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Abstract: This paper is concerned with the adaptive sliding-mode control of nonlinear
dynamic systems with model uncertainties. The proposed control method combines
the advantages of sliding-mode control and backstepping methodology, such that the
requirement of the restrictive matching condition is removed, which seriously clams
the application of sliding-mode control. In the control scheme, networks of Gaussian
radial basis functions with variable weights are used to compensate the model
uncertainties. The adaptive law developed using the Lyapunov synthesis approach
guarantees the stability of the control scheme. The performance is illustrated by
experimental studies with a flexible-joint manipulator.

Keywords: Adaptive control, Sliding-mode control, Backstepping, Gaussian
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1. INTRODUCTION

The robustness in the face of model uncertainties
in a control system with a sliding-mode controller
(SMC) is due to the high-frequency switching
term of the control, which in practice equals to
a continuous high-gain control as shown by Utkin
et al. (1999). The switching gain has to be higher
than the known norm of the uncertainties. When
the uncertainties grow beyond this bound, the
switching controller is no longer capable of main-
taining the sliding mode, and the system loses
robustness to uncertainties and disturbances. A
more conservative estimation of the uncertainties
may help to maintain the stability but leads to
a higher control gain and more control effort.
Furthermore, this may also lead to problems with
parasitic dynamics of the system as shown by
Young and Kokotovic (1982). It is then neces-
sary to extend the standard SMC to an adaptive
one following Slotine and Coetsee (1986). How-
ever, classical parameter estimation methods and

adaptive control schemes require that the system
model be linearly parameterised and that the non-
linearities are exactly known. In general, this is
seldom the case. Another drawback of SMC is the
requirement of the matching condition. As for de-
terministic robust control, SMC requires that the
uncertainties and disturbances can be lumped into
the input channel, so that they can be efficiently
compensated by the control input according to
Drazenović (1969) and Gutman (1979). However,
the matching condition is a very strong assump-
tion of the system structure. This seriously clams
the application of the SMC method.

The backstepping method of Kanellakopoulos
et al. (1991) is a breakthrough for adaptive nonlin-
ear control. This provides a systematic procedure
to construct a robust control Lyapunov function.
It is natural to integrate the backstepping algo-
rithm into the design of a SMC. This removes the
requirement of the matching condition, and the
powerful SMC technique can provide robustness of
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the adaptive system. Two basic ideas are known
from literature: 1) A sliding surface as a linear
combination of the control errors is constructed at
the final step of the backstepping. A SMC term
ensures the convergence of the system states to
the sliding surface, so that the control errors also
converge, see Rios-Bolivar et al. (1997). 2) Sliding
surfaces are constructed in each step of the back-
stepping, so that the convergence of the system
states is progressively approached as shown by
Huang and Chen (2004).

In this paper, backstepping design is utilised to
remove the problem of mismatched uncertain-
ties for a class of dynamic systems in nonlinear
parametric-pure-feedback form (NPPF). A single
sliding surface is constructed in the last step of
backstepping. Compared with the method pro-
posed in Rios-Bolivar et al. (1997), the stabil-
ity analysis and the control law are considerably
simplified. In the proposed control scheme, net-
works of Gaussian radial basis functions (GRBF)
according to Ma (2005) are used to approximate
the model uncertainties. The reason of choosing
these networks is that their outputs are linear
combinations of the neurons outputs, such that
the stability of the overall system can be easier
achieved. The sliding-mode control term needs
only to deal with the approximation errors of the
networks, such that large, conservative switching
gains can be avoided. The updating law of the
networks is obtained by the Lyapunov design.

The remainder of this paper is organised as fol-
lows. In section 2 , the adaptive backstepping
SMC scheme is presented. The stability of the
overall system is analysed. The performance of
the presented control scheme is demonstrated in
section 3 by experimental studies of the tracking
control of a flexible-joint robot manipulator. A
brief conclusion is given in section 4.

2. THE ADAPTIVE BACKSTEPPING
SLIDING-MODE CONTROL SCHEME

2.1 Problem statement

Consider systems in the nonlinear parametric-
pure-feedback form (NPPF)

ẋi = xi+1 + fi(x1, . . . , xi+1,θ), 1 ≤ i ≤ n− 1,

ẋn = b(x)u + fn(x), (1)

where x = [x1, x2, . . . , xn]T is the vector of
the system states. f1, f2, . . . , fn are unknown yet
smooth scalar nonlinear functions. θ presents the
unknown parameters in the model. The control
objective is to track a desired trajectory xd with
x1, assuming that all system states x1, x2, . . . , xn

and the derivatives of the desired trajectory
ẋd, ẍd, . . . , x

(n)
d are available for control design.

Using GRBF networks to approximate the un-
known functions, Eq.(1) can be rewritten as

ẋi = xi+1 + W iφi(x1, . . . , xi+1), 1 ≤ i ≤ n− 1,

ẋn = b(x)u + W nφn(x1, . . . , xn). (2)

For the the i-th network with mi basis functions,
W i = [wi,1, . . . , wi,mi

] is a row vector of the
output weights, φi = [φi,1, . . . , φi,mi ]

T is a column
vector of the output of the basis functions with

φi,j = e
− 1

2σ2
i,j

∑kmax
k=1

(xk−ξk
i,j)

2

, 1 ≤ j ≤ mi, (3)

where kmax = i + 1 for i < n and kmax = n for
i = n. σi,j is the width and ξk

i,j is the center of
the (i, j)-th basis function with respect to the k-th
input xk.

Using a network arranged on a regular lattice fol-
lowing Sanner and Slotine (1992), there exists an
optimal output-weight vector W ∗

i and a positive
scalar ε0

i such that

fi = W ∗
i φi(x1, . . . , xkmax) + εi, |εi| ≤ ε0i ,

(4)
where εi i = 1, . . . , n is the approximation error
of the i-th GRBF network. Define Ŵ i as the
estimation of W ∗

i , and the estimation error W̃ i =
W ∗

i − Ŵ i, Eq.(4) becomes

fi = Ŵ iφi + W̃ iφi + εi, |εi| ≤ ε0i . (5)

Let W = [W 1, . . . , W n],

and Φi = [0T

(1×
∑i−1

j=1
mj)

... φT
i

... 0T
(1×

∑n

j=i+1
mj)

]T,

Eq.(2) is rewritten as

ẋi = xi+1 + WΦi(x1, . . . , xi+1) + εi, 1 ≤ i ≤ n− 1,

ẋn = b(x)u + WΦn(x1, . . . , xn) + εn. (6)

2.2 Backstepping design procedure

Step 1: Define the tracking error

z1 = x1 − xd (7)

and positive constants c1, . . . , cn, g1, . . . , gn. The
first derivative of the control error is

ż1 = ẋ1 − ẋd

= x2 + f1(x1, x2, θ)− ẋd. (8)

Treating x2 as a control signal for Eq.(8), the
control law x2d for x2 which stabilises z1 would
be

x2d = −c1z1 − f1 + ẋd. (9)

Since f1 is unknown, a GRBF network is used for
approximation such that the actual value of x2d

is

x2d = −c1z1 − ŴΦ1(x1, x2) + ẋd. (10)

Define z2 as the difference between x2 and x2d as

z2 = x2 + c1z1 + ŴΦ1 − ẋd. (11)
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Substituting Eq.(11) into Eq.(8), ż1 becomes

ż1 = −c1z1 + z2 + W̃Φ1 + ε1. (12)

Furthermore, let

α1(x1, x2, xd, Ŵ ) = −c1z1 − ŴΦ1, (13)

z2 is written as

z2 = x2 − α1 − ẋd. (14)

Step 2: The derivative of z2 is

ż2 = ẋ2 − α̇1 − ẍd

= x3 + WΦ2 + ε2 −
∂α1

∂x1
(x2 + WΦ1 + ε1)

− ∂α1

∂x2
(x3 + WΦ2 + ε2)

− ∂α1

∂Ŵ 1

˙̂
W T

1 −
∂α1

∂xd
ẋd − ẍd. (15)

By ignoring ∂α1
∂x1

ε1 and ∂α1
∂x2

ε2, Eq.(15) becomes

ż2 = x3 + ε2 −
2∑

i=1

∂α1

∂xi
xi+1 −

∂α1

∂xd
ẋd − ẍd

− ∂α1

∂Ŵ 1

˙̂
W T

1 + W (Φ2 −
2∑

i=1

∂α1

∂xi
Φi). (16)

Let

α2 = −c2z2 − z1 +
2∑

i=1

∂α1

∂xi
xi+1 +

∂α1

∂xd
ẋd

+
∂α1

∂Ŵ 1

˙̂
W T

1 − Ŵ (Φ2 −
2∑

i=1

∂α1

∂xi
Φi), (17)

the control law for x3 to stabilise ż2 would be

x3d = α2 + ẍd, (18)

and the difference between x3 and its desired value
x3d is

z3 = x3 + c2z2 + z1 − ẍd −
2∑

i=1

∂α1

∂xi
xi+1 −

∂α1

∂xd
ẋd

− ∂α1

∂Ŵ 1

˙̂
W T

1 + Ŵ (Φ2 −
2∑

i=1

∂α1

∂xi
Φi). (19)

Substituting Eq.(19) into Eq.(15), ż2 becomes

ż2 = −c2z2 + z3 − z1 + ε2 + W̃ (Φ2 −
2∑

i=1

∂α1

∂xi
Φi).

(20)

Step i (1 ≤ i ≤ n− 1): The derivative of zi is

żi = ẋi − α̇i−1 − x
(i)
d

= xi+1 + εi − x
(i)
d − ∂αi−1

∂Ŵ i−1

˙̂
W T

i−1

+ W (Φi −
i∑

j=1

∂αi−1

∂xj
Φj)

−
i∑

j=1

∂αi−1

∂xj
xj+1 −

∂αi−1

∂x
(i−2)
d

x
(i−1)
d .

(21)

Let

αi = −cizi − zi−1 − Ŵ (Φi −
i∑

j=1

∂αi−1

∂xj
Φj)

+
i∑

j=1

∂αi−1

∂xj
xj+1 +

∂αi−1

∂x
(i−2)
d

x
(i−1)
d

+
∂αi−1

∂Ŵ i−1

˙̂
W T

i−1, (22)

and define zi+1 as

zi+1 = xi+1 − αi − x
(i)
d , (23)

note that z0 = 0, then for i < n, Eq.(21) becomes

żi = −cizi + zi+1 − zi−1 + εi + W̃βi, (24)

with

βi = Φi −
i∑

j=1

∂αi−1

∂xj
Φj . (25)

Step n: Let zn be the difference between xn and
its desired value xnd, its derivative is

żn = b(x)u + εn − x
(n)
d −

n−1∑

i=1

∂αn−1

∂xi
xi+1

− ∂αn−1

∂x
(n−2)
d

x
(n−1)
d + W (Φn −

n∑

i=1

∂αn−1

∂xi
Φi)

+
∂αn−1

∂Ŵ n−1

˙̂
W T

n−1 +
∂αn−1

∂xn
bu. (26)

Define the sliding surface as

s =
n∑

i=1

gizi, gi > 0, gn = 1, (27)

let

u∗ =
n−1∑

i=1

gi(−cizi + zi+1 − zi−1), (28)

and

usmc = −ρ
s

|s| , ρ >

n∑

i=1

giε
0
i , (29)

the main result of this paper is presented in the
following theorem:

Theorem 1. For the dynamic system in the NPPF
form according to Eq.(1), the tracking error x1 −
xd converges to zero asymptotically with the con-
trol

u =
1

b̃(x)
[x(n)

d +
n−1∑

i=1

∂αn−1

∂xi
xi+1 +

∂αn−1

∂x
(n−2)
d

x
(n−1)
d

− Ŵ (Φn −
n∑

i=1

∂αn−1

∂xi
Φi)

− ∂αn−1

∂Ŵ n−1

˙̂
W T

n−1 − u∗ + usmc], (30)

with b̃(x) = 1

b(x)(1+
∂αn−1

∂xn
)
.
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The stability analysis is presented as follows:
Substitute Eq.(30) into Eq.(26), żn becomes

żn = εn + W̃ (Φn −
n∑

i=1

∂αn−1

∂xi
Φi)− u∗ + usmc.

(31)
Consider the Lyapunov function candidate

V =
1
2
s2 +

1
2
γ−1W̃W̃

T
, γ > 0, (32)

the derivative of this function is

V̇ = s(
n∑

i=1

giżi) + γ−1W̃ ˙̃W T. (33)

Substitute Eq.(24) and Eq.(31) into Eq.(33), it
follows that

V̇ = s[
n∑

i=1

gi(εi+W̃βi)+usmc]+γ−1W̃ ˙̃W T. (34)

Let the updating law of Ŵ be

˙̂
W T = − ˙̃W T = γs

n∑

i=1

giβi, (35)

one has

V̇ = s[
n∑

i=1

giεi + usmc] = s

n∑

i=1

giεi − ρ|s|

≤ |s|(
n∑

i=1

giε
0
i − ρ). (36)

Recall that ρ >
∑n

i=1 giε
0
i , then it is true that

V̇ < 0 such that s and W̃ converge to zero asymp-
totically. According to Eq.(27), zi also converges
to zero for 1 ≤ i ≤ n. Specially, it is true that
x1 − xd → 0 as t → 0, viz. the tracking error
converges to zero asymptotically.

The input function b(x) is assumed to be known.
For real control objectives, b(x) is nonzero and
bounded in order to fulfill the controllability of
the system. Furthermore, αn−1 depends on the
design parameters, such that b̃(x) can be selected
as nonzero and Eq.(30) is appropriate. If b(x)
is unknown, it can be also approximated by an
additional network. In this case, some projection
methods are needed in order to avoid possible
singularities in b(x).

Regarding the adaptive backstepping SMC in
Rios-Bolivar et al. (1997) and Koshkouei et al.
(2002), the Lyapunov function is defined as V =
1
2

∑n−1
i=1 z2

i + 1
2s2+ 1

2γ−1θ̃θ̃
T
, where θ is the vector

of unknown parameters. With the control scheme
proposed here, the redundant term of zi already
included in s is omitted, such that both, the stabil-
ity analysis and the control law, are considerably
simplified.

3. EXPERIMENTAL RESULTS

For investigation of the proposed adaptive sliding-
mode control scheme the single-link flexible-joint
robot arm in Figure 1 of Quanser is used. By
ignoring the viscous friction, the dynamic model
of this flexible joint module moving vertically is

ẋ1 = x2,

ẋ2 = −mgh

JArm
sin(x1)−

1
JArm

k(x1 − x3),

ẋ3 = x4,

ẋ4 =
k

Jeq
(x1 − x3) +

1
Jeq

u, (37)

where x1 and x3 are the link and joint angular
position, respectively, x1 − x3 represent the joint
deflection caused by the springs, k is the joint
stiffness, JArm is the inertia of the rigid beam and
Jeq is the inertia of the motor with the gearbox
and the frame, h is the height of the center of
gravity of the link with respect to the rest point,
g is the gravity constant, u is the torque produced
by the motor.

Fig. 1. The flexible-joint robot arm

In order to simplify the design procedure, the
singular-perturbation method of Spong (1990) is
used to transfer the dynamics into a fast part and
a rigid part such that the dynamics of the rigid
part can be represented with J = JArm + Jeq as

Jẍ1 + mghsin(x1) = us, (38)

where us is the slow control for the equivalent rigid
manipulator. With respect to the fast dynamics,
if the system dynamics are exactly known, it is
possible to design a state-feedback controller in
order to place the poles of the closed-loop system,
and thus damp out the joint oscillations in the fast
time scale, otherwise a simple PD control term
would be able to stabilise the joint deflection.

The parameters of this system are: JArm =
0.0019kg.m2, Jeq = 0.0026kg.m2, k = 3.03Nm/rad,
m = 0.064kg, h = 0.15m, motor efficiency ηm =
0.69, gearbox efficiency ηg = 0.9, back-emf con-
stant Km = 0.00767, motor-ratio torque constant
Kt = 0.00767, Gear Kg = 70, and motor resis-
tance Rm = 2.6Ω. The torque produced by the
DC motor is given as

u = k1v − k2ẋ3, (39)
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June 9–12, 2009, Štrbské Pleso, Slovakia Le-Th-2, 073.pdf

349



with k1 = ηmηgKtKg
Rm

= 0.1282, k2 = ηmηgKmKtK
2
g

Rm
=

0.0689, and v is the armature voltage of the DC
motor, which represents the real control effort.

For the control design, Eq.(38) becomes

ẋ1 = x2,

ẋ2 = f(x1, x2) + bv (40)

with f(x1, x2) = − 1
J (mghsin(x1) + k2ẋ1) and

b = k1
J . Define z1 = x1 − xd and z2 = x2 +

c1z1 − ẋd, the control of the rigid part of the
dynamics can also be represented by the sum of
three parts: the output of the GRBF network
vnn, the backstepping term vbst and the switching
control term vsmc:

vs =
1
b
(vbst + vsmc + vnn) (41)

with

vbst = ẍd − c1ż1 − g1(z2 + c1z1),

vsmc = −ρ
s

|s| , ρ > 0

and
vnn = ŴΦ,

where Ŵ is the output weight matrix of the
GRBF network and Φ is the output vector of the
hidden neurons.

A GRBF network arranged on a 2-D regular grid
with 9 hidden nodes is applied. The grid points are
[0, 0.6 , 1.2] on the x1-axis and [−1.5, 0, 1.5] on
the ẋ1-axis. The widths of the Gaussian functions
are chosen as σ1 = 0.5π and σ2 = π, respectively.
The initial value of the output weights are set to
zero. The adaptation gain of the network output
weights is γ = 5. Other parameters are c1 = 3,
g1 = 10, ρ = 0.1.

The frequency of the armature voltage v cannot
be higher than 50Hz in order to protect the
gearbox. This gives a higher bound of the control
bandwidth. Consider Eq.(34), one has

ṡ =
n∑

i=1

gi(εi + W̃βi) + usmc

= −ρ
s

|s| +
n∑

i=1

gi(εi + W̃βi). (42)

In order to avoid high-frequency control, the slid-
ing control term is linearised in a boundary layer
as usmc = −ρ s

ψ as |s| < ψ, where ψ is thickness
of the boundary, such that Eq.(42) becomes

ṡ = −ρ
s

ψ
+

n∑

i=1

gi(εi + W̃βi). (43)

Eq.(43) has the structure of a low-pass filter
with corner frequency ρ s

ψ that shall be lower
than 50Hz. This leads to a minimal value of
the boundary thickness ψmin = 0.0003. In the

experiments, the thickness is much loosely chosen
as ψ = 0.2.

The complete control law is

v = vs + vf (44)

where vf is the fast PD control for stabilising the
joint deflection, which is selected according to an
LQR design procedure offered by Quanser as

vf = 43.7151(x1 − x3) + 0.511(ẋ1 − ẋ3). (45)

The desired trajectory for the link angular posi-
tion is a filtered square wave with initial position
at 0.5rad. The desired and actual angular position
of the link are presented in Figure 2 and the
tracking error of the link in Figure 3. It is shown
that the tracking error converges very fast to a
range of approximately 0.05rad and remains there.
Figure 4 shows the armature voltage of the DC
motor, which is constrained to a reasonable range
of less than 5V. Figure 5 represents the joint de-
flection, which is quite well damped by the fast PD
controller. In further experiments (not presented
here), a shorter beam is loosely mounted on the
tip of the arm, which introduces a relatively strong
time-variant uncertainty. Nevertheless, the system
can maintain a quite decent tracking performance.

4. CONCLUSIONS

In this paper an adaptive sliding-mode control
scheme was proposed. With the application of the
backstepping design procedure, the requirement
of the matching condition for classical sliding-
mode control was removed. Gaussian radial-basis-
function networks were used to approximate the
unknown system dynamics. The stability analysis
and the control law are simple. The controller
shows very good performance with application to
the tracking of a single-link flexible-joint manipu-
lator.

Open questions are the choice of the radial-basis-
function network type and its parameters, the
application to more generic dynamic systems with
other type of model uncertainties and also the
extension to the MIMO case.

References
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