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Abstract: At present, the evaluation of experimental data by means of regression methods 
represents one of most frequently adopted procedures thanks to large expansion of computer 
technology. There exist a number of professional algorithms that perform regression 
calculations of various functions with application of many known methods. However, the 
calculation results need to be additionally verified, i.e. it must be stated whether or not the 
solution found is sufficiently correct and accurate. For this purpose a significant tool is the 
analysis of residua, but this analysis is often omitted even in commercial algorithms. 
Therefore, a subroutine REZID was assembled: it tests the obtained set of residua by 
numerical and some graphical methods. The subroutine was designed mainly for use with the 
program set SPONA [LUKŠAN, 1982 and 1987], which is why it was written in FORTRAN 
77 language. 
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1  INTRODUCTION 

One of the most significant and most frequently used 
tools for evaluation of quality of a model from both 
the standpoint of presumptions about random 
component and the standpoint of quality of selected 
observations is the analysis of set of residua 
[JAVŮREK, 2006]. These are presented in their 
normal form or transformed as normalised, 
studentized etc. It can be clearly stated that any lack 
of randomness found in residua indicates some 
imperfection of the model used. For instance, 
systematic changes of residua depending on the 
variables included indicate an insufficient number of 
terms in regression equation; the dependence on non-
included terms expresses the necessity of these terms 
in regression equation. Systematic changes of 
variability of residua with changes of independent 
variables are signs of heteroscedascity. By means of 
analysis of residua it is possible to reveal extreme 
values of dependent variable or off-lying or too 
influential observations. This diagnostics usually 
combines numerical and graphical methods. 

2  NUMERICAL METHODS 

2.1 Classical Residua 

Sets of classical values of residua are evaluated by 
means of current statistics, where the normality of 
their distribution is considered: 
- arithmetic mean – it should approach zero 
- dispersion (variance) and/or standard deviation as 
its square root should approach the instrumental error 

- coefficient of skewness – it should approach zero 

- coefficient of kurtosis – it should vary about the 
value of three 

The relationships for calculating the above-
mentioned estimates of these central moments can be 
found in any literature about mathematical statistics, 
e.g. [MELOUN, 1986]. 

An excellent characteristic is Hamilton’s R-factor, 
which expresses goodness of fit:  
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where s2 means the dispersion (variance) of residua 
set, and n is number of measurements. 
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The value of RF – factor is a dimensionless number; 
if it is less than one half of instrumental error, then 
the fit is excellent. If the value of Hamilton’s factor 
is higher than instrumental error, then the fit is 
unsatisfactory. 

The normality of distribution of residua is also tested 
by means of the χ2-test, where the residua are divided 
according to their magnitude into classes, and their 
population in individual classes is tested. One of 
possible classifications is division into six classes: 

σσσ 3,2,1 ±±±  (σ  is standard deviation). 
Application of classical residua is based on the 
presumption that their distribution corresponds with 
distribution of errors; hence their properties are 
identical with the properties of errors. Another 
presumption is, e.g., the presumption that a greater 
value of residuum indicates a more strongly 
influencing point which should be eliminated. 
However, the residuum does not only represent 
the random component of errors, but it is a linear 
combination of all sorts of errors 

iê

iε , which can be 
expressed as follows: 
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where hii are diagonal elements of matrix 
 (where X is matrix of 

independent variables) 
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Hence, the distribution of residua depends upon the 
distribution of errors, upon the elements of matrix of 
projection matrix H, and on the magnitude of 
selection n. In the case of smaller selections, the 
elements of projection matrix are large, and the 
predominating role will be played by the summation 
term in Eq. (2); hence, the distribution of residua will 
approach the normal distribution even when the 
distribution of errors is different. However, in the 
case of sufficiently large selections (when 0/1 ≈n ) 
it is iie ε≈ˆ . The dispersion (variance) of residua is 
non-constant, as it can be seen from the following 
equation: 

  (3) 2ˆ)1()ˆ( σiii HeD −=

where σ̂  is standard deviation of the basic selection. 

In addition to that, the residua are inter-correlated 
even if the errors jε  and iε  are independent, which 
is shown in the following relationship: 
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For extreme points the diagonal elements of 
projection matrix H approach one, whereas the non-
diagonal elements approach zero; hence, when 

entering values into Eq. (2) we get the estimate of 
residuum equal to zero regardless of the magnitude 
of dependent variable.  
Thus the classical residua are correlated, have non-
constant dispersion, and need not indicate strongly 
off-lying points. That is why several types of 
variously transformed residua are introduced, which 
increases the reliability of analysis of residua 
[MELOUN, 2004]. 

2.2 Normalized Residua 

The normalization of residua is carried out by 
dividing them by the estimate of standard deviation 
of the basic selection. Then the residua would 
have normal distribution with the mean value equal 
to zero and dispersion equal to one. Their application 
is based on the presumption that the values higher 
than triple the standard deviation are considered to 
be off-lying. However, from Eq. (2) it follows that 
the dispersion is neither constant nor equal to one.  

Niê

2.3 Standardized Residua 

These residua have constant dispersion. They are 
defined as follows: 
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As a rule, these residua are sufficient for 
identification of heteroscedasticity. 

2.4 Jackknife Residua 

If in Eq. (5) the estimate of standard deviation σ̂  is 
replaced by the modified standard deviation )(ˆ i−σ  
obtained by leaving out the i-th point, the result is 
fully studentized residua, i.e. jackknife residua : Jiê
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where n – m – 1 is the number of degrees of freedom. 

These residua possess the Student distribution and 
serve—instead of the classical residua—for 
identification of outliers points. However, they need 
not be reliable in the case of extremes. 

2.5 Predicted Residua 

They are defined by the following relationship: 
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where are estimates of parameters from all 
points except the i-th point. These residua are used 
also for identification of outliers points.  

)(ib

2.6 Recursive Residua 

All the residua described so far are inter-correlated. 
For obtaining the non-inter-correlated residua it is 
possible to use the recursive method of least squares, 
i.e. estimates of parameters performed iteratively: 
one point (one row of matrix X) is added in each 
iteration step. These residua can identify non-
stability of the model in time – hence the auto-
correlation. The recursive residua are calculated from 
the following relationship: 
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where   are estimates obtained from the first 
(i – 1) points 

1−ib

  is the matrix containing the first  1−iX
(i - 1) rows of matrix X 

iy  values of dependent variable 
These recursive residua are independent and possess 
constant dispersion. They are used in tests of 
normality or stability of regression coefficients. 

2.7 Other Characteristics 

The elements of matrix H are very significant in 
evaluation of influence of individual observations. 
The diagonal elements hii have the average 
magnitude k/n; it varies from zero to one. That is 
why just this ratio is used for evaluation of the 
influence of the i-th observation. The observations 
having hii more than twice or three times as large as 
the k/n ratio are much too influential. The Cook 
distance is used for evaluation of influence of the i-th 
observation: 
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The quantities Di have approximately the distribution 
F with k and n – k degrees of freedom. Even more 
sensitive quantity for finding off-lying observations 
is the following one: 
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which has F distribution with k and n – k degrees of 
freedom. 

3  GRAPHICAL METHODS 

However, numerical statistical analysis of residua 
does not possess full information value: numerical 
characteristics can be acceptable, but they do not 
reflect, e.g., trends in curve fitting. Therefore, it is 
sometimes advantageous to use other, graphical 
tools, where it can be seen at first sight how the 
residua are dislocated. These tools do not provide 
exact results, their evaluation is a subjective matter 
depending on experience, but they are very useful for 
evaluating the quality of curve fitting and especially 
in the phase of looking for suitable model. 

3.1 Graph of Distribution of Residua 

Their magnitudes are plotted in a graph being 
dislocated around the mean value (i.e. the zero line). 
Their potential trend can be seen at first sight. It is 
shown on Fig. 1. 

3.2 Graph of Curve Fitting 

Even a simple graph of both dependences – the 
experimental one and the calculated one – possesses 
high information value: we can judge how the two 
dependences “match” each other. It is shown on 
Fig. 3. 

3.3 Graphs of Shape of Users Function 

In this case it is possible to model the shape of users 
function either for one parameter or for a selected 
combination of two parameters (see above) and to 
judge the possibility of determination of individual 
parameters. It is shown on Fig. 4. 
A similar tool is the so-called contours, contour lines 
of users function projected on top view, which also 
show the shape of the minimum found after 
completed optimisation. These contours should be 
circular in shape; if they are elliptical in shape (with 
a large difference between the axes), then it is clear 
that the shape of purpose function is distorted due to 
different interdependences of parameters. It is shown 
on Fig. 2. 

In the next part are presented: 
- Graph of Dependence of Residua  upon Index i iê
- Graph of Dependence of Residua  upon Variable 
xi 

iê

-. Graph of Dependence of Residua upon 

prediction  
iê

iŷ
If these graphs represent a “cloud” of points, then 
everything is correct. A shape of sector indicates 
heteroscedasticity in data. A shape of band in the 
first two graphs indicates incorrect calculation or an 
error in model.  
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3.7 Graphs of Identification of Influential Points 
[MELOUN, 2004] 

Identification of various types of influential points 
makes use of a number of graphs, which combine 
various types of residua with elements of projection 
matrix Hii: 
- graph of predicted residua (classical residua vs. 

predicted residua ) 
iê

Piê
In this graph the extremes lie outside the straight line 
y = x. 

- Williams’s graph (elements of projection matrix 
Hii:vs. jackknife residua ). Jiê
Here the limit lines for off-lying points are drawn, 
y = t0,95(n-m-1) – which is 95% quantile of Student’s 
distribution with n – m – 1 degrees of freedom, and 
limit lines for extremes x = 2 m/n. 

- Pregibon’s graph (elements of projection matrix 
Hii:vs. squares of normalized residua ) Niê
In this case, two limit straight lines are drawn in the 
graph: 
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nmxy
nmxy

/)1(3
/)1(2

++−=
++−=

A point is considerably influential if it lies above the 
upper straight line, and it is only influential (or also 
an extreme or outliers point) if it lies between the 
two straight lines. 

- McCulloh–Meeter’s graph (ln[Hii/(m(1-Hii)] vs. ln 

) 2ˆSie
The limiting line for extremes is: 
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and for outliers points it is: 
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where  is 95% quantile of Student’s distribution 
with n –  m – 1 degrees of freedom. 

95,0t

Besides the characteristics of residua, most 
algorithms of non-linear regression provide the 
values of parameters found together with their 
respective errors calculated at the end of 
optimisation. Even the mutual ratio between the 
parameter value and the error magnitude can easily 
show the quality of determination of individual 
parameters, i.e. the parameter error should be lower 
than the parameter value by at least one order of 
magnitude. 

4  EXAMPLES OF RESULTS 

Input of procedure REZID are number of points, 
matrixes of independent, dependent variables and 
residuals. 
This section shows examples of results obtained 
from procedure REZID: individual statistical 
characteristics and some graphical representations in 
Figs 1-3. Figure 4 has been obtained from the 
EXCEL program; changing of selected pair of 
parameters, their varying in the chosen range, and 
reproduction of three-dimensional picture cannot be 
included in the procedure (input for EXCEL program 
are values of parametres only and selected interval 
their variation). 

Table 1 - Classical Statistical Moments: 

 –0.46132E–04 ARITHMETIC MEAN 
 0.37509E–02 MEAN DEVIATION 
 0.52115E–02 STANDARD DEVIATION 
 0.27159E–04 VARIANCE 
 0.13886E+01 MOM. COEFF. OF SKEW. 
 0.42511E+01 MOM. COEFF. OF KURT. 

Table 2 - Pearson’s χ2 goodness-of-fit test: 
 CLASS LIMITS PROBABIL. FREQ. PART. 
 LOW. HIGH. CALC OBS CALC OBS χ2 
 
 
1 –0.10E+31 –0.59E–02 0.125 0.03 3.8 1 2.017 
2 –0.59E–02 –0.35E–02 0.125 0.26 3.8 8 4.817 
3 –0.35E–02 –0.16E–02 0.125 0.16 3.8 5 0.417 
4 –0.16E–02  0.00E+00 0.125 0.16 3.8 5 0.417 
5   0.00E+00  0.16E–02 0.125 0.16 3.8 5 0.417 
6   0.16E–02  0.35E–02 0.125 0.03 3.8 1 2.017 
7   0.35E–02  0.59E–02 0.125 0.03 3.8 1 2.017 
8   0.59E–02  0.10E+31 0.125 0.13 3.8 4 0.017 
 
 

OBSERVED CHI-SQUARE IS  12.13 
CHI SQUARE (6,0,95) SHOULD BE 12.60 

Table 3 - Hamilton’s R-factor: 

R FACTOR=    0.008546 
 

Fig. 2 – Contour lines of purpose function near 
the minimum 
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Fig. 4 – Shape of users function near the 
minimum (selected parameters were varied in 

the range of 10%) 

 
Table 4 – INDICATION OF INFLUENTIAL 

POINTS: 
(underlined number indicates outliers or influential 

point) 
Point Standardiz. Jackknife Predicted Diag. 
  residuum residuum residuum elements

i eS[i] eJ[i] eP[i] H[i,i] 
1 -0.020 -0.019 -0.810 0.088
2 -0.362 -0.354 -14.958 0.086
3 -0.356 -0.349 -14.719 0.085
4 -0.049 -0.048 -2.028 0.084
5 0.165 0.161 6.806 0.082
6 -0.364 -0.356 -14.953 0.075
7 0.277 0.271 11.382 0.075
8 0.022 0.022 0.914 0.071
9 0.038 0.037 1.569 0.069

10 -0.406 -0.398 -16.595 0.065
11 -0.530 -0.521 -21.666 0.063
12 -0.320 -0.313 -12.991 0.052
13 -0.785 -0.778 -31.738 0.042
14 0.831 0.824 33.556 0.042
15 0.235 0.230 9.534 0.047
16 0.272 0.267 11.038 0.048
17 -0.441 -0.433 -17.883 0.048
18 2.771 3.355

Fig. 1 – Map of residua around zero value 

Fig. 3 – Graph of fitting of calculated vs. 
experimental dependence 

 114.020 0.077
19 0.982 0.981 40.711 0.090
20 1.926 2.063 80.330 0.101
21 -0.533 -0.525 -22.515 0.122
22 -0.393 -0.386 -16.657 0.128
23 -0.044 -0.043 -1.862 0.132
24 -3.170 -4.201 -142.380 0.225  
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5  CONCLUSION 

A procedure REZID has been assembled, which can 
be included into source programs written in 
FORTRAN 77 language. It performs a complex 
analysis of set of residua, and is often omitted in 
original programs. Analysis of residua is very 
important not only for judging adequacy of 
regression model suggested but also for verification 
of accuracy and correctness of regression 
calculations. Transfer of data between the modules is 
carried out in the form of formal parameters. After 
modification, the procedure could be used also with 
the newest version of SPONA program [LUKŠAN, 
2008]. 

It is intended to rewrite the procedure in some of the 
more modern programming languages (Visual Basic) 
as an independent program, which will be able to 
perform statistical analysis of any external data set. 

The problem was dealt with in the framework of 
research project MŠM 0021627505 “Control, 
optimizing and diagnostics of complex systems”. 
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