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Abstract: The paper describes tests of stability of spatially distributed shift-invariant
systems discrete in both time and space. The systems are considered to be described
by multivariate polynomial fractions, so, the tests based on manipulation with
polynomials are taken into account. Method of root maps is depicted. Methods
based on the Schur-Cohn criterion, originally formulated for systems with lumped
parameters, are extended to multidimensional systems with support on a symmetric
half-plane. Furthermore, the problem of stability of multivariate polynomial is
formulated as a problem of stability of interval polynomial, which leads to use
Kharitonov’s theorem. Numerical examples are included.

Keywords: Spatially distributed shift-invariant systems, multidimensional systems,
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1. INTRODUCTION

The control of spatially distributed systems has
always been a very active topic with applications
in many areas, e. g. image processing, multidimen-
sional filtering techniques, long-wall coal cutting
and metal rolling, irrigation canals in agriculture,
adaptive optics, etc. These systems are mathemat-
ically described by partial differential equations
(PDEs). Considering using mesh of sensors and
actuators, one possible approach to the problem
of the control of such systems is spatial discreti-
sation of (linearised) PDE and description of the
dynamics by a transfer function or a state-space
model of multidimensional (n-D) systems theory.
We consider a spatially distributed system de-
scribed by transfer function which was derived in
form

P =
b(z, z1, z

−1
1 , . . . , zn, z−1

n )
a(z, z1, z

−1
1 , . . . , zn, z−1

n )
, (1)

i. e. in the form of fraction of two multivari-
ate (n-D) polynomials a and b. The variable z
corresponds to time delay, while the variables
z1, . . . , zn correspond to shift along the spatial co-
ordinate axis. The system (1) belongs to so-called
systems with support on a symmetric half-plane.
Polynomials a and b are one-sided in z and two-
-sided in z1, . . . , zn.
We suppose that the system is spatially symmet-
ric, i. e. the polynomial a has the form

a =
∑

i,i1,...,in

ai,i1,...,in

zi
(
zi1
1 + z−i1

1

)
· · ·

(
zin
n + z−in

n

)
(2)

with i, i1, . . . , in nonnegatives.
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Furthermore, the plant is considered to be spa-
tially invariant and infinite. This assumption must
come true to perform z-transform to obtain trans-
fer function and allows not to take into account
the boundary conditions of the system.
It is well known that necessary and sufficient
conditions for asymptotic stability of n-D systems
can be described in terms of an n-D characteristic
polynomial. Unlike 1-D systems, stability of n-D
systems depends generally both on denominator
and numerator of transfer function. However, we
will not be concerned in such the cases and we
refer an interested reader to Jury (1978) or Dud-
geon and Mersereau (1984) for whole information.
The following lemma holds.

Lemma 1. A system with transfer function (1) is
stable if and only if

a 6= 0,

{
n∩

i=1

|zi| = 1

}
∩ {|z| ≥ 1} . (3)

The lemma means that polynomial a must not
have any root on unit polycircle for all variables
corresponding to shift along the spatial coordinate
axis and within the unit polydisc for variable
corresponding to time delay. See Jury (1978) for
details and references to papers containing the
proof of the above lemma.
Stability of n-D systems is still interesting topic,
see e. g. papers by Huang (1972), Šiljak (1975),
Serban and Najim (2007) or proceedings by Hen-
rion and Garulli (2005). However, most of papers
deals with criteria for systems with support on a
quarter-plane, i. e. with stability region,

a 6= 0,

{
n∩

i=1

|zi| ≥ 1

}
∩ {|z| ≥ 1} ,

Stability region (3) is considered by Jury (1978)
and Bose (1985) but a few methods are purposed
to test the stability.

Remark 2. Note that substituting zi = ejωi we
can write the criterion (3) in the form
a(z, ejω1 , . . . , ejωn) 6= 0, {∀ωi ∈ R} ∩ {|z| ≥ 1} .

The Lemma 1 leads straightforwardly to the fol-
lowing corollary.

Corollary 3. The transfer function (1) can be con-
sidered to be fraction of elements of a ring

R[z1, z
−1
1 , . . . , zn, z−1

n ][z],

i. e. a fraction of two polynomials in one inde-
terminate z with coefficients defined in terms
of z1, z

−1
1 , . . . , zn, z−1

n . Such a description can be
used to study stability and stabilizability.

This paper deals with a few methods which are
able to check the criterion (3). Method based on
root maps is described first. It is straightforward
extension to computing of roots of univariate (1-
-D) polynomial. Then methods based on Schur-
-Cohn type criterion known from 1-D system the-
ory are extended to check the region (3). Finally,
stability of n-D polynomial is reformulated as sta-
bility of interval 1-D polynomial and Kharitonov’s
theorem is then used to decide on system stability.
The paper is organised as follows. The methods
mentioned above are described in the next section.
One of them leads to use of checking polynomial
positivity. Thus, in Sec. 3 we introduce possible
techniques how to check positivity of a polynomial
matrix. Sec. 4 contains a number of examples on
stability tests. At the end of the paper concluding
remarks are made.

2. STABILITY CRITERIA

A short description of couple of criteria existing
for stability of 1-D systems is given. Having in
mind the Corollary 3, these criteria are extended
to analyse stability of n-D systems.

2.1 Location of poles in the complex z-plane

One of the most trivial way how to decide on
stability is direct use of Lemma 1 by computing
roots of the polynomial a. A system is stable
if and only if all roots lie within the stability
region. While in 1-D case the roots are isolated
points, given by solution to a(z) = 0, in n-D case
a situation is more complicated. The roots are
curves. Their location can be determined using
so-called root map — 2-D graph consisting of
n parts, where each part shows the loci of the
roots of a[z1, . . . , zi−1, zi+1, . . . zn](zi) as the
parameters z1, . . . , zi−1, zi+1, . . . zn traverse the
unit circle zk = ej ωk for −π ≤ ωk ≤ π, k 6=
i, for i = 1, 2, . . . , n, see e. g. Dudgeon and
Mersereau (1984). The following lemma holds,
see Augusta et al. (2007) for details.

Lemma 4. A system given by (1) is stable if and
only if its root map generated by a[z1, . . . , zn](z)
lies inside the unit circle in the z-plane.

This lemma says only root map generated by
a[z1, . . . , zn](z), where z corresponds to time de-
lay, must be plotted to decide on stability.

2.2 Schur-Cohn type criterion

The fact that we do not have to know the exact
location of poles to decide on system stability and
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all we need to know is if there is a pole which lies
outside the stability region motivates us to use the
Schur-Cohn type criterion, see Barnett (1983), in
1-D case as well as in n-D case.
In 1-D case, consider the transform Φ that maps a
complex function F to the function Φ(F ) defined
by

Φ(F )(z) =





0 F is a constant function
of modulus equal to 1

F (z)− F (0)
z(1− F (0)F (z))

z 6= 0

F ′(0)(1− |F (0)|2)−1 z = 0,

see e. g. Serban and Najim (2007). Associate the
sequence of function (Fk)k=0,1,... to a function F
using recursion

F0 = F, Fk = Φ(Fk−1) , k ≥ 1.

The functions Fk are called the Schur iterates of
F and parameters

γk = Fk(0), k ≥ 1

the Schur coefficients of F .
Let a(z) be a polynomial of degree m, ã(z) =
zm a(1/z) and F = a

ã . A polynomial a has no
zeros outside the closed unit circle if and only if

|γk| < 1, k = 0, . . . ,m− 1.

The basic principle will be demonstrated by means
of an example.

Example 5. Consider a system with the transfer
function

S(z) =
1(

z + 1
2

) (
z − 1

8

) . (4)

The function F = a
ã is equal to

F =

(
z + 1

2

) (
z − 1

8

)

z2
(

1
z + 1

2

) (
1
z − 1

8

) .

Absolute values of the Schur coefficients are

|γ0| =
1
16

, |γ1| =
2
5
,

all less than 1, the system (4) is stable.

In n-D systems case, Schur coefficients are func-
tions of corresponding to space shift variables.
Using Corollary 3 we can consider F to be a
function of z with coefficients in z1, . . . , zn and
state the following.
Denote z = (z1, . . . , zn). Consider the transform
Φ that maps a complex function F to the function
Φ(F ) defined by

Φ(F )(z)(z) =





0 F is a constant function
of modulus equal to 1

F (z)(z)− F (z)(0)
z(1− F (z)(0)F (z)(z))

z 6= 0

F ′(z)(0)(1− |F (z)(0)|2)−1z = 0.

Associate the sequence of function (Fk)k=0,1,... to
a function F using recursion

F0 = F, Fk = Φ(Fk−1) , k ≥ 1.

The functions Fk are called the Schur iterates of
F and parameters

γk = Fk(z)(0), k ≥ 1

the Schur coefficients of F .
Let a[z](z) be a polynomial in z of degree m
with coefficients in z, ã[z](z) = zm a[z](1/z) and
F = a

ã . A polynomial a has no zeros outside the
closed unit polydisc if and only if

|γk(z)| < 1, k = 0, . . . ,m− 1

for all values |zi| = 1, i = 1 . . . , n.

2.3 Use of Schur-Cohn matrix

Another approach to Schur-Cohn stability crite-
rion is use of the Schur-Cohn matrix associated to
a complex polynomial

a(z) =
m∑

i=0

ai zi,

Da = dij , 1 ≤ i, j ≤ m, which has a form

dij =
i∑

k=1

(an−i+k ān−j+k − āi−k aj−k) , i ≤ j.

A polynomial a(z) has all its zeros inside the unit
circle if and only if the matrix Da is positive
definite.

Example 6. The Schur-Cohn matrix associated to
denominator polynomial of (4) reads

Da =




255
256

51
128

51
128

255
256


 .

One can make sure thatDa is positive definite and
system (4) is stable which is consistent with the
result of Example 5.

Multidimensional analog of the above described
1-D case can be made like in the previous section.
Consider a complex polynomial

a[z](z) =
m∑

i=0

m1∑

i1=−m1

· · ·
mn∑

in=−mn

ai,i1··· ,in zi zi1 · · · zin ,

Da = dij , 1 ≤ i, j ≤ m, which has a form

dij =
i∑

k=1

(an−i+k ān−j+k − āi−k aj−k) , i ≤ j.
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A polynomial a[z](z) has all its zeros inside the
unit polydisc if and only if

Da(z) ≻ 0 ∀zi, |zi| = 1, i = 1, . . . , n. (5)

Stability of a system thus depends on positivity
of n-D polynomial matrix. In Sec. 3 we introduce
methods how to check whether a polynomial ma-
trix is positive definite or not.

2.4 Use of Kharitonov’s theorem

In this section, we will consider spatially sym-
metric systems described by the transfer func-
tion (1) with the polynomial a having a form (2).
Substitution zk = ej ωk for −π ≤ ωk ≤
π, k = {i1, i2, . . . , in} into a[z1, . . . , zn](z) gives
one-sided polynomial in one variable z with real
coefficients for all values of ωi. Using Euler’s
formula and taking into account that cosine is
bounded function we can express a as so-called
interval polynomial. Finally, discrete version of
the famous Kharitonov’s theorem, see Kharitonov
(1978), Kraus et al. (1987), which provides a test
of stability for discrete-time interval polynomials
can be performed and stability of finite number of
so-called corner polynomials must be found out.
The basic ideas expressed in the above paragraphs
can be represented by diagram

(z1 + z−1
1 ) → (ejω1 + e−jω1) → 2 cosω1 → [−2; 2].

In case that the coefficients of interval polynomial
are linked (more then one coefficient depend on,
for example, ω1), the stability condition is suffi-
cient, not necessary.

3. POSITIVITY OF N -D POLYNOMIAL
MATRIX

The condition (5) can be checked using theory of
positive polynomials. In this section we focus on
how to check positivity of n-D polynomial matrix.
At first we are concerned with the case where
n = 1, meaning that the transfer function (1)
is fraction of polynomials in two variables, the
first corresponding to time delay and the second
corresponding to space shift. Then we continue
with more difficult case where n ≥ 1.

3.1 Case n = 1

The first method is based on well-known fact,
see e. g. Yakubovich (1970), Ježek and Kučera
(1985), Dumitrescu (2007), that the positivity of
two-sided polynomial matrix is connected with

existence of polynomial spectral factorisation. Du-
mitrescu (2007) states that a polynomial

R(z) =
n∑

k=−n

rk z−k, r−k = r⋆
k (6)

is nonnegative on the unit circle if and only if a
causal polynomial

H(z) =
n∑

k=0

hk z−k

exists such that

R(z) = H(z)H⋆(z−1),

where ⋆ denotes complex conjugation. In other
words, existence of spectral factorisation of R(z)
is equivalent with nonnegativity on the unit circle
of R(z). Even thought we need to check the
positivity of R(z), the above idea can be useful.
Choose a constant ε > 0 and determine if spectral
factorisation of R(z)− ε exists.
Inspired by Bauer’s method of spectral factori-
sation, see e. g. survey paper by Goodman et al.
(1997), or Hromčík and Šebek (2006), the test of
nonnegativity of R(z) − ε can be done using cor-
responding to the polynomial R(z)− ε Toeplitz’s
matrix of order N constructed according to the
scheme

TN =




r̄0 r1 · · · rn 0 · · · 0

r−1 r̄0 r1 · · · rn
. . . ...

... r−1
. . . . . . . . . 0

r−n

... . . . rn

0 r−n
. . . ...

... . . . . . . . . . . . . r1

0 . . . 0 r−n . . . r−1 r̄0




,

where r̄0 = r0 − ε and N ≥ n. If TN ≻ 0 then
spectral factorisation of R(z)− ε exists and R(z)
is positive polynomial.
Accomplishment of this method depends signif-
icantly on size of ε and N . For example, the
polynomial R(z) = z + 2 + z−1 is obviously not
positive on the unit circle, as R(−1) = 0. Choose
ε = 0.1 and get R(z) − ε = z + 1.9 + z−1, which
is not nonnegative, as R(−1) − ε = −0.1. How-
ever, corresponding T5 ≻ 0, while T15 6≻ 0. Since
numerical accuracy of spectral factor computed
by Bauer’s method goes up with growing N , it is
clear that N should be chosen enough great.

3.2 General case

In general, there is no spectral factor of nonneg-
ative n-D polynomial and hence the idea of the
above subsection is useless. A way is to check
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whether the n-D polynomial matrix R(z) is posi-
tive on the unit n-circle directly. In fact, this prob-
lem is solved by Dumitrescu (2007). He replaces
the test of positivity of R(z) with test whether
R(z)− ε with ε > 0 is sum-of-squares. If so, R(z)
is positive.
We will use an another technique. At first note
that the condition on positivity of polynomial
matrix R(z) is equivalent with

R(1) ≻ 0
r(z) = detR(z) > 0, ∀zi, |zi| = 1, i = 1, . . . , n,

see e. g. Serban and Najim (2007) for details. The
problem (5) falls into two steps, checking positiv-
ity of a constant matrix and checking positivity
of a scalar n-D two-sided polynomial on the unit
circle. The first step is trivial. The second one can
be check as follows.
Since the polynomial r(z) has the form (2), after
substitution introduced in Remark 2 and using
Euler’s formula it becomes in expression consist-
ing of functions cosine of ωi, i = 1, . . . , n. Co-
sine is bounded function and riches values within
the interval [−1; 1]. So, if we are interested in
values of polynomial of (zi + z−1

i ), |zi| = 1, i =
1, . . . , n, in fact, we are interested in values ζi, ζi ∈
[−2; 2], ζi = zi + z−1

i , i = 1, . . . , n.
The above ideas can be expressed as follows.
Substitute zi + z−1

i = ζi into r(z) and find
µ =min r(ζ1, . . . , ζn)

s. t. −2 ≤ ζi ≤ 2, i = 1, . . . , n.
If µ > 0 then r(z) is positive on the unit circle.

4. EXAMPLES

The concept described before will be demon-
strated by means of examples in this section.
Stability of two systems will be analysed.

4.1 A heat conduction in a rod

A heat conduction in a rod with array of temper-
ature sensors and actuators can be described by
transfer function

P =
b(z, z1, z

−1
1 )

a(z, z1, z
−1
1 )

=
1

z − T
h2 z−1

1 − 1 + 2 T
h2 − T

h2 z1

, (7)

where the output is temperature and the input
is input heat, T and h denote respectively a
time sample period and distance between nodes,
z and z1 correspond respectively to time delay
and to shift along the spatial coordinate axis.
See Augusta et al. (2007) for details.

P

−C

v(k) y(k)

Fig. 1. Control scheme, v(k) — reference signal,
y(k) — output

Consider the control scheme of Fig. 1 and a
controller with the transfer function

C(z, z1, z
−1
1 ) = c0 + c1(z1 + z−1

1 ), (8)
where c0 and c1 are real constants. The charac-
teristic polynomial of closed-loop system has the
form

χ(z, z1, z
−1
1 ) = z +

(
c1 −

T

h2

)
(z1 + z−1

1 )

+ c0 + 2
T

h2
− 1. (9)

Choose T = 0.1ms and h = 1
59 m and consider

the controller (8) with
c0 = 0.25, c1 = 0.25

and use the above described methods to find out
stability of (9), which now reads

z − 0.0981
(
z1 + z−1

1

)
− 0.0538. (10)

The method of root maps gives the result depicted
in Fig. 2. Since the root map lies inside the unit
circle, the closed-loop system is stable.
If we use the method of Schur-Cohn coefficients
described in Sec. 2.2 we have m = 1 and
|γ0| =

∣∣0.0538 + 0.0981(z1 + z−1
1 )

∣∣ < 1, ∀|z1| = 1,

which is equivalent with (see Remark 2)
|0.0538 + 2 · 0.0981 cosω1| < 1, ∀ω ∈ R.

Fig. 2. Root map corresponding to (9) with c0 =
0.25, c1 = 0.25
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Obviously, this inequality holds, thus the closed-
loop system is stable.
Method described in Sec. 2.3 gives the Schur-Cohn
matrix (in this case of order 1)

Dχ(z1) = 0.98− 0.011
(
z1 + z−1

1

)

− 0.0096
(
z2
1 + z−2

1

)
.

Choose real constant ε, for example ε = 0.1,
and check whether Dχ(z1)− ε has spectral factor.
Generate the corresponding Toeplitz’s matrix and
make sure that it is positive definite. So, spectral
factor exists, Dχ(z1) > 0 for all |z1| = 1 holds, the
closed-loop system is stable.
Using the method of Sec. 3.2, we have Dχ(1) =
0.9388 > 0 and after the substitution we get

R(ζ1) = 0.98− 0.11 ζ1 − 0.0096 (ζ2
1 − 2),

whose minimum with constraint −2 ≤ ζ1 ≤ 2
is µ = 0.9388, so, µ > 0 holds, the closed-loop
system is stable.
Finally, use the method of Sec. 2.4. Kharitonov’s
polynomial corresponding to (10) is

z + [−0.25; 0.1424].

All the polynomials are stable, so the closed-loop
system is also.

4.2 A deformable mirror

As the second example consider a deformable
mirror with array of sensors and actuators, see
e. g. Augusta and Hurák (2006), Cichy et al.
(2008), described by the transfer function

P =
b(z, z1, z

−1
1 , z2, z

−1
2 )

a(z, z1, z
−1
1 , z2, z

−1
2 )

(11)

with
b = 0.00000001 z,

a = 2700 z2 − 5254.4 z + 2700
+ 1.73 z

(
z1

2 + z1
−2

)
+ 15.6 z

(
z2

2 + z2
−2

)

− 45 z
(
z1 z2 + z−1

1 z2 + z1 z−1
2 + z−1

1 z−1
2

)
.

In Fig. 3 one can see that root map lies on the
unit circle and hence the transfer function (11) is
not stable.
Let us now use the Schur-Cohn test as was de-
scribed in Sec. 2.2. Since a = ã, F0 = 1, then
F1 = 0. So, we have

|γ0| = 1 6< 1

which indicates that the polynomial a is not
stable.
Using the Schur-Cohn matrix test, described in
Subsec. 2.3, we get the Schur-Cohn matrix

Da(z) =
(

0 0
0 0

)

Fig. 3. Root map corresponding to system (11)
with z2 fixed to 1

and obviously Da(1) 6≻ 0. The system is not
stable.
Let us now consider the system (11) with a con-
troller C and control scheme of Fig. 1. Suppose
the controller has a form

C(z, z1, z2) = c0 + z
(
c00

+ c10(z1 + z−1
1 ) + c01(z2 + z−1

2 )

+ c11(z1 z2 + z−1
1 z2 + z1 z−1

2 + z−1
1 z−1

2 )
)

(12)

with

c0 = −2700, c00 = 5255,

c10 = −1.7, c01 = −15, c11 = 45.

The closed-loop system characteristic polynomial
is

χ = 2700 z2 + 0.6 z

+ 1.7 z (z1 + z−1
1 )− 15 z (z2 + z−1

2 )

+ 1.73 z (z2
1 + z−2

1 ) + 15.6 z (z2
2 + z−2

2 ) (13)

whose stability will be analysed.
The polynomial χ[z1, z2](z) has roots ρ1 = 0 and
ρ2 = −2·10−4−6·10−4 (z2

1 +z−2
1 )−5.7·10−3 (z2

2 +
z−2
2 ) + 6 · 10−4 (z2

1 + z−2
1 ) + 5 · 10−3 (z2

2 + z−2
2 ).

Examples of the root map corresponding to ρ2 for
fixed values z2 = 1 and z2 = −1 are in Fig. 4. The
system is stable.
The Schur-Cohn test gives

|γ0| = 0,

|γ1| = | − 2 · 10−4 − 6 · 10−4 (z2
1 + z−2

1 )

− 5.7, ·10−3 (z2
2 + z−2

2 )

+ 6 · 10−4 (z2
1 + z−2

1 )

+ 5 · 10−3 (z2
2 + z−2

2 )|.

(14)

|γ0| < 1. Substitution ejωi for zi into (14) and
manipulation give
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Fig. 4. Root map corresponding to system (13)
with z2 fixed to 1 and −1

|γ1| = | − 2 · 10−4 − 6 · 10−4 · 2 cos(2 ω1)

− 5.7, ·10−3 · 2 cos(2 ω2) + 6 · 10−4 · 2 cosω1

+ 5 · 10−3 · 2 cosω2|
and obviously |γ1| < 1. The system is stable.
The Schur-Cohn matrix Dχ reads

Dχ(z) =
(

7.29 · 106 d12

d21 7.29 · 106

)
,

where d12 = d21 = 1620 − 4590(z1 + z−1
1 ) −

40500(z2 + z−1
2 ) + 4671(z2

1 + z−2
1 ) + 42120(z2

2 +
z−2
2 ). Dχ(1) ≻ 0 and one can make sure that
detDχ is positive polynomial on the unit circle
with minimum equal to 5.3 · 1013. The result is
the system is stable.
Finally, let us show use of Kharitonov’s theorem
to analyse stability of system with distributed
parameters. Consider again the system (11) with
the denominator polynomial

a = 2700 z2 − 5254.4 z + 2700
+ 1.73 z

(
z1

2 + z1
−2

)
+ 15.6 z

(
z2

2 + z2
−2

)

− 45 z
(
z1 z2 + z−1

1 z2 + z1 z−1
2 + z−1

1 z−1
2

)
.

Procedure described in Sec. 2.4 gives the following
interval polynomial

â = 2700 z2 − [5039.74; 5469.06] z + 2700. (15)
For stability of a, stability of â is sufficient and
in general not necessary condition. The interval
polynomial â is stable if and only if corner poly-
nomials

2700 z2 − 5039.74 z + 2700

2700 z2 − 5469.06 z + 2700

are stable, see Kraus et al. (1987). These poly-
nomials are not stable. In this case of such the
primitive example, where coefficients of (15) are

not linked, we can say the polynomial (11) is not
stable. In the case, where coefficients are linked,
we can say nothing about stability of system and
test which will give sufficient and necessary con-
ditions has to be performed.
Consider now the closed loop system with charac-
teristic polynomial (13)

χ = 2700 z2 + 0.6 z

+ 1.7 z (z1 + z−1
1 )− 15 z (z2 + z−1

2 )

+ 1.73 z (z2
1 + z−2

1 ) + 15.6 z (z2
2 + z−2

2 ).

The corresponding interval polynomial is

χ̂ = 2700 z2 + [−67.46; 68.66] z,

which is stable if and only if corner polynomials

2700 z2 − 67.46 z

2700 z2 + 68.66 z

are stable. Both the above polynomials are stable,
so (13) is also.

5. CONCLUSIONS

Stability tests for spatially distributed systems
described by a fraction of multivariate polynomi-
als were presented in this paper. Two approaches
to Schur-Cohn criterion were described and ex-
tended to multivariate polynomials corresponding
to sequences with half-plane support. The method
based on Schur-Cohn matrix was formulated as a
problem of positivity of polynomial matrix on the
unit circle, which was solved by two various tech-
niques. The first one uses equivalence of univariate
polynomial positivity with existence of its spectral
factor and can be use for 2-D systems, the second
one is general and is based on minimisation with
constraint.
Use of Kharitonov’s theorem to decide on stabil-
ity of spatially distributed system was also men-
tioned. This method gives generally only sufficient
condition and can serve as the first step in finding
out stability of multivariate polynomial. If the
result is ”stable”, the system is really stable, but
if the result is ”not stable”, another stability test
which is able to give sufficient and necessary con-
ditions has to be performed.
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