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Abstract: This paper deals with the second order sliding mode control algorithm
known as terminal sliding mode control. The main advantage of this control method
lies in the finite-time convergence of the switching variable and its first derivation to
zero. Firstly, the paper introduces the principle of sliding mode control method. The
main result of the paper is the analysis the terminal sliding mode control. Then, the
comparison between first and second sliding mode control is made on the real model
of the DC motor. At last, simulation results are presented.
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1. INTRODUCTION

The sliding mode (SM) control, known also as the
variable structure control, is nonlinear method of
the feedback control. SM control is realized by
switching of the feedback discontinuous in time
between at least two smooth functions. Therefore,
the structure of the control law changes due to
the location of the state trajectory in the state
space. The most common SM control method is
the relay in the feedback. This relay switches
according some switching function. The structure
of the switching function is designed in order to
attract the trajectory in the state space to the
switching surface. This is the manifold, where
switching function equals zero. The part of the
state space, where the state trajectory slides along
this switching surface is called sliding mode. There
are two main advantages of this control: robust-
ness and finite time convergence. The basic SM
control algorithm provides finite time convergence
of the switching function to the switching surface
and the control appears in the first derivation
of the switching function. This brings the disad-
vantage of SM control algorithm called chatter-
ing, which is behavior of the trajectory in the

vicinity of the sliding mode in presence of the
switching imperfection, eg. relay with hysteresis.
On the contrary, the second order sliding mode
(2SM) control provides finite time convergence
of the switching function and its first derivation
to zero, see Levant (2007). Moreover, the control
law firstly appears in the second derivation of the
switching function. This brings the main benefit
of 2SM control method: the first derivation of the
switching function is piecewise smooth function,
therefore the switching function is smooth. This
behavior will significantly reduce the chattering
and at the same time keep the advantages of
SM control method, see Levant (1993). In this
paper, SM control and 2SM control methods are
compared by simulation of the DC motor control.

2. SLIDING MODE CONTROL

The main aim of the SMC method is to design the
controller, which leads the sliding function to the
manifold and keep the system in desired sliding
mode, see T. Floquet (2002). The SMC design
consists of two steps: switching function design
and controller design. The switching function is
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the function of the state and can be obtain either
as output or state feedback. This section is focused
on the latter method. The following procedure of
the SMC design is introduced in Monsees (2002).
Consider a linear system

ẋ = Ax + Bu (1)

where x ∈ Rn, u ∈ R and matrices A ∈ Rn×n,
B ∈ Rn. The matrix B is assumed to have full
rank and (A,B) is controllable. The control law u
is defined

u = −Ksgnσ (2)
where K is positive constant and σ is the switch-
ing function.

2.1 Switching function

The design of the switching function consists in
finding of the matrix S ∈ Rn, which defines
switching function

σ = Sx (3)

which provides desired dynamics in sliding mode.
The first step is to find a transformation matrix
T ∈ Rn×n

x̄ = Tx (4)
which transforms the system (1) into so called
regular form, see Monsees (2002)

ẋ1 = A11x1 + A12x2 (5)

ẋ2 = A21x1 + A22x2 + B2u

with x1 ∈ Rn−1, x2 ∈ R, A11 ∈ R(n−1)×(n−1),
A12 ∈ Rn−1, A21 ∈ Rn−1, A22 ∈ R and B2 ∈ R.
The switching function (3) is transformed in the
new coordinates

σ = S1x1 + S2x2 (6)

where S1 ∈ Rn−1, S2 ∈ R. These matrices
are design parameters defining the sliding surface
σ = 0. Assuming a controller, which brings the
system in the sliding mode, the state variable x̄2

is computed from (6)

x2 = −S
−1

2 S1x1 (7)

The matrix S2 is assumed invertible. Substituting
(7) into (5) results in dynamics in sliding mode

ẋ1 =
(
A11 −A12S

−1

2 S1

)
x1 (8)

It is necessary to choose one matrix in the product
S
−1

2 S1. The common choice is

S2 = B
−1

2 (9)

which ensures matrix S̄2 is invertible. The eigen-
values of the matrix

(
A11 −A12S

−1

2 S1

)
can be

assigned by some standart state feedback method
eg. pole placement and matrix S̄1 will be com-
puted. The matrix S in (3) is then obtained from

S = [ S1 S2 ]T (10)

2.2 Control law design

In order to find a controller ensuring sliding mode
of the system (5) occurs in finite time, following
transformation matrix is defined[

x̄1

σ

]
=

[
I 0
S1 S2

]
x̄ (11)

Applying transformation (11) on the system (5)
brings the system in form

ẋ1 = Ã11x1 + Ã12σ (12)

σ̇ = Ã21x1 + Ã22σ + u (13)

where all matrices have appropriate dimensions.
The control law is chosen

u = uc + ud (14)

The continuous component uc and discontinuous
component ud are given by

uc = −Ã21x1 − Ã22σ (15)
ud = −Kssgnσ −Kpσ (16)

To study a stability the Lyapunov function is
defined

V (σ) =
1
2
σ2 (17)

To this function can by applied reaching law

V̇ (σ) = σ · σ̇ ≤ −η|σ| (18)

with positive constant η. Substituting (13)-(16)
into (18) results in

−Ks|σ| −Kpσ
2 ≤ −η|σ| (19)

Dividing (19) by |σ|, the condition (19) leads to

Ks + Kp|σ| ≥ η (20)

This condition is always satisfied when Ks ≥ η
and Kp ≥ 0, which is used for accelerating the
convergence of the trajectory to the switching
surface. If these conditions are met, the closed
loop system will reach the sliding mode in finite
time.

3. TERMINAL SLIDING MODE

The sliding mode control of the higher order
(HOSM) is generalisation of the sliding mode con-
trol shown in previous section. There are addi-
tional conditions on the sliding variable to be sat-
isfied in HOSM. These conditions can be defined
as the intersection of the manifolds

σ = σ̇ = . . . = σ(r−1) = 0 (21)

where r is the order of the sliding mode. The order
of the sliding mode is the r-th time derivation
of the sliding variable, where the control u firstly
appears.

∂σ(r)

∂u
6= 0 (22)

The aim of the HOSM control design is to find
the control law in order that the state trajectory
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June 9–12, 2009, Štrbské Pleso, Slovakia Po-We-4, 051.pdf

135



reaches the intersection (21) in finite time. In this
section, the 2SM controller known as terminal
sliding mode or the sliding mode controller with
prescribed convergence law will be analyzed. Con-
sider the linear system



ẋ1

ẋ2

ẋ3


 =




0 1 0
0 0 1
−a1 −a2 −a3







x1

x2

x3


+




0
0
b


 u (23)

where ai, b > 0 and the terminal sliding mode
control law

u = −Ksgn(σ̇ + λ
√
|σ|sgnσ︸ ︷︷ ︸

=ρ

) (24)

with K, λ > 0. This control law is analysed as the
SM control method with switching variable ρ.

3.1 Switching variable

Suppose, that the sliding mode on the manifold
ρ = 0 occures. Following equations hold for
switching variable ρ on the manifold.

ρ = σ̇ + λ
√
|σ|sgn(σ) = 0 (25)

ρ̇ = σ̈ + λ
∂

(√
|σ|sgn(σ)

)

∂t
= 0 (26)

The equation (25) is the switching surface and
the equation (26) is the condition that the state
of the system does not leave the manifold. More-
over, from (26) can be computed the continuous
control, which will keep the state on the manifold,
so called equivalent control. In order to solve these
equations, the switching variable σ has to be de-
signed. From (22) results that σ must not be the
function of the third state component x3 in order
that control u has to appear firstly in the second
derivation of σ. This condition will be satisfied for

σ = s1x1 + s2x2 (27)

The equation (26) has to be analyzed in three
steps considering the sign of the switching func-
tion σ.

a) For σ > 0 results (26) in

ρ̇ = σ̈ +
λσ̇

2
√

σ
= 0 (28)

In (28) will be substituted (23),(27)

s1x3 + s2ẋ3 +
λ(s1x2 + s2x3)
2
√

s1x1 + s2x2
= 0 (29)

From (29) will be computed equivalent control
ueq

ueq = − s1

bs2
x3−

λ (s1x2 + s2x3)
2bs2

√
s1x1 + s2x2

+
1
b

3∑

i=1

aixi

(30)

This equivalent control is substituted in (23)
and the so called equivalent dynamics in sliding
mode on the manifold (25) results

ẋ1,eq = x2,eq (31)

ẋ2,eq = −s1

s2
x2,eq −

λ

s2

√
s1x1,eq + s2x2,eq

(32)

b) For σ < 0 results (26) in

ρ̇ = σ̈ +
λσ̇

2
√−σ

= 0 (33)

In (33) will be substituted (23),(27)

s1x3 + s2ẋ3 +
λ(s1x2 + s2x3)

2
√
−(s1x1 + s2x2)

= 0 (34)

From (34) will be computed equivalent control
ueq

ueq = − s1

bs2
x3−

λ (s1x2 + s2x3)
2bs2

√
−(s1x1 + s2x2)

+
1
b

3∑

i=1

aixi

(35)
This equivalent control is substituted in (23)
and the so called equivalent dynamics in sliding
mode on the manifold (25) results

ẋ1,eq = x2,eq (36)

ẋ2,eq = −s1

s2
x2,eq +

λ

s2

√
−(s1x1,eq + s2x2,eq)

(37)

c) For σ = 0 results (26) in

ρ̇ = σ̈ = 0 (38)

In (38) will be substituted (23),(27) and the
equivalent control is computed

ueq = − s1

bs2
x3 +

1
b

3∑

i=1

aixi (39)

This equivalent control is substituted in (23)
and the so called equivalent dynamics in sliding
mode on the manifold (25) results

ẋ1,eq = −s1

s2
x1,eq (40)

This equivalent dynamics describes the behav-
ior of the system (23) in 2SM, because the state
of the system fulfills the condition (21).

The parameters s1, s2 has to be designed to reach
the desired behavior in each part of the manifold
(25), eg. pole placement of the equivalent dynam-
ics (40). Possible choice of the parameter s2 is

s2 =
1
b

(41)

which ensures s2 to be invertible.

3.2 Control law

The control law of the 2SM control is composed
of the continuous and discontinuous part

u2SM = uc,2SM + ud,2SM (42)
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The discontinuous part ud,2SM is the control law
(24) and the continuous part uc,2SM is chosen as
equivalent control (39)

uc,2SM = − s1

bs2
x3 +

1
b

3∑

i=1

aixi (43)

ud,2SM = −Ksgn(σ̇ + λ
√
|σ|sgnσ) (44)

To study a stability the Lyapunov function is
defined

V (ρ) =
1
2
ρ2 (45)

To this function can by applied reaching condition

V̇ (ρ) = ρ · ρ̇ < 0 (46)

Substituting (25), (26) into (46) leads to the
condition for design parameters K,λ in (44).

λ2

2
< s2bK (47)

If (47) holds, the switching variable ρ reaches its
manifold in finite time. Moreover, the state slides
along this manifold and reaches the second order
sliding mode of the switching variable σ also in
finite time.

4. DC MOTOR CONTROL

The DC motor is the actuator of many industrial
processes. The mathematical model of this motor
is described by following representation.

ẋ = Ax + Bu =




0 1 0

0 − b

J

km

J

0 −ke

L
−R

L


 x +




0
0
1
L


 u

(48)

where state variable x1 is an angle of the shaft,
x2 is the angular velocity of the shaft and x3 is
the current of the armature coil. Input u is the
voltage of the armature coil. The parameters R, L
are inductance and resistance of the armature coil,
ke is the speed constant, b is the viscous friction,
J is the moment of inertia and km is the torque
constant.

4.1 SM control design

The state speace representation of the DC motor
(48) is already in the form (5). This means the
transformation matrix (4) equals

T =




1 0 0
0 1 0
0 0 1


 (49)

The switching function (3) for the control of the
DC motor (48) in new coordinates is

σ = s̄1x̄1 + s̄2x̄2 + s̄3x̄3 (50)

In the sliding mode, the state variable x̄3 is
computed from (6)

x̄3 = −s̄−1
3 (s̄1x̄1 + s̄2x̄2) (51)

Parameter s̄3 is chosen according to (9)

s̄3 = B̄−1
2 = L (52)

Substituting (51), (52) into (48) results in dynam-
ics in sliding mode

[
˙̄x1

˙̄x2

]
=




0 1

− km

LkJ
s̄11 −

b + km

LkJ
s̄12




[
x̄1

x̄2

]
(53)

The parameters of the real motor substitute
in (53): Lk = 0, 953 · 10−3H, Rk = 7, 17Ω,
ke = 0.29V s, km = 46 · 10−3Nm ·A−1, J = 4, 42 ·
10−6kg ·m2, b = 2, 99·10−4Nm·s. The description
of this motor can be find in Maxon (2009).
[

˙̄x1

˙̄x2

]
=

[
0 1

−1, 09 · 107s̄1 −1, 10 · 107s̄2

] [
x̄1

x̄2

]
(54)

The eigenvalues of the matrix of the dynamics in
(54) will be assigned λ1,2 = −100 by pole place-
ment method. The coefficients s̄1, s̄2 are computed

s̄1 = 9.16 · 10−4 (55)

s̄2 = 1, 82 · 10−5 (56)

The switching function σ is obtained using (10),
(49).

σ = 9.16 · 10−4x1 + 1, 82 · 10−5x2 + 9, 53 · 10−4x3

(57)
The controller, which brings the state trajectory
to the manifold will have following structure

u = 0, 2903x2 + 6, 9806x3 −Kssgnσ −Kpσ (58)

4.2 Terminal sliding mode control design

Firstly, the state representation (48) has to be
transformed in form (23) by following transfor-
mation

xf = TxDC =




1 0 0
0 1 0

0 − b

J

km

J


 xDC (59)

where index f denotes Frobenius form and DC
the original representation of the DC motor. The
Frobenius form of the motor is

ẋf =




0 1 0
0 0 1

0 −kmke + bR

JL
−JR + bL

JL


 xf +




0
0

km

JL


 u

(60)

According to (41), s2 is chosen

s2 =
1
b

=
JL

km
(61)
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The parameter s1 is designed by pole placement
method using dynamics in 2SM (40). From char-
acteristic polynom of (40) and desired dynamics
with pole λ = 100 follows

s1 = 100s2 =
100JL

km
(62)

The continuous part of the control law of the
Frobenius form is computed using (43)

uc,f = −100JL

km
xf,3 +

kmke + bR

km
xf,2+ (63)

+
JR + bL

km
xf,3

The parameters of the motor are substituted in
(59), (60), (63) and the continuous control of the
representation of the motor (48) is obtained by
substituting (59)

uc = 0, 2902x2 + 7, 139x3 (64)

The switching function σ of the discontinuous
part (44) and its derivation σ̇ also have to be
transformed

σ = s1x1,f + s2x2,f = s1x1 + s2x2 (65)

σ̇ = s1x2,f + s2x3,f = s1x2 −
s2b

J
x2 +

s2km

J
x3

(66)

Parameter λ in (47) has to be chosen according
the condition

λ2

2
< K (67)

5. RESULT

The simulation experiment is realized for SM con-
trol with parameters Ks = 1, Kp = 0. The 2SM
control is simulated three times with parameter
K = 1 and different values of λ = 0, 6; 1; 1, 4,
because the limit value for λ is

√
2K according to

(67). The result of this experiment is depicted on
Fig. 1-3. The settling time of the responses of the
2SM control simulations is much lower even for
low parameter λ. The choice of this parameter af-
fects the amplitude of the current of the armature
coil of the motor. It is clear, that this amplitude
may be restricted in practical realization. This
restriction will be fulfilled by appropriate choice
of λ. This choice will shape the transfer functions
of the simulation experiment using 2SM control,
because this control firstly brings the trajectory
in the first order sliding mode of the switching
function ρ, where λ influences the dynamics. The
second order sliding mode itself occurs when the
trajectory reaches the intersection of the mani-
folds σ = 0 and σ̇ = 0.
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Fig. 1. The angular position of the shaft of the
motor
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Fig. 2. The angular speed of the shaft of the motor
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Fig. 3. The current of the armature coil of the
motor

6. CONCLUSION

This paper presents the control design of the
sliding mode of the first and second order. Both
these methods demands the design of the sliding
function with respect to the dynamics in sliding
mode. The same choice of the poles of the dy-
namics in sliding mode is used in both methods of
control. Secondly, there is used the same structure
of the control law, which brings the system in the
sliding mode in finite time. Moreover, the 2SM
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control algorithm brings the first derivation of
the switching function to zero in finite time. The
comparison of this two methods is presented by
simulation of the DC motor control. It is shown,
that the 2SM control algorithm has the optional
design parameter, which allows to shape the trans-
fer function.
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