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Abstract: In the paper the �rst order sensitivity analysis is performed for a class
of optimal control problems for parabolic equations with the Neumann boundary
conditions involving time delays. A singular perturbation of geometrical domain of
integration is introduced in the form of a circular hole. The Steklov-Poincaré operator
on a circle is de�ned in order to reduce the problem to regular perturbations in
the truncated domain. The optimality system is di�erentiated with respect to the
small parameter and the directional derivative of the optimal control is obtained as a
solution to an auxiliary optimal control problem.
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1. INTRODUCTION

We consider an optimal control problem in the
domain with small geometrical defect. The size of
the defect is measured by small parameter ρ > 0.
The presence of the defect results in the singu-
lar perturbation of the parabolic state equation.
Such a perturbation is transformed to the regular
perturbation in the truncated domain ΩR for any
R > ρ > 0. We perform the sensitivity analysis in
the truncated domain using the Steklov-Poincaré
operator de�ned on the circle ΓR. The problems
of the sensitivity analysis for regular perturba-
tions of optimal control problems were studied in
Lasiecka and Sokoªowski (1991), Malanowski and

Sokoªowski (1986), Malanowski (2001), Rao and
Sokoªowski (2000), Sokoªowski (1985), Sokoªowski
(1987), Sokoªowski (1988), Sokoªowski and Zole-
sio (1992). Singular perturbations of geometri-
cal domains are analysed in Jackowska et al.
(2002), Jackowska et al. (2003), Maz'ya et al.
(2000), Nazarov (1999), Nazarov and Sokoªowski
(2003a), Nazarov and Sokoªowski (2004), Nazarov
and Sokoªowski (2003c), Nazarov and Sokoªowski
(2003b), Nazarov et al. (2004), Sokoªowski and
�ochowski (1999a), Sokoªowski and �ochowski
(1999b), Sokoªowski and �ochowski (1999c),
Sokoªowski and �ochowski (2001), Sokoªowski and
�ochowski (2003). The construction of asymptotic
approximation for the Steklov-Poincaré operator
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is given in Sokoªowski and �ochowski (2005).
In the present paper an optimal control problem
in singularly perturbed geometrical domain Ωρ is
analysed with respect to small parameter ρ > 0.
We derive the one-term asymptotic expansion of
optimal controls. The �rst term of the expansion,
of the order ρ2 is uniquely determined as an
optimal solution to the auxiliary optimal control
problem. The control constraints for the auxiliary
problem are obtained by an application of the
conical di�erentiability of metric projection in L2

spaces. Our method is constructive and can lead
to numerical procedures for determination of the
�rst order approximations of the optimal controls.

2. PRELIMINARIES

Consider now the distributed parameter system
described by the following time delay parabolic
equation

∂y

∂t
−∆y = f in Ωρ × (0, T )

∂y

∂η
= y(x, t− h) + v on Γ× (0, T )

∂y

∂η
= 0 on Γρ × (0, T )

y(x, 0) = y0(x) in Ωρ

y(x, t′) = Ψ0(x, t′) in Γ× [−h, 0)





(1)

where:

∆ =
n∑

i=1

∂2

∂x2
i

,

∂/∂η is a normal derivative at Γρ directed towards
the exterior of Ωρ, Ωρ is presented on the Fig. 1.

�
ρ

ϑ
Γρ

Ωρ Γ = ∂ Ω

Fig. 1. The domain Ωρ

We denote by

Ωρ = Ω \B(ρ) ⊂ R2

∂ Ωρ = Γ ∪ Γρ
(2)

where: Ω is a domain on the plane R2 with a
smooth boundary ∂ Ω and

Bρ = {x : |x− ϑ| < ρ} (3)

with a smooth boundary Γρ.

First we shall present su�cient conditions for the
existence of a unique solution of the problem (1)
for the case where the boundary control v ∈
L2(Σ).

For simplicity, we introduce the folowing nota-
tions:

Q = Ωρ × (0, T ), Σ = Γ× (0, T )

Ej
∧= ((j − 1)h, jh), Qj = Ωρ × Ej , Σj = Γ× Ej

Σ0 = Γ× [−h, 0) for j = 1, ...,K

For this purpose, for any pair real numbers r, s ≥ 0
we introduce the Sobolev space Hr,s(Q) (Lions
and Magenes (1972), vol. 2, p.6) de�ned by

Hr,s(Q) = (4)

= H0(0, T ;Hr(Ωρ)) ∩Hs(0, T ;H0(Ωρ))

which is a Hilbert space normed by




T∫

0

∥∥∥y(t)
∥∥2

Hr(Ωρ)
dt +

∥∥∥y
∥∥∥

2

Hs(0,T ;H0(Ωρ))

)1/2

(5)

where: Hs(0, T ;H0(Ωρ)) denotes the Soboles
space of order s of function de�ned on (0, T ) and
taking values in H0(Ωρ).

The existence of a unique solution for the mixed
initial-boundary value problem (1) on the cylinder
Q can be proved using a constructive method, i.e.
�rst solving (1) on the subcylinder Q1 and in turn
on Q2 etc., until the procedure covers the whole
cylinder Q. In this way the solution in the previous
step determines the next one.

Using the results of (Lions and Magenes (1972),
vol. 2, p. 81) we can prove the following theorem:

Theorem 1. Let y0,Ψ0, v and f be given with
y0 ∈ H1/2(Ωρ), Ψ0 ∈ L2(Σ0), v ∈ L2(Σ) and
f ∈ (H1/2,1/4(Q))′. Then there exists a unique
solution y ∈ H3/2,3/4(Q) for the mixed initial
boundary value problem (1). Moreover, y(·, jh) ∈
H1/2(Ωρ) for j = 1, ....K.

Let us surround Γρ by the circle ΓR such that
R > ρ > 0 (Fig.2) .

Consequently, we denote

ΩR = Ω \B(R) (6)

where:

B(R) = {x : |x− ϑ| < R}. (7)
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�
ρ

ϑ
Γρ

R

ΩR

R

Γ

ΓR

Fig. 2. The domain ΩR

We set the non-local Neumann boundary condi-
tion on ΓR:

∂y

∂η
= Aρ(y) on ΓR (8)

where: Aρ is a Steklov-Poincare operator de�ned
in the domain C(R, ρ) = B(R) \B(ρ).The opera-
tor Aρ is a mapping of H1/2(ΓR) → H−1/2(ΓR).
Consequently, we consider in ΩR × (0, T ) the fol-
lowing time delay parabolic equation:

∂y

∂t
−∆y = f in ΩR × (0, T )

∂y

∂η
= y(x, t− h) + v on Γ× (0, T )

∂y

∂η
= Aρ(y) on ΓR × (0, T )

y(x, 0) = y0(x) in Ωρ

y(x, t′) = Ψ0(x, t′) in Γ× [−h, 0)





(9)

We shall investigate the dependence of optimal
solutions on the small parameter ρ > 0.

The small hole B(ρ) is a singular perturbation in
the domain Ωρ. Consequently, the same small hole
constitutes regular perturbation in the domain
ΩR.

Using the results of Sokoªowski and �ochowski
(2005) we obtain the following expansion for the
operator Aρ:

Aρ = A0 + ρ2B + O(ρ4)
in the operator norm
L(H1/2(ΓR),H−1/2(ΓR))

(10)

where: the remainder O(ρ4) is uniformly bounded
on bounded sets in the space H1/2(ΓR).

Corollary 1. In the space H3/2,3/4(Q) the solu-
tion of the parabolic equation (for ρ = 0) can be
represented as

∂y0

∂t
−∆y0 = f in ΩR × (0, T )

∂y0

∂η
= y0(x, t− h) + v on Γ× (0, T )

∂y0

∂η
= A0(y0) on ΓR × (0, T )

y0(x, 0) = y0(x) in Ωρ

y0(x, t′) = Ψ0(x, t′) in Γ× [−h, 0)





(11)

We shall look the expansion of the solution yρ in
ΩR × (0, T ):

yρ = y0 + ρ2y1 + ỹ =
= y0 + ρ2y1 + ρ4ŷ

(12)

Consequently, the Neumann boundary condition
in (9) can be rewritten as

∂yρ

∂η
= Aρ(yρ) =

= A0(yρ) + ρ2B(yρ) + ρ4Ã(yρ)
(13)

Substituting (12) into (13) we obtain

∂y0

∂η
+ ρ2B

∂y1

∂η
+

∂ỹ

∂η
=

= A0(y0 + ρ2y1 + ỹ)+

+ρ2B(y0 + ρ2y1 + ỹ) + ρ4Ã(yρ)

(14)

Comparing components with the same powers we
get

ρ0 :
∂y0

∂η
= A0(y0)

ρ2 : ρ2 ∂y1

∂η
= ρ2[A0y

1 + By0]





(15)

Hence it follows the following expansion of solu-
tions:

Let us denote by y0 the solution of the problem
(11) corresponding to a given parameter ρ = 0.

Subsequently, y1 corresponding to a given param-
eter ρ2 is a solution of the following equation:

∂y1

∂t
−∆y1 = 0 in ΩR × (0, T )

∂y1

∂η
= y1(x, t− h) + v on Γ× (0, T )

∂y1

∂η
= A0(y1) + B(y0) on ΓR × (0, T )

y1(x, 0) = 0 in ΩR

y1(x, t′) = Ψ0(x, t′) in Γ× [−h, 0)





(16)
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3. PROBLEM FORMULATION.
OPTIMIZATION THEOREMS.

We shall now consider the optimal boundary con-
trol problem in domains Ωρ and ΩR respectively.
Let us denote by U = L2(Γ × (0, T )) the space
of controls. The time horizon T is �xed in our
problem.

Let us consider in Ωρ × (0, T ) the following
parabolic equation

∂y

∂t
−∆y = f in Ωρ × (0, T )

supp f ⊂ ΩR × (0, T )
∂y

∂η
= y(x, t− h) + v on Γ× (0, T )

∂y

∂η
= 0 on Γρ × (0, T )

y(x, 0) = y0(x) in Ωρ

supp y0 ⊂ ΩR

y(x, t′) = Ψ0(x, t′) in Γ× [−h, 0)





(17)

The performance functional is given by

I(v) =
1
2

∫

ΩR

|y(x, T ; v)− zd|2dx+

+
α

2

T∫

0

∫

Γ

|v|2dxdt

(18)

Finally, we assume the following constraints on
the control v ∈ Uad:

Uad = {v ∈ L2(Γ× (0, T )), 0 ≤ v(x, t) ≤ 1} (19)

Subsequently, we consider in ΩR × (0, T ) the
following parabolic time delay equation

∂y

∂t
−∆y = f in ΩR × (0, T )

∂y

∂η
= y(x, t− h) + v on Γ× (0, T )

∂y

∂η
= Aρ(y) on ΓR × (0, T )

y(x, 0) = y0(x) in ΩR

y(x, t′) = Ψ0(x, t′) in Γ× [−h, 0)





(20)

The performance functional and constraints on
the control are given by (18) and (19).

Result: The solution of the problem (20) (in the
domain ΩR) is a restriction of the solution of the
problem (17) (in the domain Ωρ) to ΩR. Hence,
we have the possibility of replacing the singular
perturbation of the domain B(ρ) by the regular
perturbation on the boundary ΓR in a smaller
domain ΩR. Consequently, we shall analyse the
optimal boundary control problem (18)-(20) in

the domain ΩR. Moreover, we assume the �xed
parameter ρ > 0. The solving of the formulated
optimal control problem is equivalent to seeking a
v0 ∈ Uad such that I(v0) ≤ I(v) ∀v ∈ Uad.

From Lions' scheme (Theorem 1.3 Lions (1971),
p. 10) it follows that for α > 0 a unique optimal
control v0 is characterized by the following condi-
tion

I ′(v0)(v − v0) ≥ 0 ∀v ∈ Uad (21)

Using the form of the performance functional (18)
we can express (21) in the following form:

∫

ΩR

(y(x, T ; v0)−zd)(y(x, T ; v)−y(x, T ; v0)dx

+
α

2

T∫

0

∫

Γ

v0(v − v0)dxdt ≥ 0 ∀v ∈ Uad

(22)

To simplify (22), we introduce the adjoint equa-
tion and for every v ∈ Uad. we de�ne the adjoint
variable p = p(v) = p(x, t; v) as the solution of the
following equation

−∂p

∂t
−∆p = 0 in ΩR × (0, T )

∂p

∂η
= p(x, t + h) on Γ× (0, T − h)

∂p

∂η
= 0 on Γ× (T − h, T )

∂p

∂η
= Aρ(p) on ΓR × (0, T )

p(x, T ; v) = y(x, T ; v) −zd in ΩR





(23)

Theorem 2. Let the hypothesis of Theorem 1 be
satis�ed. Then for given zd ∈ L2(ΩR) and any
v0 ∈ Uad, there exists a unique solution p(v0) ∈
H3/2,3/4(Q) for the problem (23).

We simplify (22) using the adjoint equation (23).
Consequently, after transormations we obtain the
following formula

T∫

0

∫

Γ

(p + αv0)(v − v0)dxdt ≥ 0 ∀v ∈ Uad (24)

Theorem 3. For the problem (20) with the per-
formance functional (18) with zd ∈ L2(ΩR) and
α > 0, and with constraints on the control (19),
there existsts a unique optimal control v0 which
satis�es the maximum condition (24). Moreover,

v0 = PUad
(− 1

α
p) where PUad

is a projective oper-

ator.
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4. THE SENSIVITY OF OPTIMAL
CONTROLS

Theorem 4. We have the following expansion of
the optimal control in L2(Γ×(0, T )), with respect
to the small parameter,

vρ = v0 + ρ2q + o(ρ2) (25)

for ρ > 0.

Moreover, we assume that ρ is a su�ciently small.
The function q in (25) is a optimal solution of the
following optimal control problem:

The state equation

∂w

∂t
−∆w = 0 in ΩR × (0, T )

∂w

∂η
= w(x, t− h) + q on Γ× (0, T )

∂w

∂η
= A0(w) + B(y0) on ΓR × (0, T )

w(x, 0) = 0 in ΩR

w(x, t′) = Ψ0(x, t′) on Γ× [−h, 0)





(26)

where: w = y1.

The performance functional

I(u) =
1
2

∫

ΩR

|w(T, x)|2dx +
α

2

T∫

0

∫

Γ

|u|2dxdt (27)

The adjoint equation

−∂z

∂t
−∆z = 0 in ΩR × (0, T )

∂z

∂η
= z(x, t + h) on Γ× (0, T − h)

∂z

∂η
= 0 on Γ× (T − h, T )

∂z

∂η
= A0(z) + B(p0) on ΓR × (0, T )

z(x, T ) = w(x, T ) in ΩR





(28)

where: z = p1.

Then, the optimal control q is characterized by
∫

ΩR

w(x, T ; q)(w(x, T ;u)− w(x, T ; q))dx+

+

T∫

0

∫

Γ

q(u− q)dxdt ≥ 0 ∀u ∈ Sad

(29)

where: Sad is a set of admissible controls such that

Sad =
{

u ∈ L2(Γ× (0, T ))
∣∣∣

u(x, t) ≥ 0 on the set
E0 = {(x, t)|v0(x, t) = 0},

u(x, t) < 0 on the set
E1 = {(x, t)|v0(x, t) = 1},

T∫

0

∫

Γ

(p0 + αv0)udxdt = 0
}

,

(30)

where:

p0 is a adjoint state for ρ = 0,

v0 is a optimal solution for ρ = 0 such that

0 ≤ v0(x, t) ≤ 1.

We simplify (29) using the adjoint equation (28).
After transformations we obtain the following
maximum condition

T∫

0

∫

Γ

(z + αq)(u− q)dxdt ≥ 0 ∀u ∈ Sad (31)

Theorem 5. For the time delay parabolic problem

∂w

∂t
−∆w = 0 in ΩR × (0, T )

∂w

∂η
= w(x, t− h) + u on Γ× (0, T )

∂w

∂η
= A0(w) + B(y0) on ΓR × (0, T )

w(x, 0) = 0 in ΩR

w(x, t′) = Ψ0(x, t′) in Γ× [−h, 0)





(32)

with the performance functional (27) with w(T ) ∈
L2(ΩR) and α > 0, and with constraints on the
control (30), there exists a unique optimal control
q which satis�es the maximum condition (31).

5. CONCLUSIONS

The results presented in the paper can be treated
as a generalization of the results obtained in Ref.
Sokoªowski and �ochowski (2005) onto the case
of parabolic systems with boundary condition
involving time delays.

In this paper we have considered the mixed initial
boundary value problems of parabolic type.

We can also consider similar optimal control prob-
lems for time delay hyperbolic systems.

The ideas mentioned above will be developed in
forthcoming papers.
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