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ESTIMATION OF PARAMETERS OF A MODEL OF A STEAM 
OVERHEATER FROM SERVICE DATA 

J. Cvejn* 

* Univerzity of Pardubice, Faculty of Electrical Engineering and Informatics 
e-mail: jan.cvejn@upce.cz 

Abstract: The paper describes a procedure of obtaining estimated values of parameters 
of a model of a controlled powerplant steam overheater from measured service data. A 
construction of a mathematical model of the overheater is described in a stand-alone 
paper in the same proceedings. The overheater consists of two subsystems that can be 
identified separately – cooling steam by water injection and heating steam part. Statisti-
cal estimation of parameters from measured data is complicated by the fact that the dis-
turbances influencing the outlet temperature are not pure random. Moreover, since the 
plant is under feedback, correlation between the disturbances and the system input has 
to be considered.  

Keywords: heat systems, mathematical modeling, system identification, control sys-
tems. 

1 INTRODUCTION 

In the paper [Cvejn 2009] published in the same pro-
ceedings we described a construction of a mathe-
matical model of a controlled steam overheater of a 
powerplant boiler. The model is to be used subse-
quently for design or enhancement of control. We 
assume that unknown model parameters, or at least 
their approximate estimates, can be determined by 
processing measured service data. A scheme of the 
overheater is shown in Fig. 1.  

 

 

 

 

 

 

 

Fig. 1. Control of the temperature of overheated 
steam by cold water injection 

Measured variables are the steam temperatures 
1T , 2T , 3T , total steam flow rate M and the manipu-

lated variable z, which controls cold water valve. The 
outlet temperature 3T  is regulated. Disturbances in 
operation are changes of the temperature 1T , the flow 
rate M and the heat input q. The last disturbance is 
not measurable.     

 

 

 

 

 

 

Fig. 2. Model of cooling by water injection 

The system can be divided into two subsystems that 
can be identified separately: Cooling subsystem with 
input variables 1, ,T M z  and output 2T  and heating 
subsystem with input variables 2 ,T q  and output 3T . 
For the first subsystem we obtained a linearized 
model in the form of transfer functions [Cvejn 2009] 
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perature of inlet steam and the flow and sT  is com-
mon cooling time constant (Fig. 2).  

In Fig. 2, u, 1ϑ  and ξ  are deviations of z, 1T  and M, 
respectively, from a chosen working point.  

For the heating subsystem we obtained approximate 
transfer functions in the form [Cvejn 2009]: 
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where 1 2, , , , , ,q t H dK K Tξ τ τ τ τ  are positive constants 
and 1p ≥  is an integer parameter (Fig. 3). 3ϑ  and q 
are deviations of outlet temperature and the heat in-
put.  

 

 

 

 

 

 

 

Fig. 3. Model of heating 

The model parameters can be estimated by process-
ing measured service data. Unfortunately, we were 
not able to realize special conditions advantageous 
for identification, such as steady state or special input 
signals. It is only possible to assume that in some 
time intervals the process variables and external in-
fluences fluctuate in a small neighborhood of their 
mean values. This requirement is also necessary for 
validity of the model. 

2 CHOICE OF THE ESTIMATION METHOD 

Under the conditions mentioned above the model 
parameters can be approximately determined using 
point estimation or correlation methods [Goodwin 
1977], [Ljung 1999]. Since over large time intervals 
significant changes in the working state occur, we 
assume that it is not advantageous to process very 
large data files. Therefore, correlation methods are 
probably not preferable choice in this case, because 
they require large number of samples.  

Statistical estimation of the model parameters is not 
trivial due to the following reasons:  

- unmeasured disturbances influencing the system 
output are not pure random (due to the transfer func-
tion (3) the heat input disturbance sequence is corre-
lated). 

- the plant is under feedback (in fact, two feedbacks 
are in operation due to cascade configuration of con-
trollers, see [Cvejn 2009], Fig. 2).  

- the flow rate disturbance is measured, but its trans-
fer function ( )F sξ  denominator differs from the de-
nominator of ( )F sϑ , so commonly used ARMAX 
model is not adequate.  

Although precise configuration of the control system 
and its parameters are not known, the parameter es-
timation from measured data is still possible. We 
consider that the unmeasured disturbance, which 
corresponds to the heat input change, influencing the 
system output both directly and through the feed-
back, can be modeled as output of an unknown linear 
plant excited by Gaussian pure random noise. A 
higher quality estimate indeed could be obtained by 
considering known structure and parameters of the 
control system.   

Assume that the process data can be modeled as  

− =Ax b ε          (5) 

where the matrix A and the vector b are constructed 
from measured data, ε  is the error vector and x is the 
vector of estimated parameters. We consider that the 
number of data is dN  and the number of equations in 

(5) is dN N≤ . If the covariance matrix { }TE=Σ εε  

had been known, a consistent estimate of x, i.e. such 
that ˆ →x x  for N →∞ , would be obtained as   

      ( ) 11 1ˆ T T−− −=x A Σ A A Σ b          (6) 

[Goodwin 1977]. Although knowledge of Σ  is not 
available, its estimate can be constructed using the 
estimate of x. Repeating this procedure leads to itera-
tive relaxation algorithm for determination of the 
estimates x̂  and Σ̂ . Usually Σ  is not determined 
directly, but the error sequence is parametrized using 
autoregressive model: 

   1 1 ...k k n k n kc c wε ε ε− −+ + + =                    (7) 

where { }kw  is the zero-mean Gaussian white noise 

sequence. From known sequence { }kε  the parame-

ters ( )1,..., T
nc c  can be estimated using common 

least-squares method and consequently the distur-
bance impulse response { }kg  can be constructed. kε  
can be expressed using convolution theorem in the 
form  
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which can be after truncation rewritten into matrix 
form as =ε Lw , where  
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Now it is possible to express  

     { }T T TE= =Σ Lww L LL         (10) 

and proceed by (6), but it is more advantageous to 
solve equivalent common least-squares problem  

       ( ) ( )1 1− −− =L A x L b w          (11) 

where 1−L  always exists due to special form of L.  

In this form the method is known as generalized least 
squares [Goodwin 1977].  Unfortunately, it is not 
true that the disturbance model (7) suits well, espe-
cially in the case of identification under feedback. 
Therefore, we tested a more general approach, where 
the error is not parameterized as in (7), but the com-
ponents of the matrix Σ  are estimated directly from 
the sequence { }kε  as       

       , , ( )i i j i j i R jε+ +Σ = Σ =            (12) 

where { }( )R jε  is the autocovariance sequence of 

{ }kε . After Cholesky decomposition into the product 
(10) the remaining procedure is the same (it does not 
matter that here the matrix L does not have units on 
diagonal in general). Unfortunately, for real data the 
decomposition (10) does not always exist and in such 
a case the relaxation algorithm fails. We tried to 
guarantee positive definiteness using a suitable cor-
rection of Σ , but it seams that convergence of the 
relaxation algorithm is in this case rather exceptional.  

Therefore, alternative methods were taken into ac-
count. Perhaps the most appealing approach in this 
case seems to be the maximum likelihood estimation 
[Goodwin 1977], [Ljung 1999]. We consider the 
error vector as a Gaussian zero-mean multivariable 
random variable with probability density function 
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2(2 ) det

T

N
p

π
−⎛ ⎞= −⎜ ⎟

⎝ ⎠
Σ ε ε Σ ε

Σ
      (13) 

where T=Σ LL  and ε  is determined from (5) given 
x. The matrix L is constructed using (9) from a trun-
cated impulse response { }kg  stored in a vector g. 

The function ( )( ) ( )pΣ g ε x , which represents likeli-
hood of the data for given x and g, is maximized in 
the space of parameters ( ),x g . Negative logarithm of  

( )pΣ ε  is   

   ( ) ( ) 11 1ln ln 2 ln det
2 2 2

TNp π −− = + +Σ ε Σ ε Σ ε .   (14) 

Therefore, to obtain the maximum likelihood esti-
mate of ( ),x g  the following function is numerically 
minimized: 
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because det ( ) 1=L g . The minimization of (15) is a 
non-linear least squares problem that can be solved 
efficiently e.g. using Gauss-Newton method [Noce-
dal 1999]. 

3 ESTIMATION OF PARAMETERS OF THE 
COOLER SUBSYSTEM  

The service data are sampled with period Δ . Dis-
crete equivalents of cooling subsystem continuous 
transfer functions (1) are 
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where / sTeα −Δ= . If we choose the model of data in 
the form of difference equation  

       2, 1 2, 1,k k k k k kT aT bT c z d M C ε+ − = + + + + ,   (17) 

where 1,..., 1k N= − , C is a constant and kε  is a 
zero-mean random error process, corresponding 
equation for deviations is   

            2, 1 2, 1,k k k k k ka b cu dϑ ϑ ϑ ξ ε+ − = + + +       (18) 

and the continuous transfer functions parameters sT , 

TK , zK , MK  can be easily obtained by comparison 
from estimated values , , ,a b c d . Eq. (17) can be eas-
ily rewritten into the system (5), where 

( ), , , , Ta b c d C=x  is the vector of estimated parame-
ters and 1dN N= − . Continuous transfer functions 
parameters are computed by comparison with (16).  

Identification of this subsystem is rather straightfor-
ward. The values of the parameters obtained from 
different segments of data were similar enough, even 
when standard least-squares method was used.   
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4 ESTIMATION OF PARAMETERS OF THE 
HEATING PART  

1. The case 1p =   

Z-transfer function corresponding to the continuous 
transfer function (2) for 1p =  was obtained in the 
form  
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where 2/e τα −Δ= , 1 21 /β τ τ= − , Δ  is the scan pe-
riod and it is assumed that the time delay causes a 
shift of /dd T= Δ  steps.  

If the flow rate influence is neglected, data of the 
plant (19) can be modeled as  

      3, 1 3, 1 2, 1 0 2,. . .k k k d k d kT a T b T b T C ε+ + − −− = + + +    (20) 

where C is a constant and kε  is a zero-mean random 
error process. From the coefficients in the transfer 
function (19) it however follows that the unknown 
parameters are bound by the condition    

              1 0 1a b b+ + =          (21) 

so one parameter can be eliminated and the vector of 
estimated parameters is ( )0, , Ta b C=x  plus single 
unknown discrete parameter d. Parameter d was it-
eratively changed in a superior loop and was held 
constant in each estimation subproblem.  

In the case of generalized least-squares estimate the 
optimal value of d was selected such that  

         1ˆˆ ˆ / minT

d
N− →ε Σ ε .         (22) 

Note that the number of equations depends on d,  
since 1dN N d= − − . The estimation of x is iterative 

itself. However, approximate value of d̂  can be de-
termined in a simplified way using common least 
squares estimator for determination of x. 

In the case of the maximum likelihood estimate we 
select d so that  ( ){ }

,
min , /NJ N

x g
x g  is minimal.  

Practical results obtained so far are not very satisfac-
tory. The values of coefficients obtained for different 
data segments differ in tens of percents. One reason 
may be too rough approximation of the transfer func-
tion ( )F sϑ . We believe that better results can be 
achieved by allowing 1p > , as described below, but 
the implementation has not been finished yet.        

2. The case 1p >   

The discrete transfer function is considered in the 
form  

              1 0( )
p

db z b
F z z

z aϑ
−+⎛ ⎞= ⎜ ⎟−⎝ ⎠

        (23) 

and corresponding discrete equation of k-th order can 
be easily determined. It is possible to estimate un-
known coefficients of this equation using generalized 
least squares, but special structure of the transfer 
function (23) poses nonlinear constraints on their 
values.  

Nevertheless, it seams that the solution can be ob-
tained rather easily using maximum likelihood ap-
proach. In this case the unknown coefficients in the 
difference data model (5) are not considered as inde-
pendent for optimization, but are determined as func-
tions of α  and β  from (23) and (19). The objective 
function is again (15) and the remaining procedure 
remains the same.    

We assume that the value p can be determined using 
knowledge of physical parameters of the overheater, 
see [Cvejn 2009, eq. 13], considering that p is close 
to κ  .  

3. Influence of the flow change disturbance 

If the change of the flow rate is considered, history 
of 3ϑ  is described by the equation in Z-transform    

   1 0 1 0
3 2( ) ( ) ( )

p
db z b d z d

z z z z
z a z c

−+ +⎛ ⎞Θ = Θ + Ξ⎜ ⎟− −⎝ ⎠
.  (24) 

Due to difference of denominators it is not possible 
to use linear regression directly. It is however possi-
ble to replace the transfer function ( )F zξ  by the fi-
nite sum   
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where ic  are unknown parameters and m is suffi-
ciently large. In the case 1p =  the corresponding 
model of data is  
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and the vector of unknown parameters is   

       0 1 0( , , , ,..., , )T
ma b c c c C−=x .        (27) 

Next procedure is analogous to the previous case. 
Unfortunately, it seems that in this case obtained 
impulse response corresponding to ( )F zξ  contains 
oscillating components. Preventing from oscillations 
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can be achieved by introducing constraints on ic , but 
in this case a mathematical programming problem 
has to be solved. It was however observed that the 
flow change disturbance has minor effect and conse-
quently it was neglected.     
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