
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
17th International Conference on Process Control 2009

Hotel Baník, Štrbské Pleso, Slovakia, June 9 – 12, 2009

ISBN 978-80-227-3081-5

http://www.kirp.chtf.stuba.sk/pc09

Editors: M. Fikar and M. Kvasnica

Čech, M., Balda, P.: A New Technique for Automatic Generation of Java Applets for Web-based Control
Education, Editors: Fikar, M., Kvasnica, M., In Proceedings of the 17th International Conference on
Process Control ’09, Štrbské Pleso, Slovakia, 491–497, 2009.

Full paper online: http://www.kirp.chtf.stuba.sk/pc09/data/abstracts/040.html

A NEW TECHNIQUE FOR AUTOMATIC
GENERATION OF JAVA APPLETS FOR
WEB-BASED CONTROL EDUCATION

M. Čech ∗ and P. Balda ∗∗

∗University of West Bohemia in Pilsen, Department of
Cybernetics, fax : +420 377632502 e-mail: mcech@kky.zcu.cz

∗∗ e-mail : pbalda@kky.zcu.cz

Abstract: The paper presents a new technique for automatic generation of Java source
code for complex control algorithms simulation. The algorithms can be designed in
graphical form either in Simulink model editor or in RexDraw, the graphical editor
of the REX control system. The designed models are used for generation of Java
source code files, which can be easily accomplished by graphical user interfaces and
further used in both standalone Java applications and Java applets embedded into
web pages. The proposed methodology can speed up the development of interactive
control education tools because it interconnects Java with simulation and real-time
domain. It is demonstrated on a closed loop simulation example using Pulse-step
predictive controller and compared to earlier manual procedure.

Keywords: Web-based control education, interactive tools, Java applets, REX control
system, Matlab-Simulink.

1. INTRODUCTION

Interactive education/demonstration tools based
on Java applets embedded into web pages be-
came very popular in all technical branches in-
cluding automatic control (Schlegel and Čech
(2004); Dormido (2002)) and physical modelling
(Esquembre (2005)). The popularity grows up for
many reasons: Java applets are self-contained,
thus one need not to install additional devel-
opment or runtime tools 1 . Moreover, Java is
a multi-platform language. Therefore, the same
applet can be started in any operating system
(Windows, Linux, MacOS) directly from web
page shown in the browser. Java applications are
also portable to pocket PC’s and mobile phones
through Java ME (Micro Edition). It could be
approved that these tools attract more web traffic
and help to make your ideas familiar (Sirovich and

1 We assume, that the common JRE (Java Running En-
vironment) is installed.

Darie (2007)). Unfortunately, there is still a lack of
such web simulation tools that have closer relation
to real-time applications. It is caused by the fact
that the simulation environment and real-time
platform usually does not support straightforward
migration to Java.

In the past, the connection 2 between simulation
and real-time platform was solved for example
by the REX control system (Balda et al. (2005))
or by Matlab Real-time Workshop. They both
allow the user to generate real-time code directly
from Simulink which is nowadays a standard tool
for system modelling and simulation. In authors’
previous paper (Balda and Čech (2006)) the client
Java interface to REX was presented. The Java
application or applet could contain a TCP/IP
client and read data or parameters from any

2 It does not mean that more platforms are running simul-
taneously, although it is under some limitations possible,
especially when Java is a remote visualization tool for real-
time target.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 040.pdf

491

REX target device. This simple interface was used
together with Easy Java Simulations (EJS) to
create web pages with remote access to several
models in process control laboratory (Balda and
Princ (2007)).

In this paper, the previous results are extended
in order to support creation of self-contained Java
applets for complex control algorithm simulation.
Therefore, the following components were trans-
formed into Java

• Simple simulation core
• Main part of RexLib
• Server side of REX interface

where the particular instance of simulation core
(task) is generated automatically from Simulink
or RexDraw model and the RexLib blocks Java
classes are generated from their C-code originals.
By this new set of components, Java is naturally
joined up with simulation (Simulink) and real-
time platform.

The paper is organized as follows: Section 2 in-
troduces the overall structure of Java packages
collectively called JavaREX and refers to its most
important classes. Section 3 focuses on the au-
tomatic creation of Java function block library.
The generation of the particular simulation task
from Simulink model is outlined in Section 4. Illus-
trative example of Pulse-step predictive controller
(further PSMPC) in the closed loop is given is
Section 5 where it is compared to older hand
procedure used for PIDlab applets development.
Section 6 contains concluding remarks and ideas
for future work.

2. JavaREX STRUCTURE

At present, we denote JavaREX the group of
Java packages that help us to bridge the gap
between interactive virtual tools and real-time
applications, in particular based on REX. JavaREX
key parts and classes are described in the following
subsections. Overall JavaREX structure is also
sketched in Fig. 1.

2.1 Global part - package xGlobal

The package xGlobal contains classes which are
common for other modules. Roughly speaking,
basic data types, structures, constants and error
codes are defined here.

2.2 Simple simulation core - package xCore

REX contains a powerful hard real-time core with
scheduler which allows to run number of tasks at

different priority levels and sampling periods. This
core was reduced for Java and web purposes. Java
simulation core enables the user to create only
a single task with arbitrary number of function
blocks and their connections. Consequently, the
task inserted into executive can be run as a Java
thread with given period (soft real-time). Note,
that for the demonstration purposes the thread
period may differ from task sampling period used
for discretization of each block. Although a spe-
cific task class can be coded manually, for more
complex control schemes it is necessary to gener-
ate a task source automatically from Simulink or
RexDraw editor as described in Section 4. Then
a consistence of block names, connections and
variable 3 values is guaranteed between Simulink,
real-time and Java platform. Moreover, it is pos-
sible to simulate and debug the control algorithm
before Java code generation.

The most important Java classes are 4

Block – superior abstract class for all function
blocks and task as well. Contains init(),
main() and exit() methods which must be
implemented in all inherited classes. Each block
has also a given name, sampling period, task
owner reference and fixed number of inputs,
outputs, states and arrays.

Task – extends Block class. In addition it con-
tains a sequence of blocks representing a control
algorithm. The init(), main() and exit()
methods are just calling appropriate methods
of each block in the sequence. In inherited class
generated from the model, the block instances
are created in init() using declareBlock(),
addBlock() and connectBlock() methods.
Fortunately, the usage of those methods is
transparent when the task is generated auto-
matically (see Section 4).

XExecutive – extends Java Thread class. The
Task instance must be inserted into the con-
structor. After calling initExecutive() the
thread can be started calling start() method
inherited from Thread. XExecutive performs
periodical execution of task main() method un-
til stopExecutive() or pauseExecutive() is
called. The first method leads to re-initialization
of all task blocks and internal variables while
the paused executive can be run again from the
halted state by continueExecutive().

3 By variable we understand any block input, output,
state, parameter or array/buffer.
4 This is just a brief description of the main features, not
a full documentation

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 040.pdf

492

Fig. 1. Internal structure and dependencies of JavaREX packages.

2.3 Function blocks library - package JavaRexLib

The REX control system contains a large library
(RexLib) of function blocks suitable for process
control and mechatronics. Significant part of men-
tioned library was transformed form C++ into
Java language using special technique described
in Section 3. Thanks to this automatic gener-
ation, the consistency between simulation, real-
time and Java platform is ensured including all
block internal algorithm, variables names, types,
initial values, configuration flags, etc. On the
contrary to task generation, the library (further
called JavaRexLib) is generated and compiled only
once. Hence, the user need not to take care
about a source code of individual function blocks.
JavaRexLib together with automatic task genera-
tion guarantee that exactly the same control al-
gorithms are executed on all platforms mentioned
above.

The block library is divided into several sub-
packages taking into account an original RexLib
structure. Each block is inherited from the ab-
stract Block class which is accomplished by defini-
tion of inputs, outputs, states and arrays (buffers).
Each variable contains configuration flags defin-
ing especially LO/HI limits and solving auto-
matic data type conversion in input-output block
connections. Naturally, also a main() method is
implemented. For commented example of block
source code see Fig. 2.

2.4 Communication and diagnostic interface -
package xDiag

The client side of commutation interface was al-
ready described in authors’ previous work Balda
and Čech (2006). Now, the communication pack-
age called xDiag was completed by a server side.

Such step is necessary to connect a client easily
to the running XExecutive instance. By imple-
menting server side of diagnostic interface, one can
simply read or write values of any block variables
in the task. As the communication is based on a
standard TCP/IP socket the connection between
Java and real-time platform can be established
also remotely via Internet.

Let us turn the attention to the self-contained
Java applets. In this case both parts of the inter-
face are packed inside the application. The client
part asks the server to read/write block variables
while the server executes those commands and
informs client part about the result. A separated
thread created by user is then responsible for
periodical generation of commands and updating
of the application GUI.

2.5 Graphical user interface - package xGUI

Several graphical components suited directly to
REX needs can be found in package xGUI. At
present a programmer can use simple trend and
tree component which allows to browse REX tar-
get structure.

3. JAVA VERSION OF RexLib

RexLib, which has been introduced in Schlegel
et al. (2001), is a function block library of the REX
control system (Balda et al. (2005)). At present,
RexLib contains more than 130 various function
blocks. The complete reference of these blocks
is given in Controls (2008). Almost all blocks
contained in sub-libraries anal, gen, math, reg
and logic (altogether almost 90 function blocks)
has been converted to Java.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 040.pdf

493

Algorithms of function blocks in RexLib are writ-
ten in ANSI C intensively using macros. This
fact allows us to have only one source code for
each target platform. C language MEX files are
created for Matlab-Simulink, C++ class is created
for each block in all ports of the REX control
system. We insisted on having only one source
code of the each particular block, but we cannot
use preprocessor in Java (like in C and C++
languages) because Java has no one. Thus we had
to develop a technique of automatic conversion of
C language block source files to Java block classes.
This technique is based on two ideas:

• C language source file preprocessing. For-
tunately, Java has almost the same syntax
of many statements as C/C++, e.g. expres-
sions, assignements, if statement, for state-
ment, etc. That is why we needed to prepro-
cess (expand) mainly access macros to block
inputs, outputs, states and working arrays.
For performing of this task, we used the
RexComp (REX compiler) program for each
function block source code with the special
command line parameter -p (i.e. Preprocess).

• Generation of special Java syntax by a spe-
cially written application. The files obtained
(in the previous step) were not Java class
compatible source files yet, so we had to
modify them and add more information from
the REX C++ implementation files. This
task was provided by the program which
uses the regular expression technique to find
necessary information and to add it to the
preprocessed files. This program has been
developed in C# using .NET Framework reg-
ular expression classes.

The result of the ADD block (addition of two
inputs) conversion is shown in Fig. 2. For such
simple blocks it would be simpler to write the
code manually. But it is not a case of advanced
controllers which code is longer than thousand
lines per block. The biggest advantage of this
method is the possibility of code regeneration
after any block change.

4. GENERATION OF SIMULATION TASK

Simulation task is automatically generated from
function block diagram configured in Matlab-
Simulink graphical editor or RexDraw, the drawing
tool of REX. Code is generated by the RexComp
compiler in a similar way as in Balda (2007) and
further developed in Balda and Schlegel (2008).

The Java source code automatic generation is a
two step process. In the first step, a meta code
consisting of the macro sequence is generated
using the RexComp command line option -s. The

sp
pv
tv
hv
MAN

mv
dmv

de
SAT
pve

iE

PSMPC

u y

Model
y

SP

Fig. 5. Example of PSMPC demo drawn using
RexLib blocks in Simulink editor.

second step is preprocessing of the first step result
file again by RexComp, this time with the -p
command line option. The difference between the
preprocessing in Balda (2007) and here is the
usage of alternative macro definition file. The
automatically generated code in Fig. 3 is described
in the next section.

5. EXAMPLES

5.1 Example 1: manual way

In the past, the process of block and task imple-
mentation into Java language had to be done man-
ually. Although the implementation of main()
block method is almost the same in both C++
and Java languages, the manual way is very time
consuming and error-prone. Despite it, manual
way was used to develop PIDlab interactive ap-
plets where the RexLib PIDU block is implemented
(Fig. 4, Controls (2008)). The popularity of PID-
lab applets was the motivation to create the au-
tomatic procedure which allows the programmer
to focus on the the interactive GUI.

5.2 Example 2: automatic way

Let us show the process of creating Java education
demo of pulse step predictive controller PSMPC
(Controls (2008)):

• Assume that JavaRexLib was already au-
tomatically created using a procedure de-
scribed in Section 3.

• Firstly, the simple model was drawn in
Simulink editor (see Fig. 5). Note, that one
can use full power of Simulink to debug and
simulate the loop.

• After that, the model task Java code was
generated as shown in Fig. 3.

• Finally, the generated task was compiled and
used together with a prepared trend (package
xGUI.axes) to created simple Java demo that
can be embedded into a web page. It can be
reviewed in Fig. 6.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 040.pdf

494

public class ADD extends Block{

public static XInInitVar[] xInInitVars = new XInInitVar[]{

new XInInitVar("u1", -1,

new XInCfg((short)0, (short)XAV.XATM_XANY_VAR, XAV.MIN_DOUBLE, XAV.MAX_DOUBLE,

new XInVar(XAV.XATC_XDOUBLE))),

new XInInitVar("u2", -1,

new XInCfg((short)0, (short)XAV.XATM_XANY_VAR, XAV.MIN_DOUBLE, XAV.MAX_DOUBLE,

new XInVar(XAV.XATC_XDOUBLE, (double) 0))), };

public static XOutInitVar[] xOutInitVars = new XOutInitVar[]{

new XOutInitVar("y", -1,

new XOutCfg((short)0, XAV.MIN_DOUBLE, XAV.MAX_DOUBLE,

new XOutVar(XAV.XATC_XDOUBLE)))};

public static XStatInitVar[] xStateInitVars = new XStatInitVar[]{};

public static XArrInitVar[] xArrInitVars = new XArrInitVar[]{};

public ADD(String name) {

super(name);

nInCount = (short) xInInitVars.length;

nOutCount = (short) xOutInitVars.length;

nStateCount = (short) xStateInitVars.length;

nArrCount = (short) xArrInitVars.length;

nExtInCount = 2;

}

public void init() throws JRexLibException {

}

public void main() throws JRexLibException, RexServerException {

super.main();

getOutAt(0).xDouble = getInAt(0).xDouble + getInAt(1).xDouble;

}

public void exit() throws JRexLibException {

}

}

Fig. 2. Example of Java source code for simple block ADD generated automatically from C++ original.

6. CONCLUSIONS

Interactive education/demonstration tools based
on Java applets embedded into web pages be-
came very popular in all technical branches in-
cluding process control. The paper describes a
new JavaREX platform for automatic generation
of Java source code for complex control algorithms
simulation. The simulation models can be build
from RexLib function blocks and simulated in stan-
dard Matlab/Simulink environment. Thanks to
the automatic generation of Java simulation core
and REX system features one can guarantee the
control algorithm consistence at all simulation,
presentation (Java) and real-time platforms. The
described methodology was demonstrated on a
closed loop simulation example using Pulse-step
predictive controller and compared to older man-
ual procedure. The authors believe that JavaREX
platform will significantly speed up the develop-
ment of interactive web-based education tools and
support the technology transfer. The future work
involves creation of basic components that can be
easily connected to the chosen variable and which
will support automatic creation of communication
groups.

ACKNOWLEDGMENTS

The work has been supported by the Czech Min-
istry of Industry and Trade, project No. FI-
IM5/030. This support is very gratefully acknowl-
edged.

References

P. Balda. Automatic conversion of advanced
control algorithms of the REX control system
to various embedded platforms of microcon-
trollers. In Automatizace, regulace a procesy (in
Czech), pages 47–54, Prague, 2007. Dimart.

P. Balda and M. Princ. Remote laboratory exper-
iments based on easy java simulations and rex.
In Process Control 2007 Summaries Volume,
Strbske Pleso, Slovak Republic, June 2007 2007.

P. Balda and M. Schlegel. BRRexLib – Function
block library for B&R Automation PLCs. In
Process Control 2008, pages 1–7, Kouty nad
Desnou, 2008. University of Pardubice.

P. Balda and M. Čech. Java interface to REX
control system. In Process Control 2006 Sum-
maries Volume, Kouty na Desnou, Czech Re-
public, June 2006.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 040.pdf

495

public class TaskExample extends Task{

public TaskExample(String name) { // class constructor

super(name);

}

public void init() throws JRexLibException, RexServerException{

// Blocks declaration, allocation. By declareBlock() the block ’tels’ the task number of its variables

CNR SP = new CNR("SP"); declareBlock(SP);

PSMPC PSMPC = new PSMPC("PSMPC"); declareBlock(PSMPC);

MDL Model = new MDL("Model"); declareBlock(Model);

// the task allocates arrays of inputs, outputs, states, and buffers for all declared blocks

allocateMemory();

// in addBlock(), the block inputs, outputs, states and buffers are created and inited

addBlock(SP);

SP.setParamDouble(0, 5.0);

SP.setPeriod(0.01);

SP.init();

addBlock(PSMPC);

PSMPC.setParamDouble(0, 1);

.... // for easy reading, the remainig PSMPC params were removed from code listing

PSMPC.setPeriod(0.01);

PSMPC.init();

addBlock(PSMPC);

Model.setParamDouble(0, 10);

.... // for easy reading, the remainig MDL params were removed from code listing

Model.setPeriod(0.01);

Model.init();

connectBlock(0,0,1,0);

connectBlock(1,0,2,0);

connectBlock(2,0,1,1);

connectBlock(1,0,1,2);

this.setPeriod(0.01);

}

}

Fig. 3. Example of automatically generated task for PSMPC demo shown in Fig. 5.

P. Balda, M. Schlegel, and M. Štětina. Advanced
control algorithms + Simulink compatibility +
real-time OS = REX. In Proceedings of IFAC
2005, Praque, Czech Republic, July 2005.

REX Controls. Function blocks of the REX system
(Czech). http://www.rexcontrols.cz, 2008.

S. B. Dormido. Control learning: Present and
future. In IFAC 15th Triennial World Congress,
Barcelona, 2002.

F. Esquembre. Easy Java Simulations - The Man-
ual. 2005. Available at www.um.es/fem/Ejs.

M. Schlegel and M. Čech. Internet PID controller
design: www.PIDlab.com. In Proceedings of
IBCE 04, pages 1–6, Grenoble, France, Septem-
ber 2004.

M. Schlegel, P. Balda, and M. Štětina. C mex
blockset for industrial automation. In Proceed-
ings of the 9th Matlab Conference (in Czech),
pages 361–369, Prague, 2001. Vydavatelstv́ı
VŠCHT.

J. Sirovich and C. Darie. Search Engine Optimiza-
tion for PHP. Wiley Publishing, Inc., 2007.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 040.pdf

496

Fig. 4. Example of PIDlab applet for PID controller tuning. This applet adopts RexLib PIDU algorithm
which was transformed manually into Java.

Fig. 6. Example of PSMPC demo using JavaREX trend from package GUI.axes.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Po-Th-6, 040.pdf

497

