
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
17th International Conference on Process Control 2009

Hotel Baník, Štrbské Pleso, Slovakia, June 9 – 12, 2009

ISBN 978-80-227-3081-5

http://www.kirp.chtf.stuba.sk/pc09

Editors: M. Fikar and M. Kvasnica

Ježek, O., Balda, P.: An Embedded Multifunction Board for Automatic Control Applications, Editors:
Fikar, M., Kvasnica, M., In Proceedings of the 17th International Conference on Process Control ’09,
Štrbské Pleso, Slovakia, 484–490, 2009.

Full paper online: http://www.kirp.chtf.stuba.sk/pc09/data/abstracts/039.html

AN EMBEDDED MULTIFUNCTION BOARD FOR
AUTOMATIC CONTROL APPLICATIONS

O. Ježek ∗, and P. Balda ∗

∗ University of West Bohemia in Pilsen, Faculty of Applied
Sciences, Department of Cybernetics, Univerzitni 22, Pilsen,

Czech Republic
fax : +420 377 632 502 and e-mails : {ojezek,pbalda}@kky.zcu.cz

Abstract: This paper describes basic features of an universal embedded board
developed in our university. After a brief summarization of the board hardware design,
the paper focuses on presented software architecture solution. The modular firmware
structure based on input/output driver model and a real time operating system
(FreeRTOS in our case) is explained and the usage of the software development kit
(SDK) plugged-in the Eclipse development platform is shown. Moreover, a recently
developed technique for automatic generation of advanced control algoritms has been
ported to this platform. This technique called MicroREX is based on the Micro RexLib
function block library. Software generation is demonstrated on two examples.

Keywords: embedded systems, ARM, industrial communications, automatic control,
function block, Simulink, REX control system.

1. INTRODUCTION

There are not many universal embedded control
devices having open architecture which are suit-
able for automatic control applications with rich
communication capabilities. That is why Georgiev
(Georgiev (2007)) developed his own hardware
solution. The hardware features are summarized
in section 2.

First software applications for board tests have
been developed in the diploma project Ježek
(2008). But more serious and systematic firmware
development technique is described in section 3. It
is based on the software development kit (SDK)
(section 4) containing libraries and header files of
application programming interface (API). Section
5 deals with convenient development tools for
maximum simplicity and efficiency of application
software development.

Techniques from sections 3-5 can be used for cre-
ating of general embedded applications using the
board, including automatic control applications.

But development and especially maintenance of
more complex real-time control applications is
not a simple task. Recently a powerful technique
for automatic control code generation from func-
tion block diagrams has been developed in Balda
(2007). The main ideas of this technique, which
has been ported to the ARM platform, are pre-
sented in section 6.

Overall application design process is demon-
strated on an example in section 7.

2. HARDWARE SPECIFICATION

At the beginning of the hardware design phase,
there were several requirements:

• Rich communication capabilities for very
good interconnection and interoperability –
ZigBee wireless communication, Ethernet,
USB, RS232, RS485, CAN.
• Universal direct inputs and outputs for pro-

cess and machine control applications –

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 039.pdf

484

Power Circuit

MCU
RS232

Debug

USB

Ethernet

EEPROM

GPIO Relay GPO

Thermo

Analog Circuit RTD PT100

DA

Analog s.e.
Themocoupler

Analog s.e.
Thermocoupler

Analog diff

Digital Circuit

GPI

BAT

DC-DC

CAN

LCD

SD

Optocoupler

AD

RS485

SPI
ZigBee

SD

USB

ChargeLED

6 -12V
AC/DC

Fig. 1. Hardware structure of the board

digital inputs and outputs, analog, RTD and
thermocouple inputs, analog output, etc.

The final hardware structure of the board de-
signed by Georgiev (2007) is depicted in Fig. 1.
Fig. 2 is the photography of the manufactured
board.

Microcontroller (MCU)

• AT91SAM7XC512@48MHz
· ARM7TDMI® processor
· 512kB of FLASH memory
· 256kB of SRAM memory
· many on chip integrated peripheries

Reset circuitry

• Internal on chip reset controller
• External reset button

Fig. 2. Photography of the embedded board

Power

• External supply 6 - 12V AC/DC
• 4 battery pack Ni-Mh 4,8V
• USB

Communication interfaces

• RS232 2x - serial line in the RS232 standard
• RS485 - serial line in the RS485 standard

multiplexed with one RS232
• USB in device mode
• ZigBee wireless communication module sup-

porting several operation modes
· ZigBee virtual serial line mode, for con-

nection of two modules
· ZigBee mesh mode, for connection of

several modules in master/slave protocol
• Ethernet 100Mb/s
• Controller Area Network (CAN)

Digital Inputs/Outputs (GPIO, GPI, GPO)

• Magnetic relay 2x 250V/4A
• Optical switch AC/DC 400mA/250V
• Straight digital I/O 3.3V TTL compatible
• Opto-isolated digital inputs

Analog Inputs/Outputs

• Analog output 0 ÷ 4V or -2V ÷ 2V, 13bit
resolution
• Analog voltage differential input, 1kHz filter

input
• PT100 input
• 2x analog voltage single ended 0 ÷ 4V
• or 2x thermocouple of the J/K type

Configuration of each single ended analog input
or thermocouple is done during the final stage of
production.

Other

• Small graphic LCD display interface

3. FIRMWARE ARCHITECTURE

Generally, the board can be equipped with arbi-
trary firmware written for the given processor and
used peripheries using several available assembler
and/or C-language compilers, e.g. IAR C/C++
Compiler for AMR, Keil C/C++, GNU C/C++,
etc. A User can start from scratch or follow the
instructions of recommended development tools at
the processor producer web site (Atmel (2009)).

For maximum user convenience and speeding up
the application development, we decided to imple-
ment a software development kit (SDK) for our

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 039.pdf

485

Drivers

Operating system

BSP

IO System

FreeRTOS

ISR

File IO

Standard C IO

Character
RS232
RS485
ZigBee
USB UART

Special

Socket

Block

LED
A/D Converter
D/A Converter
SPI
CAN
PWM
Power supply
GPIO
Timers
Perf. Counter

Ethernet
ZigBee

SD Card
EEPROM
LCD

Board specific

Low Level Init

SDK

Libraries
Modbus

CAN Open

Ring Buffer

Linked List

Fig. 3. SDK modular architecture

board. Real-time operating system issues are cru-
cial for predictable behavior of automatic control
applications. At present, there are many operating
systems for embedded applications with various
functionalities implemented. For the present ver-
sion of SDK, FreeRTOS (FreeRTOS (2009)) has
been chosen. FreeRTOS has very small memory
footprint but also a limited functionality. It pri-
marily implements preemptive task scheduler but
neither interrupt handling services nor input/out-
put system interface. Therefore, both functionali-
ties has been implemented into our SDK.

4. SOFTWARE DEVELOPMENT KIT (SDK)

Simply said, our SDK is a zip file containing three
folders:

doc – SDK documentation in several formats
(compiled HTML *.chm and portable docu-
ment format *.pdf)

inc – C-Language header files *.h
lib – Compiled libraries *.a

Architecture of SDK is modular, each module
is represented by at least single header file and
exactly one library file. SDK modules are divided
into four categories (see Fig. 3) according to their
characters:

Board Support Package (BSP) provides board
interface for board abstraction. Microcontroler
specific functionality and interrupt handling in-
terface are provided by BSP.

Operating System (OS) category contains the
particular operating system kernel libraries. For
our case of FreeRTOS, also interrupt handling
extension routines are included.

Input/Output System (I/O system) libraries
implement standard device and file handling

interface. This interface can also be used for
most hardware drivers (see below). The I/O sys-
tem is based on the idea of virtual file system.
Moreover, I/O system functions are mapped to
standard C-language input/output.

Hardware Drivers are libraries which support
onboard hardware devices (e.g. RS232 line or
A/D converter). Drivers handle device inter-
rupts (hide them to the user) and usually im-
plement I/O system interface because of unified
access to various devices.

Libraries are the other miscellaneous libraries
which can be used for development of the SDK
based applications, e.g. Ring buffer, Modbus,
etc.

Hardware drivers can be further (more detailed)
divided into four groups corresponding to the
device type:

Character – for character oriented devices such
as RS232, RS485, USB, ZigBee in virtual serial
line mode,

Socket – for BSD socket oriented devices such as
Ethernet or ZigBee in the mesh mode,

Block – for block oriented devices such as disks
(SD Card, EEPROM, LCD),

Special – for devices not conforming to any pre-
vious category (timers, LED, A/D and D/A
converters, General Purpose I/O (GPIO), Pulse
Width Modulation (PWM) outputs, Serial Pe-
ripheral Interface (SPI), Controller Area Net-
work (CAN).

SDK development is a long run work. At present,
BSP, OS and I/O system libraries has been devel-
oped. The development states of hardware drivers
are the following:

Finished : RS232, RS485, GPIO, LED, Zigbee
in serial line mode.

Being tested : Ethernet, A/D and D/A Con-
verter, Performance Counter, SPI, Power Sup-
ply.

Planned : ZigBee in mesh mode, CAN, PWM,
Timers, all block drivers.

Note that SDK is distributed without source code
because it contains large parts of code developed
without any public or grant support. However,
source code organization corresponds to individ-
ual libraries mentioned.

5. DEVELOPMENT TOOLS

The present version of SDK is compiled with IAR
Systems C/C++ compiler for ARM (IAR (2009)).
This compiler and the corresponding linker is
used for applications building process. Compiler
and linker (and the other tools) can be called
from command line or IAR Embedded Workbench

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 039.pdf

486

FreeRTOS
Library

headers

Driver
Libraries

Util Libraries

SDK Help Project
Templates

Compiler
Toolchain

Process Board

Jtag USB boot
loader

SDK

Eclipse

New Project
Wizard

Output

Plugins

Debugger

User application
written in C

Fig. 4. Board development environment

IDE (integrated development environment) can be
used.

IAR Embedded Workbench is not a very con-
venient development environment compared with
the best development environments in the market
as Visual Studio, Eclipse or NetBeans. Therefore,
we chose Eclipse platform due to its adaptability
using plug-ins. The brief structure of our develop-
ment environment is depicted in Fig. 4.

Eclipse IDE has been extended by a special plug-
in to facilitate the board application development.
This plug-in can be used for generation of empty
projects supporting all tools necessary for the
board application development. The plug-in can
also be used for development of existing and/or
new SDK libraries.

Our plug-in contains a wizard for automatic gen-
eration of the board SDK based applications as
well as the necessary settings of all tools (com-
piler, linker, debugger, Eclipse IDE itself). Let’s
explain the wizard capabilities in a more detail.
Creation of a new SDK C/C++ project from
Eclipse File/New/C Project or File/New/C++
Project menu activates the Eclipse wizard multi
page dialog. Specification of Project name as
<project_name> and Project type as emSDK
application and pressing the Next button acti-
vates further pages contained in our plug-in with
the additional information:

• Basic Settings page with Author identifica-
tion field, short project description, etc.

• Driver selection page, which enables to spec-
ify all drivers including in the application
firmware, see Fig. 5.

Fig. 5. SDK wizard driver selection page

• Configuration selection page, which enables
to choose the generation of Debug or Release
or both versions of the project.

After finishing the project wizard, it generates the
project settings containing among other things the
list of required static libraries. The following files
are generated automatically:

config.h – File containing definitions of which
drivers (libraries) are included and which are
excluded from the firmware. The example of
this file, which corresponds to the drivers se-
lections in Ffig. 5, is depicted in Fig. 6.

sysConfig.c – File containing the initialization
sequence of all SDK drivers and libraries. Ini-
tialization depends on conditional variables de-
fined in the config.h file. File sysConfig.c
should not be modified by the user.

<project name>.c is an main file of the project.
It contains the main() function, which is the
first developer modified function called.

<project name>.eww is the IAR workspace file.
This file is used to debug the project using the
IAR Embedded Workbench.

The project also contains other automatically
generated files. But the detailed descriptions of
these files are out of the scope of basic application
programming techniques and of this paper.

More precisely, the main() function, as the start-
ing function of the SDK based application, is
called immediately after the C-language run-time
library initialization, OS initialization and initial-
izations of the drivers selected. Fig. 7 shows an
example of the <project name>.c file. Example
shows how to resend data received through wire-
less ZigBee to standard, output. Standard output
is mapped to /dev/ttyS0 (Debug port) by de-
fault. Note, that the main() function is running

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 039.pdf

487

#i f n d e f CONFIG H
#d e f i n e CONFIG H

/∗ Power d r i v e r ∗/
#d e f i n e CONF PWR 1

/∗ S e r i a l d r i v e r s ∗/
#d e f i n e CONF TTYS0 1

#d e f i n e CONF TTYS1 1
#d e f i n e CONF TTYS2 1

/∗ Null d r i v e r ∗/
#d e f i n e CONF NULL 1

/∗ Performance counter d r i v e r ∗/
#d e f i n e CONF PFC 1

/∗ USB d r i v e r ∗/
#d e f i n e CONF USB 0

/∗ Ethernet TCP/IP d r i v e r ∗/
#d e f i n e CONF TCPIP 0

/∗ Analog d r i v e r s ∗/
#d e f i n e CONF ADC 0

#d e f i n e CONF DAC 0

#d e f i n e CONF STD ON TTYS0 1

#e n d i f /∗CONFIG H ∗/

Fig. 6. Example of config.h file

as a FreeRTOS task with the highest possible
priority. Other FreeRTOS tasks can be created
from the main function.

6. ADVANCED CONTROL ALGORITHMS

The technique described in the previous sections
allows the programmer to develop wide range of
applications for our board, e.g. communication
applications, user interface application and also
real-time control applications. The common fea-
ture of this technique is hand writing of all the
code, except the automatically generated applica-
tion template.

However, manual editing of control algorithms is
a very error prone (and annoying) process. Much
more convenient is to design especially advanced
control algorithms in some graphical environment,
e.g. in Matlab Simulink. Consequently, an auto-
matic generation technique of C-language source
code from the function block diagram designed
in Matlab Simulink (or RexDraw) has been devel-
oped (Balda (2007)). This technique was slightly
enhanced a year later and ported to B&R Au-
tomation PLCs (Balda and Schlegel (2008)). The
same technique is now also available for our board
in the form of C-language static library and set of
header files. It supports almost 90 different func-
tion blocks from more than 130 function blocks of
the REX control system (REX Controls (2008)).

/∗ standard headers ∗/
#inc lude <s t d i o . h>

#inc lude <s t d i n t . h>

/∗ SDK headers ∗/

#inc lude <FreeRTOS/FreeRTOS . h>

#inc lude <FreeRTOS/ task . h>

#inc lude < i o s / i o . h>

/∗ D e f i n i t i o n s ∗/

#d e f i n e DELAY MS 50

/∗ main func t i on i s always a task ∗/

/∗ f o r the SDK base a p p l i c a t i o n s ∗/
i n t main (){

u i n t 3 2 t data ;

/∗ open ZigBee s e r i a l l i n e ∗/

HANDLE ttyZB ;
ttyZB = open (”/ dev/ ttyS2 ” , 0 , 0) ;

f o r (; ;) {
/∗ Read data ,

wait i n d e f i n i t e l y ∗/

read (ttyZB , &data ,
s i z e o f (u i n t 3 2 t)) ;

/∗ Write message to std out ∗/
p r i n t f (” Red i rec t data : %d” ,

data) ;

/∗ wait ∗/

vTaskDelay (DELAY MS) ;
}

}

Fig. 7. Example: sending ZigBee data to standard
output

7. MICRO REX EXAMPLE

Automatic generation of controls algorithm is
demonstrated on the example depicted in Fig. 8
stored in Matlab-Simulink model file (.mdl) 1 .
Note that the example uses an advanced sliding
mode heating/cooling controller with autotuner
(SMHCCA, see Schlegel and Mertl (2006), REX
Controls (2008)).

The model file from Fig. 8 is processed by Rex-
Comp (the REX control system compiler), which
generates the C-language source code (.c) con-
taining three functions:

InitControlAlgorithm() – function for initial-
ization of function block data structures, setting
configured function blocks parameters and run-
ning initialization functions of each particular
block in the control algorithm.

MainControlAlgorithm() – function implement-
ing single execution of the control algorithm.
This function should be called periodically with
the period specified in the SLEEP block (in

1 The .mdl files can be also created by the RexDraw
program, which is the design environment of REX.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 039.pdf

488

SMHCCA for ARM board

Process model

Scope

sp

pv

hv

MAN

TMODE

TUNE

TBRK

TAFF

ips

mv
mve

de
SAT

isv
t_ukp
t_ukm

t_sk
t_pv

t_dpv
t_d2pv
TBSY

TE
ite
p1
p2
p3
p4
p5
p6

SMHCCA

SLEEP

u UP
DN

PWM

Y

MP_TUNE
Y

MP_TBRK

u y

MDL2u y

MDL1

u y

MDL
[pv]

[C]

[H]

[C]

[H]

[pv]

0

0

0

0

y

CNR_sp

y

CNR_hv

y

CNR1

y

CNI_ips

Y

CNB_TAFF

Y

CNB_MAN
Y

CNBTMODE

u1
u2 y

ADD2

u1
u2 y

ADD1

u1
u2 y

ADD

Fig. 8. Control algorithm example in Simulink

Fig. 8). This function sequentially calls main
functions of particular blocks and implements
the flow of signals (block connections, ”wires”)
in the control algorithm.

ExitControlAlgorithm() – termination function
of the control algorithm. This function sequen-
tially calls the termination functions of the par-
ticular blocks in the algorithm.

#inc lude ” c o n f i g . h”

#inc lude <FreeRTOS/FreeRTOS . h>
#inc lude <FreeRTOS/ task . h>

#inc lude <s t d i o . h>

#inc lude ”BlkMacrs . h”

#inc lude ”AppMacrs . h”

#inc lude ”fbSMHCCA. h”

extern ds SMHCCA SMHCCA;

const portTickType
t i ckPe r i od = 100 ; // 0 .1 [s]

i n t main ()
{

In i tContro lAlgor i thm () ;

lastWakeTime = xTaskGetTickCount ()

− t i ckPe r i od + 1 ;

whi l e (1)
{

vTaskDelayUntil (&lastWakeTime ,
t i c kPe r i od) ;

MainControlAlgorithm () ;
p r i n t f (”%.6 f \ r \n” , SMHCCA. pv) ;

}

ExitControlAlgor ithm () ;

}

Fig. 9. MicroREX application main function

All three functions respects the block order per-
formed by RexComp. Usage of the automati-
cally generated functions is demonstrated on the
main() function in Fig. 9. In this case, each con-
trol period the SMHCCA controller process variable
is printed to the standard output. Code of the
three functions Init/Main/ExitControlAlgorithm
is not presented here for brevity reasons.

8. CONCLUSIONS

The paper presents a new board designed for
embedded automatic control and rich communica-
tion applications. Especially the designed software
(firmware) architecture is introduced based on the
developed SDK and its integration to Eclipse IDE.
The MicroREX technique (formerly called Micro
RexLib) can be used for the development of ad-
vanced control strategies.

The authors believe that the proposed method-
ology is suitable for education of automatic con-
trol algorithm implementation aspects, embedded
and real-time micro-controller programming. The
approach will be used for teaching more than
100 students in the ”Embedded control systems”
course in the Faculty of Applied Sciences at the
University of West Bohemia in Pilsen, Czech Re-
public.

ACKNOWLEDGMENTS

The work has been supported by Czech Min-
istry of Industry and Trade, project No. MPO
FI-IM5/030. This support is gratefully acknowl-
edged.

References

Atmel. Atmel web page: http://www.atmel.com.
2009.

P. Balda. Automatic conversion of advanced
control algorithms of the REX control system
to various embedded platforms of microcon-
trollers. In Automatizace, regulace a procesy (in
Czech), pages 47–54, Prague, 2007. Dimart.

P. Balda and M. Schlegel. BRRexLib – Function
block library for B&R Automation PLCs. In
Process Control 2008, pages 1–7, Kouty nad
Desnou, 2008. University of Pardubice.

FreeRTOS. The FreeRTOS.org Project web page:
http://www.freertos.org. 2009.

V. Georgiev. Atmel ARM based embedded board
hardware design. Partially financed by MATEO
”Industrial Controllers” subproject, 2007.

IAR. IAR Systems web page:
http://www.iar.com. 2009.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 039.pdf

489

O. Ježek. Controller for embedded control applica-
tions: Basic design. Diploma project (in Czech).
2008.

REX Controls. Function blocks of the REX system
– Reference Guide (in Czech). REX Controls,
Pilsen, Czech Republic, 2008.

M. Schlegel and J. Mertl. New control strategies
for heating/cooling processes. In Process Con-
trol 2006, pages 1–12, Pardubice, 2006. Univer-
sity of Pardubice. ISBN 80-7194-860-8.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 039.pdf

490

