Hybrid Systems Seminar Complexity Reduction in Explicit MPC

Michal Kvasnica

Thursday, April 15, 2010

Do not go where the path may lead, go instead where there is no path and leave a trail.

Ralph Waldo Emerson

Model Predictive Control

Compute control action $u^* = f(x)$ in acceptable time

 $u^* = \arg \min J_N$ Plant model Constraints

Model Predictive Control

On-Line MPC

On-Line MPC

Constraints

Optimal performance

Fast implementation

Typical Implementation Platforms

10 000 MFLOPS/sec more than 2 GB 100 MFLOPS/sec more than 128 MB

1 MFLOPS/sec less than 8 kB

Thursday, April 15, 2010

Explicit MPC

Explicit MPC: Solution Properties

- State space is divided into polytopic regions
- Affine control law in each region

Explicit MPC: On-Line Implementation

- Identify region which contains current state (99.9% of effort)
- Evaluate the corresponding affine feedback law (0.1% effort)

Explicit MPC: Pros and Cons

PROs:

- easy to implement
- "fast" on-line evaluation
- analysis of implementation issues possible

CONs:

- number of controller regions can be large
- no control over the construction of the solution
- computation scales badly

Controller complexity is the crucial issue!

Complexity in Numbers

1000 regions x 100 bytes each to store 1000 regions x 10 FLOPS each to evaluate

Three Levers of Complexity Reduction

Three Levers of Complexity Reduction

Lever 1: Controller Construction

- Observation:
 - complex problem formulations usual lead to complex controllers
- Idea:
 - use simpler objectives and <u>hope</u> for simpler solutions
- Questions to be answered:
 - is the idea justified?
 - if yes, can <u>significant</u> reduction of complexity be achieved?
 - how to simplify the MPC problem and not to loose important properties?

Classical Formulation

$$\min \sum_{k=0}^{N-1} \ell(x_k, u_k)$$

s.t.
$$x_{k+1} = f(x_k, u_k)$$
$$x_k \in \mathcal{X}, u_k \in \mathcal{U}$$
$$x_{k+N} \in \mathcal{T}$$

PROs:

- optimal performance
- constraint satisfaction
- closed-loop stability

CON:

complex solution Why?

• Solve a series of horizon-one problems backwards in time:

$$\begin{array}{ll} \min_{u_k} & \ell(x_k, u_k) + \ell_f(x_{k+1}) & \text{Add cost-to-go} \\ \text{s.t.} & x_{k+1} = f(x_k, u_k) \\ & x_k \in \mathcal{X}, u_k \in \mathcal{U} \\ & x_{k+1} \in \mathcal{X}_{k+1} & \text{End up in the} \\ & \text{previous iteration} \end{array}$$

Terminal set Cost-to-go=0

• Solve a series of horizon-one problems backwards in time:

$$\min_{u_k} \quad \ell(x_k, u_k) + \ell_f(x_{k+1}) \quad \text{Add cost-to-go} \\ \text{s.t.} \quad x_{k+1} = f(x_k, u_k) \\ x_k \in \mathcal{X}, u_k \in \mathcal{U} \\ x_{k+1} \in \mathcal{X}_{k+1} \quad \text{End up in the previous iteration}$$

All states that can be pushed to the terminal set in 1 step

• Solve a series of horizon-one problems backwards in time:

$$\min_{u_k} \quad \ell(x_k, u_k) + \ell_f(x_{k+1}) \quad \text{Add cost-to-go} \\ \text{s.t.} \quad x_{k+1} = f(x_k, u_k) \\ x_k \in \mathcal{X}, u_k \in \mathcal{U} \\ x_{k+1} \in \mathcal{X}_{k+1} \quad \text{End up in the previous iteration}$$

In each region we have a <u>unique</u> expression of the cost

• Solve a series of horizon-one problems backwards in time:

$$\begin{array}{ll} \min_{u_k} & \ell(x_k, u_k) + \ell_f(x_{k+1}) & \text{Add cost-to-go} \\ \text{s.t.} & x_{k+1} = f(x_k, u_k) \\ & x_k \in \mathcal{X}, u_k \in \mathcal{U} \\ & x_{k+1} \in \mathcal{X}_{k+1} & \text{End up in the} \\ & \text{previous iteration} \end{array}$$

• Solve a series of horizon-one problems backwards in time:

Combined solution

• Solve a series of horizon-one problems backwards in time:

$$\min_{u_k} \quad \ell(x_k, u_k) + \ell_f(x_{k+1}) \quad \text{Add cost-to-go}$$
s.t.
$$x_{k+1} = f(x_k, u_k)$$

$$x_k \in \mathcal{X}, u_k \in \mathcal{U}$$

$$x_{k+1} \in \mathcal{X}_{k+1} \quad \text{End up in the previous iteration}$$

For each region of the terminal set and each associated cost-togo solve a 1-step problem

Thursday, April 15, 2010

• Solve a series of horizon-one problems backwards in time:

$$\begin{array}{ll} \min_{u_k} & \ell(x_k, u_k) + \ell_f(x_{k+1}) & \text{Add cost-to-go} \\ \text{s.t.} & x_{k+1} = f(x_k, u_k) \\ & x_k \in \mathcal{X}, u_k \in \mathcal{U} \\ & x_{k+1} \in \mathcal{X}_{k+1} & \text{End up in the} \\ & \text{previous iteration} \end{array}$$

Final solution

Dynamic Programming Summary

• Solve a series of horizon-one problems backwards in time:

$$\min_{u_k} \quad \ell(x_k, u_k) + \ell_f(x_{k+1}) \quad \text{Add cost-to-go}$$
s.t.
$$x_{k+1} = f(x_k, u_k)$$

$$x_k \in \mathcal{X}, u_k \in \mathcal{U}$$

$$x_{k+1} \in \mathcal{X}_{k+1} \quad \text{End up in the previous iteration}$$

- Reason for complexity:
 - need to solve as many problems as there are regions defining the cost-to-go function

Classical Formulation

$$\min \sum_{k=0}^{N-1} \ell(x_k, u_k)$$

s.t.
$$x_{k+1} = f(x_k, u_k)$$
$$x_k \in \mathcal{X}, u_k \in \mathcal{U}$$
$$x_{k+N} \in \mathcal{T}$$

PROs:

- optimal performance
- constraint satisfaction
- closed-loop stability

CON:

complex solution

Trade performance for complexity

Minimum-Time Formulation

$$\begin{array}{ll} \min & N \\ \text{s.t.} & x_{k+1} = f(x_k, u_k) \\ & x_k \in \mathcal{X}, u_k \in \mathcal{U} \\ & x_{k+N} \in \mathcal{T} \end{array}$$

PROs:

- simpler solution
- constraint satisfaction
- closed-loop stability

CON:

suboptimal performance

Possible applications:

- fast vibration suppression
- fast engine startup
- fast disturbance rejection

• Solve a series of horizon-one problems backwards in time:

 $\min_{u_k} \quad \ell(x_k, u_k) + \ell_f(x_{k+1})$ s.t. $x_{k+1} = f(x_k, u_k)$ $x_k \in \mathcal{X}, u_k \in \mathcal{U}$ $x_{k+1} \in \mathcal{X}_{k+1}$

- Why is it a simpler formulation:
 - cost-to-go is constant (number of steps needed to reach the origin)
 - consequence: only need to consider a single terminal set at each step

• Design an invariant set around the origin

- Solve N=1 problem with X_I as the terminal set
- Store \mathcal{X}_1 , its regions and the associated feedback laws

- Solve N=1 problem with \mathcal{X}_1 as the terminal set
- Store \mathcal{X}_2 , its regions and the associated feedback laws

Minimum-Time Controller

• Resulting controller is composed of all partitions!

Minimum-Time Controller Implementation

• All partitions on top of each other

Partition #:

Minimum-Time Controller Implementation

Pick the partition which contains measurements and has the least cost-to-go

Minimum-Time Controller Implementation

- Identify the region which contains measurements
- Evaluate the corresponding feedback law

Minimum-Time Controller Implementation

• By construction the state is pushed to a "lower" partition

Minimum-Time Controller Properties

$$\begin{array}{ll} \min & N \\ \text{s.t.} & x_{k+1} = f(x_k, u_k) \\ & x_k \in \mathcal{X}, u_k \in \mathcal{U} \\ & x_{k+N} \in \mathcal{T} \end{array}$$

PROs:

- simpler solution
- constraint satisfaction
- closed-loop stability

CON:

•

How much simpler?

Indeed?

suboptimal performance How much do we loose?

Minimum-Time Controller Properties

- Feasibility guaranteed by solving constrained problems
- Stability guaranteed by construction:

Minimum-Time Controller Complexity

Thursday, April 15, 2010

Minimum-Time Controller Complexity

Minimum-Time Controller Performance

Minimum-Time Control: Summary

PROs:

- faster controller construction
- lower number of regions
- acceptable loss of performance on average

CON:

bang-bang behavior

Extensions of Minimum-Time Control

PWA systems

$$x_{k+1} = A_i x_k + B_i u_k + f_i \text{ IF } x_k \in \mathcal{D}_i$$

Grieder, Kvasnica, Baotic, Morari; Automatica 2005

PWA systems with additive noise

$$x_{k+1} = A_i(\lambda)x_k + B_iu_k + f_i + w \text{ IF } x_k \in \mathcal{D}_i, \ \forall w \in \mathcal{W}$$

Rakovic, Grieder, Kvasnica, Mayne, Morari; CDC 2004

PWA systems with parametric uncertainties

 $x_{k+1} = A_i(\lambda)x_k + B_iu_k + f_i \text{ IF } x_k \in \mathcal{D}_i, \ \forall \lambda \in \Lambda$

Kvasnica, Herceg, Čirka, Fikar; CDC 2010

Three Levers of Complexity Reduction

Lever 2: Solution Complexity

- Observation:
 - many of the controller regions share the same feedback law
- Idea:
 - merge such regions into larger convex objects

Typical Explicit MPC Feedback Law

Lever 2: Solution Complexity

- Observation:
 - many of the controller regions share the same feedback law
- Idea:
 - merge such regions into larger convex objects
- Questions to be answered:
 - can we merge optimally?
 - can we merge quickly?
 - can we go even further and eliminate <u>all</u> regions?

Optimal Region Merging

Geyer, Torrisi, Morari; Automatica 2008

Step 1: Hyperplane Arrangement

Step 2: Associate Boolean Literals

Thursday, April 15, 2010

soay, April 15, 2010

Step 4: Simplify the Function

Step 4: Simplify the Function

Step 5: Recover Regions

Step 5: Recover Regions

Optimal Region Merging: Summary

PROs:

- optimal region merging using logic minimization (ESPRESSO)
- applicable to any type of PWA functions (discontinuous, non-convex partitions, etc.)
- simplified controller provides the same level of optimality

CONs:

- logic optimization is computationally demanding
- upper bound on possible hyperplane arrangements generated by N hyperplanes in n dimensions is $\mathcal{O}(N^n)$

Geyer, Torrisi, Morari; Automatica 2008

Complexity in Numbers

- Illustrative case:
 - 200 regions in 2D
 - each region, on average, is defined by 5 hyperplanes
 - hence we have ~500 unique hyperplanes
 - therefore the logic minimization can have up to 500² terms with 500 variables each
 - logic minimization with 250 000 constraints and 500 variables is difficult

Lever 2: Solution Complexity

- Observation:
 - many of the controller regions share the same feedback law
- Idea:
 - merge such regions into larger convex objects
- Questions to be answered:
 - can we merge optimally? YES Optimal Region Merging
 - can we merge quickly?
 - can we go even further and eliminate <u>all</u> regions?

Kvasnica, Fikar; Submitted to CDC 2010

- Two types of regions:
 - saturated: $\mathcal{R}_1, \mathcal{R}_5, \mathcal{R}_6$
 - unsaturated: $\mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_4$

• Idea:

- remove saturated regions
- cover the "holes" by expanding unsaturated regions

• We have eliminated region \mathcal{R}_1

- We have eliminated regions $\mathcal{R}_5, \mathcal{R}_6$
- Merged controller consists of 3 regions

- Nothing is for free!
- For some states we have $u(x) \neq \tilde{u}(x)$

- Nothing is for free!
- For some states we have $u(x) \neq \tilde{u}(x)$

• Recover equivalence by using a clipping function:

$$\phi(\tilde{u}(x)) = \max(\min(\tilde{u}(x), \overline{u}), \underline{u})$$

Clipping-Based Complexity Reduction: Summary

PROs:

- very fast, only involves basic polytopic calculus
- clipping function has complexity $\mathcal{O}(1)$
- simplified controller provides the same level of optimality

CONs:

- only provides <u>significant</u> reduction if there are plenty saturated regions
- doesn't simplify unsaturated regions
- directly applicable only to continuous functions

Clipping vs ORM

	Saturated Regions	Unsaturated Regions	
ORM	merged	merged	
Clipping	removed	kept	

Clipping vs ORM

Random System	Regions			Runtime [s]	
	Original	Clipping	ORM	Clipping	ORM
1	35	5	11	1	3
2	75	9	19	1	49
3	83	53	45	1	55
4	173	17	Ť	1	Û
5	221	23	Ť	1	Ť
6	271	119	Û	5	Û
7	481	33	Ť	1	Û
8	547	73	Û	3	Û
9	837	139	Ť	7	Ť
10	1628	274	Ť	24	Ť

 ϑ = exhausted all memory

Lever 2: Solution Complexity

- Observation:
 - many of the controller regions share the same feedback law
- Idea:
 - merge such regions into larger convex objects
- Questions to be answered:
 - can we merge optimally? YES Optimal Region Merging
 - can we merge quickly? **YES Clipping**
 - can we go even further and eliminate <u>all</u> regions?

Kvasnica, Christophersen, Herceg, Fikar; IFAC WC 2008 Kvasnica, Lofberg, Herceg, Čirka, Fikar; ACC 2010
Evaluation of Explicit MPC

- Identify region which contains current state (99.9% of effort)
- Evaluate the corresponding affine feedback law (0.1% effort)

The Idea

- Find an approximate feedback which
 - is defined over a single region (hence no region search is required)
 - guarantees closed-loop stability & constraint satisfaction
 - trades off performance for cost of implementation
- Polynomial is an ideal candidate (low storage, fast evaluation)

How to Guarantee Stability & Feasibility?

- Find an approximate feedback which
 - is defined over a single region (hence no region search is required)
 - guarantees closed-loop stability & constraint satisfaction
 - trades off performance for cost of implementation
- Polynomial is an ideal candidate (low storage, fast evaluation)

The Idea Continued...

- Given is:
 - LTI or PWA system
 - explicit MPC feedback with stability guarantees
 - PWA Lyapunov function
- Is it the only feedback which gives stability?

The Idea Continued...

- Given is:
 - LTI or PWA system
 - explicit MPC feedback with stability guarantees
 - PWA Lyapunov function
- Is it the only feedback which gives stability?
- Theorem:
 - a set of stabilizing feedbacks exists
 - it can be computed
 - it is represented by polytopes
- Corollary:
 - if the polynomial resides in the set, stability is guaranteed

Two Key Questions

- How to find the set of stabilizing controllers?
- How to find coefficients of the polynomial residing in such set?

X

The state space

Thursday, April 15, 2010

Over which the PWA Lyapunov function is defined...

Along with the optimal explicit MPC feedback law

We search for a set of inputs satisfying constraints...

We search for a set of inputs satisfying constraints which push <u>all states</u> from left region to the right region...

i.e. in the direction of decrease of the Lyapunov function

Thursday, April 15, 2010

- The whole set is obtained by exploring all feasible transitions
- This is not the set of <u>all</u> stabilizing controllers!
- Merely it is a set of inputs which render a given PWA Lyapunov function a Control Lyapunov function

Finding the Polynomial

- Objectives:
 - the polynomial must never leave the set
 - it should be close to the optimal feedback
- Tuning parameter: degree of the polynomial

Finding the Polynomial

- Fix the degree of $\tilde{u}(x) = a_0 + a_1 x + \dots + a_n x^n$
- Search for the coefficients:

find
$$a_1, \dots, a_n$$

s.t $T_i - S_i \begin{bmatrix} x \\ \tilde{u}(x) \end{bmatrix} \ge 0, \quad i = 1, \dots, N$
 $\forall x \in \{x \mid K_i - H_i x \ge 0\}, \quad i = 1, \dots, N$

Finding the Polynomial

- Fix the degree of $\tilde{u}(x) = a_0 + a_1 x + \dots + a_n x^n$
- Search for the coefficients:

find
$$a_1, \dots, a_n$$

s.t $T_i - S_i \begin{bmatrix} x \\ \tilde{u}(x) \end{bmatrix} \ge 0, \quad i = 1, \dots, N$
 $\forall x \in \{x \mid K_i - H_i x \ge 0\}, \quad i = 1, \dots, N$

- The problem boils down to showing global positivity of polynomials:
 - positivstellensatz & SDP Kvasnica, Christophersen, Herceg, Fikar; IFAC 2008
 - Polya theorem & LP

Kvasnica, Lofberg, Herceg, Čirka, Fikar; ACC 2010

Polynomial Approximation: Summary

PROs:

- eliminates all regions altogether
- very fast evaluation
- extremely low memory footprint of the controller (< 20 bytes)
- guarantees closed-loop stability & constraint satisfaction

CONs:

- heavy computational demand (feasible for < 200 regions)
- controller is suboptimal (however performance drop can be bounded)
- SDP & LP relaxations are just sufficient conditions

Lever 2: Solution Complexity

- Observation:
 - many of the controller regions share the same feedback law
- Idea:
 - merge such regions into larger convex objects
- Questions to be answered:
 - can we merge optimally? YES Optimal Region Merging
 - can we merge quickly? **YES Clipping**
 - can we go even further and eliminate <u>all</u> regions?

YES - Polynomial Approximation

Three Levers of Complexity Reduction

Sequential Search

- Works out-of-the box
- Can be easily implemented using any language (C, JAVA, LAD, ...)

Lever 3: Control Evaluation

- Fact:
 - sequential search always works, but has complexity $\mathcal{O}(N)$
- Objective:
 - devise faster evaluation scheme, ideally with $\mathcal{O}(\log_2 N)$
- Questions to be answered:
 - is it possible?
 - how expensive is construction of such schemes?
 - can we construct them with less effort?

Complexity in Numbers

• O(N) search (I MFLOP/s)

Complexity in Numbers

- How to find optimal branching hyperplanes?
- How to organize them into a tree?
- Easy in 1D, what about higher dimensions?

2D Example

Thursday, April 15, 2010

Thursday, April 15, 2010

Hyperplane	Regions left	Regions right
А	1, 2	3, 4, 5

Hyperplane	Regions left	Regions right
А	1, 2	3, 4, 5
В	1, 2, 4	2, 3, 5

Hyperplane	Regions left	Regions right
Α	1, 2	3, 4, 5
В	1, 2, 4	2, 3, 5
С	1, 4	2, 3, 4, 5

Hyperplane	Regions left	Regions right
Α	1, 2	3, 4, 5
В	1, 2, 4	2, 3, 5
С	1, 4	2, 3, 4, 5
D	1, 2, 3, 4	4, 5

• Step 2: find best hyperplane which divides regions into ~halves

Hyperplane	Regions left	Regions right
A	1, 2	3, 4, 5
В	1, 2, 4	2, 3, 5
С	1, 4	2, 3, 4, 5
D	1, 2, 3, 4	4, 5

• Step 3: proceed recursively on left and right branches

Binary Search Tree: Summary

PRO:

- region identification in $\mathcal{O}(\log_2 N)$ time on average

CONs:

- expensive construction (requires N^2 linear programs)
- tree can be unbalanced, in the worst case complexity is $\mathcal{O}(N)$

Complexity in Numbers

	Sequential Search	Binary Search
LPs		5·10 ⁶
Construction time		3 hours
Evaluation FLOPS	100 000	110

2568 regions in 3D

Complexity in Numbers

	Sequential Search	Binary Search
LPs		4·10 ⁹
Construction time		>16 days
Evaluation FLOPS	1 500 000	???

22 286 regions in 5D

Lever 3: Control Evaluation

- Fact:
 - sequential search always works, but has complexity $\mathcal{O}(N)$
- Objective:
 - devise faster evaluation scheme, ideally with $\mathcal{O}(\log_2 N)$
- Questions to be answered:
 - is it possible? YES Binary Search Tree
 - how expensive is construction of such schemes? $O(N^2)$
 - can we construct them with less effort?

Bounding-Box Search Tree

- Idea:
 - approximate all regions by boxes
 - construct a binary search tree on these simpler structures
- Advantage:
 - faster tree construction (only 2N linear programs)
- Problem:
 - since the regions have different shapes, the tree only identifies a list of candidates
 - need to sequentially search through this list

Christophersen, Kvasnica, Jones, Morari; ECC 2007

Bounding-Box Search Tree: Summary

PROs:

- very cheap construction even for large partitions
- arbitrary partitions can be processed (e.g. with holes)
- good average performance

CONs:

- local search still necessary
- worst-case evaluation drops to $\mathcal{O}(N)$
- needs to store all regions as well as all bounding boxes

Bounding-Box Search Tree: Summary

PROs:

- very cheap construction even for large partitions (how cheap?)
- arbitrary partitions can be processed (e.g. with holes)
- good average performance (close to Binary Search Tree?)

CONs:

- local search still necessary (how expensive?)
- worst-case evaluation drops to $\mathcal{O}(N)$
- needs to store all regions as well as all bounding boxes

Complexity in Numbers

	Sequential Search	Binary Search	Box Search
LPs		5·10 ⁶	
Construction time		3 hours	
Evaluation FLOPS	100 000	110	

2568 regions in 3D

Complexity in Numbers

	Sequential Search	Binary Search	Box Search
LPs		5·10 ⁶	8·10³
Construction time		3 hours	10 secs
Evaluation FLOPS	100 000	110	923

2568 regions in 3D

Cardinality of List of Candidates

Complexity in Numbers

	Sequential Search	Binary Search	Box Search
LPs		4·10 ⁹	2·10⁵
Construction time		>16 days	1 minute
Evaluation FLOPS	1 500 000	???	200 000

22 286 regions in 5D

Cardinality of List of Candidates

Lever 3: Control Evaluation

- Fact:
 - sequential search always works, but has complexity $\mathcal{O}(N)$
- Objective:
 - devise faster evaluation scheme, ideally with $\mathcal{O}(\log_2 N)$
- Questions to be answered:
 - is it possible? YES Binary Search Tree
 - how expensive is construction of such schemes? $O(N^2)$
 - can we construct them with less effort? **YES Bounding-Box Tree**

Open Possibilities

Michal Kvasnica

Thursday, April 15, 2010

Explicit MPC

- #1 issue: once calculated, the controller is "set in stone"
 - penalty matrices stay constant
 - prediction model cannot adapt to updated values of parameters
- Challenges:
 - how to incorporate a tuning knob, i.e. to parameterize the solution not only in states, but also in penalties?
 - adaptive explicit MPC

Controller Construction

- Field to look at: control theory
- Possible directions:
 - move blocking
 - model reduction
 - minimum-time controller essentially approximates the objective function by a piecewise constant function. Can similar, but more precise, approximation be found?
- Issues to address: stability, constraint satisfaction

Solution Complexity

- Fields to look at:
 - computational geometry
 - control engineering
 - computer science
- Possible directions:
 - exploit geometric properties of the solution
 - approximate the solution by a heuristic control law
 - data compression (ZIP-like approach for explicit MPC?)
- Issues to address:
 - tradeoff between off-line calculation effort and gained complexity reduction

Control Evaluation

- Fields to look at: computational geometry, computer science
- Possible directions:
 - map regions to points, then use nearest neighbor search
 - can we learn something from point-and-click games?

