
Slovak University of Technology in Bratislava
Institute of Information Engineering, Automation, and Mathematics

PROCEEDINGS
17th International Conference on Process Control 2009

Hotel Baník, Štrbské Pleso, Slovakia, June 9 – 12, 2009

ISBN 978-80-227-3081-5

http://www.kirp.chtf.stuba.sk/pc09

Editors: M. Fikar and M. Kvasnica

Sysel, M.: TCP/IP Output from the Simulink, Editors: Fikar, M., Kvasnica, M., In Proceedings of the 17th
International Conference on Process Control ’09, Štrbské Pleso, Slovakia, 634–637, 2009.

Full paper online: http://www.kirp.chtf.stuba.sk/pc09/data/abstracts/061.html

TCP/IP OUTPUT FROM THE SIMULINK

M. Sysel*

* Tomas Bata University in Zlín, Faculty of Applied Informatics

Nad Stráněmi 4511, 760 05 Zlín, Czech Republic

phone : +420 57 603 5180 and e-mail : Sysel@fai.utb.cz

Abstract: This paper describes an option for TCP/IP output from the program

MATLAB/Simulink. The new developed Simulink block and instructions for building

this one are described here. This client block enables Simulink models to communicate

with remote applications and devices over TCP/IP communications. A very similar

functionality (more complex) is provided by the TCP/IP block in the Instrument Con-

trol Toolbox offered by MathWorks.

Keywords: Simulink, communications, TCP/IP, client.

1 INTRODUCTION

Simulink can communicate with remote applications

using developed Simulink block. This block enables

sending live data from Simulink model to an appli-

cation using TCP/IP. The base element of the block

is S-function block, which use C MEX file. (Anon.

2008 c)

2 S-FUNCTION

S-functions (system-functions) provide a powerful

mechanism for extending the capabilities of the Si-

mulink environment. An S-function is a computer

language description of a Simulink block written in

MATLAB, C, C++, Ada, or Fortran. C, C++, Ada,

and Fortran S-functions are compiled as MEX-files

using the mex utility. As with other MEX-files, S-

functions are dynamically linked subroutines that the

MATLAB interpreter can automatically load and

execute. S-functions use a special calling syntax

called the S-function API that enables to interact

with the Simulink engine. This interaction is very

similar to the interaction that takes place between

the engine and built-in Simulink blocks. S-functions

follow a general form and can accommodate conti-

nuous, discrete and hybrid systems. By following a

set of simple rules, it can be implemented an algo-

rithm in an S-function and used the S-Function

block to add it to a Simulink model. After writing

S-function and place its name in an S-Function

block (available in the User-Defined Functions block

library), it can customize the user interface using

masking. (Anon. 2008 a).

2.1 S-function Simulation Stages

To create S-functions, it is needed to understand how

S-functions work. It requires understanding how the

Simulink engine simulates a model.

Execution of a Simulink model proceeds in stages.

First comes the initialization phase. In this phase,

the Simulink engine incorporates library blocks into

the model, propagates signal widths, data types, and

sample times, evaluates block parameters, deter-

mines block execution order, and allocates memory.

The engine then enters a simulation loop, where

each pass through the loop is referred to as a simula-

tion step. During each simulation step, the engine

executes each block in the model in the order deter-

mined during initialization. For each block, the en-

gine invokes functions that compute the block states,

derivatives, and outputs for the current sample time.

The entire simulation loop then continues until the

simulation is complete.

A MEX S-function consists of a set of callback me-

thods that the Simulink engine invokes to perform

various block-related tasks during a simulation.

MEX S-functions can be implemented in C, C++,

Ada, or Fortran. The engine directly invokes MEX

S-function routines instead of using function handles

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Le-Fr-5, 061.pdf

634

as with M-file S-functions. Because the engine in-

vokes the functions directly, MEX S-functions must

follow standard naming conventions specified by the

S-function API.

MEX-file S-functions are more appropriate for inte-

grating legacy code into a Simulink model. For more

complicated systems, MEX-file S-functions may

simulate faster than M-file S-functions because the

Level-2 M-file S-function calls the MATLAB inter-

preter for every callback method. (Anon. 2008 a).

MEX S-functions provide the following sample time

options, which allow for a high degree of flexibility

in specifying when an S-function executes:

• Continuous sample time

• Continuous, but fixed in minor time step sample

time

• Variable discrete sample time

• Inherited sample time

• Discrete sample time - If the behavior of your S-

function is a function of discrete time intervals,

it can be defined a sample time to control when

the Simulink engine calls the S-function. It can

be also defined an offset that delays each sample

time hit. The value of the offset cannot exceed

the corresponding sample time. If it is defined a

discrete sample time, the engine calls the S-

function mdlOutput and mdlUpdate routines at

each sample time hit.

Although hand-written S-functions support the wid-

est range of features, they can be difficult to write.

The S-Function Builder block simplifies the task of

writing C MEX S-functions but supports fewer fea-

tures. The Legacy Code Tool provides the easiest

approach to creating C MEX S-functions from exist-

ing C code but supports the fewest features.

The important S-function callback methods are

shown in figure 1. The implementations of callback

methods is described below.

Fig. 1. The important S-function callback methods.

3 WINDOWS SOCKETS

Traditional network programming implemented in

Windows environment uses Windows Sockets API

(Winsock API - WSA). WSA is similar to Linux

Sockets programming with a few exception such as

header files, that provided to suit Windows envi-

ronment and enhances the functionalities. Windows

Sockets 2 (Winsock) enables programmers to create

advanced Internet, intranet, and other network-

capable applications to transmit application data

across the wire, independent of the network protocol

being used. With Winsock, programmers are pro-

vided access to advanced Microsoft Windows net-

working capabilities. Winsock programming pre-

viously centered around TCP/IP. (Anon. 2009).

There are two distinct types of socket network appli-

cations: Server and Client. Servers and Clients have

different behaviors; therefore, the process of creating

them is different. What follows is the general model

for creating a streaming TCP/IP Server and Client.

Server

• Initialize Winsock.

• Create a socket.

• Bind the socket.

• Listen on the socket for a client.

• Accept a connection from a client.

• Receive and send data.

• Disconnect.

Client

• Initialize Winsock.

• Create a socket.

• Connect to the server.

• Send and receive data.

• Disconnect.

The developed Simulink block is a client.

4. BLOCK DESCRIPTION

This chapter contains simplified description of the

source code of the developed Simulink block. The

base element of the block is S-function block, which

use C MEX file. Finally, it is necessary compile

source code. Compiling the MEX-Files is similar to

compiling with gcc or any other command line com-

piler. Following command link the object code to-

gether with the library wsock32.lib. Win32 architec-

ture is supposed. (Anon. 2008 a, b).

>> mex -O netout.cpp wsock32.lib -DWIN32

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Le-Fr-5, 061.pdf

635

4.1 Defines and Includes

The S-function code starts with the following define

statements.

#define S_FUNCTION_NAME netout

#define S_FUNCTION_LEVEL 2

#include "simstruc.h"

#include "winsock.h"

The first define statement specifies the name of the

S-function (netout). The second define statement

specifies that the S-function is in the Level2 format.

After defining these two items, the code includes

simstruc.h, which is a header file that gives access to

the SimStruct data structure and the MATLAB Ap-

plication Program Interface (API) functions. The

simstruc.h file defines a data structure, called the

SimStruct, which the Simulink engine uses to main-

tain information about the S-function. The sim-

struc.h file also defines macros that enable MEX-file

to set values in and get values (such as the input and

output signal to the block) from the SimStruct. The

winsock.h should be added to access sockets under

Microsoft Windows. Next parts describe callback

method implementations.

4.2 mdlInitializeSizes

The Simulink engine calls mdlInitializeSizes to in-

quire about the number of input and output ports,

sizes of the ports, and any other information (such as

the number of states) needed by the S-function.

The netout implementation of mdlInitializeSizes

specifies the following size information:

ssSetNumSFcnParams(S, 3);

It defines three input parameters:

• Address – (String input parameter) Name ad-

dress of the server (IP address) - An Internet

Protocol (IP) address is a numerical identifica-

tion (logical address) that is assigned to devices

participating in a computer network utilizing

the Internet Protocol for communication be-

tween its nodes.

• Port – (Integer input parameter) - In computer

networking, a port is an application-specific or

process-specific software construct serving as a

communications endpoint used by Transport

Layer protocols of the Internet Protocol Suite

such as Transmission Control Protocol (TCP) or

User Datagram Protocol (UDP). A specific port

is identified by its number associated with the IP

and the protocol used for communication.

• Sample time period – Sampling period of the

signal output.

if (!ssSetNumInputPorts(S, 1)) return;

ssSetInputPortWidth(S,0,DYNAMICALLY_SIZED);

It defines one dynamically sized input port, that’s

why TCP output is in the special format which is

easy modifiable.

ssSetOptions(S,

SS_OPTION_WORKS_WITH_CODE_REUSE |

SS_OPTION_EXCEPTION_FREE_CODE |

SS_OPTION_USE_TLC_WITH_ACCELERATOR);

Specifying these options together with exception-free

code speeds up execution of S-function.

4.3 mdlInitializeSizes

The Simulink engine calls mdlInitializeSample-

Times to set the sample times of the S-function. A

netout block executes in specified period (the third

input parameter).

ssSetSampleTime(S,0,

mxGetScalar(ssGetSFcnParam(S, 2)));

4.4 mdlStart

Simulink invokes this optional method at the begin-

ning of a simulation. It should initialize the windows

socket. Input parameters Address and Port are used,

TCP communication is used here.

WSAStartup(wVersionRequested, &data);

mxGetString(ssGetSFcnParam(S, 0),buf,buflen);

host = gethostbyname(buf);

port = (int) mxGetScalar(ssGetSFcnParam(S, 1));

mySocket = socket(AF_INET, SOCK_STREAM,

IPPROTO_TCP);

serverSock.sin_family = AF_INET;

serverSock.sin_port = htons(port);

memcpy(&(serverSock.sin_addr), host->h_addr,

host->h_length);

connect(mySocket, (sockaddr *)&serverSock, si-

zeof(serverSock);

4.5 mdlOutputs

The engine calls mdlOutputs at each time step to

calculate the block outputs. The netout implementa-

tion of mdlOutputs takes the input signal and writes

the data to the created output socket.

send(mySocket, data, strlen(data), 0);

4.5 mdlTerminate

The engine calls mdlTerminate to provide the

S-function with an opportunity to perform tasks at

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Le-Fr-5, 061.pdf

636

the end of the simulation. This is a mandatory

S-function routine. The netout S-function terminate

created socket.

closesocket(mySocket);

WSACleanup();

4.6 Block netout

The TCP/IP output block sends out data from model

using the TCP/IP protocol. This data is sent at fixed

intervals during a simulation. The TCP/IP output

block has one input port. The size of the input port is

dynamic, and is inherited from the driving block.

This block has no output ports. The developed

TCP/IP output block is shown in the figure 2.

Fig. 2. The TCP/IP output block.

The Sink Block Parameters dialog box can be used

for selecting communication parameters (figure 3).

Fig. 3. The Sink Block Parameters dialog box.

It is possible to specify a remote server address, port

and sample time period. The sample time period is

the rate at which the block send the data to specified

port on the server during the simulation.

5 CONCLUSIONS

The TCP/IP output block has been developed. This

client block enables Simulink models to communi-

cate with remote applications and devices over

TCP/IP communications. This paper describes this

block and simplified instructions for building this

block.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Educa-

tion of the Czech Republic under grant No. MSM

7088352101 “Multifunctional Composite Systems

Based on Natural and Synthetic Polymers, research

team: Control Systems for Macromolecular Compos-

ite Processing”.

6 REFERENCES

Anonymous (2008). Writing S-Functions. The

Mathworks Inc., Natick, USA.

Anonymous (2008). MATLAB C and Fortran API

reference. The Mathworks Inc., Natick, USA.

Anonynous (2008). Instrument Control Toolbox 2.7.

The Mathworks Inc., Natick, USA.

Anonymous (2009). Windows Sockets 2 [online].

[cit. 2009-01-15]. Accessed from WWW:

<http://msdn.microsoft.com/en-

us/library/ms740673(VS.85).aspx>.

17th International Conference on Process Control 2009
June 9–12, 2009, Štrbské Pleso, Slovakia Le-Fr-5, 061.pdf

637

