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Abstract: Pressure swing adsorption requires a repeated cycle of four steps. The periods 
of these steps, or other defined terminal conditions, determine the rate and quality of the 
product, and its cost. In transient situations such as upsets or grade changes, it is not in-
tuitively obvious how the steps should be progressively altered to bring the plant to the 
desired operating point in an optimal fashion. The present work considers the problem 
of real-time maximization of the production of a single adsorber, and maintaining a set-
point concentration in its product receiving vessel. In a modelling exercise, these objec-
tives have been met using predictive control based on completion of the present step, 
plus two full future cycles to reduce the end-effect. The approach sought to be fast and 
robust by suitable linearisation of the system. This allowed MILP solution in the mixed 
logical dynamical (MLD) framework as a mixed integer dynamic optimisation (MIDO). 
However, this problem was ultimately solved faster and more reliably by testing all 
combinations for constraint violations and the objective value. 

Keywords: PSA, hybrid systems, dynamic optimisation, predictive control. 

1 INTRODUCTION 

An increasing range of adsorbent materials is extend-
ing the use of pressure swing adsorption (PSA) in the 
separation of gas mixtures.  These materials are de-
signed to selectively adsorb one component from a 
mixture. As in vapour-liquid equilibrium, the equilib-
rium quantity of this adsorbed component in the solid 
phase increases with its partial pressure in the gas 
phase. Thus the solid can be used to adsorb the com-
ponent at high pressure, and it can be “regenerated” 
by expelling the adsorbed species at low pressure. In 
air separation, N2 is selectively adsorbed, leaving an 
O2-rich product stream. A number of adsorbers can 
be arranged to work in complementary cycles so as 
to smooth out production flow and the use of com-
mon resources. However, the present analysis will 
focus on a single adsorber with a product storage 
vessel as in figure 1. 
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Fig. 1  A basic pressure swing adsorption configura-

tion for air separation 
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Four distinct steps, comprising the Skarstrom cycle, 
are required: 

(1) pressurisation:  

     A open; B,C & D closed 

(2) adsorption at high pressure: 

     A & B open; C & D closed 

(3) depressurisation: 

     D open;  A,B & C closed 

(4) purge at low pressure:  

     C & D open; A & B closed 

During step 2, a high purity product can be obtained, 
particularly if some of the product itself is used in 
step 4 for purging, as is shown here.  

The mechanism by which a high-purity product is 
obtained is not entirely self-evident. It is in fact 
achieved by developing a suitable composition pro-
file in the solid phase which acts to “screen” the 
down-ward moving air in step 2. That profile will of 
course oscillate through each full cycle of four steps, 
but the so-called “cyclic steady state” (CSS) is 
achieved once a fixed associated profile arises at the 
end of each step. Even with fixed sequencing of the 
valves A,B,C and D (ie. fixed periods for each step), 
the approach to CSS may take many cycles. 

In figure 2 an adsorber is represented as discretised 
into N compartments in series. If thermal effects are 
neglected, this system is defined by 2×N+1 states. 
These are the moles of the adsorbed species in the 
gas phase (mi)  and the solid phase (wi)  in each com-
partment i, as well as the total number of moles  (M)   
in the gas phase of a compartment. For a uniformly 
packed bed with no frictional losses one notes that M 
is the same in all compartments, and the total number 
of gas moles in the system is N×M which is clearly 
proportional to the pressure. To re-iterate the com-
ment above regarding the CSS, the repeated cycles 
needed to achieve CSS are required to achieve the 
supporting profiles of mi and wi , with the latter de-
termining longer settling times as the adsorbent ca-
pacity increases. If one imagines the control problem 
associated with the unsteady process, one thus fore-
sees several major hurdles: 

 (a)    high number of states 

 (b)    few measureable states 

 (c)    hybrid (switched and continuous) 

 (d)    long time-constants   

To date, most of the work aimed at optimising PSA 
operation has focused on the optimal “positioning” 
on the CSS cycle. The cycle can be positioned by 
choosing a particular set of four times, one for each 
of the Skarstrom steps. Alternatively, it can be posi-

tioned by choice of a particular set of heuristic rules,  
eg. 

[1]   pressurise until pressure reaches Pmax 

[2]   adsorb until a total of MFEED moles of feed have 

        been introduced in this step 

[3]   depressurise until pressure reaches Pmin 

[4]   purge until a total of MPURGE moles of product  

        have been returned in this step 
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Fig. 2  Discrete representation of states in a pressure-
swing adsorber 

 

Models have been quite detailed, accounting for 
thermal effects, pressure losses, nonlinear adsorption 
isotherms, energy, etc, and optimisations have aimed 
at overall economic operation. These are large non-
linear optimisation problems, such as tackled by 
Latifi et al. (2008), Jiang et al. (2005) and Kvamsdal 
and Hertzberg (1995). Indeed, Latifi et al. do not 
look for a convergence in time, but rather formulate 
the optimisation problem around a single cycle, in-
cluding in the objective function a minimisation of 
the deviation between the states at the beginning and 
end of the four steps of the cycle.  

The relatively small amount of work on the un-
steady-state quite likely arises from the difficulties 
(a),(b),(c) and (d) mentioned above.  Bitzer and Zeitz 
(2002a) developed a nonlinear distributed parameter 
observer for PSA based on a Luenberger arrange-
ment for error feedback. In Bitzer and Zeitz (2002b) 
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these authors present a control scheme which has two 
parts: A feed-forward section sets the time-periods 
for each step of the cycle, based on the sensitivity of 
production and purity predicted offline at CSS. A 
degree of adjustment of the time-periods is superim-
posed for correction of measured quality by PID 
feedback. This type of approach is extended by 
Bitzer (2005), with the feedforward based on the 
inversion of a reduced-order model, for example a 
Hammerstein representation. 

One can reflect for a moment on what advantages 
might accrue from dynamic feedback control of PSA. 
A distributed process with long time-constants is 
inherently difficult to adjust, so manual operations 
are likely to be determined by heuristic criteria such 
as above. In start-up, shut-down or recovery from an 
upset, these are likely to be conservative and ineffi-
cient. What one seeks is an optimal strategy to bring 
the process from its current point to one which en-
sures product quality and rate, at minimum cost, pos-
sibly in coordination with other adsorbers. With this 
aim, the work below investigates the possibility of 
using robust linear tools in an optimal predictive con-
trol format, initially applied to a single adsorber and 
product tank. 

2 MODEL 

The adsorber is modelled as a series of N mixed 
compartments as in figure 2. Typical values are used 
for air separation, using a linear equilibrium relation-
ship for the N2 (m*=cw) and ignoring the small 
amount of O2 adsorbed. Pressure losses through the 
bed and thermal effects are likewise neglected. In the 
equations, M and F respectively represent the total 
gas inventory of a compartment, and the total gas 
flow, whereas m and f  refer only to the species 
which is being adsorbed (N2). Flows are divided into 
“downward” (d) and “upward” (u), of which one or 
the other will be zero depending on the step of the 
cycle. 
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The only nonlinearity arises as the requirement that 
the effluent composition from a compartment obeys 
the following equations for downward or upward 
flow respectively. 

 

, ,

, ,

ord i u ii i

d i u i

f fm m
F M F M

= =            (2) 

This was linearised using deviations (∆) from an es-
timated operating point (‘) 

f f m m
F F M M
′ ′+ ∆ + ∆

=
′ ′+ ∆ + ∆

            (3) 

and neglect of the deviation products. The total flow 
profile Fi in either direction (ie. iF ′ , i = 1,...N) can be 
estimated relatively closely, as can the total number 
of moles in a compartment M. Estimates of the flow 
and inventory profiles of the adsorbed species, fi’ 
and mi’, were obtained by multiplying iF ′  and M  by 
a composition yav appropriate to each Skarstrom step. 
The linearisation conditions are thus summarised as 
follows: 

[1]  pressurisation:  M’ at Pmax ; F’ reducing linearly 
from Ffeed at top to 0 at bottom; yav at 0 

[2] adsorption at high pressure:  M’ at Pmax ; F’ 
reducing linearly from Ffeed at top to Ffeed - ffeed at 
bottom ; yav at 0 

 [3]  depressurisation:  M’ at 75% Pmax + 25%  Pmin 
; F’  increasing linearly from 0 at bottom to a flow 
Fdepress at top ; yav at (1+yfeed)/2 

 [4]  purge at low pressure:  M’ at Pmin ; F’ profile 
constant at the purge gas flow rate Fpurge ; yav at ypurge 

 

In this way, a discrete linear model for the 2N+1 
states is constructed for a unique ∆tj suited to each of 
the Skarstrom steps: 

[1]  pressurisation:    

      ( ) ( )1 1 1 1with 8t t t t s+ ∆ = + ∆ =x A x b        (4) 

[2]  adsorption at high pressure: 

      ( ) ( )2 2 2 2with 16t t t t s+ ∆ = + ∆ =x A x b    (5) 

[3]  depressurisation: 

      ( ) ( )3 3 3 3with 16t t t t s+ ∆ = + ∆ =x A x b     (6) 

[4]  purge at low pressure: 

      ( ) ( )4 4 4 4with 8t t t t s+ ∆ = + ∆ =x A x b      (7) 

Should the flow settings Ffeed , Fpurge , Fdepress (or feed 
or purge stream compositions) change, the corre-
sponding matrix  Aj (new linearisation point) and 
vector bj (new process input) are updated. Exit flows 
are determined automatically in the solutions for the 
constant-pressure steps 2 and 4. 
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Fig. 3   Comparison of (a) Nonlinear Model and (b) Linearised Model predictions for Skarstrom cycles using the 

same switching criteria (Section 1) 

In figure 3 the non-linear and linearised model pre-
dictions, both using 9 compartments, are compared 
for Skarstrom cycles determined by the heuristic 
switching rules in section 1 (Pmin = 1 bara; Pmax = 4.5 
bara; Total Air used in step 2 = 6×104 gmol; Total 
product used for Purge in step 4 = 1×104 gmol). For 
this analysis the composistion of the “Product” used 
for purging was fixed at 5% N2. Actual cumulative 
product compositions were in fact 2.8% N2 for the 
non-linear model, and 5.2% N2 for the linear model, 
with about 1.5×104  gmol of product being made on 
each cycle (ie. reflux ratio = 2). 

3 PREDICTIVE CONTROL 

A single PSA unit does not appear to offer a lot of 
scope for dynamic optimisation. The compositions 

and achievable flows of the feed air, and the product 
used for purging, are likely to be fixed. The only 
control freedom left thereafter is the length of each 
step of the Skarstrom cycle, which could equiva-
lently be set by heuristic rules (eg. varying the target 
“breakthrough” composition of the product stream in 
step 4). Even if the flow rates of the feed and purge 
streams could be varied, equation (1) shows that this 
is equivalent to varying the time intervals if the ad-
sorption is not rate-controlling (k large enough). 

Thus a single PSA unit offers just these four adjust-
ments. In section 1 it was mentioned how these are 
manipulated for optimisation of the CSS. In contrast, 
the motive for unsteady-state optimisation lies in 
dealing with extraneous disturbances or objectives. 
Thus, if the system state finds itself away from its 
optimal value (after a disturbance, or during start-
up/Shut-down), it needs to be guided back in an op-
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timal fashion. Additionally, there will be require-
ments to maintain a set-point inventory within the 
product storage vessel, and to keep it close to a set-
point composition. Even for a single PSA unit, this 
offers interesting scope for strategic manipulation of 
its Skarstrom step lengths. With multiple PSA units 
feeding and drawing from the same product storage 
vessel, the problem becomes much more complex, 
and it may be anticipated that an integer program-
ming (IP) approach for unit coordination will truly be 
advantageous here.  

Bearing the above unsteady-state optimisation objec-
tives in mind, the present work thus seeks to use ro-
bust linear system tools for constrained optimisation 
of one or more complete future Skarstrom cycles, by 
correct choice of the first and subsequent switching 
points for the steps. Only the first switch is imple-
mented, once it is shown to be “due” (immediate). Of 
course, the remaining switches are only evaluated as 
part of the overall optimisation, and not for use. 
Though the step lengths could be treated as continu-
ous variables for optimisation, a “modulated” ap-
proach is rather used, entailing a choice of one of 
several distinct periods for each step. Apart from 
facilitating an IP solution, this will in due course also 
allow coordination with other PSA units. 

 

3.1 Optimal predictive control with constraints 

In predictive control, one is generally aiming to make 
the best choice of a series of control decisions which 
affect the system output up to a defined future time-
horizon. Only the first choice is actually imple-

mented, before the entire optimisation is repeated on 
the next controller time-step. If some of the choices 
are discrete (eg. gears of a car), or indeed, as seen 
above, if there are system behavioural changes, inte-
ger variables enter the problem, and one has a mixed 
integer dynamic optimisation (MIDO) problem. 

Consider the problem of a single PSA column sup-
plying a purified gas to a storage vessel, from which 
users draw their requirements at arbitrary rates (fig-
ure 1). Removal of N2 from air to provide an O2 sup-
ply will be the example. The objective will be to 
maintain a desired O2-rich inventory in the storage 
vessel, and to control its composition at a given set-
point. Discretionary situations arise, for example, if 
demand is low, and composition is poor - in which 
case production can be reduced and a greater propor-
tion of the N2 removed, to raise the O2 concentration 
in the storage vessel. 

In the real-time situation, the controller is cycling 
asynchronously at its own time-interval. In the pre-
sent case this is 10s. It does not need to match the ∆tj  
of any of the Skarstrom steps j because the entire 
optimisation calculation is repeated a priori on each 
controller time-step. What is important to the control 
algorithm is to know the system state at this time. A 
first step was thus to develop a state observer. A 
Kalman filter based on the linearised models in equa-
tions (4) to (7), changing in sequence, was able to 
provide good estimates of the 2×N+1 state values 
using just three “measurement” outputs of the origi-
nal non-linear model [ (i) pressure P; (ii) product 
outflow composition during step 2; and (iii) purge 
outflow composition during steps 3 and 4 ].  

purge pressurise adsorb de-pressurise purge

OPTIMISED CHOICES

present
time

future
time

upper constraint

lower constraint

P

4 1 2 3 4

FIRST FULL CYCLE n COPIES

 
Fig. 4   Concept of future Skarstrom step length optimisation for a system found (for example) to be in a purge 

mode on the controller time-step
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Apart from these state values, the predictive control 
algorithm of course needs to know which of the four 
possible steps of the Skarstrom cycle is presently 
being conducted. (Historical information - eg. how 
long it has been in this step - is not required). A look-
up table indicates the required future sequence for 
completion of an entire Skarstrom cycle (con-
strained), followed by a repeat full cycle with the 
same step lengths (unconstrained): 

[1]  pressurisation:  

      complete 1 then do 2→3→4→1  , 2→3→4→1 

[2]  adsorption at high pressure: 

      complete 2 then do 3→4→1→2 , 3→4→1→2 

[3]  depressurisation: 

      complete 3 then do 4→1→2→3 , 4→1→2→3 

[4]  purge at low pressure: 

      complete 4 then do 1→2→3→4 , 1→2→3→4 

 

The identified future sequence is then the basis of the 
optimisation. It amounts to a choice of the number of 
intervals ∆tj  to spend in each of the Skarstrom steps j 
(figure 4). The result is five separate interval counts. 
Steps occurring after the production step 4 would 
appear to play a neutral or negative role (eg. use of 
Product for purging). Thus the objective function 
used here is based on one further repetition of the 
cycle (n=1) to reduce such “end-effects”. The com-
putational load is reduced by forcing the “copies” to 
use the Skarstrom step lengths of the first full cycle. 

The main interest is in whether the intervals left in 
the first (partial) step add up to less than the control-
ler time-step. In that case the controller must take 
action now by switching to the next Skarstrom step. 

The easiest way to structure the optimisation is to 
constrain the operation between liberal bounds such 
as determined by the heuristic rules in section 1 - viz, 
maximum and minimum pressure, and maximum 
total amounts of Feed and Product to be used in the 
adsorption and purge steps respectively. These 
bounds on their own determine a default Skarstrom 
cycle. The purpose of the optimisation then is to 
bring the terminal points of the cycle inwards in or-
der to maximise the objective function.  

The optimisation scheme is represented schemati-
cally in figure 4 in terms of pressure. The variable 
constraints are only considered at the end of each 
step - ie. at the switching point. This will however 
not be problematic, since the variables associated 
with the specified constraints all vary monotonically 
in each step (figure 3). An important motivation for 
this scheme is that if necessary, computation can be 
reduced by narrowing the range of choice in each 
step, eg. close to the number of intervals determined 
for that mode in the preceding optimisation. Using a 
centred search range, migration will still occur at 
successive controller steps. However, the first partial 
step must always extend down to 1 owing to its func-
tion in determining the switching time. Figure 5 illus-
trates how a selection is made on each step from a 
limited number of “models” for that step, each repre-
senting a different number of intervals – ie. a differ-
ent time-span. 

 

 
Fig. 5   Choice of transfer functions of different numbers of intervals for each Skarstrom step 
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3.2 Solution method 

For each of the Skarstrom steps j=1,…4 a range of 
transition models is pre-prepared, one for each of the 
possible number of intervals  1 ≤ i ≤ nmax that could 
be used for that step:  

( ) ( ) ( ) ( )i i
j j jt i t t+ ∆ = +x A x b            (8) 

The new arrays ( )i
jA and ( )i

jb  are obtained by indi-

vidually recursing equations (4) to (7). Now if the 
particular choices of i made to complete the present 
step j and the next 4 complete steps are 

[ ] [ ] [ ] [ ] [ ], 1 , 2 , 3 , 4i j i j i j i j i j+ + + + , 

where it is understood that the index values will 
“wrap” around in the range 1,2,3,4, then it is these 
choices that must be made optimally in determining 
the future state sequence. Representing 

[ ]( )jt i j t+ ∆x  by jx one has 

[ ]( ) [ ]( )
1

i j i j
j j j j−= +x A x b     (partial step)          (9) 

[ ]( ) [ ]( )

[ ]( ) [ ]( )
1

4 3

1,..., 4
i j k i j k

j k j k j k j k

i j k i j k
j k j k j k j k

k
+ +

+ + + − +

+ +
+ + + + + +

⎫= + ⎪ =⎬
= + ⎪⎭

x A x b

x A x b
    (10) 

After completion of the present partial step, two 
whole cycles are executed, with the second cycle re-
using the same number of intervals in each step as in 
the first cycle. 

In this form, the problem lends itself to solution in 
the mixed logical dynamical (MLD) framework of 
Morari and co-workers (Bemporad and Morari, 
1999; Morari et al., 2000;  Morari, 2002). Further-
more, the use of linear dynamic models allows solu-
tion by mixed integer linear programming (MILP). 
The selection of the optimal number of steps is facili-
tated by binary variables δ, eg. for equation (9) one 
requires the constraints 

( ) ( )

( ) ( )

max

max 1 max

min 1 min

1

1

i i
j ij j j j

i i
j ij j j j

n

ij
i

δ

δ

δ

−

−

=

+ ≤ + +

+ ≥ + +

=∑

x e A x b e

x e A x b e         (11) 

Here the vectors e contain the maximum and mini-
mum deviation values when (all but one of) the i-
models are not obeyed (large positive and negative 
numbers).  

Whereas the task required was quite simple - viz. 
choose the best combination of interval numbers in 
the first five Skarstrom steps - it became clear that 
the linear program was an inefficient means of solv-
ing the problem. The numerous additional constraints 
required for model choice as in equation (11), and to 
deal with variable saturation, slowed down LPsolve 
(Michel Berkelaar), and caused failures. Even if con-

tinuous variables were included in the search, it 
would be quicker to evaluate every apex of the sys-
tem for its objective value and compliance with con-
straints. Indeed, this was the procedure used to pro-
duce the results below. 

 

3.3 Example  

A physical description of the system is provided in 
figure 6. The bed is represented as N=9 compart-
ments, and is considered to behave close to plug 
flow.  Four constraints are set on the operation: 
Pmax=4.5 bara, Pmin=1.0 bara, maximum feed air dur-
ing the adsorption step 2 MFEED= 60000 gmol; maxi-
mum  product reflux during the purge step 4 MPURGE 
= 10000 gmol. 

 

N2

O2

O2 storage

air

PC

Adsorption bed: 33.3 m3

Void fraction: 0.4
Solid density: 1000 kg m-3

Bed mass: 20000kg
Pure N2 loading at 1 bara: 0.6 gmol kg-1

Pure N2 at 1 bara: 600 gmol in void space
12000 gmol adsorbed on solid

∴ m* = cw requires  c = 0.05 (gmol N2 in gas) 
(gmol N2 in solid)-1

Adsorption rate constant used: k = 0.3 s-1

Bed void gas inventory: 600 gmol at 1 bara
∴ M = 600 P/N   (total gas moles per compartment)

pressurisation
& adsorption:
60 gmol s-1

depressurisation:
40 gmol s-1 

until restricted by desorption rate
purge: on PC

purge:
30 gmol s-1

PC

PC

adsorption:
on PC

fixed holdup:
10000 gmol

setpoint: 10% N2: 10% N2:
20% N2:

7000 s 14000 s

PMAX = 4.5 bara

PMIN = 1.0 bara

Fig. 6   Configuration for predictive control of prod-
uct concentration in O2 storage vessel 

 

The storage vessel is modelled simply using the bal-
ances 

,

,

S
d N S

S
d N S

S S

S S

dM F F
dt

dm f f
dt
f m
F M

= −

= −

=

          (12) 

where FS and fS are the total and adsorbed species 
outflows from the storage vessel. In this example, a 
constant molar inventory is maintained in the vessel 
(“overflow” mode), so that FS = Fd,N . 
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The maximisation objective weightings for the 9 
Skarstrom steps to the prediction horizon have been 
set as follows: 

[ ]
[ ]( )

[ ]( )

8

2

8

100
% N

     gmol
1

     gmol

j

k j

j

k j

objective
deviation from setpoint concentration

in storage vessel at end of step k
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The second term represents the net production of the 
oxygen-rich product up to the end of the present 
Skarstrom step, plus the following two full Skar-
strom cycles. The optimisation considers all con-
straints up to the end of the first cycle, but the second 
cycle, using the same step-lengths as the first cycle, 
only contributes to the objective function. It is rea-
soned that such constraint transgressions as may be 
implied in the second cycle should be small. 

At the start-up the contents of the storage vessel are 
at 20% N2. The setpoint is initially at 10% N2, step-
ping up to 20% N2 at time= 7000 s, and back to 10% 
N2 at time = 14000 s. Figure 7 shows how the Skar-
strom cycles are manipulated in order to achieve the 
desired concentration in the storage vessel. In this 
example, the storage vessel has a constant molar in-
ventory and the objective function encourages a high 
production rate. The objective function is easily al-
tered for the case of “level control” in the storage 
vessel, where users are drawing the product at arbi-
trary rates. Viewing figure 7 one recalls that the bot-
tom material in the adsorber only proceeds to the 

storage vessel during the adsorption phase - ie where 
downflow occurs through the adsorber at a steady 
high pressure. Clearly the algorithm is manipulating 
the bottom concentration during this phase in order 
to progressively bring the storage vessel contents 
towards the setpoint. 

4 CONCLUSION 

In order to make use of fast and robust observation 
and optimisation algorithms, a lot of effort went into 
finding an adequate linear representation of the pres-
sure swing adsorption process. This required careful 
choice of typical flow and composition profiles for 
each of the four steps of the Skarstrom cycle, to act 
as operating points about which the linearisation 
could be conducted. 

The distinct steps of the Skarstrom cycle presented 
an unusual predictive control problem. At any point 
in time, the optimal control must be based on com-
pletion of the present step, followed by a continua-
tion of the Skarstrom sequence up to a defined hori-
zon. The four steps of one cycle have different posi-
tive, negative or zero cost implications for the objec-
tive function. Possible “end-effect” bias was reduced 
by continuing with whole Skarstrom cycles up to the 
horizon. Two whole cycles proved adequate, of 
which only the first was subjected to the constraints. 
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Fig. 7   Predictive control of the N2 concentration in the storage vessel 
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The optimisation problem was perceived to be hybrid 
in nature, so the initial approach was to formulate it 
entirely in the mixed logical dynamical (MLD) 
framework as a mixed integer dynamic optimisation 
(MIDO) problem. To handle the choice of the dy-
namic equations, however, this required the introduc-
tion of many constraints which slowed the solution 
down and made it unreliable. Far better performance 
was achieved by solving the combinatorial problem 
(residual step length, plus next four step lengths) 
directly by exhaustive interrogation of all combina-
tions for constraint compliance and objective value. 

Example applications so far have focused on produc-
tion maximisation and product composition control 
in an overflow-type receiving vessel. Good potential 
was found for predictive control of the composition 
by manipulation of the Skarstrom cycles. Indeed, this 
type of automatic control promises significant bene-
fits, as the necessary control moves are not intui-
tively obvious for manual control. In future work the 
problem of combined composition and level control 
will be considered, so that users can draw product 
from the storage vessel at arbitrary rates. 
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