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Abstract: The applicability of nonlinear predictive control algorithms is limited by
the necessity of on-line solving an optimization problem. Complexity follows from
non-linearity of the model and from the extension of the prediction horizon, which
result in non-convex constrained optimization problem. To overcome these barriers,
different nonlinear optimization schemes have been proposed as e.g. in recent Zavada
and Biegler (2009) where nonlinear programming has been extended through a
simple reformulation of the nonlinear predictive control problem into advanced-
step controller. However still, the heuristic simplification of nonlinear problem
namely successive linearization or linearization along predicted trajectory is very
competitive. The most important advantage is the constant processing time. The
only problem arises if short sampling period is used and processing time has to be
reduced. In this case numerical complexity follows from time-consuming linearization
procedure. The paper proposes a new and fast linearization algorithm which uses
identification procedure. It is assumed that non-linear noise-free model is given. Data
for identification are created with the model impulse response. This allows for more
flexible linearization where the vicinity of the operating point is discussed rather
then point-sensitive linearization provided by the standard procedures. There are
two key-simplifications which make the algorithm fast. The generic non-linear model
is usually given in continuous time. The lack of the nonlinear discrete counterpart
causes that the linearization has to be done first and discretization afterwards. The
method proposed in the paper coupled these two operations. The second simplification
comes from the Toeplitz-type of the matrix being inverted in the identification Least-
Mean-Square algorithm. It is shown in the paper that the number of matrix elements
is reduced usually 4-5 times. Then fast algorithms can be used to invert the final
general-Toeplitz matrix (e.g. Martinsson-Rokhlin-Tygert, 2005). The efficiency of the
resulting algorithm is illustrated in the paper by comparison of the computation-time
with standard linearization procedure, which bases on perturbation algorithm and
discretizes obtained continuous-time linear model using modified scaling and squaring
method.

Keywords: suboptimal predictive control, successive linearization, discretization,
identification.

1. INTRODUCTION

The general results concerning stability, perfor-
mance and robustness of the non-linear predictive

control have been developed in the late nineties
(see e.g. Algöwer and Zheng (2000)). It be-
came clear that this control concept constituted
one of the very few general synthesis method of
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June 9–12, 2009, Štrbské Pleso, Slovakia Le-Th-1, 078.pdf

314



non-linear control systems. The concept, however,
gives rise to the collection of different control
algorithms which applicability depends on num-
ber of terms. The most crucial is the numerical
complexity versus limited resources of a digital en-
vironment. Stability of the closed-loop predictive
control systems can serve as an illustration. It has
been shown in Bitmead et al. (1990) that the
closed-loop stability of receding horizon control
system in the linear case is not guaranteed for
generic cost function thus modifications of the
cost function are necessary as was firstly proposed
in Kwon and Peason (1978), by means of ter-
minal zero-state constraint. This result has been
generalized onto nonlinear case in e.g. Mayne and
Michalska (1990). Number of proposals of how
to construct the cost function has been presented
and stability has been proved; for example ter-
minal penalty has been introduced in Rawlings
and Muske (1993), or combination of a terminal
penalty with a terminal inequality constraints,
Chen and Algöwer (1998). Proofs of the sta-
bility base on the monotonicity of the optimal
value of the cost function, thus the solution of the
optimization problem has to be known. In other
words, to keep stability the control algorithm has
to be optimal i.e. in every sampling period the
control value has to follow from the solution of
the optimization problem which minimizes cost
function with state and control constraints.

Optimization problem which is formulated to de-
sign a general non-linear predictive controller con-
stitutes considerably complex task, due to non-
convexity, large number of decision variables and
constraints. (Keerthi and Gilbert (1988)) dis-
cusses examples of infinite-dimensional problems;
number of decision variables in optimization prob-
lem is infinite in this case. Obviously, only ap-
proximative solution can be applied. Approximate
cost function is obtained by truncation of infinite
series. This leads to hard optimization problem
in a large dimensional space. Another way that
allows for simpler calculations and still prevents
stability is sub-optimal approach, firstly proposed
in Scokaert et al. (1999). More recent interesting
modification has been proposed in Limon et al.
(2006). Suboptimal approach assumes control sig-
nal to be in a constrained region which also con-
tains the optimal solution. The crucial problem is,
however, that in order to determine that region
heavy computations has to be curried out as well.
Still the question of applicability of the resulting
predictive control algorithm retains.

Suboptimal predictive control arises whenever the
solution of the optimization problem is found in
an approximative way. It is happen if optimization
is stopped before the solution is found. The same
effect can also be achieved if approximative model
is used. This leads to approximative prediction of

the output and even optimal solution of the opti-
mization problem is found the control algorithm
is still suboptimal. Well-known approach follow-
ing that idea is successive linearization (Henson
(1998)). As the suboptimal approach, successive
linearization is the simplest. Nonlinear control
system inherits all advantages of linear predictive
control in this case. In every sampling period
a linearization of the nonlinear model is com-
puted, and then, linear predictive controller is
designed to determine the control signal. The idea
has been applied in number of real processes,
as chemical batch processes (Cueli and Bordons
(2008), Tiagounov and Weiland (2003)); vehi-
cle and transportation problems (Falcone et al.
(2007), Raffo et al. (2009)) to mention only a few.
However, the authors emphasize the necessity of
fast microprocessor environment to be used. Still
there are a lot of examples of fast systems to be
controlled where sampling period is to short to
make the numerical control algorithm realizable.
Representative examples can be found in mecha-
tronics (e.g. Ogonowski and Plaza (2006)).

Another approach is linearization along predicted
state trajectory (e.g. van der Veen et al. (1999)).
Here linearization should be computed many
times during every sampling period according to
the length of the prediction horizon.

The conclusion following from the above resume is
that any improvement which makes the predictive
control algorithm faster is of the great value. The
paper addresses an one of the most important
element of predictive control algorithms – the
linearization task. It is assumed that nonlinear
model of the plant is given. Numerical standard
linearization (sec. 2) uses sensitivity response. Af-
ter obtaining a continuous linear model a discrete
counterpart is determined usually by scaling and
squaring method. The proposed method (sec. 3)
uses identification procedure. The model is pick-
up using Least-Mean-Square (LMS) method with
data obtained from the impulse response of the
nonlinear model. Reduction of the proposed al-
gorithm complexity follows from special feature
of the LMS measurement matrix entries. Sec. 4
presents numerical examples illustrating the effi-
ciency of the method.

2. STANDARD LINEARIZATION AND
DISCRETIZATION METHODS

Assume the following nonlinear continuous in time
model of the plant

{
ẋ(t) = f(x(t), u(t), t),
y(t) = g(x(t), u(t), t) (1)

where x ∈ <n represents state of the system,
u ∈ < is the control signal and y ∈ < is the output
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(measured) signal. Extension of the results pre-
sented in this paper onto multi-input and multi-
output case is straightforward. Function f and g
are assumed to be smooth, however, no special
demands concerning these function are necessary
to be stated because numerical algorithms will be
discussed in this paper only.

Standard linearization concerns equilibrium point
{

f(xe, ue) = 0
ye(t) = g(xe, ue)

(2)

where subscript e points a steady state. The no-
tion ’equilibrium point’, is misleading if succes-
sive linearization is concerned because the point
around which the linearization is computed fol-
lows form dynamic behavior of the system. It then
happens, that actual state and input do not fit the
steady state. Formally, one can determine the lin-
ear model for any point. There are, however, two
consequences: first, it may happen that derivatives
of f and g do not exist and, second, accuracy
of linear model can be weak. These problems is
discussed in sec. 3.

To determine linear model in numerical way usu-
ally perturbation algorithm is used. Assume, that:
t = t0, x(t0) = x0, u(t0) = u0, and y(t0) =
g(x0, u0, t0) = y0 represents the local ’operating
point’. By subtracting the operating point values
from the states, inputs, and outputs one defines a
set of variables centered around this point:





δx = x(t)− x0,
δu(t) = u(t)(t)− u0,
δy(t) = y(t)(t)− y0.

(3)

The linearized model is valid for these new vari-
ables if they are small, i.e. if deviation from the
’operating point’ is small. The linearized model
usually takes The following form

{
δẋ(t) = Aδx(t) + Bδu(t),
δy(t) = Cδx(t) + Dδu(t). (4)

The state-space matrices A, B, C, and D rep-
resent Jacobians of the system. Respect transfer
function are more convenient for the prediction
and can be directly computed using model (4). To
compute the matrices of (4), the states and inputs
are perturbed, and the response of the system to
this perturbation is measured by computing δẋ(t)
and δy. The computations can be expressed as
follows:

a(k) =
ẋ|xp

k
− ẋ0

xp
i − x0

, (5)

B =
ẋ|up − ẋ0

up − u0
, (6)

c(k) =
y|xp

k
− y0

xp
k − x0

, (7)

D =
y|up − y0

up − u0
, (8)

where a(k) is k-th column of the matrix A, c(k)
is the k-th element of the (row vector) matrix C
and:

xp
k - the state vector whose k-th component is

perturbed from the ”operating point”
value,

up - the perturbed input,
ẋ|xp

k
- the value of ẋ at xp

k and u0,
ẋ|up - the value of ẋ at up and x0,
y|xp

k
- the value of y at xp

k and u0,
y|up - the value of y at up and x0.

and division is made element-by-element. A per-
turbed value has to be a very small distanced from
the operating point value. The default value is
usually chosen as 10−8|x| ÷ 10−5|x|.
Discretization of the linear approximation (4)
bases on general solution of (4) and assumption
concerning extrapolating element. Usually zero-
order-hold extrapolation is applied and resulting
problem concerns only calculation of fundamental
matrix

Φ = exp(ATs) (9)

where Ts represents the sampling period. There
are number of different methods to calculate ma-
trix (9) – see e.g. Moler and van Loan (2003). One
of the very basic is scaling and squaring method
developed by Lawson (1967). The method calcu-
lates Padé approximation as follows

exp(ATs) ≈
(

rkm

(
exp

(
ATp

σ

)))σ

(10)

where scaling parameter

σ = 2s, s is a natural number (11)

and,

rkm(X) =
nkm(X)
dkm(X)

(12)

where

nkm(X) =
k∑

j=0

(k + m− j)!k!
(k + m)!(k − j)!j!

(X)j , (13)

dkm(X) =
m∑

j=0

(k + m− j)!m!
(k + m)!(m− j)!j!

(−X)j . (14)

Scaling and squaring algorithm has been modi-
fied in different publications. The most recent
Higham (2005) uses trigonometrical properties of
the fundamental matrix, Koikari (2007) examines
accuracy of the approximation (10).
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Both methods, linearization trough perturbation
and discretization trough scaling and squaring
are used in many commercial computer programs
as for example Matlab. The methods are still
under research. The most important problem is
complexity, which influences processing time and
accuracy. Koikari (2007) has shown that the Mat-
lab’s discretization function causes to high error
because of to low order of Padé approximation. He
proposed yet another modification of scaling and
squaring method to improve accuracy instead of
increasing approximation orders.

3. IDENTIFICATION METHOD

Linearization and discretization as separate algo-
rithms need complex operations that makes the
whole process of input-output model determina-
tion unapplicable in many real-time control sys-
tems. There are also additional problems. Even-
tual discontinuities of the function f and g cause
the sensitivity of the linearization to perturbation
margins. The choice of the margin is then crucial
and may change the result of linearization in a
large range. These problems are detailed in Parson
and Glass (2004).

Specific of application of the successive lineariza-
tion or linearization along predicted output tra-
jectory in predictive control adds yet another dif-
ficulty. The linearization considers initial condi-
tions defined by the actual state of the system
which are interpreted as the ’operating point’. The
procedure calculates the approximation (4) and
the respect transfer functions. However, one can
expect that dynamic behavior of the predictive
control system would excite the controlled plant
much greater then the perturbation margin is.
The range of this excitation can be easily eval-
uated. Thus much more valuable would be the
linear approximation that takes into account this
range of excitation or at least allows for controlled
departure from ’operating point’ then the pertur-
bation margin does.

The identification method proposed below com-
bines both linearization and discretization. Im-
pulse response of the nonlinear plant provides
data for Least-Mean-Square method of identifi-
cation of the linear input-output discrete-time
model. Amplitude of the excitation can be chosen
according to the concrete demands.

Assume the following transfer function to be iden-
tified

K(z−1) =
B(z−1)
A(z−1)

=
∞∑

j=0

gjz
−j (15)

where z−1 is one sampling period back-shift op-
erator, polynomial A of the order nA is monic

and polynomial B of the order nB can have zero
leading coefficients to include discrete delay-time.
It is easy to verify that

gj =





bj −
max{j,nA}∑

s=1

ajgj−s j = 0, 1, . . . , nB

−
nA∑

s=1

ajgj−s j > nB

(16)

where bj and aj are coefficients of the polynomials
B and A respectively. It follows from (16) that




g0

g1

...
gnA+nB


 = [I, G]




b0

b1

...
bnB

a1

a2

...
anA




(17)

where I is nB + nA + 1 × nB + 1 matrix of the
following entries:

I =




1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
0 0 . . . 0
...

...
...

...
0 0 . . . 0




(18)

and,

G =
[

G1

G2

]
(19)

G1 =




0 0 . . . 0
−g0 0 . . . 0
−g1 −g0 . . . 0

...
...

. . .
...

−gnB−1 −gnB−2 . . . g0




(20)

G2 =




−gnB −gnB−1 . . . −g1

−gnB+1 −gnB . . . −g2

...
...

. . .
...

−gnB+nA−1 −gnB+nA−2 . . . −gnA


(21)

Note, that negative indices of matrix G1 and G2

entries mean that these entries not longer appear
in the matrices, e.g. if nB = 0 matrix G1 reduces
to row zero-vector of the length nA.

The set of linear equation (17) is square and
creates the minimal-size identification problem.
Such problem can be stated because noise-free
case is discussed. There is obvious possibility to
enlarge the set (17) with succeeding elements of
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the impulse response to increase the accuracy
of the method. Not till then Least-Mean-Square
method can be used. If minimal-size identification
task has to be solved then the inverse (instead
of pseudo-inverse) of the matrix [I, G] has to be
calculated.

The most important coincidence should be now
observed. Thanks to the special construction of
the set (17) the only matrix G2 has to be inverted.
Knowing the solution for a1, a2, . . . , anA the coef-
ficients bj of the polynomial B can be obtained
straightforward from the set (17). It is well known
that discrete counterpart of the linear continuous
model has equal orders nA = nB or nB = nA+1
(in the delay-free case or continuous delay-time is
multiple sampling period). The complexity of the
problem is then about twice reduced, or, number
of entries of the matrix to be inverted is reduced
4-5 times.

The second coincidence is the special construction
of the matrix G2 namely general Toeplitz type.
There are well known special algorithms that in-
vert Toeplitz matrix much faster then the stan-
dard algorithms do. Methods for computing inver-
sion of G2 in O(N2) operations have been known
since the 1960s, see for example, Trench (1964). If
G2 is positive-definite algorithms in O(N log 2N)
operations are known, Ammar (1996). These algo-
rithms base on algebraic properties of the Toeplitz
matrix structure. Most recent work (Martinsson
et al. (2005)) proposes four length-N FFTs plus
an O(N)- operation algorithm.

4. ILLUSTRATIVE EXAMPLE

An example of fast sampled system is magnetic
bearings for high-speed rotating machinery. One
of the most challenging control problems arises
in this unit. Mechanical construction of the mag-
netic suspension have reached its maturity and
further improvement of the performance needs
application of modern control algorithms rather
then redesign of the construction. Usually de-
sign of the control system bases on the frequency
analysis. The control system uses simple lead-lag
compensators, which are almost always followed
by additional cascaded biquad filters to shape
the frequency response and to assure stability of
all system bending modes. The stiffness of the
system becomes however too small even if the
control system is carefully tuned and stability
is assured. Thus more sophisticated control sys-
tem is needed. An example of such algorithm is
proposed in Ogonowski and Plaza (2006). The
algorithm has been tested on MCB500 magnetic
suspension system (Fig.1) which consists of two
active radial magnetic bearings supporting a steel
shaft. The shaft can rotate freely due to being

actively positioned in the radial directions at the
shaft’s ends and passively centered in the axial
direction. Position of the shaft’s ends constitutes
4 degrees of freedom. The position is measured
in 4 axes using hallotrons. The system includes
four linear current amplifiers and four linear lead-
lag compensators, which control the radial bear-
ing axes (PD controllers). MBC500 has been en-
hanced with pneumatic push-pull driver and an-
gular velocity control unit. Fig. 2 presents the

Fig. 1. Laboratory set-up MBC500.

schematic of the unit. First-principle model of the
MBC500 system is described in Morse et al. (1996)
(the model and the parameters of the unit are
briefly recalled in the Appendix).

�

Fig. 2. Scheme of the MBC500 system.

shaft x

measure
vsvcic

F

controlleramplifier

electro-
magnet

Fig. 3. Structure of the control system.

Fig. 3 presents structure of the control system.
Front panel (Fig. 1) allows for replacing the built-
in controller with the outer one (e.g. weighted
minimumvariance realized by PC equipped with
DSP card, as is presented in Ogonowski and Plaza
(2006)). Significantly better vibration control can
be achieved with internal model structure where
the plant is pre-stabilized with built-in controllers
(Ogonowski and Plaza (2007)).
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To check the algorithm presented in this paper,
it is proposed to find the linear approximation
as the transfer function between control signal
νc and displacement x1. This constitutes single-
input and single-output model, which is necessary
to design internal model control as in Ogonowski
and Plaza (2007). Adding a perturbation signal
to νs, one can observe the response, and pick-
up the linear model. This is realized numerically
using nonlinear model (see Appendix) by both of
the approach described above (sec. 2 and 3). The
system itself responds as is presented in Fig. 4
(step input is equal 50% of νs range).

Fig. 4. System response.

Fig. 5. Model response (standard linearization and
discretization).

The system has got 14 states, thus linear transfer
function has got the polynomials of the order
nB = nA = 14, or nB = 13 and one sample time
delay because b0 ≡ 0 in this case. Using standard
linearization with perturbation around zero in the
range 10−8 one can obtain the transfer function
with coefficients presented in Tab. 1.

Fig. 5 shows the model response to 50% input
step. It is clear that nonlinearity of the plant
causees significant difference when compare with
Fig. 4.

Identification method applied to this example
gives results as in Tab. 2 (impulse response has
been calculated from step response to 10−4 input.)

Fig. 6 presents the response of the model obtained
by the identification procedure. To be convinced
that the obtained result is much more accurate,
one can compare this result with the previous
responses.

The second advantage of the proposed procedure
is much less complexity. Comparison of the pro-
cessing time shows about 8 times faster identifica-
tion procedure (with classical Lawson algorithm
for Toeplitz matrix inversion) when compare with
standard linearization and dyscretization method.

j bj aj

0 0.00000000000000 1.00000000000000
1 0.02108903210439 -5.87597247692839
2 -0.05260212853356 15.80447629388848
3 0.03547767263475 -26.48106954418814
4 0.02478334904841 31.68055210048474
5 -0.08583591657239 -28.39355650062849
6 0.12436310069233 18.40281830654936
7 -0.09781171676396 -7.78405051479949
8 0.03061405579883 1.80088835658447
9 0.00064046070909 -0.15942172493736
10 -0.00029644902319 0.00560974342229
11 0.00001156921562 -0.00006798079989
12 -0.00000008196529 0.00000026232927
13 -0.00000000000000 -0.00000000000000
14 0.00000000000000 -0.00000000000000

Tab. 1 Results of standard linearization and dis-
cretization.

j bj aj

0 0 1.00000000000000
1 -0.00000148218697 -0.89089020582183
2 0.00000770973566 -0.47727814344222
3 0.00000706155007 -0.06927136352096
4 0.00000195047562 0.26033330278855
5 -0.00000183614572 0.34679163055312
6 -0.00000384374566 -0.12414894868296
7 0.00000000263544 0.00340902828028
8 0.00000000002342 0.00007947044490
9 -0.00000000000067 -0.00000563363629
10 0.00000000000000 -0.00023828029923
11 0.00000000000000 0.00003536357282
12 0.00000000000000 0.00000736335536
13 0.00000000000000 0.00000000006373
14 0.00000000000000 -0.00000000000000

Tab. 2 Results of identification method.
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Fig. 6. Model response (proposed identification
method).

5. CONCLUSION

Identification method instead of standard lineari-
zation and discretization method makes the pro-
cess of linear-discrete model determination much
faster and allows for departure from ”operating
point” to be ’controlled’. This leads to improve-
ment of the accuracy of the linearization in the
context of predictive control policy. One can de-
sign an iterative predictive algorithm, where the
increment of the control signal to be applied in the
next sampling period would be the step excitation
to establish impulse response of the nonlinear
model. Thus the procedure of the linearization can
be repeated. Good properties of such algorithm
could be expected especially if hard nonlinearities
or non-symmetrical response of the plant is con-
cerned.

An interesting extension of the identification
method can be formulated if more data are in-
cluded and non-minimal-size identification prob-
lem is studied. Pseudo-inverse of the matrix [I,G]
needs to be calculated. Further research will be
devoted to these problems especially the issues
of matrix inversion. The key-issue is that the
problem loses Toeplitz-type, however, the matrix
to be inverted becomes symmetrical and positive-
definite and another fast procedures can be ap-
plied.

APPENDIX

According to the notation showed in Figs. 2 and 3
the following analytical (first principle) model is
derived [1]. The measurement element is nonlinear
according to the following equation

νs = 5
[

V
mm

]
X1 + 24

[
V

mm3

]
X3

1 (22)

where νs is the sensor output and X1 is the dis-
placement in the first X-axis. Built-in compen-
sators are designed as lead-lag according to the
following relation

νc =
1.45(1 + 0.9 · 10−3

(1 + 3.3 · 10−4s)(1 + 2.2 · 10−5)s
νs (23)

The compensator output is then transformed into
the current:

ic =
0.25

1 + 2.2 · 10−4s

[
A
V

]
νc (24)

and then again in the nonlinear manner the signal
is transformed into the force:

F1 = k
(ic + 0.5)2

(x1 − 0.0004)2
− k

(ic − 0.5)2

(x1 − 0.0004)2
(25)

where displacement x concerns the point of elec-
tromagnets rather then the point of Hall-sensor
as in the X case. 0.5 [A] current appearing in
equation (25) refers to bearing bias upon which
a control signal is superimposed.

Mechanical part of the system has to be conside-
red as two-input and two output. It follows form
the notation shown in Fig.2 that:

x1 = x0 −
(

L

2
− l

)
sinθ

x2 = x0 −
(

L

2
− l

)
sinθ (26)

X1 = x0 −
(

L

2
− l2

)
sinθ

X2 = x0 −
(

L

2
− l2

)
sinθ

(27)

It follows from the force balance that
∑−→

F = m−→a (28)

where
∑−→

F is the summation of all external forces
applied to the system, m is the rotor mass, and −→a
is the acceleration of the center of gravity of the
system. The moment balance

∑−→
M = I−→α (29)

where
∑−→

M is the summation of all external
moments applied to the system, I is the rotational
moment of inertia of the system about the axis
trough the center of gravity and in the direction
of rotation, and −→α is the angular acceleration of
the system. The equation of the motion is then as
follows:
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∑
F = mẍ0 = F1 + F2

∑
M = I0θ̈ = F2

(
L

2
− l

)
cosθ−

F1

(
L

2
− l

)
cosθ

(30)

With F1 and F2 as input and X1 and X2 as
output variables the linear state-space model of
the system can be formulated as follows




ẋ0

ẍ0

θ̇

θ̈


 =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







x0

ẋ0

θ

θ̇




+




0 0
1
m

1
m

0 0

− 1
I0

(
L

2
−l

)
1
I0

(
L

2
−l

)




[
F1

F2

]
(31)

[
X1

X2

]
=




1 0−
(

L

2
− l2

)
0

1 0
(

L

2
− l2

)
0







x0

ẋ0

θ

θ̇


 (32)

Parameters of MBC500 bearing system are as
follows:

• Total length of the shaft 26.9 cm.
• Distance from each bearing to the end of the

shaft 2.4 cm.
• Distance from each Hall-effect sensor to the

end of the shaft 2.8mm.
• Shaft’s moment of inertia with respect to

rotation about an axis in the y direction
1.588·10−3 kg m2.

• Mass of the rotor 0.2629 kg.
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