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Abstract: Various optimization problems associated with the optimal control of
distributed-parameter systems with time delays appearing in the boundary conditions
have been studied recently in Kowalewski (1988), Kowalewski (1990), Kowalewski
(1998), Kowalewski and Duda (1992), Wang (1975) andWong (1987). In this paper, we
consider an optimal boundary control problem for an in�nite order parabolic system
with time delay given in the integral form. Su�cient conditions for the existence of
a unique solution of the in�nite order parabolic delay equation with the Neumann
boundary condition involving a time delay in the integral form are proved. The
performance functional constitutes the sum of a di�erentiable and non-di�erentiable
function. The time horizon T is �xed. Finally, we impose some constraints on the
control. Making use of the Lions scheme (Lions (1971)), necessary and su�cient
conditions of optimality for the Neumann problem are derived.

Keywords: Boundary control, in�nite order parabolic system, time delay,
non-di�erentiable performance functional.

1. PRELIMINARIES

Let Ω be a bounded open set of Rn with smooth
boundary Γ.

We de�ne the in�nite order Sobolev space
H∞{aα, 2}(Ω) of functions Φ(x) de�ned on Ω
Dubinskij (1975) and Dubinskij (1976) as follows

H∞{aα, 2}(Ω) =

=



Φ(x) ∈ C∞(Ω) :

∞∑

|α|=0

aα ‖ DαΦ ‖2
2< ∞



 (1)

where: C∞(Ω) is a space of in�nite di�erentiable
functions, aα ≥ 0 is a numerical sequence and
‖ · ‖2 is a norm in the space L2(Ω), and

Dα =
∂|α|

(∂x1)α1 . . . (∂xn)αn
, (2)

where: α = (α1, . . . , αn) is a multi-index for

di�erentiation, |α| =
n∑

i=1

αi.

The space H−∞{aα, 2}(Ω) (Dubinskij (1975) and
Dubinskij (1976)) is de�ned as the formal conju-
gate space to the space H∞{aα, 2}(Ω), namely:

H−∞{aα, 2}(Ω) =

=



Ψ(x) : Ψ(x) =

∞∑

|α|=0

(−1)|α|aαDαΨα(x)



 (3)
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where: Ψα ∈ L2(Ω) and
∞∑

|α|=0

aα ‖ Ψα ‖2
2 < ∞.

The duality pairing of the spaces H∞{aα, 2}(Ω)
and H−∞{aα, 2}(Ω) is postulated by the formula

〈Φ,Ψ〉 =
∞∑

|α|=0

aα

∫

Ω

Ψα(x)DαΦ(x) dx, (4)

where: Φ ∈ H∞{aα, 2}(Ω), Ψ ∈ H−∞{aα, 2}(Ω).

From above, H∞{aα, 2}(Ω) is everywhere dense in
L2(Ω) with topological inclusions and
H−∞{aα, 2}(Ω) denotes the topological dual space
with respect to L2(Ω) so we have the following
chain:

H∞{aα, 2}(Ω) ⊆ L2(Ω) ⊆ H−∞{aα, 2}(Ω). (5)

2. EXISTENCE AND UNIQUENESS OF
SOLUTIONS

Consider now the distributed-parameter system
described by the in�nite order parabolic delay
equation

∂y

∂t
+ Ay = u x ∈ Ω, t ∈ (0, T ) (6)

y(x, 0) = y0(x) x ∈ Ω (7)

∂y

∂ηA
(x, t) =

b∫

a

c(x, t)y(x, t− h)dh + v

x ∈ Γ, t ∈ (0, T )

(8)

y(x, t′) = Ψo(x, t′) x ∈ Γ, t′ ∈ [−b, 0) (9)

where: Ω has the same properties as in the Sec-
tion 2.

y ≡ y(x, t; v), u ≡ u(x, t), v ≡ v(x, t)

Q = Ω× (0, T ), Q̄ = Ω̄× [0, T ],

Σ = Γ× (0, T ), Σ0 = Γ× [−b, 0)

c is a given real C∞ function de�ned on Σ,

h is a time delay such that h ∈ (a, b),

Ψ0 is an initial function de�ned on Σ0.

The operator
∂

∂t
+ A in the state equation (6)

is an in�nite order parabolic operator and A
(Dubinskij (1986)) is given by

Ay =




∞∑

|α|=0

(−1)|α|aαD2α + 1


 y (10)

and

∞∑

|α|=0

(−1)|α|aαD2α (11)

is an in�nite order elliptic partial di�erential op-
erator.

The operator A is a mapping of H∞{aα, 2}(Ω)
onto H−∞{aα, 2}(Ω). For this operator the bi-
linear form Π(t; y, ϕ) = (Ay, ϕ)L2(Ω) is coercive
on H∞{aα, 2}(Ω) i.e. there exists λ > 0, λ ∈
IR such that Π(t; y, ϕ) ≥ λ‖y‖2

H∞{aα,2}(Ω) and

∀ y, ϕ ∈ H∞{aα, 2}(Ω) the function t → Π(t; y, ϕ)
is measurable on [0, T ].

The equations (6) - (9) constitute a Neumann
problem. The left-hand side of (8) is written in
the following form

∂y

∂ηA
=

∞∑

|w|=0

(Dwy(v)) cos(n, xi) = q(x, t)

x ∈ Γ, t ∈ (0, T )

(12)

where: ∂
∂ηA

is a normal derivative at Γ, directed
towards the exterior of Ω, cos(n, xi) is an i-th
direction cosine of n, n - being the normal at Γ
exterior to Ω and

q(x, t) =

b∫

a

c(x, t)y(x, t− h)dh + v(x, t) (13)

First we shall prove su�cient conditions for the
existence of a unique solution of the mixed initial-
boundary value problem (6) - (9) for the case
where v ∈ L2(Σ).

For this purpose, we introduce the Sobolev space
H∞,1(Q) (Lions and Magenes (1972), Vol. 2, p. 6)
de�ned by

H∞,1(Q) = (14)

= H0(0, T ;H∞{aα, 2}(Ω)) ∩H1(0, T ;H0(Ω))

which is a Hilbert space normed by




T∫

0

∥∥∥y(t)
∥∥2

H∞{aα,2}(Ω)
dt+

∥∥∥y
∥∥∥

2

H1(0,T ;H0(Ω))

) 1
2

(15)

where: the space H1(0, T ;H0(Ω)) is de�ned in
Chapter 1 (Lions and Magenes (1972), Vol.1).

The existence of a unique solution for the mixed
initial-boundary value problem (6) - (9) on the
cylinder Q can be proved using a constructive
method, i.e., �rst, solving (6) - (9) on the sub-
cylinder Q1 and in turn on Q2, etc. until the
procedure covers the whole cylinder Q. In this way
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the solution in the previous step determines the
next one.

For simplicity, we introduce the following nota-
tions:

T = Ka where K - a positive integer, and

Ej
∧= ((j − 1)a, ja), Qj = Ω× Ej ,

Σj = Γ× Ej for j = 1, . . . ,K

Using the Theorem 15.2 (Lions and Magenes
(1972), Vol.2, p. 81) we can prove the following
lemma.

Lemma 1. Let

u ∈ (H∞,1(Q))′, v ∈ L2(Σ) (16)

yj−1(·, (j − 1)a) ∈ H∞{aα, 2}(Ω) (17)

qj ∈ L2(Σj) (18)

where

qj(x, t) =

b∫

a

c(x, t)yj−1(x, t− h)dh + v(x, t)

Then, there exists a unique solution yj ∈ H∞,1(Qj)
for the mixed initial-boundary value problem (6),
(8), (17).

Proof: We observe that for j = 1, yj−1|Σ0
(x, t−

h) = Ψ0(x, t − h). Then the assumptions (17)
and (18) are ful�lled if we assume that y0 ∈
H∞{aα, 2}(Ω) and Ψ0 ∈ L2(Σ0). These assump-
tions are su�cient to ensure the existence of a
unique solution y1 ∈ H∞,1(Q1). Next for j = 2
we have to verify that y1(·, a) ∈ H∞{aα, 2}(Ω)
and y1|Σ1

∈ L2(Σ1). Then using the Theorem
3.1 (Lions and Magenes (1972), Vol.1, p.19) we
can prove that y1 ∈ H∞,1(Q1) implies that the
mapping t → y1(·, t) is continuous from [0, a] →
H∞{aα, 2}(Ω), hence y1(·, a) ∈ H∞{aα, 2}(Ω).
Again from the Trace Theorem (Theorem 2.1 in
Lions and Magenes (1972), Vol.2, p. 9) y1 ∈
H∞,1(Q1) implies that y1 → y1|Σ1

is a linear,

continuous mapping of H∞,1(Q1) → H∞,1(Σ1).
Thus, y1|Σ1

∈ L2(Σ1). Then, there exists a unique
solution y2 ∈ H∞,1(Q2). We shall now summarize
the foregoing result for any Qj , j = 3, . . . ,K .

Theorem 1. Let y0,Ψ0, v and u be given with y0 ∈
H∞{aα, 2}(Ω),Ψ0 ∈ L2(Σ0), v ∈ L2(Σ) and u ∈
(H∞,1(Q))′. Then, there exists a unique solution
y ∈ H∞,1(Q) for the mixed initial-boundary
value problem (6) - (9). Moreover, y(·, ja) ∈
H∞{aα, 2}(Ω) for j = 1, . . . ,K.

3. PROBLEM FORMULATION.
OPTIMIZATION THEOREMS

We shall now formulate the optimal boundary
control problem for the Neumann problem. Let
us denote by U = L2(Σ) the space of controls.
The time horizon T is �xed in our problem.

The performance functional is given by

I(v) = λ1

∫

Q

| y(x, t; v)− zd |2 dxdt + (19)

+ λ2

∫

Σ

(Nv)vdΓdt + 2λ3

∫

Σ

|v|dΓdt

where: λi ≥ 0, λ1 + λ2 + λ3 > 0; zd is a given
element in L2(Q); N is a positive linear operator
on L2(Σ) into L2(Σ).

Finally, we assume the following constraint on
controls v ∈ Uad , where

Uad is a closed, convex subset of U (20)

Let y(x, t; v) denote the solution of the mixed
initial-boundary value problem (6) - (9) at (x, t)
corresponding to a given control v ∈ Uad. We note
from the Theorem 1 that for any v ∈ Uad the
performance functional (19) is well-de�ned since
y(v) ∈ H∞,1(Q) ⊂ L2(Q). The solving of the
formulated optimal control problem is equivalent
to seeking a v0 ∈ Uad such that I(v0) ≤ I(v)∀v ∈
Uad.

Then from the Theorem 1.6 (Lions (1971), p.
12) it follows that for λ2 > 0 and λ3 > 0 a
unique optimal control v0 exists; moreover, v0 is
characterized by the following condition

I ′1(v0)(v − v0)+I2(v)− I2(v0) ≥ 0 ∀v ∈ Uad (21)

where: I1(v) is a di�erentiable function, I2(v) is
not necessarily di�erentiable function.

Using the form of the performance functional (19)
we can express (21) in the following form

λ1

∫

Q

(y(v0)− zd)(y(v)− y(v0))dxdt +

+λ2

∫

Σ

Nv0(v − v0)dΓdt + λ3

∫

Σ

|v|dΓdt +

−λ3

∫

Σ

|v0|dΓdt ≥ 0 (22)

To simplify (22), we introduce the adjoint equa-
tion and for every v ∈ Uad, we de�ne the adjoint
variable p = p(v) = p(x, t; v) as the solution of the
equation
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−∂p(v)
∂t

+ A∗p(v) = λ1(y(v)− zd)

x ∈ Ω, t ∈ (0, T )
(23)

p(x, T ; v) = 0 x ∈ Ω (24)

∂p(v)
∂ηA∗

(x, t) =

b∫

a

c(x, t + h)p(x, t + h; v)dh

x ∈ Γ, t ∈ (0, T − b)

(25)

∂p(v)
∂ηA∗

(x, t) =

T−t∫

a

c(x, t + h)p(x, t + h; v)dh

x ∈ Γ, t ∈ (T − b, T − a)

(26)

∂p(v)
∂ηA∗

(x, t) = 0 x ∈ Γ, t ∈ (T − a, T ) (27)

where

A∗p =
[ ∞∑

|α|=0

(−1)|α|aαDα + 1
]
p

∂p(v)
∂ηA∗

(x, t) =
∞∑

|w|=0

(Dwp(v)) cos(n, xi)





(28)

The existence of a unique solution for the problem
(23) - (27) on the cylinder Q can be proved using
a constructive method. It is easy to notice that for
given zd and v, problem (23) - (27) can be solved
backwards in time starting from t = T , i.e., �rst,
solving (23) - (27) on the subcylinder QK and in
turn on QK−1, etc. until the procedure covers the
whole cylinder Q. For this purpose, we may apply
Theorem 1 (with an obvious change of variables)
to problem (23) - (27) (with reversed sense of time,
i.e., t′ = T − t).

Lemma 2. Let the hypothesis of Theorem 1 be
satis�ed. Then, for given zd ∈ L2(Q) and any
v ∈ L2(Σ), there exists a unique solution p(v) ∈
H∞,1(Q) for the problem (23) - (27).

We simplify (22) using the adjoint equation (23) -
(27). For this purpose setting v = v0 in (23) - (27),
multiplying both sides of (23) by (y(v)−y(v0)) and
then integrating over Ω× (0, T ) we get

λ1

∫

Q

(y(v0)− zd)(y(v)− y(v0))dxdt

=
∫

Q

(
−∂p(v0)

∂t
+ A∗p(v0)

)
(y(v)− y(v0))dxdt

=
∫

Q

p(v0)
∂

∂t
(y(v)− y(v0))dxdt+

+
∫

Q

A∗p(v0)(y(v)− y(v0))dxdt (29)

The second integral on the right-hand side of (29),
in view of Green's formula, can be expressed as

∫

Q

A∗p(v0)(y(v)− y(v0))dxdt

=
∫

Q

p(v0)A(y(v)− y(v0))dxdt +

+

T∫

0

∫

Γ

p(v0)
(

∂y(v)
∂ηA

− ∂y(v0)
∂ηA

)
dΓdt+

−
T∫

0

∫

Γ

∂p(v0)
∂ηA∗

(y(v)− y(v0))dΓdt (30)

Using the boundary condition (8), the second
component on the right-hand side of (30) can be
written as

T∫

0

∫

Γ

p(v0)
(

∂y(v)
∂ηA

− ∂y(v0)
∂ηA

)
dΓdt =

=

T∫

0

∫

Γ

p(x, t; v0)

b∫

a

c(x, t)(y(x, t− h; v)+

−y(x, t− h; v0))dh)dΓdt +

+

T∫

0

∫

Γ

p(x, t; v0)(v − v0)dxdt =

=

T∫

0

∫

Γ

b∫

a

p(x, t; v0)c(x, t)·

·(y(x, t− h; v)− y(x, t− h; v0))dh dΓdt +

+

T∫

0

∫

Γ

p(x, t; v0)(v − v0)dxdt =

=

b∫

a

∫

Γ

T∫

0

p(x, t; v0)c(x, t)·

·(y(x, t− h; v)− y(x, t− h; v0))dt dΓdh +

+

T∫

0

∫

Γ

p(x, t; v0)(v − v0)dxdt =

=

b∫

a

∫

Γ

T−h∫

−h

p(x, t′ + h; v0)c(x, t′ + h)·

·(y(x, t′; v)− y(x, t′; v0))dt′ dΓdh +

+

T∫

0

∫

Γ

p(x, t; v0)(v − v0)dxdt =

=

b∫

a

∫

Γ

0∫

−h

p(x, t′ + h; v0)c(x, t′ + h)·
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·(y(x, t′; v)− y(x, t′; v0))dt′ dΓdh +

+

b∫

a

∫

Γ

T−b∫

0

p(x, t′ + h; v0)c(x, t′ + h)·

·(y(x, t′; v)− y(x, t′; v0))dt′ dΓdh +

+

b∫

a

∫

Γ

T−h∫

T−b

p(x, t′ + h; v0)c(x, t′ + h)·

·(y(x, t′; v)− y(x, t′; v0))dt′ dΓdh +

+
∫

0

∫

Γ

p(x, t; v0)(v − v0)dxdt =

=

b∫

a

∫

Γ

0∫

−h

p(x, t′ + h; v0)c(x, t′ + h)·

·(y(x, t′; v)− y(x, t′; v0))dt′ dΓdh +

+

b∫

a

∫

Γ

T−b∫

0

p(x, t′ + h; v0)c(x, t′ + h)·

·(y(x, t′; v)− y(x, t′; v0))dt′ dΓdh +

+

T−t∫

a

∫

Γ

T−a∫

T−b

p(x, t′ + h; v0)c(x, t′ + h)·

·(y(x, t′; v)− y(x, t′; v0))dt′ dΓdh +

+
∫

0

∫

Γ

p(x, t; v0)(v − v0)dxdt (31)

The last component in (30) can be rewritten as

T∫

0

∫

Γ

∂p(v0)
∂ηA∗

(y(v)− y(v0))dΓdt =

=

T−b∫

0

∫

Γ

∂p(v0)
∂ηA∗

(y(v)− y(v0))dΓdt+

+

T−a∫

T−b

∫

Γ

∂p(v0)
∂ηA∗

(y(v)− y(v0))dΓdt

+

T∫

T−a

∫

Γ

∂p(v0)
∂ηA∗

(y(v)− y(v0))dΓdt (32)

Substituting (31), (32) into (30) and then (30) into
(29), we obtain

λ1

∫

Q

(y(v0)− zd)(y(v)− y(v0))dxdt =

=
∫

Q

p(v0)
(

∂

∂t
+ A

)
(y(v)− y(v0))dxdt+

+

b∫

a

∫

Γ

0∫

−h

c(x, t + h)p(x, t + h; v0)·

·(y(x, t; v)− y(x, t; v0))dt dΓdh +

+

b∫

a

∫

Γ

T−b∫

0

c(x, t + h)p(x, t + h; v0)·

·(y(x, t; v)− y(x, t; v0))dt dΓdh +

+

T−t∫

a

∫

Γ

T−a∫

T−b

c(x, t + h)p(x, t + h; v0)·

·(y(x, t; v)− y(x, t; v0))dt dΓdh +

+

T∫

0

∫

Γ

p(x, t; v0)(v − v0)dΓdt+

−
T−b∫

0

∫

Γ

∂p(v0)
∂ηA∗

(y(x, t; v)− y(x, t; v0))dΓdt+

−
T−a∫

T−b

∫

Γ

∂p(v0)
∂ηA∗

(y(x, t; v)− y(x, t; v0))dΓdt+

−
T∫

T−a

∫

Γ

∂p(v0)
∂ηA∗

(y(x, t; v)− y(x, t; v0))dΓdt =

=

T∫

0

∫

Γ

p(x, t; v0)(v − v0)dΓdt (33)

Substituting (33) into (22) we obtain

∫

Σ

(p(v0) + λ2Nv0)(v − v0)dΓdt+ (34)

+λ3

∫

Σ

|v|dΓdt− λ3

∫

Σ

|v0|dΓdt ≥ 0 ∀v ∈ Uad

Theorem 2. For the problem (6) - (9) with the
performance functional (19) with zd ∈ L2(Q) and
λ2 > 0, λ3 > 0 and with constraints on controls
(20), there exists a unique optimal control v0

which satis�es the maximum condition (34).

We can also consider an analogous optimal con-
trol problem where the performance functional is
given by

Î(v) = λ1

∫

Σ

|y(v)|Σ − zΣd|2 dΓdt +

+λ2

∫

Σ

(Nv)vdΓdt + 2λ3

∫

Σ

|v|dΓdt (35)

From the Theorem 1 and the Trace Theorem
(Lions and Magenes (1972), Vol.2,p. 9), for each
v ∈ L2(Σ) , there exists a unique solution y ∈
H∞,1(Q) with y|Σ ∈ H∞,1(Σ) ⊂ L2(Σ). Thus
Î(v) is well-de�ned. Then, the optimal control v0

is characterized by
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λ1

∫

Σ

(y(v0)|Σ − zΣd)(y(v)|Σ − y(v0)|Σ)dΓdt+ +

+λ2

∫

Σ

(Nv0)(v − v0)dΓdt + λ3

∫

Σ

|v|dΓdt+ +

−λ3

∫

Σ

|v0|dΓdt ≥ 0 ∀v ∈ Uad (36)

We introduce the following adjoint equation

−∂p(v0)
∂t

+ A∗p(v0) = 0 x ∈ Ω, t ∈ (0, T ) (37)

p(x, T ; v0) = 0 x ∈ Ω (38)

∂p(v0)
∂ηA∗

=

b∫

a

c(x, t + h)p(x, t + h; v0)dh+

+λ1(y(v0)|Σ−zΣd) x ∈ Γ, t ∈ (0, T−b)

(39)

∂p(v0)
∂ηA∗

=

T−t∫

a

c(x, t + h)p(x, t + h; v0)dh+

+λ1(y(v0)|Σ−zΣd) x ∈ Γ, t ∈ (T−b, T−a)

(40)

∂p(v0)
∂ηA∗

= λ1(y(v0)|Σ − zΣd)

x ∈ Γ, t ∈ (T − a, T )
(41)

Using the Theorem 1 the following lemma can be
proved.

Lemma 3. Let the hypothesis of Theorem 1 be
satis�ed. Then, for given zΣd ∈ L2(Σ) and any
v0 ∈ L2(Σ) , there exists a unique solution p(v0) ∈
H∞,1(Q) to the problem (37) - (41).

In this case the condition (36) can be also rewrit-
ten in the form (34). The following theorem is now
ful�lled.

Theorem 3. For the problem (6) - (9) with the
performance functional (35) with zΣd ∈ L2(Σ)
and λ2 > 0, λ3 > 0 and with constraints on
control (20), there exists a unique optimal control
v0 which satis�es the maximum condition (34).

Remark 1. The uniqueness of the optimal con-
trol follows from the strict convexity of perfor-
mance functionals (19) and (35) with v = v+ −
v− and |v| = v+ + v− where v+ =

|v|+ v

2
and

v− =
|v| − v

2
.

We must notice that the conditions of optimal-
ity derived above (Theorems 2 and 3) allow us
to obtain an analytical formula for the optimal

control in particular cases only (e.g. there are
no constraints on controls). This results from
the following: the determining of the function
p(v0) in the maximum condition from the adjoint
equation is possible if and only if we know y0

which corresponds to the control v0. These mu-
tual connections make the practical use of the
derived optimization formulas di�cult. Therefore
we resign from the exact determining of the op-
timal control and we use approximation meth-
ods (Kowalewski (1988), Kowalewski and Duda
(1992), Wong (1987)).

4. CONCLUSIONS

The results presented in the paper can be treated
as a generalization of the results obtained in Wang
(1975) onto the case of in�nite order parabolic
optimal control problems with non-di�erentiable
performance functional and time delays given in
the integral form.

In this paper we have considered the optimal
parabolic systems with the Neumann boundary
conditions involving time delays in the integral
form.

We can also derived conditions of optimality for a
more complex case of such parabolic systems with
the Dirichlet boundary conditions.

Finally, we can consider similar optimal control
problems for in�nite order hyperbolic systems
with time delays given in the integral form.

The ideas mentioned above will be developed in
forthcoming papers.
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