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Cigler, J., Kučera, V.: Pole-by-Pole Shifting via a Linear-Quadratic Regulation, Editors: Fikar, M., Kvas-
nica, M., In Proceedings of the 17th International Conference on Process Control ’09, Štrbské Pleso,
Slovakia, 1–9, 2009.

Full paper online: http://www.kirp.chtf.stuba.sk/pc09/data/abstracts/050.html



POLE-BY-POLE SHIFTING VIA A LINEAR-QUADRATIC REGULATION 

J. Cigler1 and V. Kučera2, 3

1 Czech Technical University in Prague, Faculty of Electrical Engineering,  
Technická 2, 166 27  Praha 6, Czech Republic 

fax : + 224 916 648 and e-mail : jirkacigler@gmail.com 
2 Czech Technical University in Prague, Faculty of Electrical Engineering,  

Technická 2, 166 27  Praha 6, Czech Republic 
fax : + 224 916 648 and e-mail :kucera@fel.cvut.cz 

3Institute of Information Theory and Automation, Academy of Sciences of the Czech Re-
public, Pod vodárenskou věží 4, 182 08  Praha 8, Czech Republic 

fax : + 286 890 286 and e-mail : kucera@utia.cas.cz 

Abstract: The linear-quadratic regulator and pole placement techniques are considered 
for designing continuous-time multivariable control systems. The proposed method 
combines the two approaches in a particular manner. The weighting matrices for the lin-
ear-quadratic optimization are constructed corresponding to a set of prescribed eigen-
values. In fact, a single eigenvalue (or a pair of complex conjugate eigenvalues) can be 
shifted at a time, leaving the remaining eigenvalues at their original positions. The si-
multaneous knowledge of the weights and the associated closed-loop eigenvalues pro-
vides the designer with the opportunity of interaction in both directions. Thereby eigen-
values located in undesired positions can be shifted to more suitable ones. The area into 
which each eigenvalue can be shifted is described in detail. The allowable shifts may re-
sult in a faster and dampening feedback.  

Keywords: Control system design; continuous-time systems; pole placement; linear-
quadratic regulator; successive eigenvalue relocation. 

 

1 INTRODUCTION 

Linear-quadratic regulation and pole placement (or 
eigenvalue assignment) are two popular methods for 
the design of linear control systems. The former con-
structs a state feedback gain so as to stabilize the 
system and minimize a quadratic cost, which defines 
a relative importance of various state variables and 
control inputs through given weighting matrices. The 
latter then selects a state feedback gain so as to 
achieve a prescribed set of eigenvalues. 

The optimal linear-quadratic design has several nice 
features. In particular, the closed-loop system enjoys 
certain robustness properties provided the weighting 
matrices satisfy certain positivity conditions (Ander-
son and Moore 1990). The transient behavior of the 
closed-loop system, however, is difficult to deter-
mine in advance since there is no simple relation be-

tween the weighting matrices and the closed-loop 
eigenvalues. To get a good transient response, the 
weights are often determined iteratively through trial 
and error. 

Alternatively, pole placement methods have the ad-
vantage that the closed-loop eigenvalues can be spe-
cified directly. Therefore the transient phenomena 
can de addressed in a direct manner. A drawback is 
that many different feedback gains can lead to the 
same pole pattern when the system has several inputs 
and these gains can produce very different transients 
(Antsaklis and Michel 1997). 

Attempts to combine the two methods are of an early 
date. Results exist on optimal control with eigenval-
ues restricted to a specified region of the complex 
plane, namely a semi-plane (Anderson and Moore 
(1969), a disk (Furuta and Kim 1987), a sector 
(Hench et al. 1998), or a hyperbolic region (Kawa-
saki and Shimemura 1983). Optimal control with 

17th International Conference on Process Control 2009
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exactly prescribed eigenvalues is more difficult. 
Various results reflect various approaches to seeking 
a relationship between the weighting matrices and 
eigenvalue locations (Solheim 1972), (Amin 1985), 
(Alexandridis and Galanos 1987), (Seif 1989), (Su-
gimoto and Yamamoto 1989), (Duplaix et al. 1994), 
(Franceschi et al. 1995), (Kučera and Kraus 1999), 
(Kraus and Kučera 1999), and (Cigler 2009).  

This paper is inspired by (Kraus and Kučera 1999) 
and is a presentation of the Master Thesis (Cigler 
2009) in which some of the restrictions of the earlier 
results are relaxed and the regions of target eigen-
value locations are explicitly described. The method 
combines the linear-quadratic optimization with pole 
placement in a particular manner. The weighting ma-
trices of the optimal problem are constructed so as to 
shift a single eigenvalue (or a pair of complex conju-
gate eigenvalues) to a prescribed position while leav-
ing the remaining eigenvalues at their original posi-
tions. The process can be repeated until a desired 
pole pattern is achieved. The simultaneous knowl-
edge of the weights and the associated closed-loop 
eigenvalues provides the designer with the opportu-
nity of interaction in both directions.  

2 PRELIMINARIES 

Let us review the linear-quadratic regulator problem 
and fix the notation to be used throughout the paper. 

Given a linear system 

0),()()( ≥+= ttButAxtx&                               (1) 

we seek a control law 

)()( tFxtu =                                                        

that stabilizes the feedback system and minimizes a 
quadratic cost of the form 

dtRuuQxx TT )(
0∫
∞

+                                           (2) 

for every initial state x(0). The matrices Q and R are 
symmetric with  and > 0. 0≥= CCQ T R

We suppose that the pair (A, B) is stabilizable and the 
pair (A, C) is detectable. Then there exists a unique 
symmetric matrix solution P of the algebraic Riccati 
equation 

01 =+−+ − QPBPBRPAPA TT                        (3) 

such that and the state feedback gain matrix 0≥P

PBRF T1−−=                                                    (4) 

stabilizes the feedback system  

)()()( txBFAtx +=&                                           (5) 

while minimizing the cost (3). 

Consider the Hamiltonian matrix 

⎥
⎦

⎤
⎢
⎣

⎡

−−
−

=
−

T

T

AQ
BBRA

H
1

.                                    (6) 

The eigenvalues of H are symmetrically distributed 
with respect to the imaginary axis. Let T be a similar-
ity transformation that brings H to its Jordan form 
arranged so that 

1

0
0 −

⎥
⎦

⎤
⎢
⎣

⎡
−

= T
J

J
TH T .                                      (7) 

Under the detectability assumption, H has no pure 
imaginary eigenvalue and J can be taken to be a sta-
ble matrix. Decompose T compatibly, 

⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211

TT
TT

T . 

Under the stabilizability assumption, is non-
singular and 

11T

1
1121
−= TTP . 

It follows from (4), (6) and (7) that 
1

1111
1 −− =−=+ TJTBBRABFA T  

so that the closed-loop system matrix (5) is similar to 
the matrix J. 

3 SINGLE EIGENVALUE RELOCATION 

The linear-quadratic regulator imposes the eigenval-
ues of the closed-loop system and, accordingly, it can 
be considered a special case of the eigenvalue as-
signment (or pole placement) design problem. Given 
A and B, the choice of Q and R achieves a certain 
pattern of the eigenvalues of H, which in turn define 
the closed-loop system eigenvalues.  

In order to relate the two design techniques more 
closely, we shall investigate the possibility of relocat-
ing a single eigenvalue at a time, leaving the remain-
ing eigenvalues at their original positions. This can 
indeed be achieved by an appropriate choice of the 
weighting matrices Q and R. For the sake of exposi-
tion, we shall consider the two cases as follows. 

3.1 The case of a real simple eigenvalue 

Let T be a similarity transformation that brings A to 
its Jordan form, 

BTBATTA 11 ~,~ −− ==                                     (8) 

and suppose that A~ is diagonal. The columns of T, 
denoted , are the right eigenvectors of A 
while the rows of 

nvvv ,...,, 21
 1−T , denoted as , are 

the left eigenvectors of A. 

T
n

TT www ,...,, 21

Choose one controllable eigenvalue, say 1λ , of A to 
be shifted and exhibit it in the Jordan form as follows 
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⎥
⎦

⎤
⎢
⎣

⎡

×
=⎥

⎦

⎤
⎢
⎣

⎡
=

Tb
B

J
A 1

1

1 ~,
0

0~ λ
,                               (9) 

where is the first row of matrix and indicates 
the remaining entries. 

Tb1 B~ ×

Take the weighting matrix Q as  

,~)( 11 −−= TQTQ T                                              (10) 

where 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
0~ 1q

Q                                                     (11) 

with  a real parameter, and select the weight-
ing matrix R so that . Make an inspired 
guess that the optimal solution matrix P of the Ric-
cati equation (3) is 

01 ≥q
11

1
1 =− bRbT

,~)( 11 −−= TPTP T                                              (12) 

where 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
0~ 1p

P                                                     (13) 

for some real constant . Substituting (8), (10) 
and (12) into (3) gives 

01 ≥p

0)~~~~~~~~~~( 11 =+−+ −− TQPBRBPPAAPT TT . 

Using (9), (11) and (13), one reduces the Riccati equ-
ation to a scalar equation for p1, namely 

02 111
2
1 =−− qpp λ ,                                         

which can readily be solved. 

Let 1μ be the desired position to which the eigenvalue 
1λ is to be shifted and suppose that 1μ is stable. We 

shall first analyze which positions for 1μ are eligible 
and which matrices Q realize the shift. Consider the 
Hamiltonian matrix (6), 

⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−

⎥
⎦

⎤
⎢
⎣

⎡
=

−−

− TT

T

T T
T

AQ
BRBA

T
T

H
0

0
~~

~~~

)(0
0 11

1 , 

and calculate  

,)(det)(det)(det

000
00

0
10

det

~~
~~~

det)(det

111

1

11

1

1

1

HsIJsIJsI

Js
sq

JsI
s

AsIQ
BRBAsIHsI

T

T

T

T

−+−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

××−
×−

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

=−
−

λ

λ

 

where 

⎥
⎦

⎤
⎢
⎣

⎡
−−
−

=
11

1
1

1
λ

λ
q

H  

and where × indicates the remaining entries. It fol-
lows that all the eigenvalues of A but 1λ remain un-
changed and the shift of 1λ to 1μ requires that 

))(()(det 1 μμ +−=− ssHsI , 

that is, 
2
1

2
1

2
1

2 )( μλ −=+− sqs . 

We conclude that 11 λμ −≤  since . The eigen-
value can only be shifted to the left. Note that when 

1

01 ≥q

λ  is not stable it is shifted to the left of its stable 
image 1λ− . 

To summarize, one can pick any real eigenvalue 
1λ of A and shift it to a desired position 11 λμ −≤  

while keeping the remaining eigenvalues unchanged. 
This can be done by solving a simple linear-quadratic 
regulator problem. The problem has an explicit solu-
tion in terms of the left eigenvector of A that is 
associated with

Tw1

1λ . Taking  

TwwQ 1
2
1

2
11 )( λμ −=  

and selecting R such that in (2), one 
obtains 

11
1

1 =− wBBRw TT

TwwP 1111 )( μλ −= . 

The feedback gain matrix F that accomplishes this 
task is given by (4). 

The process can be repeated for each eigenvalue ad 
libitum. We note, however, that eigenvalues can only 
be shifted to the left due to the special structure of Q. 

3.2 The case of a real multiple eigenvalue 

Now suppose that the controllable eigenvalue of A to 
be shifted, call it again 1λ , is real but generates a Jor-
dan block of size k, 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

kJ

A

1

1

1

1

1
~

λ

λ
λ

OO . 

We claim that the result obtained in Subsection 4.1 
holds in this case also. Indeed, the choice of Q as 

TwwQ 1
2
1

2
11 )( λμ −=  

and that of R such that  leads to the 
solution matrix P of the Riccati equation (3) in the 
form 

11
1

1 =− wBBRw TT
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TwwP 1111 )( μλ −= , 

thus resulting in a shift of 1λ to a position 11 λμ −≤ . 
The remaining eigenvalues of A keep their original 
positions. In particular, 1λ remains an eigenvalue of 
A but it generates a Jordan block of size . 1−k

Therefore, the effect of the feedback gain matrix 

TT wwBF 1111 )( μλ −−=  

on system (1) is to split the Jordan block of 1λ into a 
single eigenvalue 1μ  and a smaller block of 1λ . This 
process can be continued, resulting in a spectrum of  
k eigenvalues kμμμ ,...,, 21  positioned to the left of 
the value 1λ− .  

4 RELOCATION OF A COMPLEX CONJUGATE 
PAIR OF EIGENVALUES 

Suppose that A has a pair of simple, complex conju-
gate eigenvalues, say λλ =1 and λλ =2 , which are 
controllable and are to be shifted simultaneously to 
obtain a new complex conjugate pair of stable eigen-
values μμ =1  and μμ =2 . In this case we have 

⎥
⎦

⎤
⎢
⎣

⎡

×
=⎥

⎦

⎤
⎢
⎣

⎡
=

TB
B

J
A 2

2

2 ~,
0

0~ Λ
,                           (14) 

where 

⎥
⎦

⎤
⎢
⎣

⎡
=

λ
λ

Λ
0

0
2                                                   (15) 

and where TB2 denotes the first two rows of and B~ ×  
indicates the remaining entries. 

The eigenvectors of A that are associated with the 
eigenvalues λλ , (the first two columns of T and the 
first two rows of 1−T ) are denoted as vvvv == 21 ,  
and TTTT wwww == 21 , .  

Take the weighting matrix Q as  

,~)( 11 −−= TQTQ T                                             (16)                          

where 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
0~ 2Q

Q                                                    (17) 

and  is a Hermitian 2 2 matrix parameter. As 
the first two columns of T are complex conjugate of 
each other, Q

02 ≥Q ×

2 will have equal diagonal entries, 

⎥
⎦

⎤
⎢
⎣

⎡
=

qq
qq

Q
12

12
2                                               (18) 

for a real q and a complex q12 that satisfy 12qq ≥ . 

Select the weighting matrix R so that 

22
1

2 :
1

1
 Ω

ω
ω

=⎥
⎦

⎤
⎢
⎣

⎡
=− BRBT                              (19) 

for a complex ω such that .1≤ω  

Make an inspired guess that the optimal solution ma-
trix P of the Riccati equation (3) is 

,~)( 11 −−= TPTP T                                              (20)                           

where 

⎥
⎦

⎤
⎢
⎣

⎡
=

00
0~ 2P

P                                                     (21)                            

for some 2× 2 Hermitian matrix  having equal 
diagonal entries. Substituting (8), (16) and (20) into 
(3) yields  

02 ≥P

0)~~~~~~~~~~( 11 =+−+ −− TQPBRBPPAAPT TT . 

Using (14), (17), (19) and (21), one reduces the Ric-
cati equation to 

022222222 =+−+ QPPPP T ΩΛΛ ,                    (22) 

to be solved for P2. 

For a single eigenvalue, only a left shift is possible. 
The situation is more involved in the case of shifting 
a pair of eigenvalues. The relevant quantities are re-
lated by the 4× 4 Hamiltonian matrix 

⎥
⎦

⎤
⎢
⎣

⎡
−−
−

= TQ
H

22

22
2 Λ

ΩΛ
 

whose eigenvalues are to equal μμ,  and μμ −− , . 
Substituting from (15), (18) and (19), we obtain 

).)(1(Re22

)Re(Re2

0
0
10

10

det)(det

2
12

22
12

224

2
12

24

12

12
2

qqqq

sqqs

sqq
sqq

s
s

HsI

−−+++

+++−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

−
−

=−

ωωλλλ

ωλ

λ
λ

ωλ
ωλ

 

The intended shift calls for 
4224

2 Re2)(det μμ +−=− ssHsI  

and the region into which λλ ,  are allowed to be 
shifted is determined by the equalities 

12
22 ReReRe qq ωλμ ++=                            (23) 

.))(1(

Re22
2

12
22

12
2244

qq

qq

−−+

++=

ω

ωλλλμ
              (24) 
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The shape of the target region for μμ,  depends on λ 
and ω. To visualize the region, we denote μRe=x , 

μIm=y  so as to have  

2224222 )(,Re yxyx +=−= μμ  

and proceed by fixing the values of ω as follows. 

4.1 The case of 1=ω  

In this case Ω is a rank-one singular matrix, which 
happens for single-input systems. Equations (23) and 
(24) read 

12
222 ReRe qqyx ωλ ++=−                           (25) 

12
224222 Re22)( qqyx ωλλλ ++=+ .         (26) 

We observe that these equations are linear in q and 
are to be solved for some real 12qq ≥ .  

Therefore suppose that 12qq ≥ . Then 

qqqq ≤≤≤ 121212Re ωω  

and 

.Re 2
12

2
12

2
12

2 qqqq λλωλωλ ≤≤≤  

In view of that,  

,0Re 12 ≥+ qq ω  0Re22 12
22

≥+ qq ωλλ  

and (25), (26) yield the inequalities 
222 Reλ≥− yx                                                 (27)                                                      

.222 λ≥+ yx                                                   (28) 

Observe that (27) represents either the left half-plane 
interior of the equilateral hyperbola 

222 Reλ≥− yx ,                                                (29) 

or the left half-plane exterior of the conjugated hy-
perbola 

222 Reλ−≤−xy ,                                             (30) 

or the sector delineated by their asymptotes 

                                                    (31) ,, xyxy −≤≥

depending on the sign of . The real and imagi-
nary axes of the above hyperbolas equal the square 
root of

2Reλ

2Reλ .  

Inequality (28) represents the exterior of a circle with 
radius λ , centered at the origin. 

Figures 1 – 4 visualize as shaded areas the attainable 
regions for the eigenvalues  λ = 2j,  λ = – 1 + 2j,  λ = 
– 2 + 2j, λ = 3 + 2j and for |ω| = 1. Note that the 
equality 12qq =  holds along the hyperbolas as well 
as the circle.  

 
Figure 1. The allowable target region for λ = 2j and 
for |ω| = 1. 

 

 
Figure 2. The allowable target region for λ = – 1 + 2j 
and for |ω| = 1. 

 

 
Figure 3. The allowable target region for λ = – 2 + 2j 
and for |ω| = 1. 
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Figure 4. The allowable target region for λ = 3 + 2j 
and for |ω| = 1. 

 

4.2 The case of ω = 0 

In this case Ω is the identity matrix. Equations (23) 
and (24) read 

qyx +=− 222 Reλ                                           (32) 

.2)( 2
12

224222 qqqyx −++=+ λλ               (33) 

We observe that these equations are quadratic in q 
and are to be solved for some real q and a complex 
q12 such that 12qq ≥ . It follows from (32) that q is 
real as long as (33) is satisfied for some q12. Write 
(33) in the form 

.)()( 222222
12 yxqq +−+= λ  

In view of 012 ≥q  this equation implies the inequal-
ity 

.222 λ+≤+ qyx  

Substituting for q from (32), one obtains 

222 Re2 λλ −≤y  

or equivalently 

λ22 Im≤y .                                                      (34) 

On the other hand, the condition 12qq ≥  turns (33) 
into the inequality  

.2)( 224222 qyx ++≥+ λλ  

Substituting for q from (32), one obtains 

λλλλ 224222222 Im4)(2)( ≥+−−+ yxyx .      (35) 

Observe that equation (34) defines a strip of width 
λIm2  along the real axis while equation (35) repre- 

sents  the exterior  of a Cassini oval  with foci  at the 

 
Figure 5. The allowable target region for λ = 2j and 
for ω = 0. 

 

  
Figure 6. The allowable target region for λ = – 1 + 2j 
and for ω = 0. 

 

 
Figure 7. The allowable target region for λ = – 2 + 2j 
and for ω = 0. 
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Figure 8. The allowable target region for λ = 3 + 2j 
and for ω = 0. 

 

points )0,(),( λ=yx and )0,(),( λ−=yx . The shape 
of the Cassini oval depends on the value of 

./)(Im4 22 λλ  Thus the real part of the eigenvalues 
λλ , can only be shifted to the left outside the oval 

while their imaginary parts cannot be increased. 

Figures 5 – 8 visualize the allowable target regions – 
the shaded areas – for the eigenvalues λ = 2j, λ = – 1 
+ 2j, λ = – 2 + 2j, λ = 3 + 2j and for ω = 0. The ovals 
are shown in blue whereas the strip boundaries are 
shown in red. Note that 12qq =  along the blue 
boundary curves while q12 = 0 along the red bound-
ary curves.  

4.3 The case of 10 << ω  

In this case Ω is a general rank-two matrix. The 
shape of the target region can be investigated from 
(23) and (24) while considering the conditions for a 
real q and a complex q12 to exist such that 12qq ≥ . 

Equations (23) and (24) read 

12
222 ReRe qqyx ωλ ++=−                          (36) 

.))(1(

Re22)(
2

12
22

12
224222

qq

qqyx

−−+

++=+

ω

ωλλλ
      (37) 

It follows from (36) that q is real as long as (37) is 
satisfied for some q12. The condition 12qq ≥  turns 
(37) into the inequality  

.Re22)( 12
224222 qqyx ωλλλ ++≥+           (38) 

Now (36) and (38) jointly define regions bounded by 
a family of octic curves parameterized by ω. The 
curves  are shown  for the eigenvalue  λ = – 1 + 2j  in 
Figures 9 – 12 in blue, each figure corresponding to a  

 
Figure 9. The allowable target region for λ = – 1 + 2j 
and for |ω| = 0.5. 

 

 
Figure 10.The allowable target region for λ = – 1 + 2j 
and for |ω| = 0.8. 

 

 
Figure 11.The allowable target region for λ = – 1 + 2j 
and for |ω| = 0.9. 
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Figure 12.The allowable target region for λ = – 1 + 2j 
and for |ω| = 0.95. 

 

particular value of ω. Note that 12qq =  holds along 
the blue curves and that these curves provide an up-
per bound for the real part x of μ. 

On the other hand, the upper bound for the imaginary 
part y of μ is evaluated from (36) and (37) for each x. 
The result is a family of curves parameterized by ω. 
The curves are shown for the eigenvalue  λ = – 1 + 2j  
in Figures 9 – 12 in red, each figure corresponding to 
a particular value of ω. No fixed relationship be-
tween q and q12 holds along the red lines. 

The shaded areas shown in Figures 9 – 12 portray the 
regions into which μμ,  can be assigned. Thus the 
real part of the eigenvalues can be shifted leftward 
while the imaginary part is bounded from above.  

Note that when 0→ω  the attainable regions shown 
in Figures 9 – 12 approach the region shown in Fig-
ure 5. On the other hand, when ,1→ω  we recover 
the singular case, see Figure 2. It is of interest to note 
that the maximal assignable imaginary part in Figures 
9 – 12 grows progressively with ω. The growth is 
slow for 5.0<ω  and is fast only when 9.0>ω . 

To summarize, one can pick any pair of simple, com-
plex conjugate eigenvalues λλ , of A and shift it to a 
desired position μμ,  within the region defined by λ 
and ω through equations (23) and (24), while keeping 
the remaining eigenvalues unchanged. This can be 
done by solving a simple linear-quadratic regulator 
problem. The problem has a solution in terms of the 
left eigenvectors TT ww , of A associated respectively 
with λλ , . Taking a matrix 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

2
2 w

w
QwwQ

T

 

in which the entries of satisfy (23) and (24) and 
selecting a matrix R such that (19) holds, namely 

2Q

[ ] 2
1 Ω=⎥

⎦

⎤
⎢
⎣

⎡ − wwBBR
w
w T

T

T

, 

one obtains 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
= T

T

w
w

PwwP 2  

where P2 is the solution of equation (22). The feed-
back gain matrix F that accomplishes this task is 
given by (4). 

The target eigenvalues can in particular be taken real, 
resulting in a double real eigenvalue μ. This case is 
addressed by setting 0Im == μy in the expressions 
above. 

The process can be repeated for each pair of complex 
conjugate eigenvalues ad libitum. We note, however, 
that their real parts can only be shifted to the left 
while their imaginary parts are bounded from above, 
due to the special structure of Q. 

6 CONCLUSION 

An iterative method has been developed to design 
linear-quadratic optimal systems with prescribed ei-
genvalues. The method is well suited to modify a 
given linear-quadratic design so as to improve the 
transient response of the closed-loop system. Slow 
eigenvalues can be made faster and oscillatory eigen-
values can be dampened. A detailed analysis of the 
shifts possible has been presented, including the case 
of a complex conjugate pair of eigenvalues. The di-
dactic value of the results can be seen in providing an 
explicit relationship between the weighting matrices 
and the closed-loop eigenvalue positions. The me-
thod is so simple that it can eventually make its way 
to control textbooks. 
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