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Outline

Self-optimizing control and links with explicit MPC

Efficient on-line computation of constrained optimal control

Self-optimizing control with constraints (“constrained
SOC”)

Example: Ammonia production

How does constrained SOC fit into the control hierarchy?
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Implementation of optimal operation using off-line
computations

Paradigm 1

On-line optimizing control where measurements are primarily
used to update the model. With arrival of new measurements,
the optimization problem is resolved for the inputs.

Paradigm 2

Pre-computed solutions based on off-line optimization.
Typically, the measurements are used to (indirectly) update the
inputs using feedback control schemes. Focus of this work.
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Implementation of optimal operation using off-line
computations

Paradigm 1

On-line optimizing control where measurements are primarily
used to update the model. With arrival of new measurements,
the optimization problem is resolved for the inputs.

Example: Classical (implicit) MPC.

Paradigm 2

Pre-computed solutions based on off-line optimization.
Typically, the measurements are used to (indirectly) update the
inputs using feedback control schemes. Focus of this work.

Examples: Explicit MPC and self-optimizing control.
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What variables should we control?

Controller

Plant
Measurement
combination H

d y

ncm = c + n
cs

u c

Self-optimizing control

Choice of H such that acceptable operation is
achieved with constant setpoints (cs constant).
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What variables should we control?

Controller

Plant
Measurement
combination H

d y

ncm = c + n
cs

u c

Self-optimizing control

Choice of H such that acceptable operation is
achieved with constant setpoints (cs constant).

Optimal cs is invariant with respect to disturbances d

Insensitive to measurement errors n
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What variables should we control?

c1 = csp
1

Loss = J(u, d) − Jopt(d)

Disturbanced0
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What variables should we control?

c1 = csp
1

Loss = J(u, d) − Jopt(d)

Disturbanced0 d

Loss due to
constant setpoint
policy
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What variables should we control?

c1 = csp
1

c2 = csp
2

Loss = J(u, d) − Jopt(d)

Disturbanced0 d
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What variables should we control?

c1 = csp
1

c2 = csp
2

Loss = J(u, d) − Jopt(d)

Disturbanced0 d

Acceptable loss
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What variables should we control?

c1 = csp
1

c2 = csp
2

Loss = J(u, d) − Jopt(d)

Disturbanced0c3 = Hy = csp
3
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Nullspace method for QP problems

Theorem (Nullspace method for QP)

Consider the quadratic problem

min
u

J(u, d) =

[
u
d

]′ [Juu Jud

� Jdd

] [
u
d

]
(1)

In addition there are ny independent measurements

y = Gyu + Gy
dd

If ny ≥ nu + nd there exists an H such that the
combinations c = Hy are invariant to the disturbances

H may be found from HF = 0, where
F = ∂yopt

∂d = −(GyJ−1
uu Jud − Gy

d)

Alstad and Skogestad, Ind. Eng. Chem. Res., 2007
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Linear-quadratic optimal control

For a given x(t), one solves the quadratic problem

min
U=(u0,u1,··· ,uN−1)

J(U, x(t)) = xT
NPxN +

N−1∑
k=0

[
xT

k Qxk + uT
k Ruk

]

subject to

x0 = x(0)

xk+1 = Axk + Buk , k = 0, 1, · · · , N − 1

yk = Cxk , k = 0, 1, · · · , N
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Link between linear-quadratic control and
self-optimizing control

Let

d = x0 and y =

[
u
x

]

The optimal combination

c = Hy

can be written as the feedback law

c = u − (Kx + g)

and H (or K ) can be obtained from nullspace method
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Efficient on-line computation of constrained optimal
control

The results in the following slides are taken from:
Baotić et al: “Efficient on-line implementation of
constrained optimal control”, SIAM Journal of Control and
Optimization, 2008.
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Efficient on-line computation of constrained optimal
control

The results in the following slides are taken from:
Baotić et al: “Efficient on-line implementation of
constrained optimal control”, SIAM Journal of Control and
Optimization, 2008.

Here we focus on linear-quadratic finite horizon optimal
control, i.e. problems that can be written on the form

J∗(x) =
1
2

x ′Yx+ min
U

1
2

U ′HU + x ′FU

s.t. MuU ≤ M + Mxx
(MPC)
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Baotić et al: “Efficient on-line implementation of
constrained optimal control”, SIAM Journal of Control and
Optimization, 2008.

Here we focus on linear-quadratic finite horizon optimal
control, i.e. problems that can be written on the form

J∗(x) =
1
2

x ′Yx+ min
U

1
2

U ′HU + x ′FU

s.t. MuU ≤ M + Mxx
(MPC)

Solution: u(x) = Fix + Gi , ∀x ∈ Pi , i = 1, . . . , NP .

9 Henrik Manum Explicit self-optimizing control



Efficient on-line computation of constrained optimal
control

The results in the following slides are taken from:
Baotić et al: “Efficient on-line implementation of
constrained optimal control”, SIAM Journal of Control and
Optimization, 2008.

Here we focus on linear-quadratic finite horizon optimal
control, i.e. problems that can be written on the form

J∗(x) =
1
2

x ′Yx+ min
U

1
2

U ′HU + x ′FU

s.t. MuU ≤ M + Mxx
(MPC)

Solution: u(x) = Fix + Gi , ∀x ∈ Pi , i = 1, . . . , NP .

Goal: Efficient implementation of the solution to (MPC).
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Descriptor functions

Definition (PWA descriptor function)

A scalar continuous real-valued PWA function f : Xf �→ R,

f (x) := fi(x) := a′
i x + bi if x ∈ Pi , (2)

with ai ∈ R
nx , bi ∈ R, is called a descriptor function if

ai �= aj , ∀j ∈ Ci , i = 1, . . . , Np, (3)

where ∪iPi = Xf ⊂ R
nx , and Ci is the list of neighbors of Pi .
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Descriptor functions

descriptor function f

parameter x
P1 P3P2

f1

f2
f3
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Descriptor functions

descriptor function f

parameter x
P1 P3P2

f1

f2
f3

−continuous
−scalar

Necessary information:

List of neighbors Ci to each polytope Pi

List of “correct” signs of corresponding function fi − fj
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Descriptor functions

descriptor function f

parameter x
P1 P3P2

f1

f2
f3

−continuous
−scalar

Necessary information:

List of neighbors Ci to each polytope Pi

List of “correct” signs of corresponding function fi − fj
From this we can make a global algorithm for the point location
problem.
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Descriptor functions

Lemma

The PWA control law can be used as a (vector-valued)
PWA descriptor function.

By taking inner product with a “random” vector w we can
make a scalar-valued PWA descriptor function.
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Descriptor functions

Lemma

The PWA control law can be used as a (vector-valued)
PWA descriptor function.

By taking inner product with a “random” vector w we can
make a scalar-valued PWA descriptor function.

Variable combinations invi = Hiy − ci
s from the “nullspace

method” can also be used as a scalar PWA descriptor
function (by inner product with vector w).
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Constrained self-optimizing control

We consider the following problem:

min
u

1
2

[
u
d

]′ [
Juu Jud

� Jdd

] [
u
d

]

s.t. Muu ≤ M + Md d

(QP)

In addition we have measurements on the form
y = Gyu + Gy

dd
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Constrained self-optimizing control

We consider the following problem:

min
u

1
2

[
u
d

]′ [
Juu Jud

� Jdd

] [
u
d

]

s.t. Muu ≤ M + Md d

(QP)

In addition we have measurements on the form
y = Gyu + Gy

dd
Goal: Find a “self-optimizing” implementation of (QP).

Nullspace method
Region detection with scalar PWA descriptor function
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Constrained self-optimizing control

1: Define objective function and constraints (optimal operation)
minu J(x , u, d) s.t. f (x , u, d) = 0, g(x , u, d) ≤ 0
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s, using
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Example: Ammonia production
PROBLEM FORMULATION

n1

n2 n3

n5

n4

n7n6

P0

P

P − ΔP

Tsep
Separator

Reactor
3H2 + N2 = 2NH3

P
Split
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PROBLEM FORMULATION

n1

n2 n3

n5

n4

n7n6

P0

P

P − ΔP

Tsep
Separator

Reactor
3H2 + N2 = 2NH3

P
Split

cost function:
J = p1e′n1RT1ln(P/P0) + p2e′n6RTsepln(P/(P − ΔP)) +

p3e′n3Cp(T0 − Tsep)(
T0
Tc

− 1) − p4n4,NH3

15 Henrik Manum Explicit self-optimizing control



Example: Ammonia production
PROBLEM FORMULATION

n1

n2 n3

n5

n4

n7n6

P0

P

P − ΔP

Tsep
Separator

Reactor
3H2 + N2 = 2NH3

P
Split

cost function:
J = p1e′n1RT1ln(P/P0) + p2e′n6RTsepln(P/(P − ΔP)) +

p3e′n3Cp(T0 − Tsep)(
T0
Tc

− 1) − p4n4,NH3

constraints: Tsep ≥ T min
sep , e′n6 ≤ rmax.
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Example: Ammonia production
RESULTS

−1

0

1

−0.0200.02
0.4

0.6

0.8

d1
d2

f o
p

t

−1
0

1

−0.0200.02
250

300

350

400

450

d1d2

P
o

p
t

−1

0

1

−0.0200.02
266

268

270

272

d1
d2

T
o

p
t

−1
0

1

−0.0200.02
1

2

3

4

d1d2

re
cy

cl
e o

p
t

16 Henrik Manum Explicit self-optimizing control



Example: Ammonia production
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Degree of freedom: Controlled variables

RTO

H

MPC

... . . .

cs
c

y
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RTO
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MPC

... . . .

cs
c

y

Alt. 1 H fixed at “random” value,
typically c = (ȳ , ū).

Alt. 2 H optimized, but constant.

Alt. 3 H is a function of operating
condition.
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Alt. 2 H optimized, but constant.

Alt. 3 H is a function of operating
condition.

18 Henrik Manum Explicit self-optimizing control



Degree of freedom: Controlled variables

RTO

H

MPC

... . . .

cs
c

y

Alt. 1 H fixed at “random” value,
typically c = (ȳ , ū).
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What should we do with constrained SOC?

Economic
Optimization

...

MPC

. . .

ū, ȳ

u0, y0

Desired target:
(ū = u0), (ȳ = y0)

Current situation.
hei
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What should we do with constrained SOC?

Economic
Optimization

...

MPC

. . .

ū, ȳ

u0, y0

Desired target:
(ū = u0), (ȳ = y0)

Current situation.
hei

Economic
Optimization

u0, y0

Ci , Si , . . .

QP approximation

Region detection

MPC

Hi , ci
s

... . . .

Self-optimizing around (u0, y0) but
also if active set changes
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Conclusions

Efficient implementation of MPC and nullspace method

gives constrained SOC
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Conclusions

Efficient implementation of MPC and nullspace method

gives constrained SOC

The proposed method is exact for linear processes with
quadratic objectives, but may be used for general plants
and objectives.
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Conclusions

Efficient implementation of MPC and nullspace method

gives constrained SOC

The proposed method is exact for linear processes with
quadratic objectives, but may be used for general plants
and objectives.

Discussed in report: Measured nonlinearities (such as
active constraints) may be accounted for by adding extra
disturbances.
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Linear-Quadratic Model Predictive Control

− Target calculation:

min
xs,us,η

1
2

(η′Qsη+(us−ū)Rs(us−ū))+q′
sη

subject to the constraints
⎡
⎣I − A −B 0

C 0 I
C 0 −I

⎤
⎦

⎡
⎣xs

us

η

⎤
⎦

⎧⎨
⎩

=
≥
≤

⎫⎬
⎭

⎡
⎣ Bd

ȳ − p
ȳ − p

⎤
⎦

η ≥ 0

umin ≤ Dus ≤ umax, ymin ≤ Cxs+p ≤ ymax

Taken from: J.B. Rawlings: Tutorial Overview of Model Predictive Control, IEEE Contr.
Sys. Mag. June 2000
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Linear-Quadratic Model Predictive Control

− Target calculation:

min
xs,us,η

1
2

(η′Qsη+(us−ū)Rs(us−ū))+q′
sη

subject to the constraints
⎡
⎣I − A −B 0

C 0 I
C 0 −I

⎤
⎦

⎡
⎣xs

us

η

⎤
⎦

⎧⎨
⎩

=
≥
≤

⎫⎬
⎭

⎡
⎣ Bd

ȳ − p
ȳ − p

⎤
⎦

η ≥ 0

umin ≤ Dus ≤ umax, ymin ≤ Cxs+p ≤ ymax

− Receding Horizon Controller
(RHC):
Control the process towards (xs, us) in
a “constrained LQR”-way

− State estimator:
Need this to get x(t), which is the
“parameter” driving the RHC, and
(p, d) which are giving integral action
and driving the target calculator.

Taken from: J.B. Rawlings: Tutorial Overview of Model Predictive Control, IEEE Contr.
Sys. Mag. June 2000
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