Plug-and-Play Distributed Synthesis and Computation of Predictive Controllers

Colin N Jones

Ye Pu Christian Conte Melanie Zeilinger

Large-Scale Distributed Systems

Motivation: Control large system composed of interconnecting sub-systems

Traffic networks

Cooperative robots

Building networks / Smart grids

- Systems: Buildings / Cars / Solar panels
- Coupling: Thermal / Electrical / Economic

Distributed Model Predictive Control (MPC)

This talk: Towards two key questions

Design: Ensure stability and constraint satisfaction

Computation: Fully distributed design, synthesis and control

Model Predictive Control (MPC)

MPC theory:

- © Recursive constraint satisfaction
- © Stability by design

MPC computation:

- © Ultra-fast convex solvers
- ☺ ~Hard real-time implementations

Distributed Model Predictive Control (MPC)

Centralized MPC theory:

- ③ Recursive constraint satisfaction
- Stability by design

This talk:

- Non-trivial terminal conditions
 - Distributed dynamic invariant sets
 - Distributed synthesis
 - Plug-and-Play

© Larger region of attraction

Established approach:

- Terminal invariant set
- Terminal Lyapunov cost

Distributed MPC:

Difficult to apply terminal conditions

- 1. No terminal conditions (Unknown region of attraction)
- 2. Trivial terminal condition (Very small region of attraction)

Part I

Distributed dynamic invariant sets

© Larger region of attraction

Part II

Plug-and-play

© Adapt to changing networks

Part III

Accelerated distributed optimization

☺ (Towards) Real-time MPC

Stability and Invariance of MPC

min
$$V_f(x_N) + \sum_{i=0}^{N-1} l(x_i, u_i)$$

s.t. $x_0 = x$
 $x_{i+1} = Ax_i + Bu_i$
 $(x_i, u_i) \in \mathcal{X} \times \mathcal{U}$
 $x_N \in \mathcal{X}_f$
Plant

Stability and invariance if:

- 1. $\mathcal{X}_f \subset \mathcal{X}$ is invariant $x \in \mathcal{X}_f \Rightarrow Ax + Bu_f(x) \in \mathcal{X}_f$
- 2. $V_f(x)$ is a Lyapunov function in \mathcal{X}_f $V_f(Ax + Bu_f(x)) - V_f(x) \leq -l(x, u_f(x))$

Two Conflicting Requirements

Goal: Satisfy both requirements

Requirement: No central coordination

(Online & offline optimization to have same coupling structure as system)

Structured Lyapunov Function

Lyapunov requirement: $V_f(x^+) < V_f(x)$ Structure requirement: $V_f(x) = V_f^1(x_1) + \cdots + V_f^M(x_M)$

Local Lyapunov decrease in each subsystem sufficient for stability:

$$V_f^i(x_i^+) < V_f^i(x_i), \quad \forall i \in \{1, \dots, M\}$$
$$V_f^i\left(A_{ii}x_i + B_iu_f^i(x_{\mathcal{N}_i}) + \sum_{j \in \mathcal{N}_i} A_{ij}x_j\right) < V_f^i(x_i)$$

Very conservative; often impossible in presence of strong dynamic coupling

Idea: Allow local increase while requiring a global decrease

Structured Lyapunov Function

Lyapunov requirement: $V_f(x^+) < V_f(x)$ Structure requirement: $V_f(x) = V_f^1(x_1) + \cdots + V_f^M(x_M)$

Idea: Allow local increase while requiring a global decrease

Dynamic Invariant Set

Level sets of a Lyapunov function are invariant:

$$\mathcal{X}_f = \left\{ x \mid V_f(x) = \sum_{i=0}^M V_f^i(x_{\mathcal{N}_i}) \leq \hat{\alpha} \right\}$$

Problem: This terminal constraint couples all sub-systems

Want a condition that can be tested in a distributed fashion

$$\mathcal{X}_{f}(\bar{\alpha}) = \mathcal{X}_{f}^{1}(\alpha_{1}) \times \cdots \times \mathcal{X}_{f}^{M}(\alpha_{M})$$
$$\mathcal{X}_{f}^{i}(\alpha_{i}) = \left\{ x \mid V_{f}^{i}(x_{\mathcal{N}_{i}}) \leq \alpha_{i} \right\} \text{ where } \sum_{i=0}^{M} \alpha_{i} = \alpha$$

Problem: $\mathcal{X}_{f}^{i}(\alpha_{i})$ is not invariant...

 $V_f^i(x_i^+) < V_f^i(x_i) + \gamma_i(x_{\mathcal{N}_i}) \not\leq V_f^i(x_i)$

Dynamic Invariant Set

Define auxiliary dynamics, with the same structure as the system dynamics:

 $\alpha_i^+ = \alpha_i + \gamma_i(x_{\mathcal{N}_i})$

Thm: Time-varying invariant set

$$x_i \in \mathcal{X}_f^i(\alpha) \Rightarrow x_i^+ \in \mathcal{X}_f^i(\alpha^+)$$

$$V_f^i(x_i^+) < V_f^i(x_i) + \gamma_i(x_{\mathcal{N}_i}) \le \alpha_i + \gamma_i(x_{\mathcal{N}_i}) = \alpha_i^+$$

which implies global invariance and constraint satisfaction

If
$$\{x \mid \sum V_f^i(x_{\mathcal{N}_i}) \leq \sum \alpha_i\} \subseteq X$$
, then $\mathcal{X}_f(\bar{\alpha}) \subseteq X \Rightarrow \mathcal{X}_f(\bar{\alpha}^+) \subseteq X$

since
$$\sum lpha_i^+ = \sum lpha_i + \sum \gamma_i(x_{\mathcal{N}_i}) = \sum lpha_i$$

Time-Varying Distributed MPC Structure

Global problem:

min
$$\sum V^i(x_{\mathcal{N}_i}; \alpha_i)$$

Local Problems:

$$V^{i}(x_{\mathcal{N}_{i}};\alpha_{i}) = \min \quad V^{i}_{f}(x(N)) + \sum_{k=0}^{N-1} I(x(k), u(k))$$

s.t. $x(0) = x_{i}$
 $x(k+1) = A_{ii}x(k) + B_{i}u(k) + \sum A_{ij}x_{j}(k)$
 $(x(k), u(k)) \in \mathcal{X} \times \mathcal{U}$
 $x(N) \in \mathcal{X}_{f}(\alpha_{i})$

Distributed control (online for every subsystem):

- 1. Measure state
- 2. Solve global MPC problem by distributed optimisation, apply input u_i
- 3. Update $\alpha_i^+ = \alpha_i + x_{\mathcal{N}_i}^T(N) \Gamma_{\mathcal{N}_i} x_{\mathcal{N}_i}(N)$

Linear Quadratic case: Terminal cost synthesis

1. Local condition:

2. Global condition:

$$V_f^i(x_i^+) - V_f^i(x_i) \le I_i(x_{\mathcal{N}_i}) + \gamma_i(x_{\mathcal{N}_i})$$
$$\sum_{i=0}^M \gamma_i(x_{\mathcal{N}_i}) \le 0$$

Quadratic local cost functions: $I_i(x_{\mathcal{N}_i}, u_i) = x_{\mathcal{N}_i}^T Q_{\mathcal{N}_i} x_{\mathcal{N}_i} + u_i^T R_i u_i, Q_{\mathcal{N}_i}, R_i \succ 0$ Goal: Compute linear feedback law and relaxed quadratic Lyapunov functions

 $V_i^f(x_i) = x_i^T P_i x_i, P_i \succ 0 \quad \text{Quadratic relaxed Lyapunov function}$ $\gamma_i(x_{\mathcal{N}_i}) = x_{\mathcal{N}_i}^T \Gamma_i x_{\mathcal{N}_i} \quad \text{Indefinite coupling to neighbours}$ $u_i^f(x_{\mathcal{N}_i}) = \mathcal{K}_{\mathcal{N}_i} x_{\mathcal{N}_i} \quad \text{Linear control law depends on neighbours}$

Linear Quadratic case: Terminal cost synthesis

1. Local condition:

2. Global condition:

$$\sum_{i=0}^{V_f^i} (x_i^+) - V_f^i(x_i) \le I_i(x_{\mathcal{N}_i}) + \gamma_i(x_{\mathcal{N}_i})$$
$$\sum_{i=0}^{M} \gamma_i(x_{\mathcal{N}_i}) \le 0$$

1. Local condition

$$(A_{\mathcal{N}_i} + B_i K_{\mathcal{N}_i})^T P_i (A_{\mathcal{N}_i} + B_i K_{\mathcal{N}_i}) - \bar{P}_i \preceq -Q_{\mathcal{N}_i} - K_{\mathcal{N}_i}^T R_i K_{\mathcal{N}_i} + \Gamma_{\mathcal{N}_i}$$

Nonlinear matrix inequality => LMI e.g., [Zecevic, Siljak, 2010]

2. Global condition:

$$\sum_{i=0}^{M} \gamma_i(x_{\mathcal{N}_i}) = \sum_{i=0}^{M} x^T \hat{\Gamma}_i x = 0 \qquad \Leftrightarrow \qquad \sum_{i=0}^{M} \hat{\Gamma}_i = 0$$

Sparse matrices with same structure as dynamic coupling

Offline synthesis: Solve one distributed convex LMI

Summary: Distributed MPC with Stability Guarantee

Distributed synthesis (offline):

- 1. Solve distributed SDP to compute:
 - Local relaxed Lyapunov functions P_i , Γ_{N_i}
 - Local linear control laws $K_{\mathcal{N}_i}$

2. Solve distributed LP to compute initial feasible terminal size α

Distributed control (online for every subsystem):

- 1. Measure state
- 2. Solve global MPC problem by distributed optimisation, apply input u_i

3. Update
$$\alpha_i^+ = \alpha_i + x_{\mathcal{N}_i}^T(N) \Gamma_{\mathcal{N}_i} x_{\mathcal{N}_i}(N)$$

No central coordination required!

Computational example

- Chain of inverted pendulums (unstable)
- Linearized around the origin
- States: Angle and angular velocity of each pendulum
- Inputs: Torque at each pivot

- Terminal cost (SDP): # Iterations saturates
- Terminal set (LP): Growth unbounded
- Possible explanation: LP has global constraint LMI coupled to neighbors

Closed-Loop Simulation

- 5 Pendulums, alternating direction method of multipliers, 100 iterations.
- Initially all pendulums in origin, only pendulum 1 is deflected.
- Cost of proposed method only 4% higher than centralized MPC and 21% lower than for a trivial terminal set.

Closed-loop simulation – Local Terminal Sets

Sizes of local terminal sets change dynamically

Region of Attraction

- Maximum feasible deflection of the first pendulum vs. prediction horizons
- Short prediction horizons: Region of attraction for proposed method significantly larger than for trivial terminal set
- Long prediction horizons: All methods converge to the same maximum control invariant set

Part I

Distributed dynamic invariant sets

© Larger region of attraction

Part II

Plug-and-play

③ Adapt to changing networks

Part III

Accelerated distributed optimization

☺ (Towards) Real-time MPC

Plug and Play Predictive Control

Goal: Allow subsystems to join or leave the network

Maintain stability and recursive feasibility during network changes:

- Adapt local control laws of subsystems and neighbours
- Ensure feasibility of the modified control laws

P&P Request	Redesign	Transition	Plug-in
Notify neighboursOnly neighbours modify controller	 Compute terminal controllers / costs Small SDP in background 	 Track steady- state feasible for new & old system 	 Use new (connected) control law

P&P Request	Redesign	Transition	Plug-in	
 Notify neighbours Only neighbours modify controller 	 Compute terminal controllers / costs Small SDP in background 	 Track steady- state feasible for new & old system 	 Use new (connected) control law 	
Tracking Target State Feasib Steady-S	Feasible set Post-P&P	P&P Target State	Feasible set Pre-P&P Current State	

Computational example – Area Generation Control

- Four power generation areas with load frequency control
- Model linearized around equilibrium (Saadat, 2002; Riverso, et al. 2012)

$$\dot{z}_i = \sum_{j \in \mathcal{N}_i} A_{ij} z_i + B_i v_i + L_i \Delta P_{L_i}$$

Goals: - Restore frequency, follow load change $\Delta P_{L_1} = -0.15$, $\Delta P_{L_3} = 0.05$

- Allow fifth area to join the network

Frequency deviation is controlled to zero

System is first regulated to steady-state and then to the origin

3

5

4

Part I

Distributed dynamic invariant sets

© Larger region of attraction

Part II

Plug-and-play

© Adapt to changing networks

Part III

Accelerated distributed optimization

☺ (Towards) Real-time MPC

Distributed Optimization \Rightarrow First-Order Method

min
$$\sum f_i(y_i)$$

s.t. $y_i \in Y_i$
 $\sum A_i y_i = a$

Distributed optimization requires that the problem is structured

Example: Dual Decomposition

$$g(\lambda) = \min_{y_i \in Y_i} \sum f_i(y_i) + \lambda^T \left(\sum A_i y_i - c \right) = \sum \min_{y_i \in Y_i} f_i(y_i) + \lambda^T A_i y_i$$

Gradient of the dual function: $\nabla g(\lambda) = \sum A_i y_i^*(\lambda) - c$

Gradient-based approach

 $\lambda^+ = \lambda + \alpha \nabla q(\lambda)$

Optimal values $y_i^* \rightarrow$ Local optimization Dual update \rightarrow Consensus

Many variants on this theme (ADMM, AMA, FISTA, ...)

Distributing an MPC Problem

Centralized MPC problem for distributed system:

Proximal form, used in most accelerated variants:

 $J^{k}(x_{0}^{k}, \bar{x}^{k}) = \min_{x, u} \sum_{x, u} I(x_{i}, u_{i}) + \rho \sum_{i} ||x_{i}^{j} - \bar{x}_{i}^{j}||_{2}^{2}$

 $x_i \in \mathcal{X}$. $u_i \in \mathcal{U}$

 $x_0 = x'$

"Track" impact of neighbours on own trajectory

Local problems are (almost) standard MPC for tracking

s.t. $x_{i+1} = Ax_i + Bu_i + \sum A^j x_i^j$

Distributed Optimization

Y. Pu & A. Szucs

Total time to compute control law = (Number of global iterations) * (Time to solve one local problem)

 Global optimization problem First-order information Iterations cheap (requires comm) Variable number of iterations 	 Local optimization problems Second-order information Iterations expensive Constant number of iterations 	
Minimize number of iterations	Accelerate single iteration	
 Pre-conditioning Formulation (linear convergence) Warm starting 	 Fast linear algebra Exploit structure of MPC problems Code-generation 	
SPLTFiOrdOsG. Stathopolous,F. Ullmann & S. Richter	FORCES . A. Domahidi & M. Zeilinger	

Example: AC/DC Converter

AC/DC Converter: Simulation Results

Specified accuracy of 10⁻³ produces good tracking results

Performance of Auto-Tuned FGM on 2.5GHz PC

Performance of Auto-Tuned FGM on 2.5GHz PC

On average 1400x faster than CPLEX

Distributed Optimization

Total time to compute control law = (Number of global iterations) * (Time to solve one local problem)

 Global optimization problem First-order information Iterations cheap (requires comm) Variable number of iterations 	 Local optimization problems Second-order information Iterations expensive Constant number of iterations 	
Minimize number of iterations	Accelerate single iteration	
 Pre-conditioning Formulation (linear convergence) Warm starting 	Fast linear algebraExploit structure of MPC problemsCode-generation	
$SPL \neq T$ \bigvee FiOrdOs FORCES .		

F. Ullmann & S. Richter

G. Stathopolous, Y. Pu & A. Szucs A. Domahidi & M. Zeilinger

Benchmark problems

Problem QP:

QP with box constr./diagonal cost (no stability guarantees)

$$\min_{\mathbf{u}} V_N(x, \mathbf{u}) := \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + V_f(x_N)$$

s.t. $x_0 = x(0)$, $V_f(x_N) = x_N^T Q x_N$
 $x_{i+1} = A_i x_i + B_i u_i$
 $-4 \cdot \mathbf{1} \le x_i \le 4 \cdot \mathbf{1}$
 $-0.5 \cdot \mathbf{1} \le u_i \le 0.5 \cdot \mathbf{1}$

Computation times on PC for QP

Computation times on PC for QP

Some Early Users of FORCES

Summary – Distributed MPC

Main limitation of MPC theory in a distributed setting:

Invariant sets and Lyapunov functions couple all systems

Key idea:

• Structured Lyapunov functions and dynamic invariant sets guarantee stability and invariance by design, without introducing additional coupling

Extensions / References

Synthesis and control via distributed optimization Robust Tube-Based MPC Tracking MPC

Plug and play MPC

[Conte, et al., ACC 2012], [Conte et al, CDC 2012] [Conte, et al., ECC 2013] [Conte, et al. CDC 2013] [Zeilinger, et al., CDC 2013]