusions

The 1st Bottleneck

Efficient Redundancy Elimination

 Efficient elimination of redundant constraints using pre-solve techniques to speed up the computation (using bounding boxes and chebychev balls)

Result: runtime per region reduced by 50%

(Suard, Loefberg, Grieder, Kvasnica, Morari; CDC 04)

The 2nd Bottleneck

Addressing the 2nd Bottleneck

Control objectives

- Stability
- Feasibility
- Optimal performance

Observation

Complex objectives yield complex controllers

Approach

Use simpler objectives to obtain simpler controllers

Minimum-Time Controller

- Specify "simpler" performance objective:
 - Drive state into target set in minimum-time
 - Instead of solving *one* problem of size *N*, solve *N* problems of size *one*
- Stability and constraint satisfaction are guaranteed by construction

Result: Fewer controller regions "Fast" construction of control law

(Grieder, Kvasnica, Baotic, Morari; Automatica 2005)

M-step Controller

- Do not enforce closed-loop stability:
 - Solve a CFTOC problem for a "short" horizon M with an additional invariant set constraint on x_1
- Constraint satisfaction and optimal performance are guaranteed by construction
- Analyse stability of the closed-loop system

Result: Significantly fewer controller regions "Fast" construction of the control law

(Grieder, Kvasnica, Baotic, Morari; Automatica 2005)

Controllers for **10 random PWA systems** with 2 states, 1 input and 4 different dynamics were computed...

The 3rd Bottleneck

Objective

Search through the look-up table in a fast way

Idea

Construct an interval search tree based on bounding boxes

Advantage

- Region identification performed almost in O(log(N)) time
- Very cheap pre-processing compared to other techniques
- Applicable to any type of partitions (not even polyhedral)

(Christophersen, Kvasnica, Jones, Morari, ECC 2007)

1. Problem statement

2. Efficient computation and evaluation of feedback controllers

3. Software tools in theory and practice

4. Conclusions

Theory and Practice

Multi-Parametric Toolbox (MPT)

To bridge the gap between theory and practice

(Kvasnica, Grieder, Baotic, Morari; HSCC 04)

Multi-Parametric Toolbox (MPT)

MPT is a repository of hybrid systems design tools utilizing state-of-the-art optimization packages

Main strong points:

- Design of low complexity controllers
- Generation of real-time executable code
- Focus on numerical robustness and speed of algorithms
- Released under an open-source GPL license

MPT: Areas of Applications

- RHC-based control synthesis
- Lyapunov-based stability analysis
- Reachability analysis and safety verification
- Modeling and simulation of hybrid systems
- Computational geometry
- Multi-parametric optimization

MPT in the World

ÉCOLE SUPÉRIEURE D'ÉLECTRICITI

Supélec

Imperial College London

1. Problem statement

2. Efficient computation and evaluation of feedback controllers

3. Software tools in theory and practice

4. Conclusions

Conclusions

- Multi-parametric approach to RHC has many advantages, but also many limitations
- Novel algorithms developed to reduce the complexity by orders of magnitude
- Software tools created to bridge the gap between theory and practice

