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REINFORCEMENT LEARNING PARAMETERIZATION: SOFTMAX 
BETWEEN EXPLORATION AND EXPLOATION 
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Abstract. Control in dynamic systems stands for a complex task 
with respect to changing conditions, nonlinear dependencies and 
time delays. One of tools of online optimization of control pa-
rameters is reinforcement learning. Present paper deals with its 
application in PID parameters optimization and examines the 
most appropriate parameterization of softmax selection mecha-
nism.  
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1 INTRODUCTION 

Large dynamic system control stands for a complex 
task. The behavior of the system is complicated by 
influences among its parts, positive and negative 
feedbacks, and time delays. Due the dynamic nature 
of control conditions (including failures and degrada-
tion of some functionalities), adaptive systems can be 
operate better than the once set up ones. Neverthe-
less, there are two different tendencies: on one hand, 
the system is expected to be controlled smoothly, on 
the other hand, operating modes are switched crisply 
and the control is done also at some more abstract 
and symbolic level. 

Current research deals with online learning very in-
tensively with respect to various application areas 
(Silva, Datta, & Bhattachaiyya, 2005). The present 
paper compares some of reinforcement learning 
parameterization with respect to a very simple me-
chanical system controlled by a PID controller. This 
topic was examined also in other works (Anderson, 
1997), (Hafner, 2007). However, this paper however 
brings new results mainly in the parameterization of 
PID controller via a discrete set of values via rein-
forcement learning. ���� 

The motivation for reinforcement learning in the PID 
control obvious: some parameters are more suitable 
for one situation, while other situation is controlled 
by other parameters better. Proposed approach makes 
the control more robust and it is able to use this ap-
proach for cases where the parameters have to be 
determined online. 

2 MODEL DESCRIPTION AND PROBLEM 
FORMULATION 

A very simple system was addressed just for demon-
strative purposes. The model consists of a bin with an 
inlet at bottom and a tap (Durst, 2008). The aim is to 
control the water flow so the water level reaches 

given setpoint. This setpoint may vary in time. Dy-
namics of the system can be described as follow: 

 ���	 
 ���	/�  
(1)  

 ���	 
 �2���	� 
(2)  

������� 
 ���� � ����� 
 ���� � � · ��  
(3)  

In Equation (1), h(t) is fluid level height at time in-
stant t, V is actual fluid volume, and SB is bottom area 
surface. Equation (2) calculates efflux velocity with 
respect to Bernoulli’s principle where g is the stan-
dard gravity. Finally, equation (3) provides the evolu-
tion of fluid volume in time determined by influx 
flow ����and efflux flow given by the efflux velocity v 
and the exhaust area surface. 

Figure 1: Simple control system. The aim is to reach 
setpoint h*by control of ����. 
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The tap is controlled by a PID controller with three 
parameters KP, KI, and KD with respect to control 
error e =h* – h(t), namely 

 ���� 
 ����	 � �� � ��
 � �!

"#

"�  
(4)  

For our purposes, we consider a set of combination 
of such parameters (triples). These combinations will 
be called actions be denoted a1, a2,…, aNa, where Na 

is count of actions. Parameters KP, KI, and KD were 
sampled uniformly from [0 1000] for KP and [0 1] for 
KI, and KD. 

For the simulations, following parameters were fixed: 
SB= 10 m2, SE = 1 m2. 

3 REINFORCEMENT LEARNING 

Finding optimal PID controller setting has attracted 
many researchers for years and current methods pro-
vide sufficient results. The aim of the paper is not to 
offer new and better way to set up the PID parame-
ters, but to analyze a particular aspect of reinforce-
ment learning. 

Reinforcement learning (Alpaydin, 2004) is a process 
when an agent takes actions in time, obtains reward 
from the system and with respect to it adapts and 
attempts to adopt such action selection mechanism 
that maximizes its objectives. Let the set of actions 
the agent can take is finite. Many reinforcement 
learning problems and methods work with this as-
sumption, e.g. the well known k-armed bandit prob-
lem. In our case, the agent will decide which of Na 
PID parameters triples will be chosen. 

The dynamic optimization is performed in discrete 
time instants. Each Τ seconds [s], next action a is 
selected. The reinforcement learning requires some 
reward, i.e. penalty or payoff. In our case, the nega-
tive1 aggregated control error for Τ time instants is 
calculated: 

$%��	 
 � � �
�

��&
�'	(' )

� ∑ ��'	�
'
��+  

(5) 

This aggregated control error expresses how good the 
action in given time instant t was. For each action, 
the quality Q is considered for all decisions the action 
was selected for. There are also other options how to 
calculate the quality; nevertheless, we will calculate 
it as follows: 

 ,���	 

∑ -.�/	.�0	1.

|��/	3�|45  
(6)  

 where 6>0 is avoids division by zero and |%�'	 
 %| 

is number of decisions when action a was selected. 
Dynamic decision making grapples with two usually 

                                                        
1 The negation is applied so the reward is to be 
maximized as usual in reinforcement learning. 

conflicting requests: first, to decide for the best 
known action, i.e.  

 %��	 
 argmax�3<�=….,�A.B ,���	 
(7)  

On the other hand, it is required to be sure with such 
decision. The information about the system may be 
maximized if the action is selected randomly. These 
two aspects call exploitation and exploration. This 
problem is discussed with respect to decision making 
in very various dynamic systems, including manage-
rial sciences (Azoulay-Schwartz, Kraus, & 
Wilkenfeld, 2004), (Mom, Tom, Bosch, Frans, 
Volberda, & Henk, 2007), (Mom, Tom, Bosch, 
Frans, Volberda, & Henk, 2007). 

4 PARAMETERIZED SOFTMAX ACTION 
SELECTION 

One of the compromising methods is the softmax 
selection. First, the exponential is applied on actions’ 
qualities. Afterwards, the action is chosen randomly 
with these values, i.e. the action ai is selected with 
this probability: 

 C� 

DEF �G.H��		

∑ DEF �G.I��		A.
I1=

 (8)  

The softmax action selection can be also parameter-
ized, hence: 

 C� 

DEF �JG.H��		

∑ DEF �JG.I��		A.
I1=

 (9)  

If the parameter α = 0, all actions have the same 
probability to be selected. If the parameter α is a big 
positive number, the best known action is selected 
and vice versa. The problem is how to set the pa-
rameter α so the system works optimally. Sometimes, 
in literature, parameter temperature T = 1/α is con-
sidered. 

The algorithm can be summarized in following steps: 

1. Initialization 

2. Calculate qualities Q of actions 

3. Calculate probabilities p with respect to qualities 
Q 

4. Select action a with respect to the probabilities p 

5. Measure the aggregated error r 

6. Go to 2) 

5 THE SIMULATION EXPERIMENTS 

The model was implemented in MATLAB as a sim-
ple function with following inputs: actions (i.e. KP, 
KI, KD triples), temperature, and setpoint evolution in  
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Figure 2: Results of experiments. 
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time. The experiment is repeated in 100 iterations so 
the results are statistically assessable. The function 
had two outputs, namely average of mean square 
control errors for all iteration and corresponding 
standard deviation. 

The experiment was performed for different actions 
sets: Na = 2, 10, and 100 and the coefficients were 
sampled randomly, KP from [0 1000], KI and KD from 
[0 1]. For each of these sets, different values of α are 
considered, namely α = 0, 0.5, 1 …, 9.5, 10. For all 
experiments, only one setpoint evolution was consid-
ered. The time horizon is 1000 seconds. Within this 
period the setpoint changes 10 times and is sampled 
from [0 100] uniformly. 

Figure 2 summarizes the results for Na = 2, 10, and 
100. Average experiment error (i.e. average of mean 
square of control errors during the experiment for all 
experiments) and 3σ tolerance interval are shown.  
On the average experiment error, following can be 
said with respect to statistical testing (each experi-
ment was compared with other ones by t-tests). 

• If there are only two PID parameter triples 
(Na = 2), the optimal value of α parameter is 
low, the figure shows that α = 0.5 is optimal. 
It is also interesting the variance is in this 
case extremely low. For all α>0, the average 
experiment error grows significantly and the 
variance as well.  

• In case Na = 10, there is growing also ten-
dency, but for values α = 7.5 becomes al-
most constant. 

• In case Na = 100, a decreasing trend is de-
termined that becomes for α = 6 constant. 

Furthermore the influence of the α parameter is 
smooth. 

Next, the standard deviation can be assessed as well. 
In case Na = 2, the deviation is growing. In other 
cases remains almost constant. 

So, what are conclusions of performed experiments? 
When the system works best? Best and most reliable 
(with respect to variance) results are for Na = 2 and α 
= 0.5 οr 1. However, till α = 2.5, the results for Νa=2 
are better that for other Na. For Na=2, α=3 and 
Na=100, α=10 are the results similar. 

What conclusions can be inferred from these facts? It 
is not surprising that smaller search space (Νa=2) 
operates better for very small values of parameter α, 
i.e. if the exploitation is high and vice versa. Hence, 
low α > 0 stands for exploitation since values of Q 
are negative.  

6 CONCLUSION AND FURTHER WORK 

Present paper attempted to assess influence of soft-
max parameterization. It has been shown that optimal 
parameter depends also on the number of action and 
formulated problem: if more actions are considered, 

more exploration is needed. The testing of optimal 
setting of PID controller parameters will be estimated 
also in the future with more advanced tools like neu-
ral networks. Moreover, the softmax selection proce-
dure for negative Q shall be examined with more 
alternatives where the Q is transformed to be positive 
before the softmax is applied. Proposed approach 
provides a robust control method that shall be com-
pared with other PID tunings in the future and im-
proved. 
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