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TERMINAL STATE IN A PREDICTIVE CONTROLLER COST FUNCTION 
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Abstract: In the paper, an impact of a terminal state in a cost function on predictive con-
troller behaviour is discussed for case of a set point tracking task. Attention is paid to 
the form of the terminal state added to the cost function and its effect to stability and 
quality of a feedback control. A complete design procedure of the predictive controller 
based on the state space description of controlled system is shown. The controller de-
sign includes the terminal state in a form of deviation from a desired terminal state. The 
concept of the desired terminal state opens the way to involve additional demands into 
the controller design. The stabilization effect of the terminal state in case of short con-
trol horizon is demonstrated on simulated control examples of a non-minimum phase 
system (system with unstable zero). The effect of the terminal state on the control qual-
ity is discussed, too. 

Keywords: state space model, predictive control, terminal state, control stability and 
quality. 

1 INTRODUCTION 

A minimization of a quadratic cost function is com-
mon method for solving many engineering problems. 
In the control area this method is fundamental not 
only for some standard control design methods (LQ, 
predictive control) but also for a state estimation 
(Kalman estimator). Under the assumptions of linear 
controlled system and quadratic cost function it is 
possible to formulate the task of the controller design 
as a standard mathematical problem – extreme find-
ing with an analytic solution. A unique solution ex-
ists also in the case of constrains existence in the 
form of linear inequalities.  

The fundamental of the controller design is to incor-
porate maximum of known information and demands 
into properly formulated cost function. Because of 
the cost function minimization it is possible to in-
volve various (even conflicting) control demands. 
Controller tuning consists in weightings of the par-
ticular demands. 

From practical point of view is appropriate to formu-
late the task in discrete-time area with receding (fi-
nite) control horizon. The length N of the horizon is a 

parameter in the control design. The general formula-
tion of a set point tracking task is given by Eq. (1a) – 
a state space description of controlled linear system 
dynamic behaviour with state and input variables 
constrains and by Eq. (1b) – a quadratic cost function 
J (control objective) with three terms. The cost func-
tion J depends on the horizon length N, the initial 
state x(k) (initial conditions in time k) and the time 
course of the future set point wN (vector along the 
control horizon). Solution consists in computation of 
such a vector of system inputs uN, which leads to the 
minimum of the cost function and simultaneously 
respects all constrains. 
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where A, B, C, D  are parameters of a discrete-time 
dynamic process model and 
H, h, G, g   are parameters of state and input 
variables constrains. 
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uN
T=[ uT (k), uT (k+1), … , uT (k+N)] 

yN
T=[ yT (k), yT (k+1), … , yT (k+N)] 

wN
T=[ wT (k), wT (k+1), … , wT (k+N)] 

eN  = wN -  yN 

where Qx, Q, R  are weighting matrices of particu-
lar terms. 

The cost function always contains the fundamental 
control requirement (the term Je) – the controlled 
outputs y of the system should reach the set point w 
(or follow its time course). This basic requirement is 
usually supplemented by another term Ju of the cost 
function. The term Ju implies the control costs. Thus 
the set point tracking is desired but not at the cost of 
arbitrarily large control actions. 

The term Jx in the cost function (1b) can be used only 
in case of finite control horizon and state space de-
scription and it isn’t common. It introduces into the 
cost function a dependence on the system state at the 
end of the control horizon – a terminal state. The 
predictive controller design based on input output 
description doesn’t use it in a basic formulation of 
the cost function [Clarke 87a], [Clarke 87b], [Ros-
siter 03], [Camacho 07]. The terminal state is obvi-
ously introduced in some form only in extensions 
concerning to stability and robustness. Using of the 
terminal state increases in principle the stability of 
the controllers with finite horizon [Maciejowski 02]. 
The terminal state brings into the cost function de-
pendence on all state variables. The cost function 
without terminal state depends only on the system 
outputs (or control error) and it can be independent 
from some state variables (which is given by matrix 
C) and thus some states can increase ad infinitum 
even if the cost function is finite. In the case of con-
trol design based on input output models, where state 
doesn’t exist in a nature form, the terminal state is 
replaced with a sequence of input and output vari-
ables. That approach of the terminal state treatment is 
called in the literature [Camacho 07], [Maciejowski 
02] as a “terminal constrains”. 

In some cases the terminal state is important from 
mathematical point of view. In case of LQ control 
design on finite horizon, the mathematical impor-
tance of the terminal state is in that the matrix Qx 
determines the initial value of a working matrix 
which is developing by iterating solution of discrete 
Riccati equation [e.g. Havlena 00]. 

In common literature about predictive control the 
terminal state is obviously mentioned only in context 
of controller stability. The using of terminal state has 
also an implication to the controller performance. 
The standard using of the terminal state in a form of 
eq. (1b) leads to permanent steady state control error 
in case of nonzero set point. This problem is easily 
solved by terminal state in a form of the deviation 
from a desired terminal state xw.  The desired termi-
nal state is a function of the set point and/or others 
demands. The one of the additional demands can be 

to achieve steady state at the end of control horizon. 
Additional optimization in terminal state can be an 
integral part of the controller due to the desired ter-
minal state. Under the definition “optimization in 
terminal state” we will understand that controller 
ensures minimum of the weighted quadratic norm of 
a vector of deviations between desired and calculated 
terminal state. 

Clear and unique requirements are possible to formu-
late because the state vector contains complete in-
formation about state of the system. For example if 
we have a system with more inputs than outputs there 
is an infinite number of input variables combinations 
that lead to the one output variables combination. But 
each inputs combination belongs to unique state. 
This idea is applied by a predictive control of a sys-
tem with more inputs than outputs together with the 
demand of minimum energy cost [Dušek 07]. Set 
point temperature tracking of an ideal thermostatic 
bath actuated by the heating power and by the tem-
perature of the inlet cooling water is deal with. In the 
literature [Dušek 08a], [Dušek 08b] problem how to 
determine an optimal steady state in the case of the 
systems with more inputs than outputs is discussed. 

2 GENERAL PREDICTIVE CONTROLLER  

The controller design starts from a discrete-time state 
space model of the controlled MIMO (Multi-Input 
Multi-Output) system with nu inputs, nx states and ny 
outputs. The model is in a standard form (2a) – we 
suppose D = 0 in the following text. 
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where u(k) is vector of inputs with size [nu,1], 
 x(k) is state vector with size [nx,1] and  
 y(k) is the vector of outputs with size 
[ny,1]. 

Matrix equations (2b) describe vector of predicted 
system outputs yN on the control horizon of length N. 
Vectors yN and terminal state x(k+N) depend on the 
actual state x(k) and on a vector of future inputs uN. 
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uN1
T =[ uT (k), uT (k+1), … , uT (k+N-1)] 

yN
T  = [yT (k+1), … , yT (k+N)] 

Matrices Sxx, Sxu, Syu a Syu depend on state space 
model parameters according to (2c). 

With respect to a terminal state in the cost function 
(3a) in time instant k+N, the input vector has to be of 
length N and thus the vector is marked as uN.  

17th International Conference on Process Control 2009
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  (2c) 

The cost function in matrix form (3a) changes from 
(1b) in a way of the terminal state application as a 
deviation from a desired terminal state xw and that 
the vector of manipulated variable ∆uN is calculated 
as a deviations from a supposed future inputs u0,N. 
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 ∆x(k+N)=xw - x(k+N) 
eN  = wN -  yN 
wN

T=[wT (k+1), … , wT (k+N)] 
∆uN=uN - u0,N 

where N is length of control horizon, 
 xw is desired terminal state, 
 wN is vector of future set points with 
size [N×ny,1], 
u0,N is vector of supposed future inputs 
with size [N×nu,1], 
uN is vector of optimal future inputs 
with size [N×nu,1], 
Qx is terminal state ∆x weighting ma-
trix with size [nx, nx], 
Q is control error eN weighting matrix 
with size [N×ny, N×ny] and 
R is manipulated variable ∆uN 
weighting matrix with size [N×nu, N×nu]. 

First item of vector uN is applied as a manipulated 
variable u(k) every time instant and whole procedure 
is repeated. As the supposed future inputs (vector 
u0,N) constant vector filled with values of u(k-1) is 
considered and used in the following simulations. 

2.1 Desired terminal state 

Computation of desired terminal state is trivial in 
case of system with identical number of inputs and 
outputs and if we consider steady state. The solution 
for desired output y0=w0 is 

  (4a) ( ) ( )[ 0
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Solution for a desired slope of outputs in terminal 
state is slightly more complicated. The solution for 
desired output ∆y0=∆w0=w(N)-w(N-1) is 

  (4b) 
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The aim of the following control simulations is to 
demonstrate the effect of a terminal state in predic-
tive controller design to control quality and stability. 
The simulations are supposed as an ideal case – con-
trolled system is identical with the process model 
used for the controller design and neither noises nor 
disturbances are considered. The controller is de-
signed for the set point tracking task. 

Two different controlled systems are treated in simu-
lations. The first system is a standard system of a 
higher order (5a) and the second one is a system with 
non stable zero (5b) i. e. with non-minimum phase. 
Both systems have similar settling time (circa 50 s). 
The step and impulse responses of both systems are 
in Fig. 1 
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Figure 1 Characteristics of controlled systems 

The input-output models (5a) and (5b) were con-
verted into state space observable-canonical form. 
Predictive controller is described in Chapter 2. It 
operates in a nature way without modification with 
MIMO or SISO systems. The sampling time and con-
trol period is T = 1 s. The weighting matrices Qx, Q 
and R are diagonal. All diagonal elements of the 
weighting matrices are constant and their values are 
chosen so that the weight of every term in the cost 
function is comparable. From this reason weighting 
matrices are computed as reciprocal quadratic norms 
of corresponding steady state vectors according to 
(6). Tuning parameters of the controller are relative 
weightings ω and ωx. 
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where  x0 is steady state vector, 
 y0N is vector of constant outputs, 
u0N is vector of constant inputs, 
ωx is relative weight of matrix Qx, 
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ω is relative weight of matrix R and 
I is identity matrix. 

The set point shape consists from tree parts. The first 
part takes time as a control horizon plus 5 sampling 
times and the set point is constant. The second part 
lasts as a system settling time (50 s) and the set point 
linearly increases from the first to third part. The 
third part is as long as the second one and the set 
point is constant again. The control quality measure 
is calculated as integral of squared control error 

  (7) ∑
=

=
NS

k
keTISE

1

2 )(

where NS is number of samples during the 
control experiment. 

The ISE criterion was chosen as the objective for 
control quality comparison. Discussed effect of ter-
minal state can be observed from values of ISE 
measure for simulated control experiments summa-
rized in Tab. 1 for system (5a) and in Tab. 2 for sys-
tem (5b). The control experiments were simulated for 
several values of control horizon length N and termi-
nal state relative weights ωx. In all cases the desired 
terminal state is based on the demand of a desired 
slope of outputs in terminal state.  

Table 1 ISE (×100) quality measure for system (5a) 

T=1 s                    ω =0.01 
N ωx =0.0 ωx =0.1 ωx =1.0 ωx =10 
2 unstable unstable 74.066 0.2953
15 0.6609 0.6773 0.6969 0.7009
35 0.6790 0.6785 0.6782 0.6782
50 0.6765 0.6764 0.6764 0.6763

Table 2 ISE (×100) quality measure for system (5b) 

T=1 s                    ω =0.01 
N ωx =0.0 ωx =0.1 ωx =1.0 ωx =10 
15 unstable unstable unstable 301.81
20 unstable 1063.6 258.62 51.685
35 21.965 15.778 8.8321 2.3089
50 2.0566 1.5504 1.0447 0.7062

The control responses of two selected control ex-
periments are shown in Fig. 2a – controlled system 
(5a) and in Fig. 2b – controlled system (5b). Both 
experiments are considered with identical parameters 
– the length of control horizon is N=35 and the rela-
tive gain of the terminal state is ωx =0.1. 

4 CONCLUSIONS 

Effect of the terminal state to stability of the feed-
back control is definitely positive. Especially in the 
case of problematic system (5b) and wrong choice of 
the controller parameters (too short control horizon) 
the terminal state increases dramatically the control-
ler stability. 
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Figure 2a Control response of system (5a) 
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Figure 2b Control response of system (5b) 
 

The control quality is better if the terminal state is 
used in a form of deviation from the desired terminal 
state (calculated for steady state or desired slope of 
outputs) and the state space observable-canonical 
form. If the state space controllable-canonical form is 
used, then the control quality of the standard system 
(5a) is worse. In this case the cost function minimiza-
tion leads to a large initial items of the calculated 
vector ∆uN even if only one item of the set point vec-
tor wN is changed (the last item w(k+N) at the end of 
the horizon). That situation is demonstrated in Fig. 
3a in comparison with using of the observable-
canonical form in Fig. 3b. 

In both cases the desired terminal state is based on a 
demand of slope of outputs in terminal state corre-
sponding to the slope of set point at the end of the 
control horizon. 
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June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-3, 018.pdf

412



0 5 10 15 20 25 30 35
-1.5

-1

-0.5

0

0.5

1

1.5

2

w
,y

,u

System (5a) xw derivation

 

 

N   = 35
ω   =0.01
ωx =1.00

wN yN uN

Figure 3a Prediction along control horizon 
controllable-canonical form 

 

0 5 10 15 20 25 30 35
-1.5

-1

-0.5

0

0.5

1

1.5

2

w
,y

,u

System (5a) xw derivation

 

 

N   = 35
ω   =0.01
ωx =1.00

wN yN uN

Figure 3 Prediction along control horizon 
observable-canonical form 

6 REFERENCES 

CLARKE, D. W.; MOHTADI, C.; TUFFS, P. S. 
(1987a) Generalized Predictive Control –Part I. 
The Basic Algorithm. Automatica, VoL 23, No. 2 

CLARKE, D. W.; MOHTADI, C.; TUFFS, P. S. 
(1987b) Generalized Predictive Control –Part II. 
Extensions and Interpretations. Automatica. Vol. 
23, No. 2 

HAVLENA, V. ; ŠTECHA, J. (2000) Moderní teorie 
řízení. ČVUT Praha 

MACIEJOWSKI, J. (2002) Predictive Control with 
Constraints. Prentice Hall 

ROSSITER, J. A. (2003) Model-based Predictive 
Control – A Practical Approach, CRC Press 

CAMACHO, E. F.; BORDONS, C. (2007) Model 
Predictive Control (2. Ed.), Springer  

DUŠEK, F.; HONC, D. (2007) Návrh a simulace 
řízení nesymetrického systému, Automatizace 
(50)10 

DUŠEK, F.; HONC, D. (2008a) Static compensator 
for non-square MIMO systems, In.: 8th Interna-
tional Scientific-Technical Conference Process 
Control 2008, Kouty n. Desnou, Czech Republic 

DUŠEK, F.; HONC, D. (2008b) Transformace 
soustav s různým počtem vstupů a výstupů pro 
decentralizované řízení. Automatizace (51)7-8 

17th International Conference on Process Control 2009
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