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Abstract: In this paper, a hybrid dynamic optimisation approach is developed for
simulation of a pressure swing adsorption (PSA) process. The simulation problem
which consists in the determination of the cyclic steady-state (CSS) is formulated as an
optimisation problem where the performance index is the CSS condition, the decision
variables are the state variables at the start of the cycle and the process model along
with associated initial and boundary conditions gives the constraints. The necessary
conditions of optimality for the hybrid dynamic system using the adjoint system
method are derived and the gradients are computed for the non linear programming
(NLP) solver used. The optimisation results are compared to those obtained with
gradients computed by means of finite differences method.
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1. INTRODUCTION

The class of hybrid processes considered in this
paper refers to processes that require the use
of different process models, each is valid in a
given functioning time domain. Transitions be-
tween domains take place at different time in-
stants (events). Examples of hybrid processes in-
clude pressure swing adsorption processes, reverse
flow reactors, small-size waste water treatment
plants, etc.

In general, this class of hybrid processes is de-
scribed by time-dependent, non-linear dynamic
models that exhibit model switching as a sequence
of both time and state-dependent events.

A pressure swing adsorption process consists of
four basic operations (typical Skarstrom cycle),
i.e. pressurisation, high pressure adsorption, blow
down and low pressure purge. This sequence of
operations is carried out in a series of fixed-beds in

the same way but shifted in time. PSA processes
are therefore transient and cyclic in nature.

The PSA process models are described by sets of
partial differential algebraic equations (PDAEs).
They are mainly constituted by conservation
equations and models for the equation of state,
equilibrium and thermodynamic and transport
properties.

The simulation of PSA processes consists in the
determination of the cyclic steady-state. This
is traditionally performed by means of succes-
sive substitution or Newton-type methods. These
methods are well known in the literature and
are extensively studied in order to improve their
robustness and convergence rate. However, alter-
native and interesting approaches have recently
emerged and are based on the use of optimisation
methods for the determination of CSS (Nilchan
and Pantelides (1998), Jiang et al. (2003), Ko
et al. (2003), Ko et al. (2005), Latifi et al. (2008)).
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Their basic principle consists in the formulation of
the simulation problem as a dynamic optimisation
problem where the performance index is defined
as the sum of square differences between the state
variables (gas phase concentrations, solid-phase
concentrations and temperature) obtained at the
beginning and at the end of a cycle. The decision
variables are the initial conditions (state variables
at the beginning of a cycle), and the constraints
are given by the process model where the method
of lines is used for spatial discretisation and con-
verts the PDAEs to differential-algebraic equa-
tions (DAEs). A gradient-based nonlinear pro-
gramming (NLP) solver is then used to determine
the initial state vector which minimises the cyclic
steady-state condition.

The main differences between the previous works
on optimisation-based simulation of PSA pro-
cesses are the method of discretisation of PDAEs
(both single discretisation and complete discreti-
sation) and the method used to compute the gra-
dients for the NLP solver.

In (Nilchan and Pantelides (1998), Ko et al.
(2003)) the complete discretisation approach, i.e.
space and time are discretised, is used and
the resulting NLP problem is solved within the
sensitivity-based code gPROMS. For simple mod-
els this approach is efficient, but for complicated
models the complete discretisation causes error
accumulation and may lead to solver failure.

In (Ko et al. (2003), Ko et al. (2005), Jiang
et al. (2003)) the single discretisation approach
where only the space is discretised is used and
the method of lines used is the centred finite
differences in (Ko et al. (2003), Ko et al. (2005))
whereas the finite volume method is used in (Jiang
et al. (2003)). In the three works, the sensitivity
method is used and the resulting optimisation
problem is solved within gPROMS. It is important
to notice that the spatial discretisation method
involves a quite large number of decision variables
and the use of sensitivity method for gradients
computation results in a huge DAE system and
consequently in big computation times. On the
other hand since the number of constraints in-
volved in an optimisation-based determination of
CSS is small , the adjoint system method becomes
more interesting.

In (Latifi et al. (2008)) the spatial discretisation
approach used is based on orthogonal colloca-
tion method and the adjoint system method is
used for gradients computation. They showed that
the adjoint method has the fastest convergence
rate compared to finite differences method and
both numerical and analytical sensitivity meth-
ods. However, orthogonal collocation methods of-
ten introduce physically unrealistic oscillations
near steep adsorption fronts and lead to solutions

with negative values for positive variables (e.g.
mole fractions). The finite volume method allows
us to determine accurate solutions which in addi-
tion preserve the mass and energy balance in the
spatial direction (conservative method).

The objective of this paper is the simulation of
PSA processes, i.e. determination of the cyclic
steady-state, by means of a hybrid dynamic op-
timisation approach which relies on high-quality
system models. Moreover, the objective is : (i) to
derive the necessary conditions of optimality for
a hybrid system using the adjoint method and to
deduce the gradients required by the NLP solver,
(ii) to formulate the simulation of PSA processes
as a hybrid dynamic optimisation problem where
the model PDAEs are converted to DAEs using
the finite volume method (iii) and to present some
new results obtained in the case of a non isother-
mal PSA process.

2. MATHEMATICAL REPRESENTATION OF
HYBRID SYSTEMS

The formalism used here to model the hybrid sys-
tems under consideration is derived from (Galàn
et al. (1999) and Ruban (1997)). We consider a
system described by a state space S = Unk

k=1Sk,
where each mode Sk is characterised by :

(1) A set of variables {ẋ(k), x(k), p}, where
x(k)(p, t) are the differential state variables, p
the time-independent parameters, and t the
time that varies in [t(k)

o , t
(k)
f ].

(2) A set of equations f (k)(ẋ(k), x(k), p) = 0,
usually coupled system of differential and
algebraic equations.

(3) A set of transitions to other modes. These
transitions are described by :
• Transition conditions

L
(k)
j (ẋ(k), x(k), t

(k)
f , p) = 0, j =

1, 2, ..., ns, determining the transition
times at which switching from mode
k to mode j occurs. The transition
conditions are represented by logical
propositions that trigger the switching
when they become true.

• Associated with these transition con-
ditions are sets of transition functions
x(k+1) = x(k)+∆(k)

j (x(k), t
(k)
f , p) relating

the variables in the mode Sk and the
variables in the new mode Sj at tran-
sition time t

(k)
f . A special case of the

transition functions is the set of initial
conditions for the initial mode S1.
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3. PSA PROCESS MODEL

The hybrid system considered here is a PSA
process for air drying by silica gel. The process
used consists of four steps : instant pressurisation,
high pressure adsorption,instant blow down and
low pressure purge. The process model is similar
to that in (Chihara and Suzuki (1983)) and is
based on the following assumptions:

• A monodimensional model is considered.
• The system is non isothermal.
• The axial dispersion is negligible.
• The gas phase is ideal.
• The carrier gas is assumed to be inert.
• The mass transfer rate is described by LDF

(linear driving force) model.
• Frictional pressure drop is negligible.
• Fluid phase and solid phase are in thermal

equilibrium.
• The effect of temperature change on gas and

solid properties is negligible.

The resulting model is constituted by the follow-
ing equations:

1. Adsorbate mass balance in the fluid phase :

v
∂c

∂z
+

∂c

∂t
+

γ

ǫ

∂q

∂t
= 0 (1)

2. Mass transfer rate :
∂q

∂t
=

Ksav

γ
(q⋆ − q) (2)

3. Adsorption equilibrium relationship :

q⋆ = kc (3)

The effect of temperature change on adsorption
coefficient is described by :

ln
k

ko
=

Q

R
(
1
T
− 1

To
) (4)

4. Energy balance :

kez

ǫ

∂2T

∂z2
− vρgCpg

∂T

∂z
+

2ho

ǫr
(To − T )−

(ρgCpg +
γ

ǫ
Cps)

∂T

∂t
+

γ

ǫ
Q

∂q

∂t
= 0

(5)

where v = vH for adsorption,

and v = −vL = −αvH for purge.

The associated boundary conditions for adsorp-
tion are:

c = co, T = To at z = 0 (6)

and for purge :

c =
PL

PH
cadsorption, T = To at z = L (7)

Frozen solid state conditions are assumed dur-
ing variable pressure steps, i.e pressurization and

purge (Shendalman and Mitchell (1972)) for the
PSA model under consideration. The pressure
change during the steps of pressurization and
blowdown is assumed so rapid that mass transfer
between solid and fluid phases is negligible. Solid-
phase concentration and temperature remain un-
changed at the end of adsorption and purge steps
whereas gas-phase concentration at the end of
adsorption step is reduced in proportion to ratio
of high pressure to low pressure. Gas-phase con-
centration remains unchanged at the end of purge
step.

Equations (1 - 5) form a set of partial differential
algebraic equations (PDAEs) which is converted
in a set of partial differential equations (PDEs)
since the system index is one (Unger et al. (1995),
Brenan et al. (1996)).

4. SPATIAL DISCRETIZATION

The method of lines methodology (Schiesser
(1991)) is used to convert the system of PDEs
to a system of ordinary differential equations
(ODEs). In this work, the finite volume method
(Webley and He (2000)) is used. It is particu-
larly suitable for modelling hyperbolic conserva-
tion laws given its inherent conservative properties
(Leonard (1979)). The spatial domain is divided
into a discrete number of volume elements and
PDEs are integrated over volume element i

∫ zi+1/2

zi−1/2

f(z)dz = ∆if i (8)

where ∆i is the spatial length of volume element
i and f i is the control volume average of f in
volume i. We assume that f i = fi where fi is
the value of f at the centre of control volume
i. This scheme is illustrated in Figure (1) for a
monodimensional model.

 

t 

z i-1/2 i 

if  1+if  1−if  

∆i 

i+1/2 

Figure 1. Monodimensional discretisation with
finite volume method

The resulting process model may be written in the
following ODEs :

dc̄i

dt̄
+ τa

c̄i+ 1
2
− c̄i− 1

2

∆z̄
+ τb

dq̄i

dt̄
= 0 (9)

dq̄i

dt̄
= τf (q̄∗ − q̄i) (10)
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q̄⋆ = Kc̄i (11)

K = exp(− Q

RTo
(

T̄i

T̄i + 1
)) (12)

dT̄i

dt̄
+ τH

T̄i+ 1
2
− T̄i− 1

2

∆z̄
− τL

(∂T̄
∂z̄ )i+ 1

2
− (∂T̄

∂z̄ )i− 1
2

∆z̄

+ τW T̄i − β
dq̄i

dt̄
= 0

(13)

for i = 1, 2, ..., N

The boundary conditions in non-dimensional form
are as follows:
For high-pressure adsorption :

c̄1 = 1, T̄1 = 0 (14)

For low-pressure purge :

c̄N =
PL

PH
c̄N(adsorption), T̄N = 0 (15)

The whole model of the PSA process under con-
sideration illustrated in Figure (2) may be written
in the following hybrid form :
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1∆  

)2(

1L  

t 
)2(

0

)1( tt f =  )2(

ft  

τads τdes 

)0(
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Figure 2. Schematic representation of the PSA
process

ẋ(k) = f (k)(x(k), p) (16)

The transitions conditions are :

L
(k)
j = t− t

(k)
f = 0 (17)

The transitions functions associated with the
transition conditions are :

• For fluid-phase concentration

x(k+1)(t(k+1)
o ) = x(k)(t(k)

f )
PL

PH
(18)

• For solid-phase concentration and tempera-
ture

x(k+1)(t(k+1)
o ) = x(k)(t(k)

f ) (19)

The special case of the transition functions is
given by the initial conditions for the compression
step (mode S1) as

∆(0)
1 = x(1)(t(1)0 )− x

(1)
0 = 0 (20)

where the state vector is given by

x(k),T =(c̄(k)
o , c̄

(k)
1 , .., c̄

(k)
N , q̄(k)

o , q̄
(k)
1 , .., q̄

(k)
N ,

T̄ (k)
o , T̄

(k)
1 , .., T̄

(k)
N )

The initial state vector is given by

x(1),T
o =(c̄(1),o

o , c̄
(1),o
1 , .., c̄

(1),o
N , q̄(1),o

o , q̄
(1),o
1 ,

.., q̄
(1),o
N , T̄ (1),o

o , T̄
(1),o
1 , .., T̄

(1),o
N )

On the other hand, from the basic steps durations,
i.e. τads and τdes , the transitions times are given
as

t
(1)
f = τads (21)

t
(2)
f = τads + τdes (22)

The last transition time is also the PSA cycle
duration.

5. OPTIMISATION-BASED FORMULATION
OF THE SIMULATION PROBLEM

The objective of the simulation problem is to
determine the cyclic steady-sate, i.e. the state
vector at the start of the cycle must be equal
to the state vector at the end of the cycle. The
classical formulation of this objective is expressed
as :

x(1)(t(1)o ) = x(2)(t(2)f ) (23)

Different methods have been developed to solve
(23), including fixed-point iteration approach,
quasi-Newton and Newton methods (Smith IV
and Westerberg (1991), Croft and LeVan (1994),
Nilchan and Pantelides (1998)).

The optimisation-based formulation developed in
this work consists in treating the simulation prob-
lem as a single dynamic optimisation problem
where the performance index is the CSS condition,
the decision variables are the state variables at the
start of the cycle and the constraints are given by
the hybrid model equations of the process with
associated initial conditions.

It is noteworthy that the decision variables are the
initial state vector. The time-independent vector
of parameters is therefore defined as :

p = x(1)(t(1)o ) (24)
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The mathematical formulation of the optimisation-
based simulation is given by :

min
p

J =
1
2
eT e (25)

where e = x(1)(t(1)o )− x(2)(t(2)f )

Subject to constraints (16-20)

6. COMPUTATIONAL METHOD

The computational method used consists in es-
timating the initial values of decision variables
which are used in process model integration. The
performance index and the gradients of both per-
formance index and constraints with respect to
decision variables are computed and provided to
a gradient-based NLP solver, which in turn es-
timates a new vector of decision variables. The
process is repeated until convergence where the
optimal values of decision variables are obtained.

It is important to notice that in any gradient-
based optimisation solver, the convergence and its
rate depend strongly on the accuracy of gradients
computation. In this work, two methods are used
and compared. They are based on the following
general definition of the performance index:

min
p

J = G[x(tf ), p] +
∫ tf

0

F [x(t), p]dt (26)

6.1 Finite differences method

The approximation of the gradient of the perfor-
mance index J with respect to a parameter pi

by means of (centered) finite differences method
consists in perturbing J with a finite amount ∆pi

of pi as follows :

∂J

∂pi
=

J(pi + ∆pi)− J(pi −∆pi)
2∆pi

(27)

where typically ∆pi

pi
= 1%.

6.2 Adjoint system method

The gradient of the performance index J with
respect to a parameter pi by means of adjoint
system method are derived from the results of
(Bryson and Ho (1975) and Ruban (1997))

∂J

∂pi
= λ1(t(1)o )

∂x(1)(t(1)o )
∂pi

+
∂G

∂pi
(28)

The Hamiltonian function of the performance
index in each mode is given by

H(k) = F (x, p) + λT f (k) (29)

where the corresponding vector of adjoint vari-
ables is defined as

λ̇(k) = −∂H(k)

∂x(k)
(30)

with the terminal conditions

λ(2)(tf ) =
∂G

∂x

∣∣∣∣
t=t

(2)
f

= x(2)(t(2)f )− p (31)

The PSA process model under consideration is
hybrid, consequently the corresponding adjoint
system is also hybrid and the transition conditions
and transition functions need to be taken into
account for backward integration of the adjoint
system.

The transition conditions (switching instants) for
adjoint system are the same as for the process
model. The corresponding transition functions are

• For fluid-phase concentration

x(k)(t(k)
o ) = x(k+1)(t(k+1)

f )
PL

PH
(32)

• For solid-phase concentration and tempera-
ture

x(k)(t(k)
o ) = x(k+1)(t(k+1)

f ) (33)

The computational algorithm for adjoint system
method is

(1) Estimation of initial values of decision vari-
ables p

(2) Integration of state equations (16-20)
(3) Backward integration of the system of adjoint

equations (30-33)
(4) Computation of performance index by (26)

and gradients by (28)
(5) Estimation of new vector of decision variables

p by NLP solver and repetition of the process
from step (2) until the convergence criteria is
satisfied.

7. RESULTS

7.1 Data used

The durations of adsorption and purge steps are
equal. The number of finite volume elements N is
20. The rest of physical data are given in Table
(1) (Chihara and Suzuki (1983)).

7.2 Results and discussion

The simulations are carried out on a 3.40 GHz
Intel Pentium 4 computer. The NLP solver used
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Parameter Value Unit

L 1 m

r 0.1 m

ǫ 0.4 -

γ 7.2x103 kg/m3

ρs 1.2x103 kg/m3

Cps 1.26x103 J/kg.K

ρg 1.2 kg/m3

(at atm. pres.)

Cpg 1x103 J/kg.K

k 7.57 m3/kg

Q 5.19x104 J/mol

Ksav 0.2 kg/m3.s(at PH)

1 kg/m3.s(at PL)

kez 0.293 J/m.s.K

ho 40 J/m2.s.K

to 54800 s

co 0.79 mol/m3

To 303 K

vH 0.25 m/s

vL 0.5 m/s
PH 5.07x105 Pa

PL 1.01x105 Pa

α 2 −
t1 0.01to sec

t2 0.01to sec

Table 1. Physical data used in the model

is NLPQL by Schittkowski (1986) and VODE
code is used as the integrator (Brown et al.
(1989)). Appropriate changes are introduced in
the dynamic optimisation package DYNO (Fikar
and Latifi (2002)) for computation of gradients
by adjoint system method for the hybrid dynamic
system.

Table (2) presents the optimal values of the per-
formance index, i.e. the CSS condition, and their
corresponding CPU times for the two methods of
gradients computation. It can be seen that adjoint
system method has not only faster convergence
rate but it also leads to a more precise value of
the CSS condition.

Finite Adjoint

differnces system

method method

CPU time (s) 1505 62

Performance

index 0.53x10−4 0.49x10−5

Table 2. PSA optimisation results

Figures (3), (4) and (5) present respectively the
adsorbate concentration in fluid and solid phases
and fluid phase temperature after the adsorption
step versus dimensionless bed length at the end of
first cycle and at CSS.

The results are in very good agreement with
those obtained in (Chihara and Suzuki (1983))
where the complete discretisation based on Crank-
Nicolson implicit method is used. However the
computational time must be huge compared to
the adjoint sytem method developed here.
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Figure 3. Fluid phase concentration profiles vs
dimensionless bed length
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Figure 4. Solid phase concentration profiles vs
dimensionless bed length
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Figure 5. Fluid phase temperature profiles vs
dimensionless bed length

8. CONCLUSION

Optimisation-based simulation of the hybrid PSA
process was carried out by simultaneous treat-
ment of simulation and optimisation as a single
problem. The adjoint system for computation of
gradients was formulated for the hybrid dynamic
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model and the results were compared to finite
differences method. It is clear that adjoint system
method can be used for computation of gradients
for hybrid dynamic optimisation problems and it
gives better convergence rate.

Nomenclature

av Interfacial surface area
c Fluid-phase concentration
co Adsorbate concentration in feed
Cpg Heat capacity of gas
Cps Heat capacity of adsorbent
ho Overall heat transfer coeffcient
K k/ko

k Adsorption equilibrium constant
ko k at To

kez Effective thermal conductivity
Ks/γ Overall mass transfer coefficient
L Bed length
PH Adsorption step bed pressure
PL Purge step bed pressure
Q Isosteric heat of adsorption
q Solid-phase concentration
r Radius of the adsorbent bed
T Temperature in the bed
t Time
To Ambient temperature
to Characteristic time/saturation time
v Interstitial velocity
z Position in the bed
c̄ c/co

q̄ q/q∗o
q̄∗o q∗/q∗o
T̄ (T − To)/T
t̄ t/t1
z̄ z/L
α Volumetric purge to feed ratio
ǫ Bed porosity
γ Bed density
ρg Gas density
ρs Adsorbent particle density

Nondimensional parameters

τa =
t1v

L

τb =
γq∗o
ǫco

τf =
t1Ksav

γ

τH =
ǫvρgCpgt1

L(ǫρgCpg + γCps)

τL =
t1kez

L2(ǫρgCpg + γCps)

τW =
t12ho

r(ǫρgCpg + γCps)

β =
γQq∗o

To(ǫρgCpg + γCps)
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