Multi-Parametric Toolbox (MPT)

MICHAL KVASNICA, PASCAL GRIEDER, MATO BAOTIC, MIROSLAV BARIC, FRANK J. CHRISTOPHERSEN, MANFRED MORARI

CONTROL.EE.ETHZ.CH

- General overview of the toolbox
- Functional step-by-step
- Using YALMIP inside of MPT

The MPT Framework

New powerful framework for control of hybrid systems

- Set of computationally challenging problems to be solved with new techniques, e.g. computational geometry
- Need for international development effort and tool repository to give educated user access to state-of-the-art techniques
- Multi-Parametric Toolbox with ETH leadership

MPT Contributors

- CDD LP solver
- Ellipsoidal Toolbox
- Hybrid Identification Toolbox
- HYSDEL
- Projection Algorithms
- SeDuMi SDP solver
- YALMIP

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Possible Model Sources for MPT

Possible Model Sources for MPT

Possible Model Sources for MPT

Control in MPT

Synthesis: Optimal Control

Given a performance index $J_N = \sum_{k=0}^{N-1} ||Qx_k||_p + ||Ru_k||_p$

Obtain optimal feedback law $u^{\star} = f(x)$

$$U^*(x) = \arg \min_{\substack{U = \{u_0, \dots, u_{N-1}\}}} J_N,$$

subj. to Plant model
Constraints

Receding Horizon Control *On-Line* **Optimization**

Receding Horizon Policy *Off-Line* **Optimization**

Analysis in MPT

- Simulations in Simulink
- Verification of safety and liveness properties
- Stability analysis via Lyapunov functions

Deployment of Explicit Control Laws – Code Generation

Deployment of Explicit Control Laws – Code Generation

Multi-Parametric Toolbox

The MPT Framework

Motivating Example

- Two connected liquid tanks
- Hybrid system
- Inflow Q₁ operated continuously in range 0-1
- Valve V₂ operating discretely at values 0, 0.5, 1

Q_1

mpt_sys and the System Structure

sysStruct = mpt_sys(source)

Possible sources:

- Control toolbox objects
- System identification toolbox objects
- MPC toolbox objects
- HYSDEL source file

Example – Conversion from HYSDEL

```
>> sysStruct = mpt_sys('two_tanks.hys')
```

```
Conversion from HYSDEL to PWA form finished (0.45 sec)
```

```
sysStruct =
```

A:	{[2x2 double]	[2x2 double]	[2x2 double]	[2x2 double]}
В:	{[2x2 double]	[2x2 double]	[2x2 double]	[2x2 double]}
С:	{[0 1] [0 1]	[0 1] [0 1]}		
D:	{[0 0] [0 0]	[0 0] [0 0]}		
umax:	[2x1 double]			
umin:	[2x1 double]			
xmin:	[2x1 double]			
xmax:	[2x1 double]			

- Automatically creates a PWA model (can be disabled)
- Extracts constraints from the model

Modification of the System Structure

- Refine constraints
 - Constraints on state variables
 - Constraints on output variables
 - Constraints on manipulated variables
 - Rate constraints on manipulated variables
- Change nature of manipulated variables
 - Continuous variables
 - Boolean variables
 - Variables with values from finite alphabet

$sysStruct.Uset{2} = [0 \ 0.5 \ 1]$

The MPT Framework

Problem Structure probStruct

$$J_N = \sum_{k=0}^{N-1} \|Q(x_k - x_{ref})\|_p + \|R(u_k - u_{ref})\|_p$$

- Prediction horizon
 probStruct.N = {N | Inf}
- Type of objective function
 probStruct.norm = {1 | Inf | 2}
- Reference signals probStruct. {xref|uref|yref|dref|zref}
- Penalties

probStruct.{Q | R | Qy | Qd | Qz | Rdu}

Problem Formulation for the Two Tanks System

- Regulate level in 2nd tank to 0.2 m
- Use 1-norm formulation
- Prediction horizon 3

probStruct.N = 3
probStruct.norm = 1
probStruct.Qy = 100
probStruct.R = 1e-4*eye(2)
probStruct.yref = 0.2

mpt_control

• Given: system and problem structures

• Compute the control law off-line:

ctrl=mpt_control(sysStruct,probStruct)

Create an on-line controller:
 ctrl=mpt_control(sysStruct,probStruct,`online')

Controllers are Functions

To obtain the optimizer, simply evaluate the controller as a function:

u = ctrl(x0)

Example:

$$u = ctrl(-1)$$

u =

0.6180

Post-processing – Complexity Reduction

Reduce number of regions ctrl = mpt simplify(ctrl)

Multi-Parametric Toolbox

The MPT Framework

Simulations in Matlab

[X,U,Y] = sim(ctrl, x0, N) simplot(ctrl, x0, N)

Simulations in Simulink

The Simulink Library

Visual Inspection

Visual inspection of controller regions: plot(ctrl)

Visual inspection of controller actions:

plotu(ctrl)

Reachability Analysis

Where will the controller drive system states from a given set of initial conditions?

```
S=mpt reachSets(ctrl, X0, N)
```


Reachability Analysis

How will the system evolve if valves are stuck?

```
Options.U = [0; 0]
```

S=mpt_reachSets(sysStruct, X0, N, Options)

Multi-Parametric Toolbox

ctrl = mpt_lyapunov(ctrl, type)

Type of Lyapunov functions:

- Quadratic
- Sum of Squares
- Piecewise Affine
- Piecewise Quadratic
- Piecewise Polynomial

The MPT Framework

Real Time Workshop

Zürich

Multi-Parametric Toolbox

Export to C code

mpt_exportc(ctrl, fname)

- Control of time-varying systems
- "Design your own MPC" function

Control of Time-Varying Systems

- Why: allow models with different sampling rates
- How: use one model for each prediction step

model = { S1, S2, S3 };

probStruct.N = 3;

ctrl = mpt_control(model, probStruct)

Control of Time-Varying Systems in MPT

Anything can be time-varying, also constraints:

probStruct.N = 3;

ctrl = mpt_control(model, probStruct)

Control of Time-Varying Systems in MPT

One can also freely combine LTI/PWA/MLD models:

probStruct.N = length(model);

ctrl = mpt_control(model, probStruct)

However, dimensions must stay identical!

Design Your Own MPC Problem

- Why: to allow (almost) arbitrary MPC problem formulations
- How: generate a skeleton of an MPC problem and allow users to add/remove constraints and/or create a new objective function
- Goal: make the whole procedure entirely general, easy to use and fit the results into our framework

$$J_N^* = \min_{\substack{u_0, \dots, u_{N-1}}} J_N, \qquad \text{probStruct + user}$$

subj. to System dynamics
Constraints SysStruct + user

3 Phases of mpt_ownmpc

1. Design phase

[C, O, V] = mpt_ownmpc(sysStruct, probStruct, flag)

2. Modification phase

Modify the constraints "C" and/or the objective "O"

3. Computation phase

ctrl = mpt_ownmpc(sysStruct, probStruct, C, O, V)

- Different features can be combined together, e.g. move blocking, time-varying systems, soft constraints, ...
- Generates a skeleton of the MPC problem based on sysStruct/probStruct
- Returned variables are YALMIP objects

Design Phase

```
[C,O,V] = mpt ownmpc(sysStruct,probStruct)
>> v
     x: {[1x1 sdpvar] [1x1 sdpvar] [1x1 sdpvar]}
     u: {[1x1 sdpvar] [1x1 sdpvar]}
     y: {[1x1 sdpvar] [1x1 sdpvar]}
>> C
Constraint
| ID|
                               Type |
                                                 Tag
| #1| Numeric value | Element-wise 2x1| umin < u 1 < umax |
| #2| Numeric value | Element-wise 2x1| ymin < y 1 < ymax |
| #3| Numeric value | Equality constraint 1x1 | x 2 == A*x 1 + B*u 1 |
| #4| Numeric value | Equality constraint 1x1 | y 1 == C*x 1 + D*u 1 |
| #5| Numeric value|
                     Element-wise 2x1|
                                           x 2 in Tset
| #6| Numeric value|
                   Element-wise 2x1|
                                           x 0 in Pbnd|
| #7| Numeric value|
                 Element-wise 2x1| umin < u 0 < umax|
| #8| Numeric value | Element-wise 2x1| ymin < y 0 < ymax |
| #9| Numeric value | Equality constraint 1x1 | x 1 == A*x 0 + B*u 0 |
|#10| Numeric value| Equality constraint 1x1| y 0 == C*x 0 + D*u 0|
```


Polytopic Constraints on States

- Task: add polytopic constraints $Hx_k \leq K$
- Implementation:

[C, O, V] = mpt_ownmpc(sysStruct, probStruct); x = V.x;

```
for k = 1:length(x)
    C = C + set(H * x{k} <= K);
end</pre>
```

ctrl = mpt_ownmpc(sysStruct, probStruct, C, O, V);

Complex Move Blocking

• Task: add complex move-blocking type of constraints:

1.
$$u_0 = u_1$$

2. $(u_1 - u_2) = (u_2 - u_3)$
3. $u_2 = K x_2$

Implementation:

Contraction Constraints

- Task: force state x_{k+1} to be closer (in a 1-norm sense) to the origin that x_k has been
- Implementation:

for k = 1:length(V.x)-1
C = C + set(norm(V.x{k+1}, 1) <= norm(V.x{k}, 1));
end</pre>

Contraction Constraints

- Task: tell the controller to use at most 2 out of *n* available inputs at each time
- Implementation:

```
for k = 1:length(V.u)
  C = C + set(nnz(V.u{i}) <= 2)
end</pre>
```


MPT Characteristics

- Numerically refined problem formulation
- Builds on best available numerical packages, both free and commercial
- Extensible and continuously improving
- Released under an open-source GNU license

MPT in the World

Steel solutions for a better world

20000+ downloads

Honeywell

Imperial College London

Multi-Parametric Toolbox

Some Users and Areas of Applications

- Power electronics
- Autonomous driving
- Throttle control
- Diesel engine control
- Robotic grasping
- Steel production
- Identification

ETH/ABB DaimlerChrysler Uni Zagreb/FORD University of Cambridge Thales EE Arcelor

Acknowledgement & Download

Miroslav Barić				
Alberto Bemporad				
Pratik Biswas				
Francesco Borrelli				

Frank J. Christophersen Eric Kerrigan Adam Lagerberg Arne Linder Marco Lüthi Saša V. Raković Raphael Suard Kari Unneland

Special thanks to:

Komei Fukuda	(CDD)	Jos F. Sturm	(SeDuMi)
Tobias Geyer	(Optimal Merging)	Johan Löfberg	(YALMIP)
Colin Jones	(ESP)	Fabio D. Torrisi	(HYSDEL)
Alex Kurzhanskiy	(Ellipsoidal Toolbox)	Gianni FTrecate	(HIT)

http://control.ee.ethz.ch/~mpt/

