
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
17th International Conference on Process Control 2009

Hotel Baník, Štrbské Pleso, Slovakia, June 9 – 12, 2009

ISBN 978-80-227-3081-5

http://www.kirp.chtf.stuba.sk/pc09

Editors: M. Fikar and M. Kvasnica
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Abstract: The main goal of this paper is using identification methods as a certain alternative to
Dynamic Casual Modeling (DCM) analysis which detects the so-called intrinsic connections
among selected brain areas. In recent years it has been shown that the similar problems,
as there appear in functional Magnetic Resonance Imaging(fMRI) area, are formulated in
dynamic system identification and estimation tasks. The subspace identification methods
were chosen for this identification procedure because they prove good results for Multiple
Input Multiple Output (MIMO) systems identification. These methods produce state space
description of identified system [2].
The main part of this paper deals with the quality of identification results depending on some
important data parameters. Consequently the processing of final state space description into
more suitable form follows.
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1. INTRODUCTION

The dynamic system identification methods are usu-
ally used for control engineering. The task of DCM
procedure is markedly similar as the task of identi-
fication of MIMO (Multiple Input Multiple Output)
systems. There offers an idea to use some suitable
identification methods as a certain alternative to DCM
procedure. If the dynamic identification methods are
successful, some drawbacks of DCM procedure will
be eliminated. There might appear some complica-
tions with the structure of the whole system. The basic

idea is to separate the system dynamics into two parts,
illustrated in the Fig.1. The subspace identification
methods have good results for identification of MIMO
systems. So we decided to use them as potential alter-
native to DCM procedure.
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Fig. 1. The principal diagram of identification proce-
dure

2. DCM PROCEDURE

Dynamic Casual Modeling (DCM) is a statistical tech-
nique for detection of connections among selected
brain areas [4]. The DCM procedure treats the brain
as a deterministic nonlinear dynamic system. This
system has some inputs and produces some outputs,
measured by fMRI as the BOLD (Blood Oxygen Level
Dependent) signals. The inputs to the system are the
signals defining a certain fMRI experiment, i.e. time
series representing some stimuli such as finger move-
ment commands, projection of emotional pictures to
the patients etc. Furthermore a model structure must
be predefined before the DCM analysis is applied.
Therefore certain special knowledge in brain organi-
zation is necessary. In addition, there are typically
several structure candidates that must be processed
and evaluated separately which can become time con-
suming.
The DCM models are estimated using Bayesian es-
timators [5]. The inferences about connections are
made using the posterior or conditional density [4].
The DCM result is the likeliest model accompanied
by strength values of significant connections.

3. SUBSPACE IDENTIFICATION METHODS

Subspace identification methods combine results of
systems theory, geometry and numerical linear alge-
bra [2]. They can be thought of as modern capable
alternative to ARX, ARMAX, OEM and other clas-
sical procedures for fitting linear dynamical models to
measured data. Their benefits come up especially in
the case of MIMO systems (with many inputs and/or
outputs). The main advantage is a small number of
parameters defined by users. Basically it is only a
system order. These identification methods even offer
the estimation of that.

Fig. 2. The basic principle of subspace identification
method

The identification algorithm has two principal steps
[2]. First, a projection of certain subspaces generated
from the data is calculated. The important term is Han-
kel matrix which is characterized by constant skew-
diagonals. It contains past and future I/O data. The
intersection row subspaces between past and future

data produces the row subspace of states. An estimate
can also be found of the extended observability matrix
and an estimate of the states of the unknown system
is given. The second step of the algorithm uses the
extended observability matrix or the estimated states
for retrieving the state space matrices for instance by
means of least squares.

4. PRACTICAL EXAMPLES

This section deals with practical examples associated
with identification task by means of subspace methods
and DCM procedure. The several cases discuss the
accuracy of identification results depending on im-
portant data parameters. The typical fMRI data suit-
able for DCM procedure is generated by Statistical
Parametric Mapping (SPM) simulator. For subspace
identification procedure is used Identification Matlab
toolbox.

4.1 Identification - examples

This section summarizes the first results of subspace
identification experiments for fMRI simulated data.
The simulated data sets differ in the signal-to-noise
ratio factor (SNR) and in number of samples (scans).
Other parameters are the number of regions, sample
period (TR), and the number of conditions (inp.), see
[1] for details. The data parameters are presented in
the tables 1 for particular cases. Related tables show
the vector of onsets and vector of duration (definition
of inputs). The last piece of information for the SPM
simulator is the matrix A defining the strength of con-
nections, and the input matrix C. The results of identi-
fication for different data sets are the identified matrix
A acquired from SPM toolbox by DCM estimation [1],
and then the (linear dynamic) model of simulated data
acquired from the Identification Toolbox by help of
subspace identification method [3].

4.1.1. Case 1

SNR reg. TR scans inp.
50 3 1.7 256 1

ons. 20 45 113 154 203 240
dur. 3 4 3 3 2 3

Table 1. The simulated data parameters - case 1,2

This example tests the quality of identification for
simulated data with ”good” parameters. The data set
has enough samples and the signal-to-noise ratio is
high. See table 1. The input data is defined by vectors
and the matrix of connection strength as well as the
input matrix are also presented in Eq.1.
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A =

⎡
⎣
−1 0 0
1 −1 1
2 0 −1

⎤
⎦ C=

⎡
⎣
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Fig. 3. The simulated data for three regions - case 1

The DCM procedure gives fairly good results in terms
of the identified matrix A, see Eq.2 which corresponds
to the simulation model’s A Eq.1. The identification
toolbox also proves useful here and fits successfully
the simulated data by the identified linear model of
order five, see Fig.4.

ADCM =

⎡
⎣

−1 0 0
0.872 −1 1.0716
1.9955 0 −1

⎤
⎦ (2)
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Fig. 4. The model of simulated data - case 1

4.1.2. Case 2

−10

−5

0

5

10

15
Region o1

−15

−10

−5

0

5

10

15
Region o2

0 50 100 150 200 250 300 350 400 450
−10

−5

0

5

10

15
Region o3

secs

Fig. 5. The simulated data for three regions - case 2

Simulated data with smaller signal-to-noise ratio equal
to one are processed now. Other parameters remain
unchanged from the previous case. To compare the
noise effect for the cases 1 and 2 see Fig.3 and Fig.5.
The DCM procedure naturally embodies worse results
than in the previous case which is shown in the ma-
trix A Eq.3 again. The system identification toolbox
identifies the model with order three and the identified
output series is confronted with simulated data in the
Fig.6.

ADCM =

⎡
⎣

−1 0 0
0.5057 −1 0.5106
0.9121 0 −1

⎤
⎦ (3)
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Fig. 6. The model of simulated data - case 2
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4.1.3. Case 3 A reduced 64-samples set was gener-
ated by SPM simulator. The signal-to-noise ratio is the
same as in the case 1 (= 50). The vectors of onsets and
durations differ see table 2. The connectivity matrix is
copied from the previous cases. DCM result matrix A
is Eq.4.

SNR reg. TR scans inp.
50 3 1.7 64 1

ons. 5 12 29 39 51 60
dur. 2 2 3 1 2 2

Table 2. The simulated data parameters - case 3,4

ADCM =

⎡
⎣

−1 0 0
0.7566 −1 1.1719
1.91 0 −1

⎤
⎦ (4)
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Fig. 7. The model of simulated data - case 3

4.1.4. Case 4 DCM result connectivity matrix is

ADCM =

⎡
⎣

−1 0 0
0.7294 −1 0.3973
0.6828 0 −1

⎤
⎦ (5)
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Fig. 8. The model of simulated data - case 4

The combination of small signal-to-noise ratio and
small number of samples is poor and identification
failed seeing Fig.8.

5. BRAIN SYSTEM - SPECIAL STRUCTURE

From the previous section it is obvious that the sub-
space identification methods could be suitable for
identification procedure with fMRI data and we can
use them as a certain alternative to DCM procedure.
Let’s deal with the next step connected with transfor-
mation of state space description into more suitable
form.
The result of subspace identification methods is the
state space description in form matrices A, B, C and
D. Matrix A represents the dynamics, B is related to
inputs and C includes outputs. There might appear
an ambiguity in marking of matrices because DCM
procedure uses matrix B for representing modulatory
inputs and matrix C for external inputs. The modu-
latory inputs influence the connections among brain
regions directly while the external inputs influence the
regions. We decided not to consider modulatory inputs
and used marking typical for state space description
related to process control. Indeed it means to consider
matrix A for dynamics, B for inputs and C for outputs
as was noticed above.
The structure of whole system was shown in one of
the previous pictures Fig.1. If we look at this picture
we can see the structure of identified system with two
main parts called neurodynamics and hemodynamics.
Each brain region has own dynamics (hemodynamics)
comprised by filter whose output is measured signal
called BOLD signal. The first part called neurodynam-
ics represents the intrinsic connections among brain
regions. If we want to detect these connections we will
have to transform the final full matrices A, B, C and D
into the form according to this structure shown at the
Fig.1.
If we describe the structure of whole system in detail
we can say that the matrix A contains the eigenval-
ues of output filters representing hemodynamics, then
their gain coefficients and finally the submatrix which
defines the intrinsic connections among brain regions.
Matrix B represents the structure of inputs and matrix
C structure of outputs. Matrix D is zero therefore we
won’t pay attention to this matrix. In the following
section there are practical examples related to this
transformation.

5.1 Example - two regions, the first order filters

This case deals with identification for two brain re-
gions, one input signal and two output signals. This
system could represent simple brain system with two

4
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regions, the structure of final matrices is according to
the structure defined by Fig.9. The first step is creating
of the suitable system matrices called final matrices
Eq.6 7 8 9 10. Then the identification procedure fol-
lows. The result of the subspace identification methods
is state space description in the form of full matrices
A, B, C and D. Matrix D is zero in both cases therefore
it is not noted here. So the next part is looking for
transformation steps which achieve to transform the
full matrices to final matrices.

Fig. 9. The system structure

Af ull =

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4

x1 −1.658 1.990 −5.565 12.270
x2 −6.095 −5.173 −0.386 −5.901
x3 2.803 4.866 −0.678 1.988
x4 −2.198 −12.690 5.117 −15.490

⎤
⎥⎥⎥⎥⎦

(6)

Af inal =

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4

x1 −1 0 1 0
x2 0 −2 0 2
x3 0 0 −10 0
x4 0 0 5 −10

⎤
⎥⎥⎥⎥⎦

(7)

Bf ull =

⎡
⎢⎢⎢⎢⎣

u1

x1 3.084
x2 −1.100
x3 0.665
x4 −3.493

⎤
⎥⎥⎥⎥⎦

Bf inal=

⎡
⎢⎢⎢⎢⎣

u1

x1 0
x2 0
x3 1
x4 1

⎤
⎥⎥⎥⎥⎦

(8)

C f ull =

⎡
⎣

x1 x2 x3 x4

y1 −1.046 0.683 0.228 −1.096
y2 −1.713 0.764 −0.150 −1.702

⎤
⎦

(9)

C final =

⎡
⎣

x1 x2 x3 x4

y1 1 0 0 0
y2 0 1 0 0

⎤
⎦ (10)

Right now I would like to describe the steps of sim-
ilarity transformations which are needed for creating
required form of identified system. Each step of whole
transformation abides by following rules Eq.14. Each
transformation step is connected with previous step
and the transformation matrix is usually made from
final matrices of previous step.

Anew = T−1AT (11)

Bnew = T−1B (12)

Cnew = CT (13)

Dnew = D (14)

At first the eigenvalues are obtained by means of Schur
decomposition. This transformation enables to acquire
the zero elements under the main diagonal containing
these eigenvalues. Through the function called ord-
schur we can arrange the eigenvalues on basis of our
requirements. The following transformation makes the
diagonal submatrix appropriate to filters’ dynamics
(hemodynamics). This transformation matrix contains
the eigenvectors of relevant submatrix (related to fil-
ters’ dynamics). The results of this step follow 15 16
17.

Astep1 =

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4

x1 −1 0 −28.030 26.640
x2 0 −2 36.250 −35.150
x3 0 0 −10 19.780
x4 0 0 0 −10

⎤
⎥⎥⎥⎥⎦

(15)

Bstep1 =

⎡
⎢⎢⎢⎢⎣

u1

x1 −6.573
x2 8.751
x3 −3.566
x4 1.269

⎤
⎥⎥⎥⎥⎦

(16)

Cstep1 =

⎡
⎣

x1 x2 x3 x4

y1 −0.279 0 0.869 0.998
y2 0 0.329 1.440 1.180

⎤
⎦

(17)

The next step is adjustment of matrix C especially
elements appropriate to states which don’t participate
in output of whole system. The main part of transfor-
mation matrix is null space of matrix Cstep1. So the
result is Eq.18 19 20.

Astep2 =

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4

x1 −1 0 1.280 −1.270
x2 0 −2 −2.919 3.207
x3 0 0 −44.500 34.220
x4 0 0 −34.790 24.500

⎤
⎥⎥⎥⎥⎦

(18)

Bstep2 =

⎡
⎢⎢⎢⎢⎣

u1

x1 0.001
x2 −0.001
x3 −9.446
x4 −6.701

⎤
⎥⎥⎥⎥⎦

(19)

5
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Cstep2 =

⎡
⎣

x1 x2 x3 x4

y1 −0.279 0 0 0
y2 0 0.329 0 0

⎤
⎦ (20)

The matrix A contains submatrix which includes the
gain coefficients of output filters. The next step trans-
forms this submatrix according to Fig.9 by means of
inverse matrix.

Astep3 =

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4

x1 −1 0 1 0
x2 0 −2 0 1
x3 0 0 −10 0
x4 0 0 −8.486 −10

⎤
⎥⎥⎥⎥⎦

(21)

Bstep3 =

⎡
⎢⎢⎢⎢⎣

u1

x1 0.001
x2 −0.001
x3 −3.585
x4 6.080

⎤
⎥⎥⎥⎥⎦

(22)

Cstep3 =

⎡
⎣

x1 x2 x3 x4

y1 −0.279 0 0 0
y2 0 0.329 0 0

⎤
⎦ (23)

Matrix B is changed on basis of knowledge of output
filters. The filters are defined by their eigenvalues and
gain coefficients in matrix C, see below Eq.24 25 26.

Astep4 =

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4

x1 −1 0 −0.279 0
x2 0 −2 0 0.329
x3 0 0 −10 0
x4 0 0 −8.486 −10

⎤
⎥⎥⎥⎥⎦

(24)

Bstep4 =

⎡
⎢⎢⎢⎢⎣

u1

x1 0
x2 0
x3 −3.585
x4 6.080

⎤
⎥⎥⎥⎥⎦

(25)

Cstep4 =

⎡
⎣

x1 x2 x3 x4

y1 1 0 0 0
y2 0 1 0 0

⎤
⎦ (26)

Then only adjustment of gain coefficients follows,
especially in matrices A and B. This step transform
only individual state but it is always adjusted in all
matrices.

6. CONCLUSION

The main goal of this paper is using dynamic system
identification methods for modeling fMRI data. The
important aim is to develop certain alternative to DCM
procedure (for detection of connections among brain
regions) by help of subspace identification methods

which would eliminate some drawbacks of DCM pro-
cedure. The subspace identification methods are suc-
cessful for identification of ”brain” system. However,
the similarity transformation is more complicated for
that. The first problem is variable number of regions.
And the order of output filters must be at least the sec-
ond. It means that matrices of state space description
will be larger. Unfortunately the mentioned steps of
transformation are not general. So we can try to adjust
the subspace identification methods. It would mean to
enforce the specific structure to subspace identifica-
tion methods during identification procedure.
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