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Abstract: In this technical note the model matching problem for nonlinear systems
not having the state space realization is discussed. It is shown that even in such a case
it is still possible to find a realizable compensator. To advantage, a transfer function
formalism of nonlinear systems is employed.
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1. INTRODUCTION

In the model matching one studies the problem
of designing a compensator for a control system
under which the compensated system becomes
transfer equivalent to a prespecified model. The
model matching problem is thus a typical design
problem and plays a key role in various other
problems like the input-output linearization and
the (disturbance) decoupling. In the linear case,
one naturally requires the equality of the transfer
functions of the model and of the compensated
system. In the nonlinear case, the model match-
ing was solved mainly within the state space ap-
proach by various authors, using problem state-
ments which slighlty differ from one to the other
(Benedetto and Isidori (1984); Benedetto (1990);
Huijberts (1992); Conte et al. (2007)).
However, even if the Laplace transform of a non-
linear differential equation is not applicable, the
transfer function formalism was recently devel-
oped also for nonlinear systems, see Zheng and
Cao (1995); Halás and Huba (2006); Halás (2008);
Halás and Kotta (2007ab); Halás (2007). Such
a formalism generalizes well known results valid
for linear time invariant systems and was already

employed in Halás et al. (2008) to recast and
solve the nonlinear model matching problem. It
was shown that such an approach to the nonlinear
model matching is more general, since neither the
control system itself, nor the model and the com-
pensator are required to be realizable in the state-
space form. In particular, this gives a chance to
find realizable compensators for nonlinear systems
not having the state-space realization, forming the
scope of our interest in this note.

2. NONREALIZABLE SYSTEMS

Control systems can be desribed in several ways.
The most widely used are two following:

• higher order input-output differential equa-
tion,

• set of coupled first order differential equation
(the so-called state space representation).

In the linear case, any control system desribed by
a higher order input-output differential equation
can be equivalently described by a set of coupled
first order differential equation, which is the so-
called state space representation, and vice versa.
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However, this does not hold anymore when sys-
tems are nonlinear. Although for any state space
representation of the form

ẋ = f(x, u)

y = g(x, u) (1)

a corresponding input-output differential equation

y(n) = ϕ(y, ẏ, . . . , y(n−1), u, u̇, . . . , u(m)) (2)

can be, at least locally, always found (Conte
et al. (2007)), converse does not hold in general.
There exists a class of input-output differential
equations of the form (2) for which a state space
representation of the form (1) simply does not
exist. A typical example is given by the system

ÿ = u̇2

for which we are simply not able to find any state-
space description of the form (1). See Conte et al.
(2007) for more details.
In such cases we, of course, cannot use state space
approaches to the model matching. An alternative
way to the solution of nonlinear model matching
was recently outlined in Halás et al. (2008) em-
ploying the transfer function approach. In fact, a
more general case was considered, since neither
the control system itself, nor the model and the
compensator are required to be realizable in the
state-space form. In particular, this gives a chance
to find realizable compensators for nonrealizable
nonlinear systems.

3. TRANSFER FUNCTIONS OF NONLINEAR
SYSTEMS

We start with the introduction of transfer function
formalism of nonlinear systems, following the lines
of Halás and Huba (2006); Halás (2008); Halás
et al. (2008).

Consider the SISO nonlinear system defined by
an input-output equation of the form (2) where
ϕ is assumed to be an element of the field of
meromorphic functions K.

The left skew polynomial ring K[s] of polynomials
in s over K with the usual addition, and the
(non-commutative) multiplication given by the
commutation rule

sa = as + ȧ (3)

where a ∈ K, represents the ring of linear ordinary
differential operators that act over vector space of
one-forms E = spanK{dξ; ξ ∈ K} in the following
way

(
k∑

i=0

ais
i

)
v =

k∑

i=0

aiv
(i)

for any v ∈ E .
The commutation rule (3) actually represents the
rule for differentiating.

Lemma 1. (Ore condition). For all non-zero a, b ∈
K[s], there exist non-zero a1, b1 ∈ K[s] such that
a1b = b1a.

Thus, the ring K[s] can be embedded to the
non-commutative quotient field K〈s〉 by defining
quotients as

a

b
= b−1 · a

The addition and multiplication in K〈s〉 are de-
fined as

a1

b1
+

a2

b2
=

β2a1 + β1a2

β2b1

where β2b1 = β1b2 by Ore condition and

a1

b1
· a2

b2
=

α1a2

β2b1
(4)

where β2a1 = α1b2 again by Ore condition.
Due to the non-commutative multiplication (3)
they, of course, differ from the usual rules. In
particular, in case of the multiplication (4) we,
in general, cannot simply multiply numerators
and denominators, nor cancel them in a usual
manner. We neither can commute them as the
multiplication in K〈s〉 is non-commutative as well.

Once the fraction of two skew polynomials is
defined we can introduce the transfer function of
the nonlinear system (2) as an element F (s) ∈
K〈s〉 such that dy = F (s)du.

After differentiating (2) we get

dy(n) −
n−1∑

i=1

∂ϕ

∂y(i)
dy(i) =

m∑

i=0

∂ϕ

∂u(i)
du(i)

or alternatively

a(s)dy = b(s)du

where a(s) = sn − ∑n−1
i=1

∂ϕ
∂y(i) s

i and b(s) =
∑m

i=0
∂ϕ

∂u(i) s
i are in K[s]. Then

F (s) =
b(s)
a(s)

Example 2. Consider the system

ÿ = −y + u̇2 + u

After differentiating

dÿ =−dy + 2u̇du̇ + du

(s2 + 1)dy = (2u̇s + 1)du
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R(s) F (s)- -- u yv

︷ ︸︸ ︷G(s)

Fig. 1. Compensated system

R(s) F (s)- --
-

u yv

︷ ︸︸ ︷G(s)

Fig. 2. Compensated system

and the transfer function is

F (s) =
2u̇s + 1
s2 + 1

Transfer functions of nonlinear systems satisfy
many properties we expect from transfer func-
tions (Halás (2008)). Here, the most important
is that we can use transfer function algebra when
combining systems in series, parallel or feedback
connection and that two nonlinear systems are
locally transfer equivalent (admit the same irre-
ducible input-output differential equation) if and
only if they have the same transfer function (Per-
don et al. (2007)).

4. MODEL MATCHING

Thus, in the nonlinear model matching one, as in
linear case, requires the equality of the transfer
functions of the model and that of the compen-
sated system. This was recently discussed in Halás
et al. (2008) where introduced transfer function
formalism was employed to recast and solve the
model matching problem of single-input single-
output nonlinear control systems. This resulted in
designing compensators, both feedforward, Fig. 1,
and feedback, Fig. 2, under which the input-
output map of the compensated system becomes
transfer equivalent to a prespecified model G(s).
It was shown that the existence of a feedforward
compensator requires a restrictive integrability
condition, while a feedback compensator exists
whenever the system is nontrivial, that is F (s) 6=
0. See Halás et al. (2008) for technicalities.

4.1 Model matching problem for nonrealizable
systems

The input-output approach to the model match-
ing problem, as presented in Halás et al. (2008),
is applicable also to nonlinear systems not having

the state-space realization. We do not require this
from the original system equations neither from
compensator equations. So there is a chance to
find realizable compensators for nonrealizable sys-
tems in both feedforward and feedback case.

Example 3. Consider the system from Example
2 which has, according to Conte et al. (2007),
no state-space realization of the form (1). The
transfer function was

F (s) =
2u̇s + 1
s2 + 1

Now, let the desired dynamics of the compensated
system be given by the transfer function

G(s) =
1

s2 + 1

To find a feedforward compensator (Halás et al.
(2008)) depicted in Fig. 1 we compute

R(s) = F−1(s) ·G(s) =
1

2u̇s + 1
(5)

The compensator’s equation is integrable

(2u̇s + 1)du = dv

2u̇du̇ + du = dv

u̇2 + u = v

and has the following state-space realization

ξ̇ =
√

v − ξ

u = ξ

Note that for the system considered here the
feedback compensator depicted in Fig. 2 results in
the same compensator R(s) as in the feedforward
case.

4.2 Realizability of compensators

To pass out the model matching problem it is, of
course, necessary that the designed compensator
is realizable itself, otherwise it cannot be imple-
mented. This can easily happen.
In dealing with this problem we can follow the
lines of Halás and Kotta (2009 submitted) where
the realizability problem of nonlinear system is
stated and solved within the transfer function for-
malism. In particular, the notion of the so-called
adjoint polynomials play a key role.

Example 4. Consider the compensator (5) from
Example 3 with the transfer function

R(s) =
1

2u̇s + 1
=

1
2u̇

s + 1
2u̇
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Using the notion of adjoint polynomials we get its
adjoint transfer function as

R∗(s∗) =
1
2u̇

s∗ + 1
2u̇

and the compensator has a realization of the form
(1) if and only if the one-form

1
2u̇

dv − 1
2u̇

du

is integrable. Note that u̇ =
√

v − u and thus
1

2
√

v − u
dv − 1

2
√

v − u
du = d

√
v − u

which means that the compensator is realizable.
Finally, choosing ξ = u yields the same state space
realization as in Example 3.

5. CONCLUSIONS

In this note we discussed the model matching
problem for nonlinear systems not having the
state space realization. It was shown that even
in such a case it is possible to find a realizable
compensator. To find a solution, we, to advantage,
employed transfer functions of nonlinear systems.

ACKNOWLEDGMENTS

The work has been supported by the Slovak Re-
search and Development Agency under the con-
tract No. LPP-0127-06.

References

M.D. Di Benedetto. Nonlinear strong model
matching. IEEE Transactions on Automatic
Control, 35:1351–1355, 1990.

M.D. Di Benedetto and A. Isidori. The matching
of nonlinear models via dynamic state feedback.
In 23rd IEEE Conf. on Decision and Control,
Las Vegas, Nevada USA, 1984.

G. Conte, C.H. Moog, and A.M. Perdon. Alge-
braic Methods for Nonlinear Control Systems.
Theory and Applications. Communications and
Control Engineering. Springer-Verlag, London,
2nd edition, 2007.

M. Halás. Ore algebras: a polynomial approach
to nonlinear time-delay systems. In 9th IFAC
Workshop on Time-Delay Systems, Nantes,
France, 2007.

M. Halás. An algebraic framework generalizing
the concept of transfer functions to nonlinear
systems. Automatica, 44:1181–1190, 2008.

M. Halás and M. Huba. Symbolic computation
for nonlinear systems using quotients over skew
polynomial ring. In 14th Mediterranean Confer-
ence on Control and Automation, Ancona, Italy,
2006.
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