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Do not go where the path may lead, 
go instead where there is no path 

and leave a trail.

Ralph Waldo Emerson
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Model Predictive Control

Plant

u∗ = f(x)
plant statecontrol action

Given a performance index JN =
N−1∑

k=0

uT
k Ruk + xT

k Qxk

Compute control action               in acceptable timeu∗ = f(x)

u∗ = arg min JN

Plant model
Constraints
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Model Predictive Control

x1 = Ax0 + Bu0

x2 = Ax1 + Bu1

= A2x0 + ABu0 + Bu1

x3 = Ax2 + Bu2

= A3x0 + A2Bu0 + ABu1 + Bu2

...

min
U=[u0,...,uN−1]

N−1∑

k=0

uT
k Ruk + xT

k Qxk

s.t. xk ∈ X
uk ∈ U
xk+1 = f(xk, uk)

min
U

1
2UT HU

s.t. GU ≤W + Sx0

Parameters 
(initial condition)
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On-Line MPC

plant statecontrol action

Plant

min
U

1
2UT HU

s.t. GU ≤W + Sx0
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On-Line MPC

Optimal performance 

Constraints 

Fast implementation 
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Typical Implementation Platforms

10 000 MFLOPS/sec 1 MFLOPS/sec
more than 2 GB less than 8 kB

100 MFLOPS/sec
more than 128 MB
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Explicit MPC

min
U

1
2UT HU

s.t. GU ≤W + Sx0

plant statecontrol action

Plant

Off-line

On-line
Explicit Solution

(=Look-Up Table)u∗(x)

x
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Explicit MPC: Solution Properties

x

U∗(x) (K2, L2)
(K1, L1)

(K3, L3) (K4, L4)
(K5, L5)

(K6, L6)

A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

• State space is divided into polytopic regions

• Affine control law in each region
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Explicit MPC: On-Line Implementation

x

U∗(x)

A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

• Identify region which contains current state (99.9% of effort)

• Evaluate the corresponding affine feedback law (0.1% effort)

x0

U∗ = K3x0 + L3
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Explicit MPC: Pros and Cons

PROs:
− easy to implement
− “fast” on-line evaluation
− analysis of implementation issues possible

CONs:
− number of controller regions can be large
− no control over the construction of the solution
− computation scales badly

   Controller complexity is the crucial issue!
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Complexity in Numbers

1000 regions x 100 bytes each to store

1000 regions x 10 FLOPS each to evaluate

✔ ✔ ?
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Three Levers of Complexity Reduction

Controller
Construction

Solution Complexity

Control
Evaluation

PLANT

control u* state x

output y

1 2

3
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Three Levers of Complexity Reduction

Controller
Construction

Solution Complexity

Control
Evaluation

PLANT

control u* state x

output y

1 2

3
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Lever 1: Controller Construction

• Observation:
- complex problem formulations usual lead to complex controllers

• Idea:
- use simpler objectives and hope for simpler solutions

• Questions to be answered:
- is the idea justified?
- if yes, can significant reduction of complexity be achieved?
- how to simplify the MPC problem and not to loose important 

properties?
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Classical Formulation

min
N−1∑

k=0

!(xk, uk)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+N ∈ T

PROs:

• optimal performance

• constraint satisfaction

• closed-loop stability

CON:

• complex solution Why?
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Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the 
previous iteration

Terminal set
Cost-to-go=0
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Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the 
previous iteration

All states that can be 
pushed to the 

terminal set in 1 step
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Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the 
previous iteration

In each region we 
have a unique 

expression of the cost
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Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the 
previous iteration

For each region of the terminal 
set and each associated cost-to-

go solve a 1-step problem
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Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the 
previous iteration

Combined solution
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Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the 
previous iteration

For each region of the terminal 
set and each associated cost-to-

go solve a 1-step problem
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Dynamic Programming

• Solve a series of horizon-one problems backwards in time:

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the 
previous iteration

Final solution

N=3 N=2 N=1
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Dynamic Programming Summary

• Solve a series of horizon-one problems backwards in time:

• Reason for complexity:
- need to solve as many problems as there are regions defining the 

cost-to-go function

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1

Add cost-to-go

End up in the 
previous iteration
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Classical Formulation

min
N−1∑

k=0

!(xk, uk)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+N ∈ T

PROs:

• optimal performance

• constraint satisfaction

• closed-loop stability

CON:

• complex solution 

Trade performance for complexity
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Minimum-Time Formulation

Possible applications:

• fast vibration suppression

• fast engine startup

• fast disturbance rejection

min N

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+N ∈ T

PROs:

• simpler solution

• constraint satisfaction

• closed-loop stability

CON:

• suboptimal performance
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Minimum-Time Controller Construction

• Solve a series of horizon-one problems backwards in time:

• Why is it a simpler formulation:
- cost-to-go is constant (number of steps needed to reach the origin)
- consequence: only need to consider a single terminal set at each step

min
uk

!(xk, uk) + !f (xk+1)

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+1 ∈ Xk+1
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Minimum-Time Controller Construction

• Design an invariant set around the origin

XI
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Minimum-Time Controller Construction

Partition 1

• Solve N=1 problem with      as the terminal set
• Store     , its regions and the associated feedback laws

XI

X1

X1
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• Solve N=1 problem with      as the terminal set
• Store     , its regions and the associated feedback laws

Minimum-Time Controller Construction

Partition 2

X1

X1

X2

X2
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Minimum-Time Controller Construction

Partition 3

• Repeat until convergence...
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Minimum-Time Controller Construction

Partition 4

• Repeat until convergence...

Thursday, April 15, 2010



Minimum-Time Controller Construction

Partition 5

• Repeat until convergence...
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Minimum-Time Controller Construction

Convergence if 

• Repeat until convergence...

Xk = Xk−1
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Minimum-Time Controller

• Resulting controller is composed of all partitions!
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Minimum-Time Controller Implementation

#0

#1

#2
#4
#5

XI

x0

All partitions

Partition #:

• All partitions on top of each other
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Minimum-Time Controller Implementation

x0

• Pick the partition which contains measurements and has the 
least cost-to-go

X0

X1

X2

X3

X4
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Minimum-Time Controller Implementation

x0

Partition 2

• Identify the region which contains measurements
• Evaluate the corresponding feedback law
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Minimum-Time Controller Implementation

x1

Partition 1

• By construction the state is pushed to a “lower” partition
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Minimum-Time Controller Properties

min N

s.t. xk+1 = f(xk, uk)
xk ∈ X , uk ∈ U
xk+N ∈ T

PROs:

• simpler solution

• constraint satisfaction

• closed-loop stability

CON:

• suboptimal performance

How much simpler?

How much do we loose?

Indeed?
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Minimum-Time Controller Properties

• Feasibility guaranteed by solving constrained problems
• Stability guaranteed by construction:

Cost (number of steps 
needed to reach the 

terminal set) is always 
decreasing
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Minimum-Time Controller Complexity
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Minimum-Time Controller Complexity
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Minimum-Time Controller Performance
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Minimum-Time Control: Summary

PROs:
− faster controller construction
− lower number of regions
− acceptable loss of performance on average

CON:
− bang-bang behavior
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Extensions of Minimum-Time Control

PWA systems

PWA systems with additive noise

PWA systems with parametric uncertainties

xk+1 = Aixk + Biuk + fi IF xk ∈ Di

xk+1 = Ai(λ)xk + Biuk + fi + w IF xk ∈ Di, ∀w ∈W

xk+1 = Ai(λ)xk + Biuk + fi IF xk ∈ Di, ∀λ ∈ Λ

Grieder, Kvasnica, Baotic, Morari; Automatica 2005

Rakovic, Grieder, Kvasnica, Mayne, Morari; CDC 2004

Kvasnica, Herceg, Čirka, Fikar; CDC 2010
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Three Levers of Complexity Reduction

Controller
Construction

Solution Complexity

Control
Evaluation

PLANT

control u* state x

output y

1 2

3
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Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

x1

x2

u∗(x)
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Typical Explicit MPC Feedback Law

x1

x2

x1

x2
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Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

• Questions to be answered:
- can we merge optimally?
- can we merge quickly?
- can we go even further and eliminate all regions?
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Optimal Region Merging

252 regions 39 regions

Geyer, Torrisi, Morari; Automatica 2008

x1

x2

x1

x2
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Step 1: Hyperplane Arrangement4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in
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Step 2: Associate Boolean Literals4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4
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Step 3: Represent Regions to Merge by Logic 
Functions

4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4
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Step 4: Simplify the Function
4.3 Disjoint Optimal Complexity Reduction 63

+ + + !

+ + + +

+ + ! !

+ ! ! !

! ! ! !
! + + +

! ! + +! ! ! +

+ ! ! +

+ + ! +

1

2
3

4

Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4
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Step 4: Simplify the Function
4.3 Disjoint Optimal Complexity Reduction 63
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Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4
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Step 5: Recover Regions
4.3 Disjoint Optimal Complexity Reduction 63
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Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4

Thursday, April 15, 2010



Step 5: Recover Regions
4.3 Disjoint Optimal Complexity Reduction 63
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Figure 4.1: Example with four hyperplanes in R = 2 and the corresponding markings.

The polyhedra corresponding to Mw are white and the polyhedra correspond-

ing to M ′
b are grey shaded, respectively

Algorithm 4.1

function Mm = Merge( Mw, M ′
b, z, z̄ )

m = env(Mw)

Mb = {mb ∈ M ′
b | Pmb

⊆ Pm}

if Mw = ∅ then Mm = ∅

elseif Mb = ∅ then Mm = m

else

I = {i | m(i) = ’∗’}

Mm = ∅

for i ∈ I

if z < z̄ then

Mm1 = Merge ( Mw|m(i)=− , Mb|m(i)=− , z, z̄ )

Mm2 = Merge ( Mw|m(i)=+ , Mb|m(i)=+ , z + #Mm1 , z̄ )

if Mm = ∅ or #Mm1 + #Mm2 < #Mm then

Mm = Mm1 ∪ Mm2

z̄ = min(z̄, z + #Mm)

return Mm

Example 4.1 As an example with four hyperplanes in a two-dimensional space consider

Fig. 4.1. The envelope of the white polyhedra is given by the positive half space of

H4 and the marking m = ∗∗∗+. Thus, only the black polyhedra with markings Mb =

{+−−+, ++−+} are considered, and branching is only performed on the hyperplanes in

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

δ1δ2δ3δ4

White regions = δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4 + δ1δ2δ3δ4

= δ1δ2δ4(δ3 + δ3) + δ2δ3δ4(δ1 + δ1)
= δ1δ2δ4 + δ2δ3δ4
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Optimal Region Merging: Summary

PROs:
− optimal region merging using logic minimization (ESPRESSO)
− applicable to any type of PWA functions (discontinuous, non-convex 

partitions, etc.)
− simplified controller provides the same level of optimality

CONs:
− logic optimization is computationally demanding
− upper bound on possible hyperplane arrangements generated by N 

hyperplanes in n dimensions is O(Nn)

Geyer, Torrisi, Morari; Automatica 2008
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Complexity in Numbers

• Illustrative case:
- 200 regions in 2D
- each region, on average, is defined by 5 hyperplanes
- hence we have ~500 unique hyperplanes
- therefore the logic minimization can have up to 5002 terms with 500 

variables each
- logic minimization with 250 000 constraints and 500 variables is 

difficult
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Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

• Questions to be answered:
- can we merge optimally? YES - Optimal Region Merging
- can we merge quickly?
- can we go even further and eliminate all regions?

Kvasnica, Fikar; Submitted to CDC 2010
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Clipping-Based Complexity Reduction

u

u

6 regions

• Two types of regions:
- saturated:
- unsaturated: 

R1 R2 R3 R4 R5R6

R1,R5,R6

R2,R3,R4
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Clipping-Based Complexity Reduction

u

u

6 regions

• Idea: 
- remove saturated regions
- cover the “holes” by expanding unsaturated regions

R1 R2 R3 R4 R5R6
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Clipping-Based Complexity Reduction

u

u

5 regions

• We have eliminated region

R3 R4 R5R6R̃1

R1

Thursday, April 15, 2010



Clipping-Based Complexity Reduction

u

u

• We have eliminated regions
• Merged controller consists of 3 regions

3 regions

R3R̃1

R5,R6

R̃2

ũ(x)
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Clipping-Based Complexity Reduction

u

u

• Nothing is for free!
• For some states we have

3 regions

R3R̃1 R̃2

ũ(x)

u(x) != ũ(x)
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Clipping-Based Complexity Reduction

u

u

• Nothing is for free!
• For some states we have

3 regions

R3R̃1 R̃2

ũ(x)

u(x) != ũ(x)

u(x) = φ(ũ(x))

Thursday, April 15, 2010



Clipping-Based Complexity Reduction

u

u

• Recover equivalence by using a clipping function:

3 regions

R3R̃1 R̃2

ũ(x)

φ(ũ(x)) = max(min(ũ(x), u), u)

u(x) = φ(ũ(x))
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Clipping-Based Complexity Reduction: Summary

PROs:
− very fast, only involves basic polytopic calculus
− clipping function has complexity
− simplified controller provides the same level of optimality

CONs:
− only provides significant reduction if there are plenty saturated 

regions
− doesnʼt simplify unsaturated regions
− directly applicable only to continuous functions

O(1)

Kvasnica, Fikar; Submitted to CDC 2010
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Clipping vs ORM

Saturated 
Regions

Unsaturated 
Regions

ORM merged merged

Clipping removed kept
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Clipping vs ORM

Random 
System

RegionsRegionsRegions Runtime [s]Runtime [s]Random 
System Original Clipping ORM Clipping ORM

1 35 5 11 1 3
2 75 9 19 1 49
3 83 53 45 1 55
4 173 17 ✞ 1 ✞

5 221 23 ✞ 1 ✞

6 271 119 ✞ 5 ✞

7 481 33 ✞ 1 ✞

8 547 73 ✞ 3 ✞

9 837 139 ✞ 7 ✞

10 1628 274 ✞ 24 ✞

✞ = exhausted all memory
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Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

• Questions to be answered:
- can we merge optimally?  YES - Optimal Region Merging
- can we merge quickly?     YES - Clipping
- can we go even further and eliminate all regions?

Kvasnica, Christophersen, Herceg, Fikar; IFAC WC 2008
Kvasnica, Lofberg, Herceg, Čirka, Fikar; ACC 2010
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Evaluation of Explicit MPC

x

U∗(x)

A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

• Identify region which contains current state (99.9% of effort)

• Evaluate the corresponding affine feedback law (0.1% effort)

x0

U∗ = K3x0 + L3
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The Idea

• Find an approximate feedback which
- is defined over a single region (hence no region search is required)
- guarantees closed-loop stability & constraint satisfaction
- trades off performance for cost of implementation

x

u∗(x)

ũ(x) = a0 + a1x + · · · + anxn

u(x)

• Polynomial is an ideal candidate (low storage, fast evaluation)
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How to Guarantee Stability & Feasibility?

• Find an approximate feedback which
- is defined over a single region (hence no region search is required)
- guarantees closed-loop stability & constraint satisfaction
- trades off performance for cost of implementation

x

u∗(x)

ũ(x) = a0 + a1x + · · · + anxn

u(x)

• Polynomial is an ideal candidate (low storage, fast evaluation)
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The Idea Continued...

• Given is:
- LTI or PWA system
- explicit MPC feedback with stability guarantees
- PWA Lyapunov function

• Is it the only feedback which gives stability?
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The Idea Continued...

• Given is:
- LTI or PWA system
- explicit MPC feedback with stability guarantees
- PWA Lyapunov function

• Is it the only feedback which gives stability?
• Theorem:

- a set of stabilizing feedbacks exists
- it can be computed
- it is represented by polytopes

• Corollary:
- if the polynomial resides in the set, 

stability is guaranteed
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Two Key Questions

• How to find the set of stabilizing controllers?
• How to find coefficients of the polynomial residing in such set?
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Set of Stabilizing Controllers

x

The state space
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Set of Stabilizing Controllers

x

The state space is divided into polyhedral regions
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Set of Stabilizing Controllers

x

J

Over which the PWA Lyapunov function is defined...
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Set of Stabilizing Controllers

Along with the optimal explicit MPC feedback law

x

u

H1x ≤ K1 H2x ≤ K2

Thursday, April 15, 2010



Set of Stabilizing Controllers

x

u

We search for a set of inputs satisfying constraints...

H1x ≤ K1 H2x ≤ K2
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Set of Stabilizing Controllers

x

u

We search for a set of inputs satisfying constraints which 
push all states from left region to the right region...

H1x ≤ K1 H2x ≤ K2
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Set of Stabilizing Controllers

x

u

i.e. in the direction of decrease of the Lyapunov function

H1x ≤ K1 H2x ≤ K2
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Set of Stabilizing Controllers

x

u

Two conditions must hold:

H1x ≤ K1 H2x ≤ K2

H2(Ax + Bu) ≤ K2

J(Ax + Bu)− J(x) ≤ −β
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Set of Stabilizing Controllers

x

u

H2(Ax + Bu) ≤ K2

J(Ax + Bu)− J(x) ≤ −β

H2(Ax + Bu) ≤ K2

(M2(Ax + Bu) + L2)− (M1x + L1) ≤ −β
⇒

H1x ≤ K1 H2x ≤ K2
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Set of Stabilizing Controllers

x

u

H2(Ax + Bu) ≤ K2

(M2(Ax + Bu) + L2)− (M1x + L1) ≤ −β

H1x ≤ K1 H2x ≤ K2

But these are all linear constraints!
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Set of Stabilizing Controllers

x

u

H1x ≤ K1 H2x ≤ K2

H2(Ax + Bu) ≤ K2

(M2(Ax + Bu) + L2)− (M1x + L1) ≤ −β
Hence they define a polytope
in the x-u space!
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Set of Stabilizing Controllers

• The whole set is obtained by exploring all feasible transitions
• This is not the set of all stabilizing controllers!
• Merely it is a set of inputs which render a given PWA Lyapunov 

function a Control Lyapunov function
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Finding the Polynomial

• Objectives:
- the polynomial must never leave the set
- it should be close to the optimal feedback

• Tuning parameter: degree of the polynomial
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Finding the Polynomial

• Fix the degree of
• Search for the coefficients:

ũ(x) = a0 + a1x + · · · + anxn

find a1, . . . , an

s.t Ti − Si

[
x

ũ(x)

]
≥ 0, i = 1, . . . , N

∀x ∈ {x | Ki −Hix ≥ 0}, i = 1, . . . , N
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Finding the Polynomial

• Fix the degree of
• Search for the coefficients:

• The problem boils down to showing global positivity of 
polynomials:
- positivstellensatz & SDP
- Polya theorem & LP

ũ(x) = a0 + a1x + · · · + anxn

find a1, . . . , an

s.t Ti − Si

[
x

ũ(x)

]
≥ 0, i = 1, . . . , N

∀x ∈ {x | Ki −Hix ≥ 0}, i = 1, . . . , N

Kvasnica, Lofberg, Herceg, Čirka, Fikar; ACC 2010

Kvasnica, Christophersen, Herceg, Fikar; IFAC 2008
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Polynomial Approximation: Summary

PROs:
− eliminates all regions altogether
− very fast evaluation
− extremely low memory footprint of the controller (< 20 bytes)
− guarantees closed-loop stability & constraint satisfaction

CONs:
− heavy computational demand (feasible for < 200 regions)
− controller is suboptimal (however performance drop can be bounded)
− SDP & LP relaxations are just sufficient conditions
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Lever 2: Solution Complexity

• Observation:
- many of the controller regions share the same feedback law

• Idea:
- merge such regions into larger convex objects

• Questions to be answered:
- can we merge optimally?  YES - Optimal Region Merging
- can we merge quickly?     YES - Clipping
- can we go even further and eliminate all regions?

                                         YES - Polynomial Approximation
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Three Levers of Complexity Reduction

Controller
Construction

Control
Evaluation

PLANT

control u* state x

output y

1

3

Solution Complexity
2
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Sequential Search

x
A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

x0

? ? ?
u∗(x)

• Works out-of-the box
• Can be easily implemented using any language (C, JAVA, LAD, ...)
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Lever 3: Control Evaluation

• Fact:
- sequential search always works, but has complexity

• Objective:
- devise faster evaluation scheme, ideally with

• Questions to be answered:
- is it possible?
- how expensive is construction of such schemes?
- can we construct them with less effort?

O(N)

O(log2 N)
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Complexity in Numbers

10 Hz

100 Hz

1,000 Hz

10,000 Hz

100,000 Hz

10 100 1000 10000

Number of regions

O(N) search (1 MFLOP/s)
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Complexity in Numbers

10 Hz

100 Hz

1,000 Hz

10,000 Hz

100,000 Hz

10 100 1000 10000

Number of regions

O(N) search (1 MFLOP/s) O(log2(N)) search (1 MFLOP/s)
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Binary Search Trees

x

x0

A

Tondel et al., Automatica 2003

u∗(x)
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Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A
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Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A B

Thursday, April 15, 2010



Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A B
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Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A BC
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Binary Search Trees

x0

Tondel et al., Automatica 2003

u∗(x)

x
A BC
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Binary Search Trees

• How to find optimal branching hyperplanes?
• How to organize them into a tree?
• Easy in 1D, what about higher dimensions?

A

B

C D

E

F
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2D Example
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2D Example
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2D Example
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2D Example
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2D Example
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2D Example
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2D Example
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2D Example
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2D Example
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2D Example
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Binary Search Tree: Construction

Thursday, April 15, 2010



Binary Search Tree: Construction

• Step 1: determine positions of regions wrt. all hyperplanes

A

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5
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Binary Search Tree: Construction

• Step 1: determine positions of regions wrt. all hyperplanes

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5
B 1, 2, 4 2, 3, 5

B

Thursday, April 15, 2010



Binary Search Tree: Construction

• Step 1: determine positions of regions wrt. all hyperplanes

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5
B 1, 2, 4 2, 3, 5
C 1, 4 2, 3, 4, 5

C
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Binary Search Tree: Construction

• Step 1: determine positions of regions wrt. all hyperplanes

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5
B 1, 2, 4 2, 3, 5
C 1, 4 2, 3, 4, 5
D 1, 2, 3, 4 4, 5

D
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Binary Search Tree: Construction

• Step 2: find best hyperplane which divides regions into ~halves

Hyperplane Regions left Regions right
A 1, 2 3, 4, 5
B 1, 2, 4 2, 3, 5
C 1, 4 2, 3, 4, 5
D 1, 2, 3, 4 4, 5

B

D

AC
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Binary Search Tree: Construction

• Step 3: proceed recursively on left and right branches

D

AC B

B

A

2 D

A

C 4

1 2 3 5
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Binary Search Tree: Summary

PRO:
− region identification in                  time on average

CONs:
− expensive construction (requires       linear programs)
− tree can be unbalanced, in the worst case complexity is

O(log2 N)

O(N)
N2
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Complexity in Numbers

Sequential Search Binary Search

LPs 5‧106

Construction time 3 hours

Evaluation FLOPS 100 000 110

2568 regions in 3D
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Complexity in Numbers

Sequential Search Binary Search

LPs 4‧109

Construction time > 16 days

Evaluation FLOPS 1 500 000 ???

22 286 regions in 5D
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Lever 3: Control Evaluation

• Fact:
- sequential search always works, but has complexity

• Objective:
- devise faster evaluation scheme, ideally with

• Questions to be answered:
- is it possible? YES - Binary Search Tree
- how expensive is construction of such schemes?   O(N2)
- can we construct them with less effort?

O(N)

O(log2 N)
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Bounding-Box Search Tree

• Idea: 
- approximate all regions by boxes
- construct a binary search tree on these simpler structures

• Advantage:
- faster tree construction (only 2N linear programs)

• Problem:
- since the regions have different shapes, the tree only identifies a list of 

candidates
- need to sequentially search through this list

Christophersen, Kvasnica, Jones, Morari; ECC 2007
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Bounding-Box Search Tree: Summary

PROs:
− very cheap construction even for large partitions
− arbitrary partitions can be processed (e.g. with holes)
− good average performance

CONs:
− local search still necessary
− worst-case evaluation drops to 
− needs to store all regions as well as all bounding boxes

O(N)
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Bounding-Box Search Tree: Summary

PROs:
− very cheap construction even for large partitions (how cheap?)
− arbitrary partitions can be processed (e.g. with holes)
− good average performance (close to Binary Search Tree?)

CONs:
− local search still necessary (how expensive?)
− worst-case evaluation drops to 
− needs to store all regions as well as all bounding boxes

O(N)
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Complexity in Numbers

Sequential Search Binary Search Box Search

LPs 5‧106

Construction time 3 hours

Evaluation FLOPS 100 000 110

2568 regions in 3D
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Complexity in Numbers

Sequential Search Binary Search Box Search

LPs 5‧106 8‧103

Construction time 3 hours 10 secs

Evaluation FLOPS 100 000 110 923

2568 regions in 3D
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Cardinality of List of Candidates

2568 regions in 3D
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Complexity in Numbers

Sequential Search Binary Search Box Search

LPs 4‧109 2‧105

Construction time > 16 days 1 minute

Evaluation FLOPS 1 500 000 ??? 200 000

22 286 regions in 5D
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Cardinality of List of Candidates

22 286 regions in 5D
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Lever 3: Control Evaluation

• Fact:
- sequential search always works, but has complexity

• Objective:
- devise faster evaluation scheme, ideally with

• Questions to be answered:
- is it possible? YES - Binary Search Tree
- how expensive is construction of such schemes?   O(N2)
- can we construct them with less effort? YES - Bounding-Box Tree

O(N)

O(log2 N)
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Open Possibilities

Michal Kvasnica
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Explicit MPC

• #1 issue: once calculated, the controller is “set in stone”
- penalty matrices stay constant
- prediction model cannot adapt to updated values of parameters

• Challenges:
- how to incorporate a tuning knob, i.e. to parameterize the solution not 

only in states, but also in penalties?
- adaptive explicit MPC
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Controller Construction

• Field to look at: control theory
• Possible directions:

- move blocking
- model reduction
- minimum-time controller essentially approximates the objective 

function by a piecewise constant function. Can similar, but more 
precise, approximation be found?

• Issues to address: stability, constraint satisfaction
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Solution Complexity

• Fields to look at: 
- computational geometry
- control engineering
- computer science

• Possible directions:
- exploit geometric properties of the solution
- approximate the solution by a heuristic control law
- data compression (ZIP-like approach for explicit MPC?)

• Issues to address:
- tradeoff between off-line calculation effort and gained complexity 

reduction
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Control Evaluation

• Fields to look at: computational geometry, computer science
• Possible directions:

- map regions to points, then use nearest neighbor search
- can we learn something from point-and-click games?
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