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Abstract: A genetic algorithm based controller design approach is described. The 
genetic algorithm represents an optimisation procedure, where the cost function to be 
minimized comprises the closed-loop simulation and a performance index evaluation. 
Depending on performance index various control aims can be considered.  In the paper, 
several performance indices are analysed in a single-criterial and multi-criterion case. 
All design methods are experimentally compared. 
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1 INTRODUCTION 

Control design tasks have to respect several 
requirements imposed on the static and dynamic 
behaviour of the controlled system. Controllers often 
include many searched parameters and their different 
constraints. The search/optimisation process may be 
complicated, discontinuous or non-convex, and 
analytical methods often may not be able to yield 
satisfactory results. Opposite to this, evolution-based 
search approaches are able to construct new control 
laws and non-intuitive solutions as well. One of the 
most frequently used evolutionary techniques is the 
genetic algorithm (GA). Recently, genetic algorithms 
have been applied in the area of process control for 
solving a wide spectrum of various optimisation 
problems in several ways and with several aims. In 
this paper we want to focus on the design of 
controller parameters (or control algorithm 
parameters) for continuous system control. In a first 
group of methods GA’s are used as a powerful 
optimisation or search means in analytically 
formulated control design methods. Based on 
mathematical models, the parameters of a controller 
(or any dynamic system) are designed using different 
approaches providing stability and/or the required 
behaviour of the controlled system (Kawabe 1996,  

 

 

Krohling 2001, Man 2001, Sekaj 2002). The second 
group of methods is characterized by the use of 
simulation-based time-response evaluation of the 
closed-loop model, whereby the time-response can 
be used for various purposes (Herrero 2002, Khatib 
1999, Lewin 2005, Mitsukura 1999, Sekaj 2005, 
Sweriduk 1999, Yang 2005). A multiobjective 
approach, where the evaluation contains 7 different 
objectives including analytically formulated and 
time-response performance based objectives is in 
(Molina-Cristóbal 2005). 

In cases, where the design task represents not only 
the search for values of a set of parameters of a 
predefined control structure but also the search for its 
internal structure, an extension to this approach is 
possible. For this purpose the Genetic programming 
(Banzhaf 1999, Koza 1992, Sekaj 2005, Lewin 2005, 
Yang 2005) is applicable. This problem, however, is 
beyond the scope of this paper. For controller 
structure optimisation also a hierarchical GA has 
been used in (Man 2001). In (Grosman 2005) the 
genetic programming for Lyapunov function 
generating has been used. Surveys of evolutionary-
based control system design are in (Fleming) and 
(Lewin 2005). 
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In this paper a straightforward way of incorporating 
simulation-based closed-loop time response in the 
GA is presented. The proposed approach deals with a 
direct GA-based search/optimisation in the controller 
parameter space combined with extensive computer 
simulations of the designed system (Sekaj 1999, 
Sekaj 2005b). Thus the simulation is an essential part 
of the minimised objective function. It will be shown 
that due to this approach, the task of the optimal 
design of the dynamic system parameters is 
transformed into a conventional n-dimensional 
optimisation problem.  Various control aims can be 
obtained using various cost functions. For this 
purpose several performance indices are used and 
experimantaly compared. Finally a multicriterial 
design approach with more design aims is 
demonstrated.  

2 CONTROLLER DESIGN PRINCIPLE 

As mentioned above, the aim of the control design is 
to provide required static and dynamic behaviour of 
the controlled process. Usually, this behaviour is 
represented in terms of the well-known concepts 
referred in the literature: overshoot, settling time, 
decay rate, steady state error or various integral 
performance indices (Dorf 1990, Kuo 1991) etc.  

 

Without loss of generality let us consider a simple 
feedback control loop (closed-loop) (Figure1) where 
y is the controlled value, u is the control value, r is 
the reference and e is the control error (e=r-y). 
Consider an appropriate closed-loop simulation 
model is available. Let us analyse the closed-loop 
behaviour using the simple integral performance 
index "Integral of absolute error", which is defined as 

 

     ∫=
T

AE dtteI
0

)(                               (1) 

 

where T is the simulation time. The controller design 
principle is actually an optimisation task - search for 
such controller parameters from the defined 
parameter space, which minimise the performance 
index (1). The cost function (fitness) is a mapping 
Rn→R, where n is the number of designed controller 
parameters. The evaluation of the cost function 
consists of two steps. The first step is the computer 
simulation of the closed-loop time-response, and the 
second one is the performance index evaluation. In 
case of designing complex, multi-input and multi-
output (MIMO) control structures or other controller 
types (fuzzy controllers, neuro-controllers, etc.) the 
dimension n of the search space can be large (more 
than tens or even hundreds), therefore the cost 

function can be complicated and multi-modal and 
due to high computational requirements the use of 
"conventional" optimisation methods may be not 
feasible. Here, the evolution-based techniques, e.g. 
genetic algorithms can be used. 

 
y

 

 

 

Figure 1  Simple feedback control loop 

 

Genetic algorithms are described in e.g. (Goldberg 
1989, Michalewicz 1996, Eiben 2003, Man 2001) 
and others. A general scheme of a GA can be 
described by following steps:  

1. Initialisation of the population 

2. Evaluation of the cost function for entire 
population. 

3. Selection of parent chromosomes. 

4. Crossover and mutation of the parents → children. 

5. Completion of the new population from the new 
children and selected members of the old population. 
Jump to the step 2. 

 

The chromosomes are linear strings, whose items 
(genes) represent in our case the designed controller 
parameters. Because the controller parameters are 
real-number variables and in case of complex 
problems the number of the searched parameters can 
be large, GA’s with real-coded chromosomes have 
been used. 

Without loss of generality let us consider of a simple 
PID controller, described in the time domain by the 
equation 

dt
tdeDdtteItPetu )()()()( ++= ∫         (2) 

where P∈R, I∈R, D∈R are the proportional, integral 
and derivative gains respectively. The chromosome 
representation in this case can be in form 
ch={P,I,D}. Note, that for an other controller type 
with the parameters c1, c2, ... , cq the appropriate 
chromosome is a linear string  

ch={c1, c2, ... , cq}. Before each simulation, the 
corresponding chromosome (genotype) is decoded 
into controller parameters of the simulation model 
(phenotype) and after the simulation the performance 
index is evaluated.  

In Figure 2 a PID controller evolution using (1) is 
demonstrated, where after some generations the best 
solution from the current population (its closed loop 

e

Controller Process 
+ 

     - 

u r 
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step response) is plotted. As after 100 generations the 
solution doesn't change considerably, the GA run can 
be terminated. In Figure 3 the cost function (1) 
convergence during three independent GA-runs (cost 
function value vs. generation number) is depicted. 
Note, that in case of complex system designs the 
controller design based on dynamic process 
simulations can be a multi-modal and a time-
consuming problem, where often a good sub-optimal 
solution can be sufficient. The question about the 
GA-design procedure convergence is similar to other 
numerical GA-based search/optimisation problems 
(Goldberg 1989, Michalewicz 1996). The 
convergence rate depends on the search space size 
and dimension, on the GA structure and on the used 
genetic operations. 

3 CHOICE OF THE EVOLUTION CRITERION 

Consider that the GA has found the optimal (sub-
optimal) solution for a defined performance index in 
the user-defined search space of controller 
parameters. The choice of the performance index has 
a fundamental influence on the closed-loop 
dynamics. Normally, using (1) or (2) brings about 
fast control responses with small overshoots between 
2-5% (Figure 4). For various objectives different 
performance indices can be used (Sekaj 2003, Sekaj 
2005b). If it is necessary to reduce overshoot or to 
damp oscillations, it is recommended to insert in the 
integral additional terms, which include absolute 
values of the first order or also the second  order 
derivatives of the control error 

( )∫ ′′+′+=
T

dtteteteJ
0

)()()( γβα   (3) 

and to increase β and γ  with respect to α, where 
α β γ, , are weight coefficients. Note, that the control 
error derivatives can be replaced with the absolute 
values of output (or output derivatives |y'(t)|, |y''(t)|). 

In the discrete-time case the integral is replaced by 
the sum and the derivatives by the differences. Good 
results can be obtained also using the performance 
index as follows 

stJ )1( ααη −+=    (4) 

where η is the overshoot, ts is the settling time and 
10 <<α  is the weight coefficient. Tracking the 

reference variable  yr(t)  is achieved via minimizing 

∫ −= dttytyJ r
2))()((  

Control energy minimization can be achieved using 
performance indices of the type 

∫ −+= dttuteJ ))()1()(( 22 αα  

where u is the control variable. Closed-loop step 
responses for a particular closed-loop under a PID 
are in Figure 4. The following criterions have been 
used: a) IAE (1); b) criterion (3) with 

0,2,3 === γβα ; c) criterion (4) with 8.0=α ; d) 
criterion (4) with 2.0=α . 
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Figure 2  Evolution of the PID controller parameters 
after 1, 10, 20, 30 and 100 generations 
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Figure 3  Cost function convergence of the PID 
controller design procedure for three independent 
GA-runs 

An universal performance index, which combines 
some of the above criterions is as follows 

( )∫ ′++′+=
T

dttututeteJ
0

)()()()( γβα  (5) 

where e' is the control error derivative, u is the 
control variable and u' is its derivative. This 
performance index includes oscillation damping 
(increasing α), minimization of the absolute value of 
the control signal u (increasing β) and minimization 
of control signal change u ′  (increasing γ). In Figure 
5 the step responses with various weight constants of 
the criterion (5) are depicted. The controlled system 
is 
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Figure 4 Closed-loop step responses using various 
performance indices 

The weight constants with the obtained PID 
coeficients for 5 various cases are in Table 1.  

 

Table 1   Evolution results of the PID controller 
design 

 α β γ P I D 

1 0 0 0 26.31 8.94 30.26 

2 1 0 0 8.70 3.15 6.59 

3 10 0 0 6.45 2.19 4.41 

4 1 0 1 1.56 0.72 0 

5 1 0 0.5 1.56 0.71 0 

 

 

Remark about the stability: Due to the applied 
performance index minimisation, the closed-loop 
stability is an implicit attribute of each solution. 
During the evolution, unstable chromosomes are 
eliminated because of their high value of 
performance index and the solution is directed into a 
stable parameter region. However, if necessary, it is 
possible to include a stability test into each fitness 
evaluation. Unstable individuals can additionally 
obtain high penalty values. 
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Figure 5  Time responses obtained with various 
criterion function settings (according Tab.1) 

4 MULTIOBJECTIVE CONTROLLER DESIGN 

In solving many practical design problems not just a 
single optimisation objective is considered. 
Moreover the particular objectives are in 
contradiction (e.g. performance / energy 
consumption, etc.). A common way of solving multi-
objective tasks is using a single cost function 
consisting of multiple parts 

nn fwfwfwJ +++= ...2211  

where each part fi, i = 1, ..., n  represents an objective 
with some weight wi (as (3),(4),(5) in Section 3). The 
main disadvantage of this method is the high 
sensitivity of the solution to the weight coefficients. 
This can lead to solutions, which do not correspond 
to our primary requirements.  

 

Another way for solving multi-objective problems is 
the use of the Dominance principle, which is the 
search for the Pareto-optimal set of solutions. This is 
an effective way to overcome the above mentioned 
problem. Consider a minimisation problem. 
According to the Dominance principle the individual 
x dominates the individual y (or the individual  y is 
dominated by the individual x) if 

ni ,...,2,1=∀  ;        and
 

)()( yfxf ii ≤
nj ,...,2,1=∃  ;    , )()( yfxf jj <

where  n is the number of objectives and fi , 
i=1,2,...,n is cost function corresponding to the i-th 
objective. In case of maximization tasks the 
formulation is analogical. A set of individuals, which 
are non-dominated by another individual are 
members of the Pareto-optimal set of solutions.   
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Now the objective is not to find a single solution, but 
as much as possible non-dominated solutions. For 
these it is not possible to decide, which one is better. 
Each user will select the individual, which is the best 
with respect to his requirements. Based on the above 
approach the search algorithm (GA) is as follows: 

 

1. Generating the initial population. 

2. Calculation of all objective functions for each 
individual of the population. 

3. Domination calculation: each individual of the 
population will obtain such a number of "penalty 
points" that corresponds to the number of individuals 
by which it is dominated. The number of penalty 
points represents the final minimized cost function. 

4. Individuals with zero penalty points are stored in 
the current group of non-dominated individuals. 

5. Calculation of the new population (selection, 
crossover, mutation). 

6. Adding the current non-dominated group into the 
new population. 

7. Testing of terminating conditions, jump to Step 2 
or end. 

 

The following terminating conditions can be used: 
satisfaction of the required cost function values (if 
known), performing of the predefined number of 
generations or obtaining a predefined number of non-
dominated solutions.  

 

In case of controller design applications various 
objectives can be considered: integral performance 
indices (Section III), settling time, maximum 
overshoot, oscillation damping, various stability 
measures, gain/phase margin, energy consumption, 
minimization of negative environmental impacts of 
the controlled process operation, etc. 

 

Consider the design of a DC motor speed controller. 
The objectives are good quality of transient 
processes, i.e. over-damped closed loop system with 
short settling time and on the other hand low control 
energy consumption. To fulfil the first objective let 
us minimise the simple integral criterion (1) 

∫=
T

dtteJ
0

1 )(  

The second objective can be represented by 
minimisation of the integral of the input voltage 
square, which is proportional to the input energy 
consumption 

∫=
T

dttuJ
0

2
2 )(  

The results obtained using the algorithm described in 
the Section 4 are depicted in Figure  6 (J2 versus J1).  
All individuals, which have occurred during the GA 
run are marked by "x". The non-dominated solutions 
from the last generation are in the left bottom part of 
the area marked with "o". Detail of the non-
dominated set is depicted in Figure 7. The individual 
marked "Min(J1)" represents the solution with the 
best performance with respect to the objective J1 and 
the individual marked "Min(J2)" represents the best 
solution with respect to the objective J2. The 
individual marked "Compromise" is a selected trade 
off between the both previous extremes. Step 
responses for all three selected solutions are depicted 
in Figure 8 and Figure 9. 

5 CONCLUSION 

The presented GA-based controller design approach 
is minimising such a cost function, which comprises 
system simulation and performance index evaluation. 
In this way the controller design is transformed into a 
search problem in a n-dimensional parameter space. 
The subjects of design/optimisation may be complex 
systems with control structures of various types. The 
main (and practically the only) limitation of this 
approach is the computational time, which is higher 
in comparison to conventional approaches. In the 
presented multiobjective approach it is possible to 
consider more than one objective. The proposed GA-
based approach has been in our department 
successfully applied for the design of various types 
of controllers for various system types (linear, non-
linear, stable, unstable, non-minimum phase, SISO 
and MIMO) in simulation as well as in real-time 
applications. The design approach is powerful, 
robust, widely applicable and simple to use. 

 
Figure 6  Individuals occurred during the solution 

x - all individuals, o - non-dominated individuals 
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Figure 7  Set of non-dominated individuals - detail 
(Pareto-optimal set) 
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Figure 8  Time-responses of three selected 
individuals 
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Figure 9  Control variable time-responses of the three 
selected individuals 
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