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Abstract: The paper presents robust control of a laboratory process with a transport
delay using the industrial control system SIMATIC. The controlled process is
identified in the form of a transfer function of a higher order with a transport
delay at first and then the transport delay is approximated by the first order Taylor
series expansion of the numerator or the denominator. Because the transport delay
can vary, the controlled laboratory process is modelled in the form of a transfer
function with interval parametric uncertainty. Robust PI controllers are designed for
the laboratory process. The method for synthesis of robust controllers is based on
plotting the stability boundary locus in the (kp, ki) - plane and the subsequent choice
of a stabilizing PI controller using the pole-placement method so that the prescribed
behavior of the closed-loop is achieved.
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1. INTRODUCTION

The field of robust control has experienced a large
number of breakthroughs over last decades. The
primary focal points have been robustness analy-
sis (Kharitonov (1978)) and robustness synthesis
involving structured real parametric uncertainty,
see e.g. Barmish (1994). Numerous interests have
grown in various problems of analysis, synthesis,
and design for interval plants.
There has been done a great amount of research
work on tuning of PID controllers since these
types of controllers have been widely used in
industrial applications. PID controller design in

classical control engineering is based on a plant
with fixed parameters and the latest approaches
can be found e.g. in Matuš̊u and Prokop (2008).
In the real world, however, most process models
are not known exactly and so, models contain
uncertainties. Hence control system design for
both, stability and performance robustness always
requires taking uncertainties into account.

In this paper, a method for design of robust PI
controllers is used, see Tan and Kaya (2003).
The method is based on plotting the stability
boundary locus in the (kp, ki)-plane and the
subsequent choice of a stabilizing PI controller
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using the pole-placement method so that the
prescribed behavior of the closed-loop is achieved.

2. SIMATIC S7-300

SIMATIC S7-300 is an industrial control system,
which is used in many applications of process con-
trol. SIMATIC includes programming (STEP7)
and visualization (WinCC) software, which are
used for programming of programmable logic con-
trollers (PLCs), for data accessing to users and
they are simply applicable for monitoring and
control of real processes.
The structure of the user’s program is created by
the organization block OB35, witch represents the
main program that works cyclic with the sample
time 100ms. The organization block OB35 in-
cludes a function block of a PID controller (FB41).
Before the blocks are programmed (Kožka and
Kvasnica (2001), Siemens (1996)), it is necessary
to create a project, configure a network, define
input and output modules and define connections
between input and output modules. Visualization
of the project is realized in the Graphics Designer.
Visualization software WinCC gives to users a
possibility to define their own visualization for
controlled processes. The component of WinCC
is a graphic editor. WinCC allows choice of ma-
nipulating elements, I/O fields and monitoring
windows according to demands of users. WinCC
processes all important data from the program
STEP7 and the connection between WinCC and
STEP7 is linked by tags.
For visualization of the controlled laboratory pro-
cess a visualization screen has been created. All
measured data and their graphic trends are dis-
played. User can design any objects for creating
of a visualization screen individually or objects
from a library can be chosen.

3. LABORATORY PROCESS

Controlled laboratory process (Fig. 1) is an elec-
tronic model of a linear 2nd order system with a
transport delay varying from 6s to 30s (Babirád
(2006)). The process was identified by Strejc
method (Fikar and Mikleš (1999)) in the form of
a transfer function

Gs(s) =
K

(Ts + 1)2
e−[Dmin,Dmax]s (1)

where K is the gain, T is the time constant and
Dmin, Dmax are the minimun and the maximum
transport delays of the process. The process was
identified from step responses measured in various
working areas and the identified parameters are
collected in Table 1.

Fig. 1. Controlled laboratory process

Table 1. Identified parameters

K T (s) D(s) n

0.97 10.0 12.6 2

0.97 10.1 17.1 2

0.97 10.4 22.4 2

0.97 10.7 35.4 2

4. ROBUST CONTROLLER DESIGN

4.1 Description of an uncertain system

Consider a system with real parametric uncer-
tainty described by the transfer function

Gs(s, q) =
b(s, q)
a(s, q)

(2)

where q is a vector of uncertain parameters and
b, a are polynomials in s with coefficients which
depend on a parameter q.

An uncertain polynomial

a(s, q) =
n∑

i=0

ai(q)si (3)

is said to have an independent uncertainty struc-
ture if each component qi of q enters into only one
coefficient ai.
A family of polynomials

A = {a(s, q) : q ∈ Q} (4)

is said to be an interval polynomial family if
a(s, q) has an independent uncertainty structure,
each coefficient depends continuously on q and
Q is a box. An interval polynomial family A
arises from the uncertain polynomials described
by a(s, q) with uncertainty bounds |qi| ≤ 1 for
i = 0, . . . , n. When dealing with an interval family,
the shorthand notation

a(s, q) =
n∑

i=0

[q−i , q+
i ]si (5)

may be used with [q−i , q+
i ] denoting the bounding

interval for the ith of uncertainty component of
uncertainty qi.
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Fig. 2. Control system

4.2 Analysis of robust stability

In order to use the Kharitonov theorem (Kharitonov
(1978)) for robust stability analysis, polynomials
associated with an interval polynomial family A
have to be defined at first. In the definition below
the polynomials are fixed in the sense that only
the bounds q−i and q+

i enter into the descrip-
tion but not the qi themselves. The number of
polynomials is four and they are independent on
the degree of a(s, q). Associated with the interval
polynomial family (5) are four fixed Kharitonov
polynomials (Kharitonov (1978))

K1(s) = q−0 + q−1 s + q+
2 s2 + q+

3 s3 + . . .
K2(s) = q+

0 + q+
1 s + q−2 s2 + q−3 s3 + . . .

K3(s) = q+
0 + q−1 s + q−2 s2 + q+

3 s3 + . . .
K4(s) = q−0 + q+

1 s + q+
2 s2 + q−3 s3 + . . .

(6)

The interval polynomial family A with invariant
degree is robustly stable if and only if its four
Kharitonov polynomials (6) are stable.

4.3 Description of PI controller synthesis

The method of a robust PI controller synthesis
(Tan and Kaya (2003)) is based on plotting the
stability boundary locus in the (kp, ki)-plane and
subsequent finding of stabilizing PI controllers.
The method locates all PI controllers, which sta-
bilize the controlled system with interval uncer-
tainty. The stability boundary divides the param-
eter plane ((kp, ki)-plane) into stable and unstable
regions. The stable ones can be determined by the
choice of a test point within each region.

4.4 Robust PI controller synthesis I

Consider the control system in Figure 2, where
Gs(s) represents the controlled process with the
transfer function

Gs(s) =
−b1s + b0

a2s2 + a1s + 1
(7)

and C(s) represents the feedback stabilizing PI
controller

C(s) = kp +
ki

s
(8)

with kp = ZR and ki = ZR

TI
, where ZR is the gain

of the controller and TI is the reset time of the
controller. The closed loop characteristic equation

can be written by substituting s = jω in the form

[−a1ω
2 + b1kpω

2 + b0ki]+
+ j[−a2ω

3 + (b0kp − b1ki + 1)ω] = 0 (9)

The parameters of PI controller can be easily
obtained by equating the real and the imaginary
parts of the characteristic equation (9) to zero,
for details see Závacká et al. (2007). Equating
the real and imaginary parts of (9) to zero leads
following expressions for calculating of kp, ki in
the dependence on the frequency ω

kp =
ω2(a2b0 + a1b1)− b0

b2
0 + b2

1ω
2

(10a)

ki =
ω2(a1 − kpb1)

b0
(10b)

4.5 Robust PI controller synthesis II

Consider further the control system in Figure 2
where Gs(s) represents the controlled process with
the transfer function

Gs(s) =
b0

a3s3 + a2s2 + a1s + a0
(11)

and C(s) is the feedback stabilizing PI controller
(8). The closed loop characteristic equation after
the substitution s = jω is

[a3ω
4 − a2ω

2 + b0ki]+

+ j[−a2ω
3 + (b0kp + a0)ω] = 0 (12)

Equating the real and imaginary parts of the char-
acteristic equation to zero gives following expres-
sions for calculating of kp, ki in the dependence
on the frequency ω

kp =
a2ω

2 + a0

b0
(13a)

ki =
−a3ω

4 + a1ω
2

b0
(13b)

5. POLE-PLACEMENT METHOD

For the control system in Figure 2, where Gs(s)
represents the controlled system of the 2nd or the
3rd order and C(s) represents the PI controller
(8), the closed loop characteristic equation can be

(s + c1)(s2 + 2ξω0s + ω2
0) = 0 (14a)

(s + c1)2(s2 + 2ξω0s + ω2
0) = 0 (14b)

where ξ is the relative damping, ω0 is the natural
undamped frequency and −c1 is the pole of the
closed-loop system (Bakošová and Fikar (2008)).
The closed loop characteristic equation for the
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considered controlled systems (7) or (11) and the
PI controller has the form

s3 +
a1 − b1kp

a2
s2+

+
a0 + b0kp − b1ki

a2
s +

b0ki

a2
= 0 (15a)

or

s4 +
a2

a3
s3 +

a1

a3
s3+

+
a0 + b0kp

a3
s +

b0ki

a3
= 0 (15b)

After the suitable choice of ξ, ω0, c1 and com-
parison of coefficients in (14a) and (15a), the
parameters of the PI controller can be computed
as follows

kp =
a2(c1 + 2ξω0)− a1

−b1
(16a)

ki =
c1a2ω

2
0

b0
(16b)

Simularly, after the suitable choice of ξ, ω0, c1 and
comparison of coefficients in (14b) and (15b), the
parameters of the PI controller can be computed
as follows

kp =
a3(2ξω0c

2
1 + 2c1ω

2
0)− a0

b0
(17a)

ki =
c2
1a2ω

2
0

b0
(17b)

The pole-placement method was used for the
nominal model of the controlled process with
following values of identified parameters: the gain
K = 0.97, the time constant T = 10.3s and the
transport delay Dnom = 24.0s.

6. RESULTS

6.1 Application of robust controller synthesis I
and pole-placement method

The identified transfer function (1) of the labo-
ratory process was modified by approximation of
the transport delay. The term representing the
transport delay in (1) was aproximated by its 1st
order Taylor series expansion of the numerator.
So, the modified transfer function has the form
(7) where

a2 = T 2

a1 = 2T
a0 = 1
b1 = [KD−, KD+]
b0 = K.

(18)

It can be stated according to (18) that the con-
trolled process is a system with parametric inter-
val uncertainty.

Table 2. The parameters of PI con-
trollers I

ZR TI

C1 0.10 7.0

C2 0.20 29.1
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Fig. 3. Stability region for (18)

The parameters of robust PI controllers were
found by the method described in the part 4.4
and 5.

In the stability region (Fig. 3) were found param-
eters of PI controllers (16) for following choice
of characterictic equation parameters: ξ = 0.77,
c1 ∈ [0.42 : 0] and ω0 ∈ [0 : 0.10]. Found kp and ki

lie on the magenta line in Figure 4. From designed
kp, ki parameters, two PI controllers were chosen:
C1 with ξ = 0.77, c1 = 0.12 and ω0 = 0.03,
and C2 with ξ = 0.77, c1 = 0.11 and ω0 = 0.02
(Tab. 2) (green stars in Figure 4).

The robust stability of the designed feedback
control loop was also tested and the Kharitonov
theorem was used. The characteristic equation of
the feedback control loop is

1 + C(s)Gs(s) = 0 (19)

where parameters of Gs(s) are given in (18) and
parameters of C(s) are given in Table (2). Four
fixed Kharitonov polynomials for the character-
istic equation were created according to (6) and
their stability was tested. The command kharit
from the Polynomial Toolbox was used and the re-
sult of this test is, that the polynomial on the left
side of (19) is robustly stable. It means that the
feedback control loop with designed controllers is
robustly stable.

6.2 Application of robust controller synthesis and
pole-placement method II

The identified transfer function (1) was modified
by approximation of the transport delay. The term
representing the transport delay in (1) was substi-
tuted by its 1st order Taylor series expansion of
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Fig. 4. The position of controllers in the stability
region for (18)

Table 3. The parameters of PI controller
II

ZR TI

C3 0.50 34.3

the denominator. So the transfer function has the
form (11) where

a3 = [T 2D−, T 2D+]
a2 = [T 2 + 2TD−, T 2 + 2TD+]
a1 = [2T + D−, 2T + D+]
a0 = 1
b0 = K.

(20)

According to (20), it can be stated, that the
controlled process is a system with parametric
interval uncertainty.
The parameters of robust PI controllers were
found by the method described in the part 4.5
and 5.

In the stability region (Fig. 5), parameters of PI
controllers (17) were found for ξ = 1.1, c1 ∈ [0.12 :
0.06] and ω0 ∈ [0 : 0.05]. Found kp and ki lie on
the magenta line in Figure 6. From designed kp, ki

parameters was chosen the PI controller C3 with
ξ = 1.1, c1 = 0.09 and ω0 = 0.03 (Tab. 3)(green
star in Figure 6).

The robust stability of the designed feedback
control loop was also tested using the Kharitonov
theorem by the way as it was described in the
previous section. The result of the test confirmed
that the polynomial (19) is robustly stable. It
means the feedback control loop with the designed
controller C3 is robustly stable.

6.3 Control of laboratory process

The laboratory process was controlled using the
robust PI controllers (Tab. 2) and (Tab. 3). These
controllers were implemented via the control sys-
tem SIMATIC.
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Fig. 5. Stability region for (20)
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Fig. 6. The position of controllers in stability
region for (20)
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Fig. 7. Time responses for controller C1

Time responses of the closed loop with the con-
trolled process with different values of the trans-
port delay and the PI controller C1 are shown
in Figure 7, where w is the setpoint and Dmin,
Dmax, Dnom are minimal, maximal and nominal
transport delays.

Time responses of the closed loop with the con-
trolled process with different values of transport
delay and the PI controller C2 are shown in Fig-
ure 8, where w is the setpoint and Dmin, Dmax,
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Fig. 8. Time responses for controller C2
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Fig. 9. Time responses for controller C3

Dnom are minimal, maximal and nominal trans-
port delays.

Time responses of the closed loop with the con-
trolled process with different values of transport
delay and the PI controller C3 are shown in Fig-
ure 9 where w is the setpoint and Dmin, Dmax,
Dnom are minimal, maximal and nominal trans-
port delays.

CONCLUSIONS

The electronic model was identified as the pro-
cess with interval uncertainty in the transport
delay. For this process, robust PI controllers were
designed by combination of two methods: the
method based on the stability boundary locus in
the (kp, ki)-plane and the pole-placement method.
Adding the pole-placement method to the robust
PI controller design offers the possibility to assure
the prescribed behavior of the closed loop given
by the choice of ξ, c1 and ω0. Designed controllers
were implemeted for control of the laboratory pro-
cess using the control system SIMATIC. Obtained
experimental results confirm that the designed
robust PI controllers are suitable for control of
real processes with varying transport delay.
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