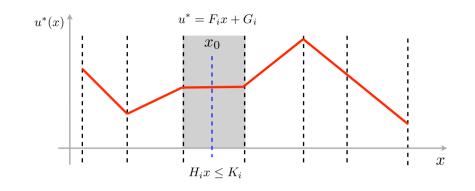


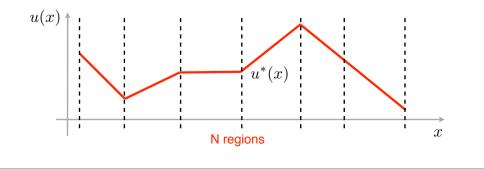
Explicit Model Predictive Control



- · Trading implementation speed for memory
- · Memory storage is proportional to the number of regions

The Idea

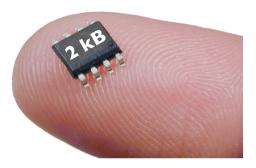
- · Find an approximate feedback which
 - is defined over a single region (hence saves memory)
 - guarantees closed-loop stability & constraint satisfaction
 - trades off performance for implementation cost



Main Issue: Memory Consumption

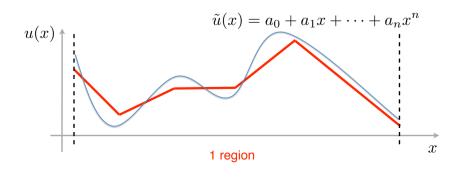
100 bytes x 100 regions = 10 kB of RAM

Need to reduce the number of regions as much as possible. Ideally, remove all of them.



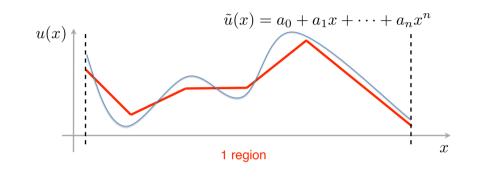
The Idea

- Find an approximate feedback which
 - is defined over a single region (hence saves memory)
 - guarantees closed-loop stability & constraint satisfaction
 - trades off performance for implementation cost
- · Polynomial is an ideal candidate (low storage, fast evaluation)



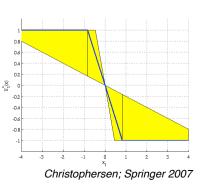
The Idea

- · Find an approximate feedback which
 - is defined over a single region (hence saves memory)
 - guarantees closed-loop stability & constraint satisfaction
 - trades off performance for implementation cost
- Polynomial is an ideal candidate (low storage, fast evaluation)



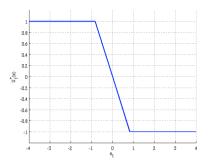
The Idea Continued...

- · Given is:
 - LTI or PWA discrete-time system
 - explicit MPC feedback which guarantees closed-loop stability
 - PWA Lyapunov function
- · Is it the only feedback which gives stability?
- · Theorem:
 - a set of stabilizing feedbacks exists
 - it is represented by polytopes
 - it can be computed



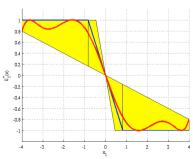
The Idea Continued...

- · Given is:
 - LTI or PWA discrete-time system
 - explicit MPC feedback which guarantees closed-loop stability
 - PWA Lyapunov function
- · Is it the only feedback which gives stability?

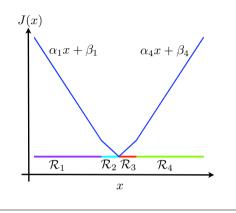


The Idea Continued...

- Given is:
 - LTI or PWA discrete-time system
 - explicit MPC feedback which guarantees closed-loop stability
 - PWA Lyapunov function
- · Is it the only feedback which gives stability?
- · Theorem:
 - a set of stabilizing feedbacks exists
 - it is represented by polytopes
 - it can be computed
- Corollary:
 - if the polynomial resides in the set, stability is guaranteed



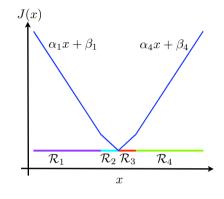
- · Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$



Set of Stabilizing Controllers

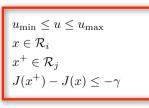
Given:

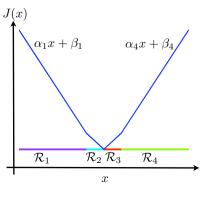
- linear discrete-time system $x^+ = Ax + Bu$
- PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- · Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing



Set of Stabilizing Controllers

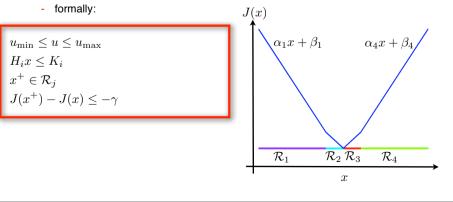
- · Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing
 - formally:



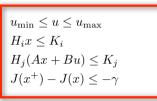


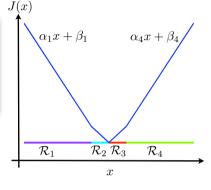
Set of Stabilizing Controllers

- Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- · Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing



- · Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- · Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing
 - formally:



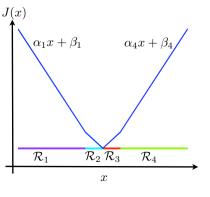


Set of Stabilizing Controllers

- · Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing
 - formally:

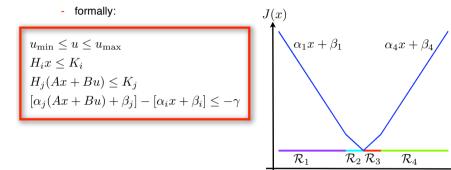
$$\begin{split} & u_{\min} \leq u \leq u_{\max} \\ & H_i x \leq K_i \\ & H_j (Ax + Bu) \leq K_j \\ & [\alpha_j (Ax + Bu) + \beta_j] - [\alpha_i x + \beta_i] \leq -\gamma \end{split}$$

 for each *i*, *j* pair the constraints are linear, thus they form a polytope in the state-input space



Given:

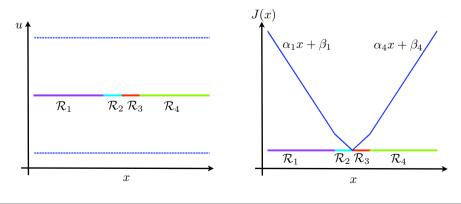
- linear discrete-time system $x^+ = Ax + Bu$
- PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- · Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing



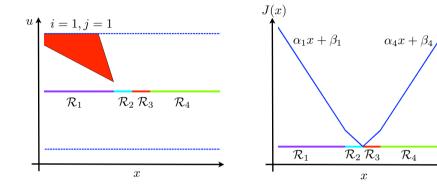
Set of Stabilizing Controllers

r

- Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- · Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing

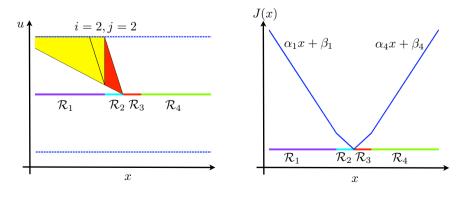


- · Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- · Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing



Set of Stabilizing Controllers

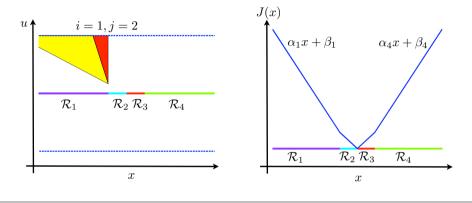
- Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing



Set of Stabilizing Controllers

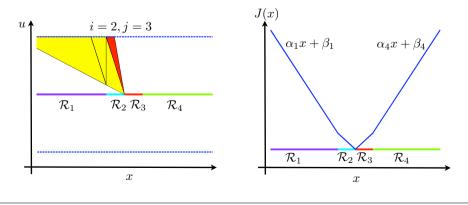
Given:

- linear discrete-time system $x^+ = Ax + Bu$
- PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- · Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing

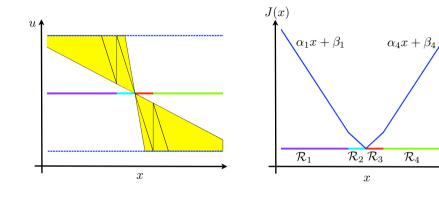


Set of Stabilizing Controllers

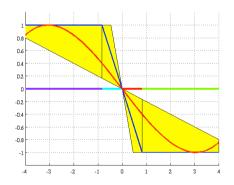
- Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- · Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing



- · Given:
 - linear discrete-time system $x^+ = Ax + Bu$
 - PWA Lyapunov function $J(x) = \alpha_i x + \beta_i$ if $x \in \mathcal{R}_i$
- · Sketch:
 - any control action which guarantees decrease of the Lyapunov function is stabilizing

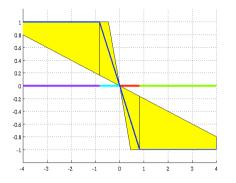


Finding the Polynomial



- · Objectives:
 - the polynomial must never leave the set
 - it should be close to the optimal feedback
- · Tuning parameter: degree of the polynomial

Set of Stabilizing Controllers

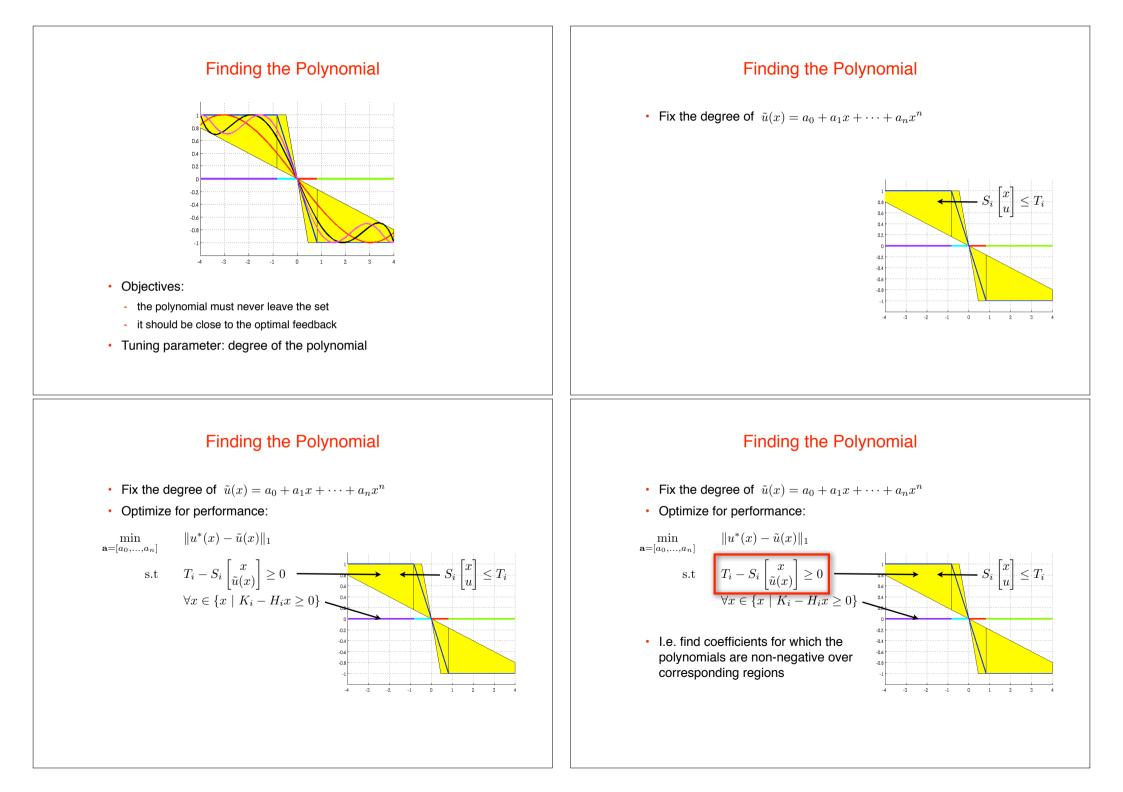


- This is not the set of <u>all</u> stabilizing controllers!
- Merely it is a set of inputs which render a given PWA Lyapunov function a Control Lyapunov function

Finding the Polynomial



- · Objectives:
 - the polynomial must never leave the set
 - it should be close to the optimal feedback
- · Tuning parameter: degree of the polynomial



Polya's Theorem

- Non-negativity of polynomial $p(\mathbf{a},x)$ over a polytope is related to non-negativity of coefficients of the extended polynomial over vertices $p(\mathbf{a},x)\cdot \Big(\sum x_i\Big)^M$
- Notice that the coefficients enter linearly:

$$\min_{\mathbf{a}=[a_0,\ldots,a_n]} \qquad \|u^*(x) - \tilde{u}(x)\|_1$$

s.t
$$T_i - S_i \begin{bmatrix} x\\ \tilde{u}(x) \end{bmatrix} \ge 0, \quad i = 1,\ldots, N$$
$$\forall x \in \{x \mid K_i - H_i x \ge 0\}, \quad i = 1,\ldots, N$$
$$\tilde{u}(x) = a_0 + a_1 x + \cdots + a_n x^n$$

• Therefore they can be found by a single linear program!

Numerical Examples

	# of regions	Explicit MPC	Polynomial	Performance drop
2 states	146	13 000 B	24 B (degree 3)	24%
	170	16 000 B	40 B (degree 5)	18%
3 states	66	11 000 B	60 B (degree 5)	31%
	122	19 000 B	60 B (degree 5)	5%

Conclusions

PROs:

- the polynomial is easily found using linear programming
- extremely low memory footprint (< 100 bytes)
- guarantees stability, feasibility, and bounded performance drop
- works for linear and PWA systems

CONs:

- suboptimality
- Polya's theorem is just a sufficient condition
- expensive symbolic computation of the extended Polya's polynomial