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SOME OBSERVATIONS ABOUT THE RMS RING FOR DELAYED SYSTEMS  
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Zlín, 76005 

fax : +420576035257,  e-mail : pekar@fai.utb.cz 

Abstract: This paper questions the validity of the definition and some properties of the 
RMS ring traditionally utilized for the description of time-delay systems. The original de-
scription of the ring is faced with findings obtained while dealing with this ring. In the 
light of these observations, it seems that a revisited definition of the ring ought to be 
formulated, and thus a new possible conception is presented in the contribution. It is also 
shown in the paper that the RMS ring proposed in the paper is not a unique factorization 
domain and thus it is not a principal ideal domain. The extended Euclidean algorithm is 
attempted to be performed for the ring to prove that it is a Bézout domain, which in-
duces the question of existence of the coprime factorization for each pair of elements of 
the ring. These two problems are discussed; however, they remain partially unsolved. 

Keywords: Time-delay systems, algebraic approach, RMS ring. 

1 INTRODUCTION 

Algebraic structures proved to be suitable and effec-
tive tools for system dynamics description and con-
trol system design and thus modern control theory has 
adopted algebraic approaches and parlance for dec-
ades. 

These approaches are based on fractional description 
of systems. From the historical point of view, the 
polynomial ring representation played the primarily 
part; especially due to the natural correspondence 
between the transform and the time-domain descrip-
tion for discrete-time systems (Kalman et al.  1969), 
(Kučera 1979).  A more general description of sys-
tems brought the introduction of fractional fields of 
appropriate rings (Desoer et al. 1980), (Vidyasagar 
1985), (Kučera 1993). The transfer function of a sys-
tem is then an element of a field of fractions over an 
appropriate ring. This description is suitable particu-
larly when it is desirable to obtain certain control 
performance and a controller structure via algebraic 
controller design dealing with linear Diophantine 
equations (Hautus 1976), (Callier and Desoer 1982), 
(Kučera 1983), (Vidyasagar 1985), and it can be ex-
tended to cover continuous-time systems. 

One of such rings for continuous-time systems is a 
ring of stable and proper rational functions, RPS (Ku-
čera 1993), (Prokop and Corriou 1997), (Dlapa and 
Prokop 2008). An element of this ring is expressed as 
a ratio of two polynomials where the denominator 
polynomial is Hurwitz stable (i.e. free of roots lo-
cated in the complex right-half plane including 
imaginary axis) and, moreover, the ratio is proper 
(i.e. the degree of the numerator is less or equal to the 
denominator). Hence, the element of RPS is analytic 
for ( ) 0Re ≥s  including s = ∞. Any ( ) PSsA R∈  di-

vides ( ) PSsB R∈  iff all unstable zeros (including s = 

∞) of ( )sA  are those of ( )sB .  

The process of transcription of the transfer function 
into the ratio of two coprime elements of a ring is 
called a coprime factorization. An example of this 
factorization for RPS follows. Assume a plant transfer 
function 

 ( )
1

1

−
=

s
sG  (1) 

as a ratio of polynomials obtained directly from the 
Laplace transform of the plant differential equation. 
To acquire the transfer function in the RPS ring, use 
e.g. the following factorization 

17th International Conference on Process Control 2009
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The common denominator, as + , must be of degree 
one; otherwise, there would either exist a common 
unstable pole (s = ∞) and thus the ratio would not be 
coprime, or the numerator or denominator of the 
transfer function would not be from RPS (proper). A 
parameter a is a positive real number ensuring the 
stability of the common denominator. 

Algebraic controller design in this ring via the solu-
tion of a linear Diophantine equation ensures the in-
ternal stability of the feedback system and leads to a 
proper controller. 

The presence of delays, in input-output relation or as 
state delays, however brings a convenience to define 
another ring instead of RPS since this ring requires a 
rational approximation of exponential terms. Obvi-
ously, such conversion brings about certain loss of 
information of the system behavior. This is evident 
particularly in case anisochronic (i.e. containing de-
layed states) systems which belong to the set of infi-
nite-dimensional linear systems. One of the first at-
tempts to utilize algebraic theory to infinite-
dimensional linear systems was made by Kamen 
(1975) where an operator theory was presented. Al-
most in the same time, Morse (1976) and Sonntag 
(1976) introduced some general rings for delayed 
systems dealing with polynomials in two variables 
R[s, z] over real numbers where ( )sz exp= . In 

Kamen et al. (1986), the ring Θ generated by the en-
tire functions  

 
( )

C,
exp1 ∈

−
+−− σ

σ
σ

s

s
 (3) 

and their derivatives is studied. Behavioral approach, 
as it was introduced for dynamical systems in (Wil-
lems 1989), for linear time-invariant delay-
differential systems is presented by Gluessing-
Lueerssen (1997). In contrast to above mentioned 
works, she considered systems in the behavioral point 
of view instead of systems over rings. 

The definition of the RMS ring, i.e the ring of stable 
and proper retarded quasipolynomial meromorphic 
functions, is introduced in (Zítek and Kučera 2003). 
These authors took into account the fact that two 
variables, z and s, are not independent, thus, this al-
gebraic approach is one-dimensional. The Laplace 
transform of linear delayed (including anisochronic) 
systems results in transfer functions those are ratios 
of so-called quasipolynomials, see e.g. (El’sgol’ts and 
Norkin, 1973). Similarly to RPS, these transfer func-
tions can be factorized in the form of ratios of two 
elements from a special ring, RMS. An element of the 
RMS ring as a ratio of quasipolynomials is, however, 
no more rational and it belongs to the more general 

set of meromorphic functions. It should be also noted 
that MSPS RR ⊆ . 

Nevertheless, a practical dealing with this ring, as it is 
defined in (Zítek and Kučera 2003), revealed some 
discrepancies which ought to be reviewed and dis-
cussed. Therefore this contribution focuses some ap-
parent problems of the RMS ring original definition 
and some its algebraic properties are presented here, 
and the paper also suggests an alternative new con-
ception of the ring. We observed that the original RMS 

is not a ring indeed. Moreover, we revised the stabil-
ity properties of an element from RMS and divisibility 
conditions. It is also presented that the concept 
should not be restricted to retarded systems only, but 
neutral systems ought to be taken in account as well. 
It is shown that the new conception of the ring is nei-
ther a unique factorization domain nor a principal 
ideal domain. The Diophantine equation and its solu-
tion using the extended Euclidean algorithm in the 
ring are suggested. However, the task of the general 
existence of the solution of this equation and that of a 
coprime factorization remain unsolved. Particular 
examples rather then rigorous mathematical deriva-
tions and proofs are given to demonstrate the prob-
lems and properties.  

2 THE ORIGINAL DEFINITION OF THE RMS 
RING 

The important definitions concerning the RMS ring 
presented in (Zítek and Kučera 2003) follow. 

Definition 1 (Retarded quasipolynomial): A quasi-
polynomial of the generic form 

 ( ) 0,)exp(
1

0 1

≥−+= ∑∑
−

= =
ij

n

i
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j
ij

i
ij

n
i

ssmssM ηη  (4) 

 i.e. its highest s-power ns  is delayless. 

Definition 2 (Stability of retarded quasipolynomial): 
A retarded quasipolynomial ( )sM  is said to be stable 

if it does not have any finite zero s0 such that 
( ) 0Re 0 ≥s . 

Definition 3 (RQ meromorphic function):  A ratio of 
quasipolynomials ( ) ( )sMsN /  is said to be retarded-

quasipolynomial (RQ) meromorphic function if 

1. ( )sM  is retarded quasipolynomial as in (4) and 

2. ( )sN  can be factorized as ( ) ( ) ( )ssNsN τ−= exp
~

, 

where 0>τ  and ( )sN
~

 is a retarded quasipoly-

nomial and 

3. the fraction is proper, i.e. it holds for the highest 

s-power ms in ( )sN , that m ≤ n. 
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Definition 4 (RQ asymptotic stability): An RQ 
meromorphic function is said to be stable if it is ana-
lytic in the closed right half s-plane, i.e. if its de-
nominator retarded quasipolynomial ( )sM  is stable. 

Stability of a retarded quasipolynomial can be found 
e.g. in (Zítek 1997): A retarded quasipolynomial  

( )sM  is stable iff ( ) 00 =M and 

 ( )
2

arg
],0[j,

π
ωω

n
sM

s
=Δ

∞∈=
 (5) 

where again n is the highest s-power of ( )sM . 

Then the ring of stable RQ meromorphic functions is 
denoted by RMS. In the controller design, both the plant 
and controllers are to be considered as ratios of two 
coprime elements from RMS. The added denominators 
can be either stable polynomials or quasipolynomials. 

The division condition for RMS is as the same as for 
RPS, i.e. ( ) MSsA R∈  divides ( ) MSsB R∈  iff all unsta-

ble zeros (including s = ∞) of ( )sA  are those of ( )sB . 

An example presented in the discussed literature fol-
lows. Consider a plant described by the transfer func-
tion 

 ( ) ( )
s

s
sG

τ−= exp
 (6) 

The following coprime fraction can be used 

 ( ) ( )
( )

( )
( )

( )sTs

s
sTs

s

sA

sB
sG

ϑ

ϑ
τ

−+

−+
−

==

exp

exp

exp

 (7) 

The common quasipolynomial denominator is stable 
iff 

 0,0,
2

≥>< ϑπϑ
T

T
 (8) 

see e.g. in (Górecki et al. 1989). 

I should be noted that the authors restricted the utili-
zation of the ring onto time delay systems containing 
lumped delays. However, as it is shown in (Zítek and 
Víteček 1999), models of systems with distributed 
delays expressed by convolutions can be rewritten to 
models with lumped delays (i.e. exponentials in the 
transformation).    

3 OBSERVATIONS ABOUT THE ORIGINAL 
DEFINITION 

The RMS ring together with the comprime factoriza-
tion can be used in the process of algebraic design of 
feedback controllers via the solution of the Dio-
phantine (Bézout) equation, see e.g. (Zítek and 
Kučera 2003), (Pekař and Prokop, 2007). Dealing 

with RMS, however, arises some questions about the 
validity of the original definition. The following ob-
servations and notes should be perceived as “things-
to-thought”. The authors of this paper set the great 
store by the work of the authors of the original defini-
tion, and their intention is not to fully vitiate the 
original conception of RMS. 

3.1 Remarks on Definition 3 

It is stated in the paragraph 2 of the definition of an 
RQ meromorphic function that the numerator of a 
function can be factorized as a product of a delayless 
retarded quasipolynomial and an exponential term 
satisfying 0>τ . However, it does not always hold as 
it is obvious from the example (7), since ( )sA  does 

not contain explicitly a delay term. We assume that 
the restriction to the exponential should be 

0≥τ rather than 0>τ . 

3.2 Remarks on Definition 4 

An RQ meromorphic function is asymptotically sta-
ble iff it is analytic in the closed right half plane. For 
a ratio of polynomials, this condition is equivalent to 
the statement that the denominator is stable polyno-
mial, i.e. the fraction has poles located in the open 
left s-plane only. 

A ratio of retarded quasipolynomials (or a retarded 
quasipolynomial and a polynomial), however, has a 
rather different properties. Since a retarded quasi-
polynomial owns an infinite number of its zeros, there 
can exists a fraction of retarded quasipolynomials 
with some common unstable roots of both elements 
without possibility to cancel any factor. This implies 
that there can exist unstable roots of the denominator 
so that the whole fraction is analytic (holomorphic) in 
the complex right half plane. In this case, the singu-
larity is not called a pole but a removable singularity. 

The necessity to extend the stability conditions as 
suggested above is motivated also by some results 
obtained from algebraic controller design in RMS. The 
following example demonstrates it. 

Let the plant transfer function reads 

 ( ) ( )
( )

( )

( )
( )
( )sA

sB

ms

sTs
ms

sK

sTs

sK
sG =

+
−+

+
−

=
−+

−=

0

0

exp

exp

exp

exp
ϑ

τ

ϑ
τ

(9) 

where 0,,,, mTK ϑτ  are positive real parameters. 

Consider the controller 

 ( ) ( )
( )sP

sQ
sGR =  (10) 

A particular solution of the stabilizing Diophantine 
equation, see e.g.  (Kučera 1993), 
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 ( ) ( ) ( ) ( ) 1=+ sQsBsPsA  (11) 

is 

 ( ) ( ) ( )
( )sTs

sKms
sPsQ PP ϑ

τ
−+

−−+
==

exp

exp
,1 0  (12) 

The set of all internally stabilizing controllers is then 
given by the Youla-Kučera parameterization 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )sTsAsQsQ

sTsBsPsP

P

P

+=
≠−= 0

 (13) 

where ( )sT  is a free element of the ring. 

The parameterization of the solution of the Dio-
phantine equation enables to fulfill other control per-
formance conditions besides internal stability (Vid-
yasagar 1985, Kučera 1993). Consider a step refer-
ence signal 

 ( ) ( )
( )sF

sH

ms

s
ms

s
sW

W

W=

+

+
==

0

0

1

1
 (14) 

Analogously to the RPS ring, the requirement of the 
asymptotical zero control error is conditioned by that 
the image of the control error is an element of the 
ring, i.e. 

 ( ) ( ) ( ) ( )
( ) MS

W

W

sF

sH
sPsAsE R∈=  (15) 

in other words, ( )sFW  must divide ( )sP . Hence, tak-

ing 

 ( ) ( )( )
( )sTs

msKm
sT

ϑ−+
+−

=
exp

1/ 00  (16) 

it is obtained from (12) 

 ( ) ( )[ ]
( )sTs

sms
sP

ϑ
τ

−+
−−+

=
exp

exp10  (17) 

Indeed, the only unstable zero of ( )sFW  is 

00 =s which is a zero of ( )sP  as well. Thus, ( )sFW  

divides ( )sP  and the quotient  

( )
( )

( )[ ]( )( )
( )[ ]sTss

mssms

sF

sP

W ϑ
τ
−+

+−−+
=

exp

exp1 00   (18) 

is from RMS. It means that a removable singularity 
00 =s is allowed to be a root of the denominator of 

the element from the RMS ring here. If all singularities 
are removable, the function becomes holomorphic (or 
even entire). 

3.3 New divisibility condition 

The example presented in the previous subsection 
arises the question of validity of the division condi-

tion for RMS. Term (18) is obviously proper and ana-
lytic in the open complex right-half plane including 
infinity, thus, the condition of divisibility presented 
above holds for this example. 

Consider now, however, another example. Let 

 ( ) ( ) ( )
s

s
sY

ms

s
sX

−−=
+

= exp1
,

0

 (19) 

and the ratio 

 
( )
( )

( )[ ]( )
2

0exp1

s

mss

sX

sY +−−
=  (20) 

be given. The previously presented divisibility condi-
tion holds; however, the ratio (20) is not analytic at 

00 =s . This example suggests a new possible condi-

tion of the divisibility in RMS.: 

( ) MSsA R∈  divides ( ) MSsB R∈  iff all unstable zeros  

(including s = ∞) of ( )sA  are those of ( )sB , and all 

unstable poles  (including s = ∞) of ( )sB  are those 

of ( )sA . 

3.4 Ring conditions 

The authors of the original definition of RMS delimi-
tated the utilization of the ring onto retarded delayed 
systems only.  This subsection suggests extending it 
onto neutral systems as well, with some limitations. 

Look at ring properties of RMS. The existence of the 
additive and multiplicative identity and the additive 
inverse is obvious. The associativity of addition and 
multiplication and the commutativity of addition can 
be easily deduced from properties of a quasipolyno-
mial. The only problem brings the requirement of the 
closure axiom for addition. A simple example 

 ( ) ( ) ( )s
ms

s
sY

ms

s
sX −

+
+=

+
+= exp

1
,

2

00

 (21) 

demonstrates that the summation 

 ( ) ( ) ( )[ ] ( )
0

exp2exp1

ms

sss
sYsX

+
−++−+=+  (22) 

is not an element of  RMS due to non-retarded quasi-
polynomial in the denominator, thus RMS cannot be a 
ring. However, due to usual strict properness of a 
plant, the final controller obtained by algebraic con-
troller design is free of non-retarded quasipolynomial 
in its transfer function. 

Systems which dynamics is expressed by a quasi-
polynomial of the form 

 

( )

∑

∑∑

=

= =

≠−

≥−+=

n

i

h

j
njnj

ij
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h
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1

0 1

const.)exp(

,0,)exp(

η

ηη
 (23) 
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are called neutral (Hale and Lunel 1993). Thus, qua-
sipolynomials of the form (22) are called neutral as 
well. The stability condition for such quasipolynomi-
als was investigated by Zítek and Vyhlídal (2008): 

A quasipolynomial of the form (23) is (even strongly) 
stable if 

1. ∑
=

<
nh

j
njm

1

1 and 

2. M(0) > 0 and 

3. ( ) Φ+≤Δ≤Φ−
∞∈= 2

arg
2 ],0[j,

ππ
ωω

n
sM

n

s
 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ ∑

=

nh

j
njm

1

arcsin . The most significant 

difference in stability properties between retarded and 
neutral quasipolynomials is (besides sensitivity to 
delay changes) in the number of unstable poles. 
Whereas an unstable retarded quasipolynomial can 
have only a finite number of unstable roots, a neutral 
one has an infinite number of unstable roots. This 
property brings problems while maintaining the co-
prime factorization as it is demonstrated below in 
Section 4. 

To be a ring, RMS has to adopt a neutral quasipoly-
nomial in the numerator of an element of the ring. 
However, in the light of this fact, notion retarded 
would be omitted. There is also no obstacle to put a 
neutral quasipolynomial in the denominator if the 
whole term satisfies the properties of stability and 
properness.  

4 SOME PROPERTIES OF THE NEW 
CONCEPTION 

4.1 Units of the ring 

Generally, a unit of a ring is its element, the multipli-
cative inverse of which is in the ring again. One can 
easily deduced that a unit of RMS is an element of 
zero relative order having the same (all) unstable 
roots of the quasipolynomial numerator and denomi-
nator. 

Elements which arise by multiplication by a unit are 
said to be associated. 

4.2 Unique factorization domain and principal ideal 
domain 

The RMS ring characterized in Section 3 is obviously 
commutative. Quasipolynomial properties also de-
termine that it is an integral domain.  The question is 
whether the ring is a unique factorization domain 
(UFD). 

To prove that the RMS ring is not a UFD, it is suffi-
cient to show that there exists a non-zero non-unit 
element of the ring which cannot be written as a finite 
product of irreducible elements. 

Consider the following element of the ring 

 
( )

s

sτ−− exp1
 (24) 

In spite of the fact that this expression is more than 
rare to be useful for system description or controller 
design, it is an element of the ring anyway. 

Non-zero zeros of (24) are 

 N∈±=+ k
k

s kk j,
2

1, τ
π

 (25) 

Define polynomials 

 ( ) ( )( )1+−−= kkk sssssP  (26) 

Then the factorization 
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sPsP

sPssP

mss

ms

sP

ssP

mss

s

s

τ

τ

τ

 (27) 

where m0 > 0 is real,  is infinite and thus the RMS ring 
is not a UFD, and none of left-hand factors in (27) is 
irreducible and none of all factors is a unit. 

It is well known fact that principal ideal domain 
(PID)⇒ UFD, see e.g. (Barile et al. 2009). Hence, 
RMS is not a PID, i.e. there exists an ideal which can-
not be generated by a single element of the ring.   

4.3 Bézout domain and the extended Euclidean algo-
rithm 

The goal of this subsection is the endeavor to show 
that the RMS ring is a Bézout domain, i.e. every 
finitely generated ideal is principal. In other words, 
whether any two elements ( ) ( ) MSsBsA R∈, have a 

greatest common divisor (GCD), ( )sD , that is a linear 

combination of them 

 ( ) ( ) ( ) ( ) ( )sDsYsBsXsA =+  (28) 

If the ring is a Bézout domain, then there exists a 
coprime factorization of ( ) ( )sBsA ,  satisfying Bézout 

identity (11), see e.g. (Doyle et al., 1990), which is 
important for controller design mentioned in Subsec-
tion 3.2. 

Hence, if we can define the extended Euclidean algo-
rithm for RMS, the ring is a Bézout domain (Rosický, 
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1994). It is assumed that a reader is already familiar 
with Euclidean algorithm for integers. 

Generally, the iterative method of the extended 
Euclidean algorithm for given A and B, (Cormen et 
al. 2001), can be expressed as 

 

ni

RRR

RQRR

iii

iiii

...,4,3
12

12

=
≥≥

−=

−−

−−

 (29) 

i.e. the present reminder, iR , can be written in terms 

of the previous two remainders, 2−iR , 1−iR , and their 

whole quotient, iQ . It is also assumed that the re-

minder in each step of the algorithm can be written as 

 iii BYAXR +=  (30) 

and the first two reminders are 

 
10

01

2

1

BABR

BAAR

+==
+==

 (31) 

The expression for the last non-zero reminder, 
∞<nRn , ,  gives the desired GCD of A and B, 

DRn = . The table (matrix) form of the algorithm is 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
DYX

WZ

B

A 0
~

operationsrow

elementary
~

10

01
 (32) 

The result satisfies Diophantine equations 

 
0=+

=+
BWAZ

DBYAX
 (33) 

Before implementation the extended Euclidean algo-
rithm to the RMS ring, an ordering of elements of the 
ring has to be defined. For ( ) ( ) MSsBsA R∈, holds 

1. ( ) ( )sBsA ≤ iff ( )sA  divides ( )sB . 

2. ( ) ( )sBsA = iff ( )sA  divides ( )sB  and ( )sB  di-

vides ( )sA , or equivalently, ( )sA  is associated 

with ( )sB . 

3. ( )sA  is not related to ( )sB  iff neither ( )sA  di-

vides ( )sB , nor ( )sB  divides ( )sA . 

Note that RMS is a partially ordered set. The general 
algorithm always initiates with ( ) ( )sBsA ≥ , see (29) 

and (31). Assume these three situations for RMS: 

1. If ( )sA  is associated with ( )sB , the GCD of both 

is simply ( )sA  or ( )sB . 

2. If ( ) ( )sBsA ≥ , keep the following scheme 

( )
( )

( )
( )

( ) ⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

sB
sB

sA

sB

sA

10

01
~

10

01
 

  (34) 

hence, GCD of ( )sA  and ( )sB  is ( )sB . 

3. Let ( )sA  and ( )sB  be not related to each other. 

In this case, follow this scheme 
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⎜
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−

sBsQsAsQ
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sA

sBsQsA

sB

1

0
~  

  (35) 

In scheme (35), it is supposed that there can be found a 
quotient ( )sQ  such that the element ( ) ( ) ( )sBsQsA −  

divides ( )sB . In other words, the objective is to find a 

structure of ( )sQ  and to set zeros and poles of 

( ) ( ) ( )sBsQsA −  such that divisibility conditions as in 

Subsection 3.3 are satisfied. However, this task can be 
troublesome, particularly in case of unstable neutral 
quasipolynomials, due to infinity number of unstable 
roots. Hence, the question is whether it is always pos-
sible to prescribe all desired unstable roots – and no 
other ones – or to prescribe roots of any quasipolyno-
mial so that it is stable. The following example demon-
strates this problem and explains scheme (35). 

Let these two elements of  RMS be given 

 ( ) ( ) ( ) ( )
00

3exp1
,

2exp1

ms

s
sB

ms

s
sA

+
−−=

+
−−=  (36) 

Neither ( )sA  divides ( )sB , nor ( )sB  divides ( )sA . 

Non-zero zeros of ( )sA  are 

 N∈±=+ kks kkA j,1,, π  (37) 

and those of ( )sB are 

 N∈±=+ k
k

s kkB j,
3

2
1,,

π
 (38) 

Thus, there exist an infinite number of different un-
stable zeros of ( )sA  and ( )sB . However, there are 

also infinitely many common unstable zeros 

 { } N∈±== +++ kksss kkBkkAkk ,2,LCM 1,,1,,1, π  (39) 

where LCM{.,.} denotes the least common multiple. 

Follow the scheme (35) 
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June 9–12, 2009, Štrbské Pleso, Slovakia Le-We-2, 031.pdf

33



( )

( )

( ) ( ) ( ) ( )[ ]

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−−

+
−−−

+
−−−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−−

+
−−

0

00

0

0

3exp1
10

3exp12exp1
1

~

~
3exp1

10

2exp1
01

ms

s
ms

s
sQ

ms

s
sQ

ms

s
ms

s

(40) 

Choose ( )sQ = q = const. As it can be seen, any op-

tion of q does not satisfy the stability of quasipoly-
nomial ( ) ( )[ ]sqs 3exp12exp1 −−−−− . Hence, first, 

try to find ( )∈sQ  RMS such that 

( ) ( ) ( )[ ] ( )
00

3exp13exp12exp1

ms

s

ms

ssQs

+
−−=

+
−−−−−

 (41) 

This requirement yields 

 ( ) ( ) ( )
( )s

ss
sQ

3exp1

2exp3exp

−−
−−−=  (42) 

which is not an element of RMS since some unstable 
roots of ( )s3exp1 −−  are different from those 

of ( ) ( )ss 2exp3exp −−− . 

Secondly, try to solve a rather different condition 

( ) ( ) ( )[ ] ( )
00

exp13exp12exp1

ms

s

ms

ssQs

+
−−=

+
−−−−−

 (43) 

As reveals from (38) and (39), ( )s−− exp1  divides 

( )s3exp1 −−  since all unstable roots of the former, 

given by (39), are in the set of unstable roots of the 
latter. Equation (43) gives 

 ( ) ( ) ( )
( )s

ss
sQ

3exp1

2expexp

−−
−−−=  (44) 

One can prove that this expression is already analytic 
on the imaginary axis. 

To finish scheme (35), we have 

( ) ( )
( )

( )

( )

( )

( ) ( )
( )

( )

( )
( )

( )
( )

( ) ( )
( )

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−−

−−
−−−

−−
−−

−−
−−−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−−

−−
−−−

+
−−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−−

+
−−

−−
−−−

0

0

0

0

0

exp1

3exp1

exp2exp
1

0
exp1

2exp1

exp1

3exp1

~

~
exp1

3exp1

exp2exp
1

3exp1
10

~

~
3exp1

10

exp1

3exp1

exp2exp
1

ms

s

s

ss
s

s

s

s

ms

s

s

ss
ms

s

ms

s
ms

s

s

ss

  (45) 

Hence, the GCD of ( )sA  and ( )sB  from (36) is 

 ( ) ( ){ } ( )
0

exp1
,GCD

ms

s
sBsA

+
−−=  (46) 

Indeed, every common divisor of ( )sA  and ( )sB  

divides expression (46). 

However, there still remains the question of general 
possibility of construction of a desired quasipolyno-
mial, as stated above. 

Note that if the RMS ring is a Bézout domain (and not 
a PID), there must exist an infinitely generated ideal 
which is not principal, thus, the ring is not a Noethe-
rian ring. 

4.4 Coprime factorization 

Discuss now the problem of the existence of the co-
prime factorization for RMS from a different point of 
view. The task is, to the given ratio of (qua-
si)polynomials, 

 ( ) ( )
( )sa

sb
sG =  (47) 

to find a (quasi)polynomial ( )sm  such that two ele-

ments of the ring, ( )sA  and ( )sB , are coprime (rela-

tively prime) 

 ( ) ( )
( )

( )
( )
( )
( )

( )
( )sA

sB

sm

sa
sm

sb

sa

sb
sG ===  (48) 

e.i. there does not exist a non-zero non-unit element 
( )sD  of the ring satisfying 

 ( ) ( ) ( ) ( ) ( ) ( )sDsBsBsDsAsA == ,  (49) 

If both ( )sa  and ( )sb  are polynomials, the problem is 

solved as for the RPS ring.  

Let at least one of ( )sa  and ( )sb  be a quasipolyno-

mial instead of a polynomial and the degree of ( )sa  

be obviously greater then or equal to that of ( )sb . 

Obviously, ( )sm  have to be taken of the same degree 

as ( )sa . Consider these two cases: 

1. Quasipolynomials ( )sa  and ( )sb  have no com-

mon unstable roots. Then ( )sm  can be taken as 

any stable (quasi)polynomial of degree of ( )sa , as 

in RPS.  

2. Quasipolynomials have some common unstable 
roots (either finitely or infinitely many). In this 
case, ( )sm  have to be found such that it contains 

all common unstable roots and no other unstable 
ones. An example analogous to that presented in 
the previous subsection follows. 

Let 
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 ( ) ( )
( )

( )
( )s

s

sa

sb
sG

3exp1

2exp1

−−
−−==  (50) 

According to (37) - (39), these quasipolynomials,  
( )sa  and ( )sb , have an infinite number of common 

unstable roots. There can be found a quasipolynomial 
which contains purely these common unstable roots 

 ( ) ( )ssm −−= exp1  (51) 

so that the coprime factorization is 

 ( ) ( )
( )

( )
( )

( )
( )
( )
( )s

s
s

s

sA

sB

sa

sb
sG

−−
−−
−−

−−

===

exp1

3exp1
exp1

2exp1

 (52) 

One can easily verify that any other option of ( )sm  

results in a prime ratio, i.e. both quasipolynomials 
would be divisible by a term with a zero equals to a 
common unstable root. 

Thus the question is the same as for the extended 
Euclidean algorithm, i.e. whether it is always possible 
to set all desired unstable roots of a quasipolynomial 
(and not any other unstable ones), even an infinite 
number of them. On the other hand, the case of com-
mon unstable zeros and poles in the plant model func-
tion is almost hypothetical. 

5 CONCLUSIONS 

The present contribution discusses the possibility of 
introduction of a revisited conception of the RMS ring 
utilized for the description of delayed systems. The 
first part of the paper interferes with the original defi-
nition of the ring and suggests some thinks to be 
thought. There is also proposed a new divisibility 
condition for the ring here. In the second part of this 
contribution, some algebraic properties of the new 
conception are described. It is shown that the ring is 
neither a unique factorization domain nor a principal 
ideal domain. The extended Euclidean algorithm for 
the ring is performed to prove the ring is a Bézout 
domain. However, this task together with the question 
of the apriori existence of a coprime factorization 
remains partially unsolved. Illustration examples 
rather then exact mathematical definitions and proofs 
are presented to support the ideas.   
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