
Hybrid Systems Seminar
Part 1: Motivation

Michal Kvasnica

Thursday, April 1, 2010

Good control using limited resources

Thursday, April 1, 2010

CSTR Control

Challenges:
 constraints
 nonlinear behavior
 optimal operation
 cheap implementation

in real time

Thursday, April 1, 2010

MPC: On-Line Solution

PLANT output y

Optimization
Problem obtain U*(x)

control u*
state x

Thursday, April 1, 2010

MPC: Off-Line Solution

Optimization
Problem

Explicit Solution

u* = f(x)

PLANT output y

state x

control u*

(=Look-Up Table)

off-line

Thursday, April 1, 2010

On-Line vs. Off-Line

On-Line Off-Line

Cheap implementation

Fast implementation

Nonlinear models

Idea: approximate nonlinearities
 by a hybrid linear system

Thursday, April 1, 2010

PWA Approximation

x

f(x) IF-THEN rules
translate into an
mixed-integer model

 arbitrary precision
can be achieved by
adding more
linearizations

IF

Thursday, April 1, 2010

CSTR: Off-Line MPC

 track temperature
reference

 use the PWA model
to form predictions

 MPT calculates the
off-line solution

 210 regions in 3D

MPT: Multi-Parametric Toolbox, M. Kvasnica et al.

Thursday, April 1, 2010

Evaluation

Performance

Runtime

Nonlinear LinearPWA

100 % 30 %85 %

600 ms 0.5 ms0.5 ms

Expenses 1000 € 10 €10 €

Thursday, April 1, 2010

Conclusions

 MPC to handle constraints & performance
 Off-line MPC to allow real-time implementation
 PWA approximations to deal with nonlinearities

 Summary: well performing control using
 cheap hardware

Thursday, April 1, 2010

Hybrid Systems Seminar
Part 2: Models of Hybrid Systems

Michal Kvasnica

Thursday, April 1, 2010

Hybrid Systems

Hybrid systems

Computer

Science

Control

Theory

Finite

state

machines

Continuous

dynamical

systems

A
B

C

C

A

B

B

C

system
u(t) y(t)

X = {1, 2, 3, 4, 5}
U = {A, B,C}

x ∈ Rnx

u ∈ Rnu

y ∈ Rny

Thursday, April 1, 2010

DC-DC Converter

• Continuous states, discrete inputs
• Linear dynamics switches depending on the value of input

Hybrid Systems: Examples (II)

DC2DC Converter

PSfrag replacements

r!

v!
vs

i!

vc

ic
rc

i0

r0 v0

S = 0

S = 1

• continuous dynamics ⇒ states v!, i!, vc, ic,

v0, i0

• discrete events ⇒ S = 0, S = 1

S = 0S = 1

PSfrag replacements

kTs (k + 1)Tsduty cycle

MODE 1 (S = 1) MODE 2 (S = 0)

PSfrag replacements PSfrag replacements

Hybrid Systems: Examples (II)

DC2DC Converter

PSfrag replacements

r!

v!
vs

i!

vc

ic
rc

i0

r0 v0

S = 0

S = 1

• continuous dynamics ⇒ states v!, i!, vc, ic,

v0, i0

• discrete events ⇒ S = 0, S = 1

S = 0S = 1

PSfrag replacements

kTs (k + 1)Tsduty cycle

MODE 1 (S = 1) MODE 2 (S = 0)

PSfrag replacements PSfrag replacements

Thursday, April 1, 2010

Mechanical System with Backlash

• Continuous states
• Linear dynamics switches between two modes:

- contact mode
- backlash mode otherwise

Hybrid Systems: Examples (I)

Mechanical system with backlash

PSfrag replacements

x1

x2

εδ

∆x

• Continuous dynamics: states x1, x2, ẋ1, ẋ2.

• Two “discrete events”:

a) ”contact mode” ⇒ mechanical parts are

in contact and the force is transmitted.

Condition:

[(∆x = δ) ∧ (ẋ1 > ẋ2)]
∨

[(∆x = ε) ∧ (ẋ2 > ẋ1)]

b) ”backlash mode” ⇒ mechanical parts are

not in contact

[(∆x = δ) ∧ (ẋ1 > ẋ2)] ∨ [(∆x = ε) ∧ (ẋ2 > ẋ1)]

Thursday, April 1, 2010

Chemical Reactor

! !

!"#$%!&'()&*

!+,**-'.-/0

! 1&'/(),2'(/

! '&'*2'-,)%3-+,42&)

! &5(26,*%&5-),(2&'

! 1+-,5%265*-6-'(,(2&'%

2'%)-,*%(26-

• Continuous states and inputs
• Nonlinear dynamics approximated by multiple linearizations

R1 R2

fLIN,1

fLIN,2

x

ẋ

ẋ =

fLIN,1 if x ∈ R1

fLIN,2 if x ∈ R2

Thursday, April 1, 2010

Modeling of Hybrid Systems

• Suitable mathematical abstraction needed
• For simulations:

- detailed process description
- individual modes usually involve nonlinear dynamics
- can be modeled e.g. using Stateflow / Simulink

• For control:
- descriptive enough to capture behavior of the plant
- simple enough to allow controller synthesis
- dynamics in each mode approximated by an affine expression
- due to presence of switches the overall dynamics is still nonlinear
- mathematical representation of the whole system is needed

Thursday, April 1, 2010

Discrete Hybrid Automata
Discrete Hybrid Automata (DHA)

S
Y

S
 1

S
Y

S
 s

.
.
.

FINITE STATE MACHINE

(FSM)

EVENT GENERATOR

(EG)

MODE SELECTOR

(MS)

SWITCHED AFFINE

SYSTEM (SAS)

PSfrag replacements δe(k)

δe(k)

δe(k)

ub(k)

ub(k)

uc(k)

uc(k)

xc(k)

xb(k)

Interconnection between:

• switched affine system (SAS) ⇒ continuous

dynamics

• finite state machine (FSM) ⇒ discrete

events

Interconnection based on:

• Event Generator (EG)

– logic signals from the constraints on

continuous states and time

– triggers mode switching of the FSM

• Mode Selector (MS) ⇒ selection of an affine

subsystem

Thursday, April 1, 2010

Discrete Hybrid Automata
Discrete Hybrid Automata (DHA)

S
Y

S
 1

S
Y

S
 s

.
.
.

FINITE STATE MACHINE

(FSM)

EVENT GENERATOR

(EG)

MODE SELECTOR

(MS)

SWITCHED AFFINE

SYSTEM (SAS)

PSfrag replacements δe(k)

δe(k)

δe(k)

ub(k)

ub(k)

uc(k)

uc(k)

xc(k)

xb(k)

Interconnection between:

• switched affine system (SAS) ⇒ continuous

dynamics

• finite state machine (FSM) ⇒ discrete

events

Interconnection based on:

• Event Generator (EG)

– logic signals from the constraints on

continuous states and time

– triggers mode switching of the FSM

• Mode Selector (MS) ⇒ selection of an affine

subsystem

Hybrid Systems: Examples (I)

Mechanical system with backlash

PSfrag replacements

x1

x2

εδ

∆x

• Continuous dynamics: states x1, x2, ẋ1, ẋ2.

• Two “discrete events”:

a) ”contact mode” ⇒ mechanical parts are

in contact and the force is transmitted.

Condition:

[(∆x = δ) ∧ (ẋ1 > ẋ2)]
∨

[(∆x = ε) ∧ (ẋ2 > ẋ1)]

b) ”backlash mode” ⇒ mechanical parts are

not in contact

[(∆x = δ) ∧ (ẋ1 > ẋ2)] ∨ [(∆x = ε) ∧ (ẋ2 > ẋ1)]

• Contact mode:

• Backlash mode

Thursday, April 1, 2010

Discrete Hybrid Automata
Discrete Hybrid Automata (DHA)

S
Y

S
 1

S
Y

S
 s

.
.
.

FINITE STATE MACHINE

(FSM)

EVENT GENERATOR

(EG)

MODE SELECTOR

(MS)

SWITCHED AFFINE

SYSTEM (SAS)

PSfrag replacements δe(k)

δe(k)

δe(k)

ub(k)

ub(k)

uc(k)

uc(k)

xc(k)

xb(k)

Interconnection between:

• switched affine system (SAS) ⇒ continuous

dynamics

• finite state machine (FSM) ⇒ discrete

events

Interconnection based on:

• Event Generator (EG)

– logic signals from the constraints on

continuous states and time

– triggers mode switching of the FSM

• Mode Selector (MS) ⇒ selection of an affine

subsystem

Hybrid Systems: Examples (I)

Mechanical system with backlash

PSfrag replacements

x1

x2

εδ

∆x

• Continuous dynamics: states x1, x2, ẋ1, ẋ2.

• Two “discrete events”:

a) ”contact mode” ⇒ mechanical parts are

in contact and the force is transmitted.

Condition:

[(∆x = δ) ∧ (ẋ1 > ẋ2)]
∨

[(∆x = ε) ∧ (ẋ2 > ẋ1)]

b) ”backlash mode” ⇒ mechanical parts are

not in contact

[(∆x = δ) ∧ (ẋ1 > ẋ2)] ∨ [(∆x = ε) ∧ (ẋ2 > ẋ1)]

• Contact mode:

• Backlash mode

Thursday, April 1, 2010

Discrete Hybrid Automata
Discrete Hybrid Automata (DHA)

S
Y

S
 1

S
Y

S
 s

.
.
.

FINITE STATE MACHINE

(FSM)

EVENT GENERATOR

(EG)

MODE SELECTOR

(MS)

SWITCHED AFFINE

SYSTEM (SAS)

PSfrag replacements δe(k)

δe(k)

δe(k)

ub(k)

ub(k)

uc(k)

uc(k)

xc(k)

xb(k)

Interconnection between:

• switched affine system (SAS) ⇒ continuous

dynamics

• finite state machine (FSM) ⇒ discrete

events

Interconnection based on:

• Event Generator (EG)

– logic signals from the constraints on

continuous states and time

– triggers mode switching of the FSM

• Mode Selector (MS) ⇒ selection of an affine

subsystem

Hybrid Systems: Examples (I)

Mechanical system with backlash

PSfrag replacements

x1

x2

εδ

∆x

• Continuous dynamics: states x1, x2, ẋ1, ẋ2.

• Two “discrete events”:

a) ”contact mode” ⇒ mechanical parts are

in contact and the force is transmitted.

Condition:

[(∆x = δ) ∧ (ẋ1 > ẋ2)]
∨

[(∆x = ε) ∧ (ẋ2 > ẋ1)]

b) ”backlash mode” ⇒ mechanical parts are

not in contact

[(∆x = δ) ∧ (ẋ1 > ẋ2)] ∨ [(∆x = ε) ∧ (ẋ2 > ẋ1)]

• Contact mode:

• Backlash mode

Thursday, April 1, 2010

Discrete Hybrid Automata
Discrete Hybrid Automata (DHA)

S
Y

S
 1

S
Y

S
 s

.
.
.

FINITE STATE MACHINE

(FSM)

EVENT GENERATOR

(EG)

MODE SELECTOR

(MS)

SWITCHED AFFINE

SYSTEM (SAS)

PSfrag replacements δe(k)

δe(k)

δe(k)

ub(k)

ub(k)

uc(k)

uc(k)

xc(k)

xb(k)

Interconnection between:

• switched affine system (SAS) ⇒ continuous

dynamics

• finite state machine (FSM) ⇒ discrete

events

Interconnection based on:

• Event Generator (EG)

– logic signals from the constraints on

continuous states and time

– triggers mode switching of the FSM

• Mode Selector (MS) ⇒ selection of an affine

subsystem

Hybrid Systems: Examples (I)

Mechanical system with backlash

PSfrag replacements

x1

x2

εδ

∆x

• Continuous dynamics: states x1, x2, ẋ1, ẋ2.

• Two “discrete events”:

a) ”contact mode” ⇒ mechanical parts are

in contact and the force is transmitted.

Condition:

[(∆x = δ) ∧ (ẋ1 > ẋ2)]
∨

[(∆x = ε) ∧ (ẋ2 > ẋ1)]

b) ”backlash mode” ⇒ mechanical parts are

not in contact

[(∆x = δ) ∧ (ẋ1 > ẋ2)] ∨ [(∆x = ε) ∧ (ẋ2 > ẋ1)]

• Contact mode:

• Backlash mode

Thursday, April 1, 2010

Discrete Hybrid Automata
Discrete Hybrid Automata (DHA)

S
Y

S
 1

S
Y

S
 s

.
.
.

FINITE STATE MACHINE

(FSM)

EVENT GENERATOR

(EG)

MODE SELECTOR

(MS)

SWITCHED AFFINE

SYSTEM (SAS)

PSfrag replacements δe(k)

δe(k)

δe(k)

ub(k)

ub(k)

uc(k)

uc(k)

xc(k)

xb(k)

Interconnection between:

• switched affine system (SAS) ⇒ continuous

dynamics

• finite state machine (FSM) ⇒ discrete

events

Interconnection based on:

• Event Generator (EG)

– logic signals from the constraints on

continuous states and time

– triggers mode switching of the FSM

• Mode Selector (MS) ⇒ selection of an affine

subsystem

Hybrid Systems: Examples (I)

Mechanical system with backlash

PSfrag replacements

x1

x2

εδ

∆x

• Continuous dynamics: states x1, x2, ẋ1, ẋ2.

• Two “discrete events”:

a) ”contact mode” ⇒ mechanical parts are

in contact and the force is transmitted.

Condition:

[(∆x = δ) ∧ (ẋ1 > ẋ2)]
∨

[(∆x = ε) ∧ (ẋ2 > ẋ1)]

b) ”backlash mode” ⇒ mechanical parts are

not in contact

[(∆x = δ) ∧ (ẋ1 > ẋ2)] ∨ [(∆x = ε) ∧ (ẋ2 > ẋ1)]

• Contact mode:

• Backlash mode

Thursday, April 1, 2010

Mathematical Modeling of DHAs

• Two key issues:
- how to describe logic components (FSM, event generator, mode

selector)
- how to capture the interaction between binary logic and continuous

dynamics?

• Key idea:
- write logic expressions as a set of inequalities involving binary

variables

• Example:

δi 1− δi

δi ∨ δj δi + δj ≥ 1
δi ∧ δj δi + δj ≥ 2

δi ⇒ δj δi − δj ≥ 0
δi ⇔ δj δi − δj = 0

Thursday, April 1, 2010

Mathematical Modeling of DHAs

• More complex example:

(δ1 ∧ δ2)︸ ︷︷ ︸ ⇒ (δ3 ∨ δ4)︸ ︷︷ ︸
δa δb

δb = (δ3 ∨ δ4) ⇔

δb ≥ δ1

δb ≥ δ2

δ1 + δ2 ≥ δb

δa = (δ1 ∧ δ2) ⇔

δa ≤ δ1

δa ≤ δ2

δ1 + δ2 ≤ 1 + δa

(δa ⇒ δb)⇔ (δa ≥ δb)

Thursday, April 1, 2010

Geometric Approach

• Consider any logic expression, e.g.
• Create the truth table

• Calculate the convex hull

Translation of Logic Rules into

Linear Integer Inequalitites

II) Geometric approach

Key idea:

The polytope P = {δ ∈ {0,1}n | Aδ ≤ B} is

the convex hull of the rows of the truth table

defining a logic proposition Ω(pi).

Example Given: Ω(p1, p2) ! [p1 ⇒ p2]

The truth table:

δ1 δ2 δ3
0 0 1
0 1 1
1 0 0
1 1 1

0

1

0

1

0

1

PSfrag replacements

δ1
δ2

δ 3

hull

0
0
1

,

0
1
1

,

1
0
0

,

1
1
1

=

δ2 − δ3 ≤ 0
δ3 ≤ 1

δ1 − δ2 + δ3 ≤ 1
−δ1 − δ3 ≤ −1

.

Computation of a convex hull: qhull, cdd, lrs,

chD, Porta, Hull

δ3 = (δ1 ⇒ δ2)

Translation of Logic Rules into

Linear Integer Inequalitites

II) Geometric approach

Key idea:

The polytope P = {δ ∈ {0,1}n | Aδ ≤ B} is

the convex hull of the rows of the truth table

defining a logic proposition Ω(pi).

Example Given: Ω(p1, p2) ! [p1 ⇒ p2]

The truth table:

δ1 δ2 δ3
0 0 1
0 1 1
1 0 0
1 1 1

0

1

0

1

0

1

PSfrag replacements

δ1
δ2

δ 3

hull

0
0
1

,

0
1
1

,

1
0
0

,

1
1
1

=

δ2 − δ3 ≤ 0
δ3 ≤ 1

δ1 − δ2 + δ3 ≤ 1
−δ1 − δ3 ≤ −1

.

Computation of a convex hull: qhull, cdd, lrs,

chD, Porta, Hull

Translation of Logic Rules into

Linear Integer Inequalitites

II) Geometric approach

Key idea:

The polytope P = {δ ∈ {0,1}n | Aδ ≤ B} is

the convex hull of the rows of the truth table

defining a logic proposition Ω(pi).

Example Given: Ω(p1, p2) ! [p1 ⇒ p2]

The truth table:

δ1 δ2 δ3
0 0 1
0 1 1
1 0 0
1 1 1

0

1

0

1

0

1

PSfrag replacements

δ1
δ2

δ 3

hull

0
0
1

,

0
1
1

,

1
0
0

,

1
1
1

=

δ2 − δ3 ≤ 0
δ3 ≤ 1

δ1 − δ2 + δ3 ≤ 1
−δ1 − δ3 ≤ −1

.

Computation of a convex hull: qhull, cdd, lrs,

chD, Porta, Hull

Thursday, April 1, 2010

Mathematical Modeling of DHAs

• Relations between logic and continuous variables modeled in a
similar fashion

• Assume a bounded function
• Mathematical representation of the event generator:

m ≤ f(x) ≤M

([f(x) ≤ 0]⇔ [δ = 1]) ⇔
{

f(x) ≤M(1− δ)
f(x) ≥ ε + (m− ε)δ

Thursday, April 1, 2010

Mathematical Modeling of DHAs

• Mode selector and switched affine system:

• Rewrite as with
• Corresponding mathematical representation:

x(t + 1) =

f1(x) if (δ1 = 1)
...
fn(x) if (δn = 1)

x(t + 1) = z1 + · · · + zn zi = fi(x)δi

zi ≤Mδi

zi ≥ mδi

zi ≤ fi(x)−m(1− δi)
zi ≥ fi(x)−M(1− δi)

Thursday, April 1, 2010

Mixed Logical Dynamical (MLD) Systems

• Compact mathematical representation of hybrid systems

x(t + 1) = Ax(t) + Buu(t) + Bδδ(t) + Bzz(t)
y(t) = Cx(t) + Duu(t) + Dδδ(t) + Dzz(t)
Exx(t) + Euu(t) + Eδδ(t) + Ezz(t) ≤ E0

• Involves continuous and binary states, inputs, outputs
• Auxiliary variables:

• binary selectors
• continuous variables

• Mixed-integer linear constraints:
• include physical constraints on state, inputs, outputs
• capture events, FSM, mode selection

δ(t)

z(t)

Thursday, April 1, 2010

Automatic Generation of MLD Descriptions?

• Example:

• Associate
• Rewrite state-update equation
• Introduce auxiliary variable

• Formulate constraints:

x(t + 1) = 1.6δ(t)x(t)− 0.8x(t) + u(t)
z(t) = δ(t)x(t)

x(t + 1) = 1.6z(t)− 0.8x(t) + u(t)

x(t + 1) =

{
0.8x(t) + u(t) if x(t) ≤ 0
−0.8x(t) + u(t) if x(t) > 0

(δ(t) = 1)⇔ (x(t) ≤ 0)

x(t) ≤M(1− δ(t))
x(t) ≥ ε + (m− ε)δ(t)
z(t) ≤Mδ(t)
z(t) ≥ mδ(t)
z(t) ≤ x(t)−m(1− δ(t))
z(t) ≤ x(t)−M(1− δ(t))

Thursday, April 1, 2010

HYbrid Systems DEscription Language
(HYSDEL)

SYSTEM switched_system {
INTERFACE {

STATE { REAL x [-10, 10]; }
INPUT { REAL u [-1, 1]; }

}
IMPLEMENTATION {

AUX { BOOL delta; REAL z; }
AD { delta = (x <= 0); }
DA { z = {IF delta THEN 0.8*x ELSE -0.8*x}; }
CONTINUOUS { x = z + u; }

}
}

HYSDEL
compiler

source
code

MLD
model

Thursday, April 1, 2010

Event Generator = AD Section

SYSTEM tank {
 INTERFACE {
 STATE {
 REAL h; }
 INPUT {
 REAL Q; }
 OUTPUT {
 BOOL overflow; }
 PARAMETER {
 REAL k = 1; }
 } /* end interface */
 IMPLEMENTATION {
 AUX {
 BOOL s; }
 AD {
 s = (h >= hmax); }
 CONTINUOUS {
 h = h + k * Q; }
 OUTPUT {
 overflow = s; }
 } /* end implementation */
} /* end system */

Thursday, April 1, 2010

Mode Selector + Switched System = DA Section

Nonlinear amplification unit

SYSTEM motor {

 INTERFACE {

 STATE {
 REAL ucomp; }

 INPUT {

 REAL u [0, umax];}

 PARAMETER {

 REAL ut = 1;
 REAL umax = 10;}

 } /* end interface */

IMPLEMENTATION {

 AUX {

 REAL unl;
 BOOL th; }

 AD {

 th = (u >= ut); }

 DA {

 unl = { IF th THEN 2.3*u - 1.3*ut
 ELSE u}; }

 CONTINUOUS {

 ucomp = unl; }

 } /* end implementation */

} /* end system */

Thursday, April 1, 2010

Logic Expressions

SYSTEM train {

 INTERFACE {

 STATE {
 BOOL brake; }

 INPUT {

 BOOL alarm, tunnel, fire; }

 } /* end interface */

 IMPLEMENTATION {

 AUX {

 BOOL decision; }
 LOGIC {

 decision =

 alarm & (~tunnel | fire); }

 AUTOMATA {

 brake = decision; }
 MUST {

 fire -> alarm; }

 } /* end implementation */

} /* end system */

Thursday, April 1, 2010

Discrete-Time Dynamics

SYSTEM capacitorD {

 INTERFACE {

 STATE {
 REAL u; }

 PARAMETER {

 REAL R = 1e4;

 REAL C = 1e-4;

 REAL T = 1e-1; }
 } /* end interface */

 IMPLEMENTATION {

 CONTINUOUS {
 u = u - T/C/R*i; }

 } /* end implementation */

} /* end system */

Forward Euler discretization:

Thursday, April 1, 2010

Finite State Machines

SYSTEM outflow {

 INTERFACE {

 STATE {
 BOOL closing, stop, opening; }

 INPUT {

 BOOL uclose, uopen, ustop; }

 } /* end of interface */

 IMPLEMENTATION {

 AUTOMATA {

 closing = (uclose & closing) | (uclose & stop);

 stop = ustop | (uopen & closing) | (uclose & opening);

 opening = (uopen & stop) | (uopen & opening); }
 MUST {

 ~(uclose & uopen);

 ~(uclose & ustop);

 ~(uopen & ustop); }

 } /* end implementation */
} /* end system */

Thursday, April 1, 2010

Constraints

SYSTEM watertank {

 INTERFACE {

 STATE {
 REAL h; }

 INPUT {

 REAL Q; }

 PARAMETER {

 REAL hmax = 0.3;
 REAL k = 1; }

 } /* end interface */

 IMPLEMENTATION {
 CONTINUOUS {

 h = h + k*Q; }

 MUST {

 h - hmax <= 0;

 -h <= 0; }
 } /* end implementation */

} /* end system */

Thursday, April 1, 2010

HYSDEL

• Generates MLD mathematical description out of user-provided
source file

• Translates arbitrary logic conditions into appropriate mixed-integer
constraints

• Automatically calculates lower/upper bounds of linear expressions
• Allows to simulate MLD systems in MATLAB & Simulink
• GPL-based tool
• http://control.ee.ethz.ch/~hybrid/hysdel/

Thursday, April 1, 2010

http://control.ee.ethz.ch/~hybrid/hysdel/
http://control.ee.ethz.ch/~hybrid/hysdel/

Automatic Control Laboratory, ETH Zürich
www.control.ethz.ch

HYSDEL 3.0

Michal Kvasnica, Martin Herceg

Thursday, April 1, 2010

http://www.abb.ch/global/chabb/chabb118.nsf!OpenDatabase&mt=&l=ge
http://www.abb.ch/global/chabb/chabb118.nsf!OpenDatabase&mt=&l=ge

ABB Success Stories
Jura Cement and ABB
Switzerland achieved the first
known successful application
of a MLD system on a
cement mill.

The outcome has been that the
mill can be run for maximum
production and also ensuring
energy inputs and additives are
used efficiently and effectively.

Thursday, April 1, 2010

http://www.abb.ch/global/chabb/chabb118.nsf!OpenDatabase&mt=&l=ge
http://www.abb.ch/global/chabb/chabb118.nsf!OpenDatabase&mt=&l=ge

ABB Success Stories

ABB technology wins 2008 Global Fuels Award for
energy efficiency

February 19, 2008 – ABBʼs Expert Optimizer
software was honored with the “Most innovative
technology for electrical energy efficiency” award
at the second annual Global Fuels conference in
London earlier this month. Part of ABBʼs Collaborative
Production Management portfolio, Expert Optimizer
helps cement plants to significantly reduce their
energy consumption and energy costs. Pro
Publications International Ltd. organized the
conference; over 100 cement industry delegates from
27 countries attended the 2008 event.

Thursday, April 1, 2010

http://www.abb.ch/global/chabb/chabb118.nsf!OpenDatabase&mt=&l=ge
http://www.abb.ch/global/chabb/chabb118.nsf!OpenDatabase&mt=&l=ge

HYSDEL
• HYSDEL = Hybrid Systems Description Language
• HYSDEL is a framework for modeling of hybrid

systems
– uses simple natural language statements to model

complex relations
– generates mathematical models suitable for plant

optimization
• Two versions are available:

– HYSDEL 2.0 – the official version
– HYSDEL 3.0 – currently under development

Thursday, April 1, 2010

Operation Principle of HYSDEL 2.0

HYSDEL
Source

HYSDEL 2.0
Compiler

Mathematical
Model

Thursday, April 1, 2010

Main HYSDEL 2.0 Language
Features

• Hybrid systems modeling can be based on:
– difference equations
– on/off switches
– IF-THEN-ELSE rules
– finite state automata

• Variables can be marked as binary or real
• Constraints can be defined

HYSDEL
Source

HYSDEL 2.0
Compiler

Mathematical
Model

Thursday, April 1, 2010

HYSDEL 2.0 Language

• PROS:
– easy to understand syntax similar to C/C++
– allows rapid prototyping of hybrid systems

• CONS:
– only allows scalar variables to be defined
– doesn't allow FOR loops to be used
– compositions of multiple models not allowed

HYSDEL
Source

HYSDEL 2.0
Compiler

Mathematical
Model

Thursday, April 1, 2010

Cons Illustrated

• Scalar orientation, no FOR-loops:
– creation of models is tedious

• No support for compositions of multiple models:
– one single model has to describe the whole plant

Thursday, April 1, 2010

http://www.abb.ch/global/chabb/chabb118.nsf!OpenDatabase&mt=&l=ge
http://www.abb.ch/global/chabb/chabb118.nsf!OpenDatabase&mt=&l=ge

HYSDEL 2.0 Compiler

• PRO: written in C++
– very fast processing of source files

• CONS: written in C++
– maintenance difficult
– poorly extendible
– requires compilation for different OS platforms
– no access to optimization packages that may

required to get higher quality models

HYSDEL
Source

HYSDEL 2.0
Compiler

Mathematical
Model

Thursday, April 1, 2010

Mathematical Model

HYSDEL
Source

HYSDEL 2.0
Compiler

Mathematical
Model

• Represents a mathematical equivalent of the natural
language model

• Serves to predict the evolution of the plant
• Can be directly used for plant optimization and

simulation
• Question: can different model be obtained that reduces

optimization time?

Thursday, April 1, 2010

HYSDEL 3.0
• Main goal: address all shortcomings of HYSDEL 2.0
• Particular goals:

– extend the HYSDEL 2.0 syntax
– allow compositions of hybrid systems
– rewrite the compiler
– generate “faster” models (in terms of optimization

time)

Thursday, April 1, 2010

Operation Principle of HYSDEL 3.0

HYSDEL
Source

HYSDEL 3.0
Compiler

Mathematical
Model

Thursday, April 1, 2010

HYSDEL 3.0 Language Extentions

• Variables can be in form of vectors and matrices
• Access to individual components of vectors by means

of indexing
• Nested FOR loops are allowed
• Hybrid systems consisting of subsystems can be

defined

HYSDEL
Source

HYSDEL 3.0
Compiler

Mathematical
Model

Thursday, April 1, 2010

Examples

!"#$%&'#$!(() *+,-$*./01234 5!

!"#$%&'()*(!"+',-'-(./,+#"

!"#"$%&%#'('#%")'"'*'+,-'./'0-'12/'3
4&"&%'(
''#%")'567589-'.:'+;<-'=<2/
3

6274&83-$9048:723

;</2=:<>

!"#"$%&%#'('#%")'96.:/'3
>?9&@9A?A4'(
''5'*'5696,B.:-',B0:'C'=6.89:/
3

?@A$B&&13

D?#'6E'*',B9:'(
''56E:'*'.8569FEC,:/
3'

Thursday, April 1, 2010

Compositions of Multiple Models

Thursday, April 1, 2010

Step 1: Divide the Plant into
Subsystems

Feeder Separator
Silos

Distribution

Thursday, April 1, 2010

Step 2: Create a Model of each
Subsystem

Feeder Separator
Silos

Distributionfeeder.hys separator.hys
silos.hys

distribution.hys

Thursday, April 1, 2010

Step 3: Define Interconnections

Feeder Separator
Silos

Distribution

feeder.output = separator.input
separator.output = silos.input
silos.output = distribution.input

Thursday, April 1, 2010

Example - Two Tank System
SYSTEM single_tank {
 INTERFACE {
 STATE { REAL x; }
 INPUT { REAL inflow; }
 OUTPUT { REAL outflow; }
 PARAMETER { REAL k = 0.5;}
 }
 IMPLEMENTATION {
 CONTINUOUS {
 x = inflow - k*x + x;
 }
 OUTPUT {
 outflow = k*x;
 }
 }
}

Thursday, April 1, 2010

Example - Two Tank System
SYSTEM single_tank {
 INTERFACE {
 STATE { REAL x; }
 INPUT { REAL inflow; }
 OUTPUT { REAL outflow; }
 PARAMETER { REAL k = 0.5;}
 }
 IMPLEMENTATION {
 CONTINUOUS {
 x = inflow - k*x + x;
 }
 OUTPUT {
 outflow = k*x;
 }
 }
}

SYSTEM two_tanks_master {
 INTERFACE {
 MODULE {
 single_tank T1, T2;
 }
 INPUT { REAL inflow; }
 }
 IMPLEMENTATION {
 LINEAR {
 T1.inflow = inflow;
 T1.outflow = T2.inflow;
 }
 }
}

Thursday, April 1, 2010

• Library of standard units:

• Dynamical behavior of each block is described by a
separate HYSDEL source file

• Parameters of the blocks (e.g. the cross-sectional area
of a tank or the volume of the reservoir) can be
changed for each block separately

Graphical Modeling

Thursday, April 1, 2010

Graphical Modeling
• Blocks are then interconnected:

• HYSDEL 3.0 automatically generates the “master”
model which defines:
– dynamical behavior of each “slave” model
– interconnections between different “slave” models

Thursday, April 1, 2010

HYSDEL 3.0 Compiler

• Written in Matlab
– cheap to maintain
– easy to extend
– OS platform independent

• Uses optimization packages to improve “quality” of the
generated models

HYSDEL
Source

HYSDEL 3.0
Compiler

Mathematical
Model

Thursday, April 1, 2010

Importance of Model Quality
• Model “quality” is related to logic statements:

• Tighter value of M leads problems which can be solved
more quickly:

52 secs
5 secs
1 sec

M = 25

31 secs265 secs9
3 secs6 secs8
1 sec1 sec7

M = 10M = 50 Horizon

Thursday, April 1, 2010

Importance of Problem Formulation

• Drive levels in tanks to desired
locations

• Valves can only be open/closed

• Problem formulated as an MILP

• Solved by CPLEX 9.0

Prediction
horizon

HYSDEL3
runtime

HYSDEL2
runtime

7 0.1 secs 1 sec
8 1 sec 3 secs
9 9 secs 31 secs

10 50 secs 252 secs

Thursday, April 1, 2010

Hybrid Systems Seminar
Part 4: Piecewise Affine Systems

Michal Kvasnica, Alexander Szücs

Thursday, April 1, 2010

Piecewise Affine Systems

x

f(x)
 Another popular

framework for
modeling of hybrid
systems

 IF-THEN rules
translate into an
mixed-integer model

 arbitrary precision can
be achieved by adding
more linearizations

IF

Thursday, April 1, 2010

PWA vs MLD Models

• MLD: natural for systems including finite state automata and logic
expressions

• PWA: ideal for approximating nonlinear functions
• Main message: under mild assumptions one can convert from MLD

to PWA representation and vice versa
• MPT includes MLD-to-PWA and PWA-to-MLD translations

Thursday, April 1, 2010

Case Study: CSTR

• Nasty nonlinear dynamics

• Constraints on states and inputs
• Approximated by a PWA system with 32 local linearizations

ẋ =

−k1(T)cA − k2(T)c2
A + (cin − cA)u1

k1(T)(cA − cB)− cBu1

h(cA, cB , T) + (Tc − T)α + (Tin − T)u1

(T − Tc)β + γu2

Thursday, April 1, 2010

Case Study: CSTR

0 0.1 0.2 0.3 0.4 0.5
2000

2200

2400

2600

2800

3000

3200

3400

3600

3800

time [h]

c A

nonlinear linear PWA

Thursday, April 1, 2010

Mathematical Formulation

• Key assumptions:
- each dynamics is valid over a polytopic region
- the regions do not overlap, i.e.

• Associate one binary selector per one region:
• Conversion to mixed-integer inequalities:
• Add an exclusive-or condition:
• Finally add:

IF

Di = {xk | Dx
i xk ≤ D0

i }

(δi = 1)⇔ (xk ∈ Di)

∑
δi = 1

Di ∩Dj = ∅

Dx
i xk −D0

i ≤M(1− δi)

xk+1 ≤M(1− δi) + (Aixk + Biuk + fi)
xk+1 ≥ m(1− δi) + (Aixk + Biuk + fi)

Thursday, April 1, 2010

Obtaining PWA Models

• The process of obtaining a PWA approximation of a nonlinear
function includes:
- selection of suitable linearization points
- calculation of corresponding local linearization
- determination of regions of validity

• Bottom line: easy to do hand in 1D, difficult in 2D, impossible in
higher dimensions

• Question: can the process be automated?

x

f

Thursday, April 1, 2010

Automatic Multiple Linearization of 1D Functions

sin(x)

x

7 linearization points, approximation error 8%

Thursday, April 1, 2010

Automatic Multiple Linearization of 1D Functions

sin(x)

x

11 linearization points, approximation error 2%

Thursday, April 1, 2010

Automatic Multiple Linearization of 2D Functions

f(x1, x2) = sin(x1) cos(x2)

Thursday, April 1, 2010

Automatic Multiple Linearization of 2D Functions

PWA approximation using 10 linearizations

Thursday, April 1, 2010

Automatic Multiple Linearization of 2D Functions

Approximation error < 0.1 %

Thursday, April 1, 2010

The Theory Behind
• Consider a product of two variables
• Define two auxiliary variables
• Observe the equivalence:
• Now we have a difference of two nonlinear 1D functions, hence we

are back to the 1D scenario

f = x1x2

f =
1
4
(u2

1 − u2
2)

u1 = (x1 + x2), u2 = (x1 − x2)

Williams: Model Building in Mathematical Programming, Wiley, 1993
Thursday, April 1, 2010

The Theory Behind
• Consider a product of two variables
• Define two auxiliary variables
• Observe the equivalence:
• Now we have a difference of two nonlinear 1D functions, hence we

are back to the 1D scenario
• The overall model is composed of (1), (2) and (3)

(1)

(2)

(3)

f = x1x2

f =
1
4
(u2

1 − u2
2)

u1 = (x1 + x2), u2 = (x1 − x2)

Thursday, April 1, 2010

PWA Approximation Toolbox

• Based on the Symbolic Toolbox
• Inputs:

- symbolic representation of an arbitrary nonlinear function, e.g.

- lower/upper bounds on variables
- number of linearization points

• Outputs:
- individual linearizations
- regions of validity
- direct export to HYSDEL is work in progress

sin(x2
1 + exp(1/x2))(x3 − cos(|x4|))

Thursday, April 1, 2010

Hybrid Systems Seminar
Part 5: MPC for Hybrid Systems

Michal Kvasnica

Thursday, April 1, 2010

Mixed Logical Dynamical (MLD) Models

• Compact mathematical representation of hybrid systems

x(t + 1) = Ax(t) + Buu(t) + Bδδ(t) + Bzz(t)
y(t) = Cx(t) + Duu(t) + Dδδ(t) + Dzz(t)
Exx(t) + Euu(t) + Eδδ(t) + Ezz(t) ≤ E0

• Involves continuous and binary states, inputs, outputs
• Auxiliary variables:

• binary selectors
• continuous variables

• Mixed-integer linear constraints:
• include physical constraints on state, inputs, outputs
• capture events, FSM, mode selection

δ(t)

z(t)

Thursday, April 1, 2010

MPC Formulation for MLD Models

min
N−1∑

k=0

(‖Qxxt+k‖p + ‖Quut+k‖p)

s.t. xt+k+1 = Axt+k + Buut+k + Bδδt+k + Bzzt+k

Exxt+k + Euut+k + Eδδt+k + Ezzt+k ≤ E0

xt+k ∈ X
ut+k ∈ U
xt = x(t)
δt+k ∈ {0, 1}nδ , zt+k ∈ Rnz

• The optimization problem is no longer convex!
- mixed-integer QP for
- mixed-integer LP for

• Can still be solved in “reasonable” time (CPLEX, GLPK)

p = 2
p = {1,∞}

Thursday, April 1, 2010

Piecewise Affine (PWA) Models

• Key assumptions:
- each dynamics is valid over a polytopic region
- the regions do not overlap, i.e.

• Associate one binary selector per one region:
• Conversion to mixed-integer inequalities:
• Add an exclusive-or condition:
• Finally add:

IF

Di = {xk | Dx
i xk ≤ D0

i }

(δi = 1)⇔ (xk ∈ Di)

∑
δi = 1

Di ∩Dj = ∅

Dx
i xk −D0

i ≤M(1− δi)

xk+1 ≤M(1− δi) + (Aixk + Biuk + fi)
xk+1 ≥ m(1− δi) + (Aixk + Biuk + fi)

Thursday, April 1, 2010

MPC Formulation for PWA Models

min
N−1∑

k=0

(‖Qxxt+k‖p + ‖Quut+k‖p)

s.t. xt+k+1 ≤ M(1− δt+k,i) + (Aixt+k + Biut+k + fi)
xt+k+1 ≥ M(1− δt+k,i) + (Aixt+k + Biut+k + fi)
Dx

i xt+k −D0
i ≤ M(1− δt+k,i)∑

δt+k,i = 1

xt+k ∈ X
ut+k ∈ U
xt = x(t)
δt+k,i ∈ {0, 1}

• Also non-convex, leads to MILP or MIQP problems

Thursday, April 1, 2010

Hybrid Systems Seminar
Part 6: Explicit Model Predictive Control

Michal Kvasnica

Thursday, April 1, 2010

Model Predictive Control

Given a performance index JN =
N−1∑

k=0

uT
k Ruk + xT

k Qxk

Compute control action in acceptable timeu∗ = f(x)

u∗ = arg min JN

Plant model
Constraints

Plant

u∗ = f(x)
plant statecontrol action

Thursday, April 1, 2010

MPC Formulation

x1 = Ax0 + Bu0

x2 = Ax1 + Bu1

= A2x0 + ABu0 + Bu1

x3 = Ax2 + Bu2

= A3x0 + A2Bu0 + ABu1 + Bu2

...

min
U=[u0,...,uN−1]

N−1∑

k=0

uT
k Ruk + xT

k Qxk

s.t. xk ∈ X
uk ∈ U
xk+1 = f(xk, uk)

min
U

1
2UT HU

s.t. GU ≤W + Sx0

Parameters (initial condition)

Thursday, April 1, 2010

On-Line MPC

plant statecontrol action

Plant

min
U

1
2!

T " !

s.t. # !≤$+ %0

Thursday, April 1, 2010

On-Line MPC: Properties

Optimal performance

Constraints

Fast implementation

Thursday, April 1, 2010

Thursday, April 1, 2010

Thursday, April 1, 2010

Thursday, April 1, 2010

Where is the Problem?

10 000 MFLOPS/sec 1 MFLOPS/sec

more than 2 GB less than 8 kB

100 MFLOPS/sec

more than 128 MB

Thursday, April 1, 2010

min
U

1
2!

T " !

s.t. # !≤$+ %0

Off-Line MPC

plant statecontrol action

Plant

Off-line

On-line
Explicit Solution

(=Look-Up Table)u∗(x)

x

Thursday, April 1, 2010

Multi-Parametric Programming

min
U

1
2UT HU

s.t. GU ≤W + Sx0

Karush-Kuhn-Tucker (KKT) optimality conditions

HU∗ + GT λ∗ = 0
λ∗i (GiU

∗ −Wi − Six0) = 0
λ∗i ≥ 0

Active constraints:

Inactive constraints:
GiU

∗ −Wi − Six0 = 0, λ∗i > 0
GiU

∗ −Wi − Six0 < 0, λ∗i = 0

Thursday, April 1, 2010

Multi-Parametric Programming

min
U

1
2UT HU

s.t. GU ≤W + Sx0

1. Find local expression for U∗(x0)

HU∗ + ĜT λ̂∗ = 0
ĜU∗ − Ŵ − Ŝx0 = 0

(1)

(2)

• Pick some feasible x0

From (2):

From (1): U∗ = −H−1ĜT λ̂∗

λ̂∗(x0) = −(ĜH−1ĜT)−1(Ŵ + Ŝx0)

U∗(x0) = H−1ĜT (ĜH−1ĜT)−1(Ŵ + Ŝx0)

U∗, λ∗• Solve the QP to find

• KKT conditions for active constraints:

Thursday, April 1, 2010

Multi-Parametric Programming

min
U

1
2UT HU

s.t. GU ≤W + Sx0

1. Find local expression for U∗(x0)

In some neighborhood of x0, the optimizer is an
affine function of the initial condition

= Kx0+L

λ̂∗(x0) = −(ĜH−1ĜT)−1(Ŵ + Ŝx0)
= Mx0 + N

U∗(x0) = H−1ĜT (ĜH−1ĜT)−1(Ŵ + Ŝx0)

Thursday, April 1, 2010

Multi-Parametric Programming

min
U

1
2UT HU

s.t. GU ≤W + Sx0

2. Find the region of validity

Substitute and intoλ∗(x0)U∗(x0)

≤W + Sx0G U

λ ≥ 0

Polytopic critical region

R = {x0 | Ax0 ≤ b}
x0

Thursday, April 1, 2010

Multi-Parametric Programming

3. Proceed iteratively

• Pick a new initial condition

• Solve the QP again, obtain explicit
representation of the optimizer
and form a new region

R1

x0

R1

x0

R2

Thursday, April 1, 2010

Solution Properties

x

U∗(x) (K2, L2)
(K1, L1)

(K3, L3) (K4, L4)
(K5, L5)

(K6, L6)

A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

• Control law is affine in each region

• State space is divided into polytopic regions

Thursday, April 1, 2010

Implementation

x

U∗(x)

A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

• Evaluate the feedback law

• Identify region which contains current state

x0

U∗ = K3x0 + L3

Thursday, April 1, 2010

Pros & Cons

PROs:
− easy to implement
− “fast” on-line evaluation
− analysis of implementation issues possible

CONs:
− number of controller regions can be large
− no control over the construction of the solution
− computation scales badly

 Controller complexity is the crucial issue!

Thursday, April 1, 2010

Sequential Search

x

U∗(x)

A1x ≤ b1

A2x ≤ b2
A3x ≤ b3

A4x ≤ b4
A5x ≤ b5

A6x ≤ b6

• Region storage (memory):

• Region identification (CPU):

x0

O(NR)

O(NR)

? ? ?

Thursday, April 1, 2010

Binary Search Tree

x

U∗(x) x0

1

Tondel et al., Automatica 2003

Thursday, April 1, 2010

Binary Search Tree

x

U∗(x) x0

1

Tondel et al., Automatica 2003

Thursday, April 1, 2010

Binary Search Tree

x

U∗(x) x0

1 2

Tondel et al., Automatica 2003

Thursday, April 1, 2010

Binary Search Tree

x

U∗(x) x0

1 2

Tondel et al., Automatica 2003

Thursday, April 1, 2010

Binary Search Tree

x

U∗(x) x0

1 23

Tondel et al., Automatica 2003

Thursday, April 1, 2010

Binary Search Tree

x

U∗(x) x0

1 23

Tondel et al., Automatica 2003

Thursday, April 1, 2010

Binary Search Tree

x

U∗(x) x0

1 23

• Region storage (memory):

• Region identification (CPU):O(log2(NR))

O(NR)

Thursday, April 1, 2010

Complexity Comparison

of regions CPU FLOPS Max sampling
rate Memory (B)

25 50 20 kHz 1 600

110 60 16 kHz 4 400

240 80 12 kHz 7 600

Assumed is a CPU with 1 MFLOPS

Thursday, April 1, 2010

Hybrid Systems Seminar
Part 7: Closing Remarks

Michal Kvasnica

Thursday, April 1, 2010

Hybrid Systems

• Successful in practice (cf. the ABB story)
• Main claimed benefits:

- systematic approach to modeling, simulation and control
- good compromise between quality and complexity of the models when

hybrid model is used as an approximator of a nonlinear system
- many systems are naturally hybrid (e.g. electrical devices)

• Main criticism:
- creating a good hybrid model requires lots of expertise
- not 100% clear how to optimize model quality
- mixed-integer MPC problems are difficult to solve (but still easier

compared to full nonlinear optimization)

Thursday, April 1, 2010

Open Challenges

• Modeling
- Can a fully automated PWA-based modeling tool be achieved?
- Investigate behavior of mixed-integer solvers, figure out how to tune

the model such that optimization runs significantly faster

• On-Line MPC:
- All mixed-integer solvers are exponential in the worst case. Can we get

a better bound on the runtime?
- Conditioning, ordering of constraints influences the runtime by 10x.

Can we figure out what the optimal pre-processing should be?

• Explicit MPC:
- Complexity of explicit solutions is decisive. How to reduce the number

of regions and/or speed up the region search?

Thursday, April 1, 2010

Our Vision of Automated Hybrid Modeling

Textual Description

HYSDEL

MLD, PWA

Approximation

Nonlinear

 Plants
Logic

Simulink/StateFlow

Continuous

 Time

Thursday, April 1, 2010

Software for Hybrid Systems

• Multi-Parametric Toolbox (includes HYSDEL2, YALMIP, HIT)
- http://control.ee.ethz.ch/~mpt/

• HYSDEL 2.0
- http://control.ee.ethz.ch/~hybrid/hysdel/

• HYSDEL 3.0
- http://kirp.chtf.stuba.sk/~kvasnica/

• YALMIP
- http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php

• Hybrid Identification Toolbox (HIT)
- http://www-rocq.inria.fr/who/Giancarlo.Ferrari-

Trecate/HIT_toolbox.html

Thursday, April 1, 2010

http://control.ee.ethz.ch/~mpt/
http://control.ee.ethz.ch/~mpt/
http://control.ee.ethz.ch/~hybrid/hysdel/
http://control.ee.ethz.ch/~hybrid/hysdel/
http://kirp.chtf.stuba.sk/~kvasnica/
http://kirp.chtf.stuba.sk/~kvasnica/
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php
http://www-rocq.inria.fr/who/Giancarlo.Ferrari-Trecate/HIT_toolbox.html
http://www-rocq.inria.fr/who/Giancarlo.Ferrari-Trecate/HIT_toolbox.html
http://www-rocq.inria.fr/who/Giancarlo.Ferrari-Trecate/HIT_toolbox.html
http://www-rocq.inria.fr/who/Giancarlo.Ferrari-Trecate/HIT_toolbox.html

Interesting References

• Main paper on MLD systems & MPC
- Bemporad & Morari: Control of Integrating Logic, Dynamics, and

Constraints, Automatica 1999

• Main book on mathematical modeling of systems with logic
- Williams: Model Building in Mathematical Programming, Wiley, 1993

• Book on hybrid systems
- Lunze: Handbook of Hybrid Systems Control, Cambridge Press, 2009

• Books on explicit MPC & hybrid systems
- Borrelli: Constrained Optimal Control of Linear and Hybrid Systems,

Springer, 2003
- Kvasnica: Real-Time Model Predictive Control via Multi-Parametric

Programming, VDM Verlag, 2009

Thursday, April 1, 2010

