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Abstract: This work deals with the problem of finding a global solution for parameter
estimation problem of a dynamic system described by a set of ordinary differential
equations (ODE). Deterministic spatial branch and bound optimization algorithm is
used to find the solution of problem. Upper bound is generated by sequential approach
to dynamic optimization problem. Lower bound is provided by a solution of convex
relaxation of the original problem. Selected examples from chemical engineering are
solved and the resulting solution is discussed.
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1. INTRODUCTION

Human science is now so developed that the op-
timization problems became the part of daily life
of every researcher, developer or designer in en-
gineering, computational chemistry, finance and
medicine amongst many other fields. This is es-
pecially true if we speak about parameter estima-
tion, when we must find the best possible repre-
sentation of phenomena (processes) happening in
real world, plant or apparatus.

Due to the fact that processes are usually de-
scribed by set of differential equations, methods of
dynamic optimization must be used to find (local)
solution of optimization of these processes.

For a number of years, researchers have known
that dynamic optimization problems encountered
in chemical engineering applications exhibit mul-
tiple local optima. This property, which can be
attributed to non—convexity of the functions par-
ticipating in most chemical engineering models,
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implies that standard local optimization meth-
ods will often yield suboptimal solutions to
problems. Global optimization algorithms based
on the deterministic approach such as general-
ized Benders decomposition (Geoffrion (1972),
Floudas and Visweswaran (1990) and Bagajew-
icz and Manousiouthakis (1991)), branch and
bound (Soland (1971), Ryoo and Sahinidis (1995)
and Adjiman et al. (1996)) and interval analy-
sis (Ratschek and Rokne (1988), Vaidyanathan
and El-Halwagi (1994) and Han et al. (1997))
guarantee the finite e-convergence (convergence
to the global optimum in finite computation steps
for a given finite error tolerance) and the global
optimality of the obtained solution.

Spatial Branch-and-Bound (sBB) algorithms are
the extension of traditional BB algorithms to con-
tinuous solution spaces. They are termed “spatial”
because they successively partition the Euclidean
space where the problem is defined into smaller
and smaller regions where the problem is solved
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recursively by generating converging sequences of
upper and lower bounds to the objective function
value. In this work a deterministic sBB global
optimization algorithm is used for global dynamic
problems with set of first—order parameter de-
pendent differential equations in the constraints,
where upper bound is obtained from solution of
original dynamic optimization problem using se-
quential approach. A possible solution with si-
multaneous approach was described in our pre-
vious work (Cizniar et al., 2009). Lower bound is
computed by solving the convex relaxed original
problem with variable bounding proposed by Pa-
pamichail and Adjiman (2004). Strategy of con-
stant bounds is used instead of affine or a—BB
bounds (proposed by Papamichail and Adjiman
(2002)) due to its usefulness and relative simplic-

ity.

The main purpose of this paper is to demonstrate
utilization of sBB global optimization algorithm,
to apply successive way to obtain bounds on
variables participating on convex relaxation of
original problem and to solve chosen examples
relevant to chemical engineering.

The paper is organized as follows. Section 2 gives
the mathematical formulation of the problem
studied. It is a non—convex minimization problem
with an initial value problem (IVP) for a set of
first—order parameter dependent differential equa-
tions in the constraints. Section 3 discusses convex
relaxation of original non—convex dynamic opti-
mization problem. Finally in Section 4 selected
examples for parameter estimation problems are
solved and discussed.

2. PROBLEM STATEMENT

In this section we describe original non—convex
dynamic optimization problem. Its solution gives
an upper bound for sBB algorithm.

2.1 Dynamic Process Model

The processes considered is described by the fol-
lowing set of first—order parameter dependent,
typically non—linear, differential equations

x(tvp):f(tvm(tvp)J)) Vtel= [tO»tN] (1)
where t € 7 C R, denotes time as the independent
variable and N is the number of points considered
additionally to the initial point tg, p C R" is
the vector of parameters of the process, x C
R"™ stands for the vector of state variables. The
function f is such that f: Z X R" x RP — R" .
The solution z(t, p) of this set satisfies the initial
condition

2(to,p) = o(p) (2)
where the function xg is such that zg : R" — R".
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2.2 Process Constraints

Inequality constraints can be imposed at discrete
time points, ¢;. These are point constraints of the
form

9i(x(ti, p),p) <0

where the functions ¢;,7 = 0,1,..., N, are such
that g; : R® x R" — R% . Of course any equality
point constraint can be replaced by two inequality
point constraints. Lower and upper bounds are
imposed on the parameters p:

ph<p<pY (4)

i=0,1,...,N (3)

2.3 Objective Function

The objective function for a dynamic optimization
problem can be expressed in terms of the values
of the state variables at discrete points and of the
parameters

J(m(ti,p),p;izo,l,...,N) (5)

The function J is such that J : R*N+D x R™ —
R. Integral terms that may appear in the objective
function can always be eliminated by introducing
additional state variables and equations in the set
of differential equations.

2.4 Dynamic Optimization Problem

The formulation of the dynamic optimization
problem studied is given by

min J(x(ti,p),p;i:O,l,...,N)
P

s.t. z(t,p) = f(t,x(t,p),p) Vtel
z(to, p) = wo(p) (6)
gi(m(ti,p),p)gO 1=0,1,...,N
ph <p<pY

The following assumptions are made on the prop-
erties of the functions in (6):

. J(x(ti,p),p; 1=0,1,..., N) is once continu-
ously differentiable with respect to z(;, p),
i=0,1,...,N and p on R"N+D x R".

e each element of g; (m(ti,p),p),i =0,1,...,N,
is once continuously differentiable with re-
spect to x(t;,p) and p on R™ X R".

e each element of f(¢,z,p) is continuous with
respect to ¢ and once continuously differen-
tiable with respect to z and pon ZxR™ X R".

e cach element of xg(p) is once continuously
differentiable with respect to p on R".

e f(t,x,p) satisfies a uniqueness condition on
IxR"XTR".

The sequential approach is used for the solution of
this dynamic optimization problem. The gradients
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with respect to p can be evaluated using the
parameter sensitivities. These are given from the
solution of the sensitivity equations (Vassiliadis
et al., 1994ab). Due to the generally non—convex
nature of the functions used in the formulation of
the dynamic optimization problem, the solution
obtained using the sequential approach and a
standard gradient—based NLP technique, is a local
optimum and therefore provides an upper bound
for the global optimum solution.

3. CONVEX RELAXATION OF PROBLEM

As it was mentioned before, BB algorithms are op-
erating with concept of relaxations. In this section
we briefly describe a possible convex relaxation
presented in Papamichail and Adjiman (2002) of
the non—convex dynamic optimization problem
that was introduced in the previous section. The
solution of this convex relaxation problem pro-
vides a lower bound for the global optimum of
the non—convex problem. First, we reformulate the
NLP problem (6) as

min J(Z, p)
&,p
s.t. gi(Z4,p) <0 i=0,1,...,N
ﬁi:x(ti,p) iZO,l,...,N (7)
pe "]
where % is a vector of new added optimized
variables and values of z(t;,p),i =0,1,..., N are
obtained from the solution of the IVP
&= f(t,z,p) Vtel

(8)

z(to,p) = wo(p)

3.1 Bounding Variables and Solution of IVP

It is very useful and in many cases essential to
have bounds on variables, which are participat-
ing in optimization problem. For case of prob-
lem (7) bounds on parameters p are user—defined
and bounds on variables Z; can depend just on
bounds of these parameters. Within the genera-
tion of bounds on &;, which will definitely replace
the presence of dynamic information in (7), re-
laxation of dynamic information will be formed.
The dependence of convex relaxations on vari-
able bounds is a common feature of deterministic
global optimization algorithms. Since state vari-
ables appear in the non—convex objective function
and constraints, a method for the derivation of
rigorous bounds on these variables at point ¢;,i =
0,1,..., N, is needed. This issue can be resolved
by generating bounds on the solution space of
the dynamic system. Lower and upper parameter
independent bounds can be determined for the so-
lution z(¢,p) of IVP (8) such that z(t) < z(t,p) <
z(t), ¥p € [pt,pY], Vt € T where the inequalities
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are understood component—wise. Considering the
assumptions and theorem given in Papamichail
and Adjiman (2002) it can be assumed that, if f
is continuous and satisfies a uniqueness condition
on Iy = (tg, tn] x R™ x [pr, pV], then the solution
z(t) and Z(t) of the following IVP satisfies

ik = inf fk(tvglm [gk—wfik*]v [pL7pU])
VteT k=1,2....n

x(to) = inf zo([p", p"])

iy, = sup fr(t, Tk, [2p_. Tu—], ", DY)
VteZ k=1,2,...,n

Z(to) = sup zo([p", p])

9)

These IVPs provide a practical procedure to con-
struct bounding trajectories for IVP (8) if the
appropriate continuity and uniqueness conditions
are satisfied. Natural interval extensions are used
as inclusion functions (Nickel, 1986).

3.2 Convex Relazation of Dynamic Information

The set of equalities in (7) can be written as two
sets of inequalities

Z; —x(ti,p) <0
x(ti,p) — 2 <0

Their relaxation is given by

Zi+ & (ti,p) <0 i=0,1,...,N  (11)

P(tip)—#; <0  i=0,1,....N  (12)

where & denotes the convex underestimator of the
specified function and x~ (¢;,p) = —x(t;, p). Thus,
the function Z(t;, p) is a convex underestimator of
x(t;,p) and the function —Z~ (¢;,p) is a concave
overestimator of x(¢;,p). The generation of these
under and overestimators is the most challenging
step in the construction of the convex relaxation
of the problem because no analytical form is
available for z(t;,p). The constant bounds are
given by inequalities

These inequalities are valid convex underesti-
mators and concave overestimators for xz(t;,p)
and therefore they can replace inequalities (11)
and (12). These bounds do not depend on the
parameters p themselves, but do depend on the
bounds on p.

3.3 Convex Relazation of the NLP

After underestimating the objective function and
overestimating the feasible region, the convex re-
laxation of the NLP problem (7) is given by
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min J(Z,p, w)

z,p,w
s.t. §i(Z4, p,w) <0 1=0,1,...,N
@(tl) <z Sj?(tl) 1=0,1,...,N (14)
C(z,p,w) <0
pe " pY]

where J denotes the convex underestimator of the
specified function, C denotes the set of additional
constraints arising from the convex relaxation of
non—convex terms of special types and w denotes
the vector of new variables introduced by this
relaxation.

4. EXAMPLES

The global optimization algorithm presented in
Papamichail and Adjiman (2004) was imple-
mented using MATLAB 6.5. To obtain the bounds
on variables we used the constant bounds ap-
proach (see section 3.2). This technique is rela-
tively simple, but suitable for the examples solved
in this work.

Solution of NLP problems was found using func-
tion fmincon. It is an implementation of a general
NLP solver, provided by the Optimization Tool-
box, uses either a subspace trust region method,
based on the interior-reflective Newton method,
or a sequential quadratic programming method.
The MATLAB function ode45 was used for the
integration of IVPs. It is an implementation of
a Runge-Kutta method based on the Dormand—
Prince pair. The interval calculations needed were
performed explicitly using interval arithmetic. In-
terval arithmetic computations are shown for each
example. First example is a simple dynamic opti-
mization problem. The next three examples are
parameter estimation problems in chemical kinet-
ics modeling. All the case studies were solved on
a workstation Dell Optiplex GX250, 3 GHz Intel
Pentium 4 CPU with 1GB RAM.

4.1 Ezample 1: Irreversible Liquid—phase Reaction
of the First Order

First example is a parameter estimation problem
with two parameters and two differential equa-
tions as the constraints. It was published in Espos-
ito and Floudas (2000) as well as in Papamichail
and Adjiman (2002). It involves a first—order irre-
versible isothermal liquid—phase chain reaction.

AMBRC

The problem can be formulated as follows:
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10 2
min Y03 (@it =ty ki ko) — (L))

k1,k2

j=1 =1
s.t. o1 = —kixq Vt € [0, 1]
Ty = k121 — ko 29 Vit € [0, ].]
xl(tZO,kl,kg) =1 (15)
xg(t = O,kl,kz) =0
0<k <10
0<ky <10

where x1 and 9 are the mole fractions of compo-
nents A and B, respectively. k1 and ks are the
rate constants of the first and second reaction,
respectively. 2P (t;) is the experimental point for
the state variable 7 at time ¢;. The points used are
taken from Esposito and Floudas (2000).

Applying the procedure defined by (9) leads to the
expressions

iy = inf(— [k, kY] x z,) Vteo,1]
Lig = infxlo([pL>pU])
QQ = inf([kfv k?] X [glvfl]_ (16)

—[ky kY] X ap) VEe0,1]
Log = infx20([PL»pU])

i =sup(—[kF KV x 7,) Vte€]0,1]
T10 = sup z10([p”, pV])
&y = sup([ky, kT'] X [z, 71]— (17)
—[kg, kY] x T2) WVt € [0,1]
Tao = sup z20([p", p"])
which using the interval arithmetic calculation
results in four bounding IVPs

i, =—kVz, Vtel0,1]

Zp=1

1
iy = ktz, —kJz, Vte[0,1] (18)
Ty =0
fl = —k‘lL.fl Vt € [0, 1]
T1o =1
: 1
Ty =KV —kkzy Vte|0,1] (19)
Tog =0

Solutions of these ODEs represent a convex un-
derestimator and concave overestimator of the
relaxed problem solution space.

The global optimization algorithm converged with
the relative convergence criterion €, set to 1 x
1072. The global optimum parameter found was
k1 = 5.0035 and k2 = 1.0000 and the value of the
objective function for the global optimum param-
eter was equal to 1.1856 x 1076, 3436 iterations
were necessary for convergence of the algorithm
in 2632 seconds. The experimental points and
trajectories of state variables for global optimum
are shown in Fig. 1. The upper bound calculation
was performed once every 100 iterations.

Results show that for this problem with simple
dynamics and only two parameters, algorithm is
efficient and quite fast while we need less than one
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Fig. 1. Experimental points and state variable tra-
jectories for the globally optimal parameters
in Example 2

hour to obtain a solution. This is because data
was generated using integration of system with
parameter values k£ = [5, 1] with no error added.

4.2 Ezxample 2: Catalytic Cracking of Gas Oil

This example is a parameter estimation problem
with three parameters and two differential equa-
tions in the constraints. It appears in Esposito
and Floudas (2000) and Papamichail and Adjiman
(2004). Tt involves an overall reaction of catalytic
cracking of gas oil (A) to gasoline (Q) and other
products (S):

AR Q

Qs

Al

The problem is formulated as follows:

20 2
i (t =t k1, ko, ks) — 25P(t5))?
Jmin ;;(xz( iy k1, ko, k) — 270 (L))

st. @1 = —(k1 +k3)z3 Vit €[0,0.95]
By = kyx? — kpxy Vit €10,0.95]
xl(t: O,kl,kg,kg) =1 (20)
xg(t = O,kl,kg,kg) =0
0<k <20
0<ky <20
0<k;<20

where x1 and x5 are the mole fractions of compo-
nents A and Q, respectively. k1, ko, and k3 are the
rate constants of the respective reactions. x;(t;)
is the experimental measurement for the state
variable 7 at time ¢;. The measurement points used
are again taken from Esposito and Floudas (2000).

Applying the procedure defined by (9) and using
the interval arithmetic calculation resulted in fol-
lowing bounding IVPs
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Fig. 2. Experimental points and state variable tra-
jectories for the globally optimal parameters
in Example 3

iy = —(kY + kY)a? vt €0,0.95]

zyp=1

iy = ka2 — kY, V€ [0.95] (21)
Tyg =0

i = —(kF + k)72 vt €10,0.95]

T19 =1

G0 = K2 — kbx, Vte[0,0.95] (22)
Tog =0

Solutions of these ODEs represent a convex un-
derestimator and concave overestimator of the
relaxed problem solution space.

The globally optimal parameters are k; = 12.2111,
ko = 7.9764, and ks = 2.2259 with the corre-
sponding value of the objective function equal to
2.655 x 1073, when convergence criterion is set
to 1 x 1072, The experimental points and the
state variable trajectories for the global optimum
are shown in Fig. 4.2. Algorithm converged after
8497 iterations and 13637 seconds of CPU time.
The upper bound calculation was performed once
every 100 iterations.

In this example with non—linear dynamic system
and three parameters to be estimated, rise of
the computational effort is significant. This can
be contributed to the higher complexity of the
problem and also to small amount of random
error added to the data integrated for parameters
k = [12,8,2], which is evident from value of the
objective function in optimum.

4.3 Ezxample 3: Reversible Liquid—phase Reaction
of the First Order

The third example is a parameter estimation prob-
lem with four parameters and three differential
equations. It appears in Esposito and Floudas
(2000). It involves a first—order reversible isother-
mal liquid—phase chain reaction.
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k1 ks
A=2B=C
ko k4

The problem can be formulated as follows:

20 3
. X 2
krlnjcr;, g E (i (t = tj,k17k27k3,k4) —x? p(tj))
ks, k4 Jj=11i=1

s.t. &1 = —kix1 + kazo Vit € 10,1]
By = k1xy — (ko + k3)xo + ka3
vt € [0,1]
T3 = kaTo — k4T3 vt € [0,1]

xl(t = 0,k1,k2,k3,k4) =1 (23)
xg(t = 0,k1,k2,k3,k4) =0

xg(t = 0,/€1,k2,k3,k4) =0

0<k <10

0<ky<10

10 < k3 <50

10 < ky <50

where x1,x2, and z3 are the mole fractions of
components A, B and, C, respectively. k1, k2, and
ks are the rate constants of the first and second
reaction, respectively. x;(t;) is the experimental
point for the state variable ¢ at time ¢;. The points
used are taken from Esposito and Floudas (2000).

Applying the procedure defined by (9) leads to the
expressions which using the interval arithmetic
calculation resulted in six bounding IVPs

iy = —kz + ke, Vie(o,1]

Zyp=1
By = ki, — (kY + kY )zy+
+hizy Vte[0,1] (24)
Loy =0
iy = k¥a, —k{xy VWt €[0,1]
239 =0

j?l = —le.Tl —l—k‘gi‘g Vit € [0,1]

T10 =1
Ty = kVa, — (kY + k) 2o+
+kVz5 Yt e 0,1] (25)
Tog =0
i3 =kYzo — kiz3 Vte]0,1]
T30 =0

Solutions of these ODEs represent a convex un-
derestimator and concave overestimator of the
relaxed problem solution space.

The experimental points and trajectories of state
variables for global optimum are shown in Fig. 3.

Algorithm converged within the relative conver-
gence criterion €, set to 1 x 1072. Global optimum
found was with parameter values k; = 3.9990,
ko = 1.9981, ks = 40.0000 k4 = 20.0007, and
the value of the objective function for the global
optimum parameter was equal to 1.1856 x 1076.
Algorithm converged after 44600 iterations and
142380 seconds of CPU time. The upper bound
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Fig. 3. Experimental points and state variable tra-
jectories for the globally optimal parameters
in Example 4

calculation was performed once every 100 itera-
tions.

Despite that there was no random error added to
integrated data for parameters k = [4,2,40, 20]
and system with linear dynamic embedded was
studied, there is an enormous increase of compu-
tational time needed (almost 2 days). According
to examples discussed previously the only expla-
nation of this lies in augmented number of param-
eters together with extended parameter ranges.

5. CONCLUSION AND FUTURE WORK

Main purpose of this work was to present applica-
tion of a global optimization algorithm suitable
for parameter estimation problems of dynamic
systems. A deterministic sBB global optimization
algorithm was employed. Local solutions produced
using the sequential approach were used as an up-
per bound on the global minimum of the objective
function value. Lower bounds were provided from
the solution of a convex relaxation of the problem
on subregions considered in the BB algorithm.
This convex relaxation was achieved after defining
a convex underestimation of the objective function
and a convex overestimation of the feasible region.

We implemented the algorithm proposed by Pa-
pamichail and Adjiman (2004) and used it to solve
selected examples relevant to chemical engineer-
ing. The principle of constant bounds is very use-
ful and also quite simple. Although there are some
other few methods (affine bounds, aBB—bounds)
already developed, we focused on this approach in
the work. Explicit interval arithmetic calculations
were used and solution of IVP (9) was performed
once at each node of BB tree. Results show that
the method of constant bounds for larger prob-
lems results in enormous rise of the number of
iterations and computation time needed to obtain
the global optimum. These results suggest that
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future work should be focused on larger systems
with utilization of different bounding strategies.
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