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Abstract: The aim of this paper is to present a new process identification method suit-
able for automatic tuning of PID controllers. The method combines two experiments
together. The first experiment is a process static gain identification and the second
is a relay experiment which identifies one point of the process frequency response.
Moreover a constant-phase filter is used in the relay feedback loop to get a frequency
response sample with phase shift different from −180 degrees. The constant-phase
filter parameters are tuned during the first experiment part.
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1. INTRODUCTION

The classical control theory says that process
controllers can be designed on the base of a few
points of the process frequency response. In this
direction, the limit method is the popular Ziegler-
Nichols frequency method (Ziegler and Nichols,
1942) which uses only one so called ultimate point.
The relay identification experiment became one
of the most popular in process control. Although
the consequential tuning method is not very re-
liable (Schlegel, 2002) the tradition to identify a
frequency response sample with phase shift -180
degrees survives over the decades (Luyben, 1987;
C.C.Hang et al., 2002; Huang and Chen, 1996).

The processes that are consistent with the infor-
mation given by one point of frequency response
generate a wide set of models. It is necessary for
controller design to reduce this set. One way is to
add more points of the process frequency response
(Yu, 1999), (Li et al., 1991), (Leva, 1993), (Tan
et al., 1999). Extended identification methods are
based on enhanced or repeated relay test. A bias

relay, a cascade relay, a parasitic relay and other
relay modifications can be included in this identi-
fication methods group. The big disadvantage of
these methods are their time consuming experi-
ments. Other wide identification methods group
is based on Fast Fourier Transformation (FFT)
(Wang et al., 2003). It is shown in (Mertl and
Schlegel, 2007) that the knowledge of two points
completed with some additional a priory assump-
tions on monotonicity is sufficient for accurate
design of PID controller. Moreover the second
point can be a process static gain in the special
case.

This paper presents a new identification method
completely different from above mentioned ones.
The method combines two experiments together.
The first experiment is a process static gain iden-
tification using pulse or step input signal. The
second is a relay experiment which identifies one
point of process frequency response. Moreover a
constant-phase filter is used in the relay feed-
back loop to get a frequency response sample
with phase shift different from −180 degrees. The
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constant-phase filter parameters are tuned after
the first identification experiment part. The pre-
sented identification method is designed according
to the compact autotuning controller needs.

The paper is organized as follows: In Section 2,
some basic properties of relay feedback and a
constant phase filter based on reference fractional-
order integrator are reminded. Section 3 describes
the new static gain identification method. Illus-
trative examples are given in Section 4. Section 5
contains concluding remarks and ideas for future
work.

2. ONE POINT OF PROCESS FREQUENCY
RESPONSE IDENTIFICATION

2.1 Relay feedback

Relay feedback has attracted significant research
attention for more than century. The classical
work of Tsypkin (Tsipkyn, 1984) on analysis sum-
marizes the progress till 1960s. In 1950s, relays
were mainly used as amplifiers but such applica-
tions are obsolete now, because there is the big
development of electronic technology. In 1960s,
relay feedback was applied to adaptive Control.
In 1980s Åström and Hägglund introduced their
well known work in which they successfully ap-
plied the relay feedback method to auto-tune PID
controllers for process control. Since then many
researchers have come up with novel results and
new tools have been developed.

The main advantages of the relay feedback are:

(1) It is a closed-loop test. Therefore the process
will not drift away from the operating point.

(2) For the processes with a long time constant
it is a more time-efficient method than con-
ventional step or pulse testing.

(3) It identifies the process around the important
frequency, for ideal relay at the ultimate
frequency with the phase shift −180o. When
we use an appropriate filtr, we can change the
phase shift to another more proper value, e.g.
for PID controller −135o.

The relay feedback system is the feedback loop
with an ideal (on-off) relay, see Fig. 2 without
the adaptive filtr. Consider a relay of magnitude
h is inserted in the feedback loop. Initially, the
process input u(t) is increased by h. As the output
y(t) starts to increase, the relay switches to the
opposite value u(t) = −h. The close-loop system
may start to oscillate with the period PU and
the phase lag is −180o. The period PU of the
limit cycle is the ultimate period. The ultimate
frequency ωU is given by

ωU =
2π

PU
. (1)

Using the Fourier series expansion, the periodic
u(t) can be written as

u(t) =
4h

π

∞∑

n=0

sin((2n + 1)ωt)
2n + 1

. (2)

The amplitude a of the process output y(t) can
be considered to be the result of the primary
harmonic of the relay output. Therefore, the ulti-
mate gain can be approximated as (Åström and
Hägglund, 1984)

KU =
4h

πa
, (3)

where h is the height of the relay and a is
the amplitude of oscillation. With ideal relay, a
small amount of noise can make the relay switch
randomly. By introducing hysteresis, the noise
must be larger than the hysteresis width to make
the relay switch. For the relay with hysteresis,
the frequency response point corresponding to the
ultimate gain is transformed to another one which
can be approximated as

G(jω) = −π
(√

a2 − ε2 − jε
)

4h
, (4)

where h is the height of the relay, a is the am-
plitude of oscillation and ε is the relay hysteresis
width.

Further, we use this technique to compute the
amplitude of the process frequency response point.
The phase will be determined by a constant-phase
filter inserted in the loop.

2.2 Constant-phase filter

The relay identification of sample with arbitrary
phase shift can based on relation

argP (jωU ) + argF (jωU ) = −180 [deg], (5)

where P (s) is the process, F (s) is the suitable
filter added to the relay feedback and ωU is the
frequency of steady closed loop oscillations.

One way to obtain the frequency sample with
arbitrary phase shift is to complete the relay
feedback by a special adaptive low-order filter.
The filter parameters are changed during the relay
experiment in order to reach the proper phase
shift. The adaptation makes the experiment very
time consuming namely for slow temperature or
chemical processes.

It follows out from (5), that the filter F (s)
with constant phase shift in the entire frequency
band will speed up identification significantly. For
simplicity, the phase shift of the filter must be
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determined by one user parameter. Fractional-
order integro-differential operator described by
irrational transfer function

F (s) =
1

sm
, m ∈ R (6)

fulfills our requirements. Frequency response of
(6) can be computed by substituting s = jω as

F (jω) =
1

(jω)m
=

1
ωm

(−j)m =

=
1

ωm

(
cos

π

2
m− j sin

π

2
m

)
. (7)

Hence, the frequency response in complex plane
is a straight line going through the origin and the
constant-phase property is ensured. Assuming (5)
and (7) the parameter m is related to required
phase shift ϕ as

m = 2− ϕ/90. (8)

It is impossible to realize the transfer function (6)
precisely in the entire frequency band by finite
dimensional filter. However, if the frequency band
of the filter is restricted to the limited interval
(e.g. 3 decades) then it is possible to design low
order constant-phase filter (Mertl, 2008).

Example 1. Let us choose the following example
to illustrate the proposed method. Consider the
transfer function of the second order plus dead
time system

P (s) =
1

(15s + 1)(s + 1)
e−0.5s. (9)

We design for each phase lag ϕ1 = 135o, ϕ2 = 160o

and ϕ3 = 200o one constant-phase filter (CPF)
on 3 decades. The proper values of the central
frequency ωC are ωC1 = 13.85, ωC2 = 22.28
and ωC3 = 31.46, respectively (Mertl J., 2008).
The phase lags ϕ1, ϕ2 and ϕ3 correspond to the
CPF powers (6) m1 = 0.5,m2 = 0.2222 and
m3 = −0.2222.

The CPF transfer functions designed by the
method presented in (Čech M. et al., 2008) are
given by

F1(s) =

7.285 10−6s4 + 0.006125s3 + 0.4134s2 + 3.402s + 3.108

0.0003158s4 + 0.06627s3 + 1.544s2 + 4.385s + 1
,

F2(s) =

0.000002035s4 + 0.001665s3 + 0.1331s2 + 1.321s + 1.417

0.00001148s4 + 0.005311s3 + 0.2657s2 + 1.649s + 1
,

F3(s) =

0.000002201s4 + 0.001437s3 + 0.1015s2 + 0.89s + 0.762

0.0000003612s4 + 0.0004175s3 + 0.04713s2 + 0.6601s + 1
.
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Fig. 1. (a) The filter output oscilations, (b) process
Nyquist plot with computed points (black star) and
identified points (red star).

Fig. 2. The relay feedback simulation scheme.

The relay loop is shown in Figure 2. The three re-
lay experiments were done with filters F1(s), F2(s)
and F3(s). The resulting oscillations from the
CPF output f(t) are depicted in Figure 1 (a).
The identification is stopped, when the variance
in amplitude between two peaks is less then 1%.
The peaks used to compute the amplitude a are
marked by the red star in Figure 1 (a). The relay
amplitude is set to h = 1. The ultimate gain of the
system P (s) with the CPF can be computed using
equation (4). For the frequency points G(jωU ) it
holds

Gi (jωUi) = Fi(jωUi)P (jωUi) =

= −
(

π

4h

√
a2

i − ε2 − j
πε

4h

)
, i = 1, 2, 3.(10)

Further, the resulting frequency response points
depicted in Fig. 1 (b) are computed as
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Table 1. The results of the illustrative
example.

Amplitude Phase shift [deg] ωU [rad/s]

ϕ1 0.09277863 134.1801 0.6047
ϕ2 0.04967579 159.9205 0.9652
ϕ3 0.01937714 200.333 1.7551

P (jωUi) =
Gi(jωUi)
Fi(jωUi)

, i = 1, 2, 3. (11)

The results are summarized in the table 1.

3. PROCESS STATIC GAIN
IDENTIFICATION

The process static gain identification method is
based on three new process characteristic numbers
(process order independent).

3.1 Process characteristic numbers

Let us assume that the process is described by
first three moments m1,m2, m3 of the impulse
response h(t) defined as

mi =

∞∫

t=0

tih(t)dt, i = 0, 1, 2 (12)

or equivalently by more suitable group of numbers
κ, µ, σ2 defined as follows

κ = m0, µ =
m1

m0
, σ2 =

m2

m0
− m2

1

m2
0

. (13)

The numbers κ, µ, σ2 have the required interpre-
tation as they define the process gain, time scale
and normalized dead time, respectively. Further
it is possible to restrict ourselves to normalized
values for gain and time, thus κ = 1, µ = 1. Then,
process dynamics varies from first-order to pure
dead time depending on one parameter σ2.

3.2 Static gain identification

Identification of static gain from a classical relay
experiment is not possible. There exist different
modifications of relay test to identify the process
static gain, e.g using unsymmetrical relay. These
methods are often unreliable and the identifica-
tion results are not sufficiently precise for the
controller parameters design.

Therefore we decided to extend the standard
relay experiment with the second identification
experiment to get the static gain. Two methods
are suitable from our point of view:

(1) static gain is computed using separate iden-
tification method before the relay test

(a)

(b)

Fig. 3. (a) The step experiment, (b) the pulse experiment.

Fig. 4. Scheme of whole identification experiment
- pulse static gain identification and relay
identification of one frequency characteristic
point

(2) static gain is computed from the starting
phase of the process – when the process
reaches some steady state working point (e.g.
starting from cold state of a temperature
process).

3.2.1. Pulse identification experiment Assume
the process is in steady state. The testing input
signal is a pulse with defined amplitude. The
pulse length is derived from the percentage change
of the process output. It means, that the input
pulse is finished when the process output has been
changed more then user-defined percentage, see
Fig. 5(a). The output is measured till the response
damp out. The first three moments m1,m2,m3

can be computed from this measured impulse re-
sponse. The three process characteristic numbers
κ, µ and σ2 are obtained by (13).

The impulse response h(t) is the system response
to the input Dirac pulse δ(t). Assume the serial
connection H(s) of a zero-order hold (ZOH)

T (s) =
1
s

(
1− e−Ls

)
(14)

and the identified process P (s) in Fig. 3(b). The
impulse response of the system H(s) is identically
the same as the response of the system P (s) to
the rectangular unit pulse of the length L. Con-
sequently, the characteristic numbers κH , µH , σ2

H

of the model H(s) can be computed from the
response of the system P (s) to the rectangular
pulse. For the characteristic numbers κ, µ, σ2 of
the process P (s) it holds (Schlegel et al., 2002)

κ = κH/L,
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µ = µH − L/2,

σ2 = σ2
H − L2/12. (15)

It is not necessary to measure the process response
till the steady state. The measurement is possible
to stop, when the response exponentially declines.
The unmeasured part is then extrapolated by
proper exponential function. This advancement
makes the identification experiment shorter. The
Example 2 illustrates the presented pulse static
gain identification method.

3.2.2. Step identification experiment The sec-
ond type of static gain identification experiment
utilizes the starting movement to a working point.
Primary it is intended for cases, when the process
moves from an idle state to a working point. The
identification scheme is in Fig. 3(a). Assume the
serial connection H(s) of the identified process
P (s) and the first order derivative filter F (s) =
s/(τs + 1). The step response h(t) of the system
H(s) is identically the same as the impulse re-
sponse of the serial connection of the process P (s)
and the filter F (s). For the characteristic numbers
κ, µ, σ2 of the process P (s) it holds (Schlegel et al.,
2002)

κ = κH , µ = µH − τ, σ2 = σ2
H − τ2. (16)

4. EXAMPLES

Let us choose the following examples to illustrate
the proposed method. Both these examples inte-
grate the static gain identification and one point
of the frequency response identification to one
compact identification experiment.

Example 2. (The pulse experiment)
Consider the process transfer function

P (s) =
1

(s + 1)(6s + 1)(8s + 1)2
e−5s. (17)

The identification experiment scheme is depicted
in Fig. 4. The experiment starts with the selected
input pulse amplitude. When the system output
y(t) overgrows the given threshold, the pulse is
terminated. The maximum X1 is measured (Fig.
5(a)). The impulse response measuring is stopped,
when the output y(t) achieves the point X2. The
rest of the impulse response is extrapolated by
proper exponential function (the black curve in
Fig. 5(a)). The computed characteristic numbers
are

κ = 1.0448, µ = 29.8748, σ2 = 250.8933. (18)

In time of the point X2 the loop is closed with
a constant-phase filter and a relay (the switch
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Fig. 5. (a) Pulse and Relay output u(t), system re-
sponse y(t) and filter output fy(t) with marked points
A1, A2, (b) Identified points (red star) a computed
points (black star).

SW in Fig. 4). The central frequency ωfc of
the constant-phase filter is set depending on the
characteristic numbers µ and σ2 (Čech M. et al.,
2008), which are computed from the pulse part
of experiment. The central frequency is ωfc =
5.9. The exact procedure of finding the central
frequency ωfc can be found in (Mertl, 2008).
The resulting frequency response point and its
frequency are computed analogously to Example
1 from the points A1 and A2. The results are

P (jωc) =−0.4031− 0.4084j,

ωc = 0.0927. (19)

Example 3. (The step experiment)
The process model P (s) is the same one (17)
as in the previous example. The identification
experiment phases are clear from the Fig. 6(a).
The experiment starts from zero steady state and
goes to the working point y(t) = 0.6. The output
h(t) of derivative filter F (s) is depicted in Fig.
6(b). As in the Example 2 the two points X1

and X2 are measured and the rest of the impulse
response is extrapolated by proper exponential
function (the black curve in Fig. 6(b)). Then
the process characteristic numbers κ, µ a σ2 are
computed as
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Fig. 6. (a) Pulse and Relay output u(t), system re-
sponse y(t) and filter output fy(t) with marked points
A1, A2, (b) Identified points (red star) a computed
points (black star).

κ = 1.0476, µ = 29.9116, σ2 = 250.1974. (20)

When the process reaches the setpoint value,
the standard relay experiment starts. The values
A1, A2 are measured and using describing function
method the frequency response point is computed.
The constat-phase filter is tuned to identify the
point with the phase lag 200o (Fig. 6(c)). The
identification results are

P (jωc) =−0.2895 + 0.0941j,

ωc = 0.1537. (21)

5. CONCLUSION

In this paper an advanced identification method
was presented. The method combines two experi-
ments together. The first experiment is a process
static gain identification and the second is a re-
lay experiment which identifies one point of the
process frequency response. Moreover a constant-
phase filter is used in the relay feedback loop to
get a frequency response sample with phase shift
different from −180 degrees. The constant-phase
filter parameters are tuned during the first experi-
ment part. Two different static gain identification
methods were presented. Finally, the illustrative
examples were shown. The authors believe that
the proposed technique can be useful in advanced
PID controllers.
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